MULTIPLICATIVE SCHWARZ ALGORITHMS FOR SOME
NONSYMMETRIC AND INDEFINITE PROBLEMS

XIAO-CHUAN CAI* AND OLOF B. WIDLUND

Abstract. The classical Schwarz alternating method has recently been generalized in several
directions. This effort has resulted in a number of new powerful domain decomposition methods
for elliptic problems, in new insight into multigrid methods and in the development of a very useful
framework for the analysis of a variety of iterative methods. Most of this work has focused on positive
definite, symmetric problems. In this paper a general framework is developed for multiplicative Schwarz
algorithms for nonsymmetric and indefinite problems. Several applications are then discussed including
two- and multi-level Schwarz methods and iterative substructuring algorithms. Some new results on
additive Schwarz methods are also presented.
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1. Introduction. The analysis of the classical Schwarz alternating method, dis-
covered more than 120 years ago by Hermann Amandus Schwarz, was originally based
on the use of a maximum principle; cf. e.g. [30]. The method can also conveniently
be studied using a calculus of variation. This approach is quite attractive because it
allows us to include elliptic problems, such as the systems of linear elasticity, which do
not satisfy a maximum principle. Such a framework is also as convenient for a finite
element discretization as for the original continuous problem.

It is easy to show, see e.g. P.-L. Lions [22], that the fractional steps of the clas-
sical Schwarz method, applied to a selfadjoint elliptic problem and two overlapping
subregions covering the original region, can be expressed in terms of projections onto
subspaces naturally associated with the subregions. Let a(u,v) be the inner product,
which is used in the standard weak formulation of the elliptic problem at hand, and let
V' be the corresponding Hilbert space. The projections, P, : V =V +V, = V;, 1 = 1,2,
are defined by

a(Pu,v) = a(u,v), YoeV, i=1,2.
For this simple multiplicative Schwarz method, the error propagation operator is
(I = Py)(I = Pr);

cf. Lions [22], or Dryja and Widlund [12, 14, 16]. The projections P, are symmetric,
with respect to the inner product a(u,v), and they are also positive semidefinite. (In
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this paper, symmetry is always with respect to a symmetric, positive definite form
a(u,v) and the adjoint ST of an operator S is given by a(STu,v) = a(u, Sv).)

The classical product form of Schwarz’s algorithm can be viewed as a simple itera-
tive method for solving

(Pr+ Py — PoPy)up, = gu,

with an appropriate right-hand side g,. The algorithm can be extended immediately to
more than two subspaces. Recently, there has also been a lot of interest in an additive
variant of Schwarz’s algorithm in which the equation

(Pr+ -+ Py)up = gn

is solved by a conjugate gradient algorithm; cf. Dryja and Widlund [14], Matsokin
and Nepomnyaschikh [26] and Nepommnyaschikh [27]. It has been discovered that we
can view many domain decomposition and iterative refinement methods as Schwarz
algorithms and a general theory is being developed; cf. e.g. Bjgrstad and Widlund [2],
Cai [6], Dryja, Smith and Widlund [13], Dryja and Widlund [16, 17, 15, 19], Mathew
[23, 25, 24], Smith [31] and Widlund [32, 33].

As already noted, both the multiplicative and additive Schwarz methods can be
extended to the case of more than two subspaces. We can also replace the projections
by other operators, T; : V' — V;, which approximate them. The analysis of the general
multiplicative case introduces additional difficulties. Recently, Bramble, Pasciak, Wang,
and Xu [4] and Xu [34] have made substantial progress towards developing a general
theory for the symmetric, positive definite case. In this paper, we extend the theory to
a class of nonsymmetric and indefinite problems.

In many interesting applications to elliptic equations, one of the subspaces, V4,
plays a special role. It often corresponds to an intentionally coarse mesh, and provides
global transportation of information between the different parts of the region in each
step of the iteration. If, for a particular application, it is not necessary to include such
a space, we can just drop V5. We note that Bramble et al. [4] considered a somewhat
more general situation; however, in the interest of keeping the presentation simple, we
limit our discussion to the case of one special subspace.

With J + 1 subspaces, Vy,---, Vs, and V = Vy 4+ --- + Vj, the error propagation

operator of the multiplicative Schwarz algorithm becomes
E;j={U=Ty)---(I-="1Tp).

