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Abstract

In this paper we present a multi-domain multi-model for-
mulation for three-dimensional compressible flows. Us-
ing multi-domains we can map the computation effi-
ciently onto multi-processor parallel computers and us-
ing multi-models we can reduce the arithmetic cost. The
goal is to minimize the overall time and memory required
to simulate the flow by using locally selected, more com-
putational efficient physical models without sacrificing
the global fidelity of the simulation. We introduce a fi-
nite volume based conservative interpolation for the cou-
pling of the full potential equation and the Euler equa-
tions, and the resulting nonlinear systems are solved by
a Defect Correction method. To demonstrate the feasi-
bility of this method, we present computational results
for subsonic and transonic flows around wings, and also
a comparison with results obtained using the TRANAIR
package of Boeing.
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1 Introduction

Numerical simulations of fluid flow have sufficiently ma-
tured to be considered accurate for engineering design
and analysis. However, for large scale simulations, the
computation time remains unacceptably large for the
software to be used as an interactive tool even on the lat-
est supercomputers. While parallel computing may re-
duce computation time nearly proportionally to compu-
tational resources, new algorithms should be constructed
to perform faster on new and existing resources.
Compressible fluid flow simulations needed for aerody-
namic applications can be modeled with different degrees
of complexity. The simplest model is the full potential
equation which assumes inviscid, irrotational and isen-
tropic flows. This model utilizes a single second-order
nonlinear differential equation that is inexpensive with
respect to the execution time and the memory require-
ment. Validity of the full potential equation is, however,
restricted. The isentropic assumption of the potential
flow model leads to inaccurate physics for transonic flows
with strong shocks. The next level of approximation is
the Euler equations which describe the complete behav-
ior of inviscid compressible flows. The Euler model uti-
lizes a coupled system of five nonlinear differential equa-
tions of first order. The five field variables lead to a
fivefold increase in the memory needed over the full po-
tential, for the same mesh density. Finally, the Navier-
Stokes equations include the viscous effects needed for
accurate modeling of the boundary layer. These equa-
tions are not only more time consuming to solve but also
require an associated mesh that is stretched and very
fine in viscous regions. Nevertheless, for complex flows
with separation of the boundary layer, the Navier-Stokes
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equations are mandatory to provide an accurate simu-
lation. Furthermore, for high Reynolds number flows,
turbulence appears and needs to be modeled.

The approach proposed herein involves splitting the
computational domain into different fluid flow regions
and using the full potential model instead of the Euler
or Navier-Stokes equations in regions where this approxi-
mation is valid. When considering transonic flows over a
wing, three regions can be identified: the boundary layer,
the region around the shock and the farfield. A multi-
model formulation can be used to combine the strengths
of each model described above. Indeed, a multi-model
formulation will take advantage of the quick computa-
tional time associated with solving the full potential
equation while capturing all the important features of
the flow such as boundary layers and shocks using the
Navier-Stokes equations and/or the Euler equations, re-
spectively. It can be shown numerically that solving the
full potential equation in regions of irrotational flow is
not only more efficient but also improves the accuracy.

This research benefits from the extensive experience
of numerical methods and software developed over the
years to solve the full potential equation, the Eu-
ler equations and the Navier—Stokes equations sepa-
rately. Numerical techniques for the solution of the full
potential equation and the Euler/Navier-Stokes equa-
tions were developed respectively in the past 30 years
[3, 5, 11, 13, 15, 18, 24]. These methods have matured
and can simulate compressible flows around entire air-
craft. For example, the full potential equation was solved
for a Boeing 747-200 transport configuration with wing,
For the Euler model,
calculations over a complete aircraft were performed as

body, struts, and nacelles [24].

early as 1986 [15]. However, challenges remain for vis-
cous flows. Accurate simulations at high Reynolds num-
ber over such complex geometries require enormous com-
putational resources. Approximate solutions, i.e., with
less than adequate number of mesh points, have been
performed. A Navier-Stokes prediction for the McDon-
nell Douglass F-18 wing and fuselage is presented in [8].
A discussion of the drastic difference in computational
cost related to the choice of models can be found in [14].