Our main task is to estimate the spectral radius p(Fy) of this operator.

In Section 2, we develop an abstract theory for the multiplicative Schwarz method
just introduced. This work is inspired by the work by Bramble, Pasciak, Wang, and
Xu [4] and Xu [34]. Their papers are confined to the positive definite, symmetric case;
here we consider problems with nonsymmetric and indefinite iteration operators T;. In
Section 3, we introduce a family of nonsymmetric and indefinite elliptic problems and
in the rest of the paper we use our abstract theory to derive a number of results on the
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convergence rate of several algorithms applied to such elliptic problems. Throughout
the paper, we also comment on additive Schwarz methods.

This paper does not include any numerical results. We refer to Cai, Gropp, and
Keyes [9] for an extensive experimental study of many methods for nonsymmetric and
indefinite problems.

So far, most of the work on Schwarz methods has been restricted to the symmetric
case. See Bramble, Leyk, and Pasciak [3], Cai [6, 7, 8], Cai and Widlund [10], Cai and
Xu [11], Mathew [23, 25, 24] and Xu [35] for previous work on Schwarz methods for
nonsymmetric and indefinite problems.

2. An Abstract Theory for Schwarz Methods. Our main task is to provide
an estimate of the spectral radius of the error propagation operator £ arising in the
multiplicative Schwarz method. We begin by observing that with

E;j=(I~-T;)---(I-T), E.=I,

and R =T;+T1T"-T"T},
we have
E'E; —El Ej 1 = E'R; | E;.

This leads to the identity

J
(1) I—EJE; =Y E" |R/E;.

i=0

It is easy to see that a satisfactory upper bound for p(Ej;) can be obtained by showing
that the operator on the right hand side of (1) is sufficiently positive definite. It might
therefore seem natural to assume that the operators R; are positive semidefinite. This
is so if 7 = T; > 0 and ||T;|l. < 2 but such an assumption on R; can often not be
established in our applications. In the general case, we therefore make a different

ASSUMPTION 1. There exist a constant v > 0 and parameters 6; > 0, such that
> 6; can be made sufficiently small and

(2) Ri=T:+TF —TIT; > ATIT, — é;1.

We note that if we can bound T; + T 4 6,1 from below by a positive multiple
of TTT;, then Assumption 1 is satisfied for o7} for a sufficiently small a. It is well
known that such a rescaling (underrelaxation) often is necessary to obtain convergence
in nonsymmetric cases.

We now establish some simple consequences of Assumption 1. In the proof, we give
a simple argument, which we also use in several other proofs.
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LEMMA 1. If Assumption 1 is satisfied, then

(3) [ Tille S wi =14+ /1 +6(1+7)/(L+7) <2/(1+7)+6/2,
and
(4) 1= Tilla <1+ 6i/2.

Proof. 1t follows from Assumption 1 that
a(Tiu, Tiw) < 2/(1 + y)a(Tiu,u) + 6;/(1 + v)a(u, u).
Therefore,
[Tall2 < 2701 + ) Tsllallalla + /(0 + ) ]2
By considering the solutions of the quadratic equation
e =2/(L+ )2 —6/(1+7) =0,

we easily obtain (3). Inequality (4) is obtained by a straightforward computation. 0O
In the case studied previously, with T; symmetric, positive semidefinite, 6; = 0,

(5) 0<T, <wl=2/(14+9)1,
and
(6) R >2—-w)T; >0;

cf. Bramble et al. [4]. In the general case, to simplify our calculations and formulas,
we set w = max; w; and always assume that w > 1.

A J x J matrix £ provides a convenient measure of the extent by which the range
of the operators T; are mutually orthogonal:

DEFINITION 1. The matriz £ = {52',1‘}2],]‘:1 is defined by strengthened Cauchy-
Schwarz inequalities, i.e. e;; are the smallest constants for which

(7) |a(Tou, Tjv)| < e[ Tulla|| Tiv][a - Vu,0 € V

hold.

Note that ¢;; = 1 and that 0 <¢;; < 1. In favorable cases, p(€) remains uniformly
bounded even when .J grows. By Gershgorin’s theorem, p(€) < .J always holds.

We next establish an auxiliary result.

LEMMA 2. The following two inequalities hold:

(32T T 0) < (20(€) /(1 +7) + X &6/ (20(E) 1) oo, 0),
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and

12 Tila < 20(E)/ (1 + ) + 3 6i/2.

=1
Proof. By using the strengthened Cauchy-Schwarz inequalities, we obtain

J J

(8) a(; Tiv, Z_; Tw) < p(€) > a(Tw, Tw) = p(€) D a(T T, v).

We now use Assumption 1 and the standard Cauchy-Schwarz inequality obtaining

(3T £ /(143 T+ (/0 + )l

< 20()2 /(14 7)a(3o T o, 0) o)l + (32 60/ (L + )l

The inequalities now follow by using an argument very similar to that in the proof of
Lemma 1. O

An upper bound for || X7, Ti||l. is required in the analysis of additive Schwarz
methods, see Cai and Widlund [10]; it is often relatively easily obtained by providing
an upper bound for p(&). A lower bound on the same operator is obtained, in the sym-
metric, positive definite case, by estimating the parameter Cy of an inequality similar
to that of Assumption 2 introduced below. Note that we now work with the opera-
tors T:I'T; instead of the T; that were used in the symmetric, positive definite case; cf.
Bramble et al. [4].

ASSUMPTION 2. There exists a constant Cy > 0, such that

J
ST > O *1.
i=0
Obtaining a bound for Cy is often one of the most difficult part of the analysis of
Schwarz methods in any specific application.
In the symmetric, positive definite case, an estimate of the condition number of the
operator that is relevant for the additive algorithm is obtained straightforwardly:

(9) 02—1]<ZT< (&) + Dwl.

=0

The upper bound is an easy consequence of Lemma 2; cf. (5) for the definition of w.

The lower bound follows from Assumption 2 and an elementary inequality; 77 < wT;
in the symmetric, positive semidefinite case.

A bound on the rate of convergence of the conjugate gradient method follows from

(9) in a routine way. Similarly, in the theory developed by Cai [6] and Cai and Widlund

[10], a lower bound for a(XN., Tiu, u) and an upper bound for || 27, 7}||. are required

to obtain an estimate of the rate of convergence of the GMRES and other Krylov space
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based iterative methods that are used for nonsymmetric problems; cf. Eisenstat, Elman,
and Schultz [20].

We can now prove, under Assumptions 1 and 2, that the symmetric part of the
operator Y7_, T} is positive definite, provided that 377 é; is small enough.

LEMMA 3. For anyv €V,

J J
(3 T, o) = (05%—1 - Zéi/z) o]z
=0 0

We note that we recover the lower bound in (9) by setting the ¢, = 0.

Proof. 1t follows from Assumption 1 that

1 6;
a(Tw,v) > %a(TiTTiv,v) — ga(v,v).

The proof is completed by forming a sum and by using Assumption 2 and the relation
between w and 7. 0O

The main effort goes into establishing the following Lemma. (Throughout, C' and ¢
denote generic positive constants, which are independent of the mesh parameters that
will be introduced later.)

LEMMA 4. In the general case, there exists a constant ¢ > 0 such that

J J J
(10) Z EZ»T_ITZ»TTiEi_l > ’yz TZ»TTZ', where 7 = c(w’p(E)* + (Z )P+ 1)
1=0

Proof. We first note that the terms with ¢ = 0 can be handled separately and
without any difficulty.
A direct consequence of the definition of the operator E; is that

i-1 i—1
(11) ] — Ei—l —|— Z T]E]_l — Ei—l —|— TO —|— Z T]E]_l
J=0 7=1
For ¢ > 0, we therefore obtain
i—1
a(TiTTiv, v) = a(Tw, T;Ei—1v) + a(Tiv, T;Tov) + a(Tiv, T; Z T;E;_1v).
7=1

Let d; = ||TjEj-1v]a, 1 < ¢ < J, be the components of a vector d. We find that

1—1
1Tl < 1 Twlladi + [Tl TiTovlla + [ TowllallT: Y2 T E 1]l

i=1

Cancelling the common factor and squaring, we see that we need to estimate
S, a(TET Ty, Tyw) and YL, a(TET; Z;;ll TjEj_lv,Z;;ll T;FE;_1v) appropriately in
order to complete the proof of the Lemma.
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We can use Lemma 2 directly to estimate the first expression. We use Assumption
1 to estimate the second expression and obtain,

i—1
a(THT; ZTE] 10, Y TiE;_10) < (2/(1+v)a TZZT]E] 10, ZTE] 1)
7=1 7=1

+6;/(1 +7)a ZT]E] 10, ZTE] 1))

After forming the sum over ¢, the second term on the right hand side can be esti-
mated straightforwardly from above by

p(E)/(L+7) 3 oildls.