Only recently has there been interest in coupling these
solvers to reduce the computational cost, to reduce the
memory requirement, and to improve the accuracy of
the solution. Certainly, boundary layer coupling or thin
layer Navier-Stokes coupling have been widely used but
such approaches do not quite include all the physics re-
quired for complicated flows [23].

For a mathematical description of heterogeneous do-
main decomposition methods, in particular for coupling

of compressible flows, we refer the reader to [19]. A char-
acteristic analysis, using the quasi-linear vector form of
the full potential equation, concludes that, contrary to
the Euler system, the characteristic curves along which
vorticity and entropy propagate do not exist. Recall that
the full potential equation assumes irrotational flow and
constant entropy. This suggests that incoming informa-
tion for the Euler domain must be provided.

For three-dimensional flows, it is shown in [1, 21] that
the computational cost can be reduced by a factor of two
for a Navier-Stokes/full potential coupling. This method
was enhanced with the addition of a Lagrangian wake to
include the wake effect in the full potential region in or-
der to study its unsteady behavior. The formulation in
these studies is based on a structured grid discretization
in which the full potential equation is solved using a fi-
nite difference method and the Navier-Stokes equations
are solved with either a finite difference or a finite volume
discretization. The savings are justified by the fact that
two-thirds to one-half of the computational elements are
outside the Navier-Stokes region. In general, the cost of
the full potential solver can be considered negligible com-
pared to the Navier-Stokes solver. The solution strategy
is based on solving the different equations alternatively
in each region, similar to a subdomain iterative method.

Our formulation differs from [1, 21] in providing a gen-
eral finite volume approach and therefore ensures that
the mass will also remain conserved at the discrete level.
In addition, an unstructured discretization of the compu-
tational domain provides more flexibility to mesh com-
plex geometries and for adaptive control of the numerical
error. Lastly, a parallel version is implemented to obtain
reasonable execution time.

In [6], initial steps of this research were taken. We
presented the derivation and implementation of the in-
terface condition between the full potential equation and
the Euler equations. Due to the natural parallelization,
an explicit approach was first considered not only to val-
idate the spatial discretization but also as a precursor to
the implicit implementation to be presented herein. In
this paper we report on the development of an implicit
approach for solving the coupled models. We also only
investigate the coupling between the full potential equa-
tion and the Euler equations with the intention of gaining
the required basic understanding before extending this
method to include the Navier-Stokes model. Indeed, to
account for viscous effect, the Navier Stokes equations
need to be included in our multi-model formulation.

The purpose of this paper is to describe the implicit
two-model formulation. Section 2 describes the implicit
Euler solver and full potential solver with more empha-
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sis on the latter. In Section 3, we briefly introduce the
coupled solver and describe the implicit implementation
for the interface condition. Subsequently, we present
the algorithmic framework in Section 4. To demonstrate
the feasibility of our approach we simulate subsonic and
transonic flows over a NACA0012 airfoil at zero angle of
attack and around a AGARD wing 445.6. The numer-
ical results are summerized in Section 5. We conclude
the report with remarks and extensions given in Section

6.

2 Simulation of compressible flows

the solid wall boundary, I'y,, the normal velocity v, is
zero, since no mass crosses the boundary. In the farfield,
I'o, we impose a uniform free-stream state defined by
the following parameters: the density, p, the velocity
vector, Voo, the pressure, po,, and the Mach number
M. These conditions are given by v, =0, on Iy
and poo = 1, Voo = (cos(a) X cos(f),sin(h), sin(a) x
cos(#)), poo = V# on I'o,. Here o and 6 are the
angles of the flow direction (angle of attack and yaw
angle, respectively).

2.2 Euler solver

Our interest lies in the numerical simulation of three-
dimensional compressible inviscid flows. We assume that
As de-
scribed above, these flows can be modeled with the Eu-

there are no external forces or heat transfer.
ler equations or with the full potential equation for the

particular case when the assumptions of irrotationality
and isentropy are satisfied.