=1
What remains, primarily, is to estimate
J i1 i1
doalliy TiEiyv, Y TiE; qv).
=1 7=1 7=1

By using the strengthened Cauchy-Schwarz inequalities, we obtain
i—1 i—1 i1 i—1

a(Ti Y TiEjyv, ) TiEiw) < ||T; Y TiEivlla ) eisd;
— — — —

Therefore, by using the Cauchy-Schwarz inequality,

J

J i—1
S af TZZT]E] 10, ZTE] 1) ZHT ZTE] w2200 Zgw 2,
=1 =

=1 7=1

We now use the fact that all €; ; and d; are nonnegative and obtain

J
Z Zgwdj ) |d|12

=1 j=1

The proof is now completed by an argument similar to that in the proof of Lemma 1.
U
We next note that it follows from Assumption 1 that

El \RiE; .y > yE [ TIT;E;  —§,E] | E; 4
We use Lemma 4 to estimate the first term from below and the bound (4) to show that

the second term is bounded by

7—1

Siexp(d_ &)1 .

=0

We can now put it all together and obtain
7



THEOREM 1. In the general case, the multiplicative algorithm is convergent if

N
(w?p(€)? + (£ 4:)* + 1)Cg

dominates
J =1
Z @e:z;p(Z 6;)
7=0 =0

by a sufficiently large constant factor. Under this assumption, there exists a constant
¢ > 0 such that

c

(@?p(E)* + (T 6P+ 1)C3

p(Es) < 1Bl < w -

We note that in the positive definite, symmetric case, the 6; = 0. By using very
similar arguments, we can show that

(2 -w)
(2w2p(E)? + 1)CE

p(Es) < |E5lla < Jl—

The multiplicative Schwarz algorithm can also be accelerated by using the GMRES
algorithm; cf. subsection 4.2. In the analysis of the resulting method, we need to estab-
lish that the symmetric part of the operator I — Fj is positive definite; see Fisenstat,
Elman and Schultz [20] for the underlying theory. To obtain a result, we note that since

a(Eyv,0) < ||[Esllalloll; = =1 = [[Eslla)[l0]l3 + a(v, v),
we obtain
(12 (I = Bgyo,0) = (1 = | Esll)llo], ¥oe V.
This bound can now be combined with that of Theorem 1.

3. Nonsymmetric and Indefinite Elliptic Problems. We consider a linear,
second order elliptic equation with Dirichlet boundary condition, defined on a polygonal

region Q C R, d = 2,3,

Ly = f in €,
(13) { u = 0 on 0N.

The elliptic operator L is of the form

where the quadratic form defined by {a;;(x)} is symmetric, uniformly positive definite
and all the coefficients are sufficiently smooth. We use a weak formulation of this

problem:
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Find v € Hy(Q), such that,
(1) o) = (F.0), Vo € H(Q).

Here (-, ) is the usual L? inner product, f € L*(Q) and the bilinear form b(-, ) is given
by

buy0) = alu,0) + 5(u0) + e(u,v),
where

Ju 81}
Z/ a”@x 6:1;] ©

7,7=1

K3

d du J(b;u)
s(u,v) = ;/Q(biaxiv + 5. v)de,

c(u,v) = (éu,v),

with é(x) = c(z) — X0, 9b;/ ;.

We note that the lower order terms of the operator £ are relatively compact per-
turbations of the principal, second order term. We also assume that (14) has a unique
solution in H}(Q).

For this problem, it is appropriate to use ||- ||, = a(-,-)'/?, a norm equivalent to the
H}(Q) norm. Integration by parts shows that s(-,-) satisfies s(u,v) = —s(v,u), for
all u,v € Hy (). Using elementary, standard tools, it is easy to establish the following
inequalities:

(i) There exists a constant C, such that | b(u,v) |< C|lull.]|v]le, Vu,v € Hg(9),
i.e. b(u,v) is a continuous, bilinear form on H}(Q) x Hy(Q).
(i) Garding’s inequality: There exists a constant C, such that
[ulls = Cllullzz@) < blu,u), Yu € Hy(Q).

(iii) There exists a constant C, such that

| s(u,0) [< Cllullallvllzz @), Yu,v € Hy(Q).

We note that the bound for s(-,-) is different from that of b(-,-); each term in s(-,-)
contains a factor of zero order. This enables us to control the skew-symmetric term and
makes our analysis possible. This is not the only interesting case; see Bramble, Leyk,
and Pasciak [3] in which several interesting algorithms are considered for equations
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where the skew-symmetric term is not a compact perturbation relative to the leading
symmetric term.
We also use the following regularity result; cf. Grisvard [21] or Necas [28].

(iv) The solution w of the adjoint equation

b(¢,w) = g(8), Vo € Hy(Q)

satisfies

|wl]|zr+e@) < Cllgllz2(q)-

Here o depends on the interior angles of 08), is independent of g and is at least 1/2.
Let V" be a finite dimensional subspace of H}(Q) with a mesh parameter &; details

are provided in the next section. The Galerkin approximation of equation (13) is:
Find uj € V" such that

(15) b(uf,vn) = (f,on), Yo, € V"
We will now discuss several iterative methods for solving equation (15).

4. Two-level Schwarz Type Methods. In this section, we consider two classes
of two-level methods that use overlapping and non-overlapping subregions, respectively.
We begin by describing the two-level overlapping decomposition of €2, which was intro-

duced by Dryja and Widlund in [14]; see also Dryja and Widlund [16] for a fuller

discussion.

4.1. A Two-level Subspace Decomposition with Coloring. Let Q C R? be
a given a polygonal region and let {0}, be a shape regular, coarse finite element tri-
angulation of ). Here the ); are non-overlapping d-dimensional simplices, i.e. triangles
if d = 2 and tetrahedra if d = 3, with diameters on the order of H. The €; are also
called substructures and {£2;} the coarse mesh or H-level subdivision of . In a second
step, each substructure €);, and the entire domain, are further divided into elements
with diameters on the order of h. These smaller simplices also form a shape regular
finite element subdivision of ). This is the fine mesh or h-level subdivision.

The finite element spaces of continuous, piecewise linear function on these triangu-
lations are denoted by V¥ and V", respectively. All elements of these spaces vanish on
0Q and VH and V" are therefore subspaces of H((2).

We introduce overlap between the subregions by extending each subregion ; to a
larger region Q% Q; C Q" with distance(9Q¢" N Q, 00, N Q) > «oH, Vi.Here «a is
a positive constant. The same construction is used for the subregions that meet the
boundary except that we cut off the parts that are outside €. In this construction, we
also make sure that 9Q5"" does not cut through any h-level elements.

We note that recent results by Dryja and Widlund [33] provide bounds on the rate
of convergence as a function of o and that, in our experience, the performance is often
quite satisfactory even when the overlap is on the order h; cf. Cai, Gropp, and Keyes
[9].
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We associate an undirected graph with the decomposition {Q¢*'}. Each node of the
graph represents an extended subdomain and each edge the intersection of two such
subdomains. This graph can be colored, using colors 1,---,.J, in such a way that no
nodes of the same color are connected by an edge of the graph. We merge all subdomains
of the same color and denote the resulting sets by Q},---, Q. Let V* = VF n HL(Q)).
(By extending all functions of Vi* by zero outside ;, we see that V:* C V".) For
convenience, we set (), = Q and associate it with color 0. We also use the subspace
Vi = VH in our algorithm.

It is easy to see that V" is the sum of the J + 1 subspaces;

(16) VE = W+ W4V

All the results given in the next subsection are valid for this decomposition, but the
algorithms can equally well be used for other choices of the subspaces.

4.2. Algorithms and Convergence Rates Estimates. We begin by introduc-
ing oblique projections P; : V — V,, by

b(Piuh,vh) = b(uh,vh), \V/U}L € Vh, v € ‘/Z', 0 S 7 S J.

It is often more economical to use approximate rather than exact solvers of the problems
on the subspaces. The approximate solvers are introduced in terms of bilinear forms

bi(u,v), defined on V:" x Vi  such that
(17) a(u,u) < wpbi(u,u) and bi(u,v) < Cllully]|v]]e, Yu,v € Vih.