2.1 Governing equations

Let 2 C R? be the computational flow domain and T its
boundary. The conservative form of the Euler equations

is given by 5
a—lt]JrV-F(U):O. (1)

Here U contains the conservative variables, i.e., U =
(p, pu, pv, pw, pE)T. The explicit definitions of F() can
be found on page 87 of [12]. When the flow is irrota-
tional, there exists a potential variable ® satisfying the
full potential equation

Ip(2)

T‘FV'G(‘P)ZO, (2)

where G(®) = pV® and
Ve = (u,v,w)?. (3)

In the rest of the paper, we shall refer to U as the Euler
variable, which is a vector, and ® as the full potential
variable, which is a scalar.

By appealing the isentropic flow assumption we can
write the density p as a nonlinear function of the poten-
tial, such as

1 V|2 1/(v=1)
P(®) = po (1 + - u)) L@

7%

Two different types of boundaries must be considered:
the farfield boundary and the solid wall boundary. On

To solve the Euler equations, we take advantage of an ex-
isting code based on an unstructured finite volume dis-
cretization [10]. The computational domain is divided
into tetrahedra to provide maximum flexibility for tes-
sellating complex geometries. Euler variables are located
at the vertices of the elements. This code uses a second-
order flux discretization based on the MUSCL (Mono-
tonic Upwind Scheme for Conservative Laws) scheme
[16]. The spatial discretization of the boundary con-
ditions is obtained using a non-reflecting version of the
flux—splitting scheme [9].

For clarity, we now briefly describe the implicit ap-
proach used for solving (1) with boundary conditions
given above. For more details we refer the reader to
[4, 17]. To ease notations, the subscript h identifies the
spatial discretized functions, and ¥}, denotes the second-
order discretization of the convective fluxes. A fully dis-
cretized scheme, which is of first order in time and of
second-order in space, can be written as

uptt —up
Atr

where 1 is a running time step index. The local time

+ WUy ) =0, (5)

step size At} is defined for each control volume 7f (with
characteristic size ||7f]|) by

CFL
Aty =

il 6
oo, (6)

where CFL is a preselected positive number, Cr; is the
sound speed and Ur; is the velocity vector. Suppose
we know an initial guess for U"TH9 say U™. To obtain
U™ we solve (5) using the so—called Defect Correction
(DeC) method [2] and form the following linear system
of equations

(1st) 7 n+1,0
Il ow, (U, ) n+l,s+1 n+1,s
< At + U (Uh -U, )

(7)

n s ny 75 nd n+1,s
= - (T v R @)
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Clearly, this approach reduces to Newton’s method in
the limit of large time steps. We remark that the accu-
racy of the numerical solution is determined by the time
discretization scheme and how the term \IJELQnd) (U}T:Jrl’s)
on the right-hand side of (7) is discretized in space. How-
ever, the cost is mostly determined by how the left—hand
side of (7) is constructed and solved. The advantage of
this technique is that we can solve a first order prob-
lem but still obtain a second-order spatial accuracy by
using a first order Jacobian with a second-order resid-
ual. To conclude, each of the s DeC iterations of the
(n + 1)st time step is solved using a diagonally precon-
ditioned GMRES approach.

2.3 Full potential solver

A finite volume full potential solver has been developed
In the
resulting composite discretization, the same control vol-

to interface with our existing Euler solver [6].

ume is used and only the flux calculations are different.
We briefly review the spatial discretization of the mass
flux required in this scheme and then discuss an implicit
solution scheme.

2.3.1

The integral form of the full potential equation for the

Spatial discretization

control volume 77 is simply
/ V- -G(®)dA = 0. (8)

Note that the union of 7{ covers the whole domain (2,
ie, Q = UT_ZC By analogy to the discretization of the
Euler equations, the discretization here is accomplished
by dividing the domain into tetrahedral elements, 7; ;.
The potential variable is stored at the vertices. This
choice is illustrated in Figure 1 for two space dimen-
sions. The space of the potential solution is taken to be
piecewise linear continuous functions determined by the
vertex values ®;.