Here wy is a constant in (0,2). A possible choice is b;(u,v) = a(u,v) or the bilinear form
corresponding to the Laplace operator or to an inexact solver for one of the correspond-
ing finite element problems.

The operators T; : V. — V;, are defined by these bilinear forms:

bi(Tiuhvvh) = b(Uh,Uh), \V/Uh e V.

For : = 0, we must always, in order to obtain our theoretical results, use an exact solver.
Thus, we choose Ty = F,.

We note that Puj and T;u} can be computed, without explicit knowledge of w7,
by solving a problem in the subspace V.

b( Py, vp) = b(uf, o) = (f,0n), Vo, € VI,
or
bi(Touy, vp) = b(uf,vn) = (f,vn), Yo, € V.

We now describe the classical Schwarz alternating algorithm in terms of the map-
pings T;; we can consider the case of exact oblique projections as a special case.

ALGORITHM 1 (THE CLASSICAL SCHWARZ ALGORITHM).
11



i) Compute g; = Ty, fori=0,---J;
ii) Iterate until convergence: Obtain uZ‘H, the (n+ 1)th approximate solution, from

up using J + 1 fractional steps

i+l i i
nt+ 77 nt+ 7T nt+ 7T

Uy, =uy —|—<gi—Tiuh ), t=10,---,.J.

We can regard this algorithm as a Richardson iterative method; cf. discussion in
Section 1. More powertul iterative methods can also be used to accelerate the conver-
gence. We recall that the multiplicative Schwarz operator is defined by the operator

E;j=U-=THUI—=Ty_1)---(I =TI - F).
Since the polynomial I — E; does not contain any constant terms, we can compute
(18) gn = (I — Ej)uj,
without knowing the solution u}. We obtain,

ALGORITHM 2 (THE ACCELERATED MULTIPLICATIVE SCHWARZ ALGORITHM).
i) Compute g, = (I — FEj)u;
ii) Solve the operator equation

(19) (] — EJ)uh = g
by a conjugate gradient-type iterative method, such as GMRES.

We remark that if the 7T; are symmetric, positive semi-definite, then the operator
E; can be symmetrized by doubling the number of fractional steps, reversing the order
of the subspaces. We can then use the standard conjugate gradient method, in the inner
product a(-,-), to solve a linear system with the operator I — ET E;.

The additive variant of the two-level multiplicative Schwarz algorithm, considered
here, is given in terms of the operator T'= Py + 11 + --- 4+ T}.

ALGORITHM 3 (THE ADDITIVE SCHWARZ ALGORITHM).
i) Compute g, = Tu};
ii) Solve the operator equation

(20) Tuh = g

by a conjugate gradient-type iterative method, e.q. the conjugate gradient method if T
is symmetric, positive definite and the GMRES method otherwise.

To prove the convergence of these algorithms for our class of nonsymmetric and
indefinite elliptic problems, we use a lemma that shows that the contribution from the
skew-symmetric and zero order terms are of a lower order in H.
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LEMMA 5. There exists a constant C', independent of H and h, such that, for all
Uy € Vh,

(1) |s(up, Pup)| < CH(a(up, up) + a(Prup, Pug)) for e > 0;

(ZZ) |3(uh — Piuh, quh)| < CH(CL(U}L, uh) + a(Piuh, quh)) f07“ t > 0.

For i =0, (i) holds with H replaced by H. The same estimates hold if we replace the
bilinear form s(-,-) by ¢(-,-) and/or P; by T;.

The proof for the exact oblique projections follows directly from Section 4 of Cai
and Widlund [10]. For general T; the result follows from a minor modification of these
arguments.

We can now prove that Assumption 1 is satisfied for the mappings P; and 7.

LEMMA 6. For i > 0, there exists a constant Hy > 0, such that for H < Hj
Assumption 1 is satisfied with 6; = 4C H and

) 1=20H>0 for P;
7= 2/(4)5—1—CH>0 fO?“TZ'.

Here H is the coarse mesh size and C' the constant in Lemma 5. For 1 = 0, the same
estimates hold with H replaced by H°.

Proof. We give a proof of the lemma only for the P;; the proof for the T; can be
obtained similarly with the aid of inequality (i) of Lemma 5.

We must establish that

14+~

bi
a(Piuh,uh) Z a(Piuh,Piuh) — §a(uh,uh), \v’uh € Vh.

From the definition of F;, it easily follows that
(21) a(Piuh, uh) = a(Piuh, quh) — S(uh — Piuh, quh) — c(uh — Piuh, quh)

The proof is concluded by bounding the second and third terms using (ii) of Lemma 5.
U

We refer to Section 4 of Cai and Widlund [10], or Lemma 8 of this paper, for a
proof of Assumption 2, i.e. that

J

S PP > il

i=0
Here () is independent of the mesh parameters & and H. A minor modification of the
proof in [10] shows that this bound also holds if P; is replaced by T;.

In the study of Schwarz methods with this subspace decomposition and the coloring
introduced earlier in this section, a bound for p(€) is very easy to obtain; we only need
the elementary inequality p(€) < J.

We can now summarize our results for this two-level decomposition. We note that
the constant ¢ generally depends on wy.

THEOREM 2. There exist constants Hy > 0 and ¢(Hy) > 0, such that if H < H,,
then

C
(22) sl < 0~ s ey Il Yo e v
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Here J ts the number of colors used for the set of extended subregions.

The proof follows directly from the abstract theory and the previous results of this
section.

For the additive Schwarz algorithm, we similarly obtain

THEOREM 3. There exist constants Hy > 0 and ¢(Hy) > 0, such that if H < H,,
then

(23) [Tunlle < CT+ D6+ Dllunlla, Yun € V7,
and
(24) a(Tup,up) > cCO_QHUhHi, Vuy, € V.

We note that a proof of Theorem 3 is given already in Cai and Widlund [10].

4.3. Iterative Substructuring Algorithms in Two Dimensions. We now
consider an iterative substructuring method for problems in two dimensions. In defining
the partition of the finite element space into subspaces, we use the same coarse space
VH as in Section 4.1. In addition, we use local subspaces corresponding to the subre-
gions Q;; = Q; UT';; UL, which play the same role as the 25" in Section 4.2. Here €,
and ); are adjacent substructures with a common edge I';;. We note that an interior
substructure is the intersection of three such regions. By coloring the subdomains, as in
the previous subsection, we obtain Qp = Q,Q},---, Q) where each Q;,7 > 0, is a union
of nonoverlapping subregions that share the same color. As before, the local subspaces
are defined by V" = HY(Q.) N V" It is easy to show that

Vh:‘/oh-I"/lh‘l'""l'VJh-

We can now introduce additive and multiplicative Schwarz algorithms based on this
decomposition. For this decomposition, the constant CZ can be estimated by

(2= C(1+log(H/h))?

where (' is independent of H and h; cf. Dryja and Widlund [17]. Theorems 2 and 3
hold with this C3. The estimates of the other parameters, such as p(€) < J, can easily
be found using the techniques as before. We note that a proof of the result for the
additive case is given already in Cai and Widlund [10]. The corresponding problems
for three dimensions appears to be open.

5. Multilevel Schwarz Type Methods. In this section, we consider a class of
additive and multiplicative Schwarz methods using (L + 1) rather than two levels.
Following Dryja and Widlund [18] and Zhang [37], we introduce a sequence of nested
quasi-uniform finite element triangulations {7'}~ . Here 7° = {72}, is the coarsest
triangulation and 7 represents a substructure. The successively finer triangulations
T! = {Til}ﬁl, [ =1,---, L, are obtained by dividing each element of the triangulation
14



T'~! into several elements. Let h! = diam(7}), h = max;{hl}, H = max; h? and
h = h;. We also assume that there exists a constant 0 < r < 1 such that #; = O(rlH).
Let V! be the finite element space of continuous, piecewise linear functions associated
with 7.

On each level, except the coarsest, we introduce and color an overlapping subdo-
main decomposition ) = U;]lzlflﬁ Here J; is the number of subdomains on level [, each
corresponding to a color. We note that there is a fixed upper bound J for J;. Such a
construction has already been introduced in Dryja and Widlund [18, 33] and it is quite
similar to that described in Subsection 4.1 for two levels. We assume, as before, that
the overlap is relative generous and uniform as measured by the parameter «.

Let Vi = VIOH(}(QD, i=1,---,J;, [=1,---, L, be subspaces of V" and set J, = 1
and V0 = V2 = V. The finite element space V" = V% can be represented as

) V=S V=35

Xuejun Zhang [37] has shown that the decomposition (25) is uniformly bounded in
the sense of the following Lemma
LEMMA 7. For anyu € V", there exist ul € Vi, such that

Moreover, there exists a constant Cy, which ts independent of the parameters h, H and

L, such that

L J

D> Mhills < CEllullz, Vu e VP

[=0 =1

This result is first established, in Zhang [37], under the assumption of H*— regu-
larity, e.g. in the case of convex regions, and then a proof, based on a recent result by

Oswald [29], is given in the general regularity-free case.
For 0 <1< L, 1< <J, we define the mapping P! : V" — V! by

b(Plu,¢) = b(u, ), Yo €V,
and similarly, for 1 <1< L and 1 < < J;, we define T : V* — VI, by
bi(Tiluv ¢) = b(uv ¢)7 \V/¢ € ‘/z’l'

As before, we choose T = Ty = P = P,.

The techniques of the proof of Lemma 6 can be applied directly to show that
Assumption 1 holds for the mappings P! and T'. The estimates for §; can be obtained
in the same way as in Lemma 6 with H replaced by h; for the mappings defined for the
level [ subspaces.

We can now turn to Assumption 2.
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LEMMA 8. Assumption 2 holds, i.e. there exist positive constants Hy and Co(Hy),
such that if H < Hy, then

L J

PHTpl > =T .
7 7 0

=0 i=1

The estimate also holds if the P} are replaced by the T!.

Proof. Our point of departure is an inequality established in Lemma 5 of Cai and

Widlund [10]:
(26) (1 - CHQU)a(u,u) < b(u,u) + C||Poulla]|tt]|a;, Yu € Vi,

From the definition of the operators P! and Lemma 7, we find that

K3

L J L J

b = 3530 busud) = 3750 Plusad), e VP,
=0 i=1 =0 =1
From the continuity of b(-,-) follows that
L J L J
D22 0(Pluwg) < C Y03 1P ullafullla:

=0 i=1 [=0 =1

By Lemma 7 and the Cauchy-Schwarz inequality, this expression can be bounded from

above by
L J [
211/2
CCo(32 D 1P ull2) " ulla.
[=0:1=1
Finally, by using (26), we obtain
L J
i) £ CC3 S alPhu, Pl
[=0 =1

for sufficiently small H. O
We define the multilevel additive Schwarz operator by

L J

T =P+ 331!

=1 i=1
and the multilevel multiplicative Schwarz operator by

L J

(27) P =TITI (1= T) (1 - Ro).

[=11=1

To tully analyze the convergence rates of the algorithms based on these operators,
we need to estimate the spectral radius of £. Here we can use a result due to Zhang
16



[37], which provides bounds on the parameters 55? for the subspace decomposition {V}'}
and the mappings { P!} considered in this section.
LEMMA 9. The following strengthened Cauchy-Schwarz inequalities hold:

|a(Pfu, Pfo)| < e[ Plulla)| Pfolla.

Here 0 < 55? < C(rH=H where d = 2 or 3 is the dimension of the space.
It is now easy to show that p(€) < O(J) by using Gershgorin’s theorem. By using
the fact that 6! = O(h;) = O(Hr'), we find that

L g Jr
Sy son(1+ ).

[=0 =1 -r

This sum can therefore be made arbitrarily small, and we can therefore satify the
assumption of Theorem 1. Using the general theory, we obtain
THEOREM 4. There exists a constant Hy > 0, such that for H < Hy,

TP < C(J+1), Yoe V™
and
a(T(L)v,v) > CCO_QHUHE, Yo e V.

Here ¢ and C may depend on Hy but they do not depend on h, H and L.
Similarly, we obtain
THEOREM 5. There exists a constant Hy > 0, such that if H < Hy, then

I C
HE](W)UHG S \/1 — m HUHa, \V/U - Vh.

Here ¢ > 0 may depend on Hy but it does not depend on H,h and L. J is the mazimum
number of colors used, on each level, to color the extended subregions.

In conclusion, we note that there are other multilevel decompositions for which the
general framework and abstract theory can be used to obtain new results. Among them
are Yserentant’s decomposition, cf. Bank, Dupont, and Yserentant [1] and Yserentant
[36], and the multilevel diagonal scaling method developed by Zhang [37]. This latter
method can be viewed as a generalization of the BPX method due to Bramble, Pasciak,

and Xu [5].
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