For the control volume 7 associated with the dual
mesh, we can write the discrete form of (8) as

le_c V(pV®)dA = faT; pV® -ndS
= ETI',]‘ plv](vq))%] : Sg,j’

where 7; ; is the “triangulation” associated with the con-
C c — H
trol volume 7{" and S§ ; = farfrm,,- ndA. Here n is the

unit outward normal vector of the face associated with

Figure 1: Two space dimensions representation of
the control volume.

the control volume 7/ in the element 7; j. Note that p; ;,
the discrete density, is a function of (V®); ; which is a
constant for each element 7; ;.

2.3.2 Implicit approach

To solve (8) we introduce a pseudo-time step. Hence,
we rewrite (8) as

%/ <I>dA+/ V- G(®)dA=0. (10

Using the DeC method [2, 17], the resulting semi-discrete
form of (10) is

c (1st) gn+1,s
||7'i Il B(Th (@ ) n+1,s+1 n+1,s
<Atz + 0P (<1>h - <I>h )

- _ ((,:I);LH—I,S _ @}’LL) \LT;-ZH + Tiznd)(q)n%—l,s))

(11)

where Y, is the discrete mass flux. In this approach
we require the computation of the Jacobian matrix
3Ti(@?+l’s)/3@. A finite difference approximation of
this Jacobian is introduced. For each pair of indices ¢, j
we define

A(Yi(®))  Yi(®+6%;) — Yi(P)
o®; 50, '

(12)

This first order accurate approach is chosen because a
first order Jacobian is sufficient in the DeC method. The
resulting matrix is sparse, with contributions from the
neighbors of node ¢ only. Therefore, we do not consider
this matrix to be computationally very expensive. In
fact, if no upwinding is needed the calculation of the
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- “'Full Potential
Domain Qg

\\/

g

Figure 2: Non—overlapping interface of the Euler and
full potential domains.

Jacobian is only about five times more expensive than
calculating the mass flux for the meshes we use.

The time step size At} is determined from (6) where
Cr; and Ur; are calculated from ®. This time step is
adopted to have the same diagonal scaling in the Jaco-
bian matrix associated with the coupled solver. For tran-
sonic flows, upwinding is required; therefore, the density
is modified to add artificial compressibility [6]. The full
potential spatial discretization of the boundary condition
is also described in [6].

3 Coupled solver

The computational domain, €2, is split into two subdo-
mains, Qg and Q4, wherein the Euler equations and the
full potential equation are solved, respectively. We de-
note by I'; the interface between g and Qg, as shown
in Figure 2.

The formulation presented for the full potential is sim-
ilar to the unsteady Euler formulation for finite volumes.
In fact, we can define W as the simulation variable,
which represents either U or ®. A general formulation
can thus be constructed. In a future version of our soft-
ware implementation, W will be a pointer and its true
value and size will be determined while the flow is calcu-
lated. We assume that W is the solution of the equation

ow

= TV PV =0, (13)

where the flux function P is called the model function

that equals to either F' or G. The decision to choose a
specific model will be made for each subdomain.
To simplify the notation, we now introduce
=l

Gntls = — ((WSH’S ~Wi) K Xe (W) ),
th

(14)

which is the right-hand side of (7) or (11) where Xy, is

either ¥, or Y. The combined linear DeC system (13)

becomes
Ta(W st Wity = gpnse (15)

Let’s examine some characteristics of the matrix .J,.
This matrix is sparse with the following non-zero en-
tries:

5 X 9 X number of Euler vertices;

5 X 5 X 2 X number of Euler edges;

1 X number of full potential vertices;

2 X number of full potential edges;

9 X 2 X number of interface edges.

This matrix has two contributions: a diagonal term and
the differencing of the fluxes with respect to the full po-
tential and Euler variables which includes the differenc-
ing of the full potential mass flux with respect to the
Euler variables and the differencing of the Euler fluxes
with respect to the potential variable.

3.1 Interface boundary conditions

We reported in [6] two different domain partitioning ap-
proaches: overlapping and non—overlapping partitioning.
Here we review only the non-overlapping partition and
we describe the construction of the Jacobian for our two—
model formulation.

In the non—overlapping approach, control volumes are
flagged either for solving the full potential equation or
for solving the Euler equations. The location of the in-
terface, therefore, lies between the control volumes as in
the two dimensional illustration in Figure 2. We identify
by Sl{j the intersection of the control volumes TiE and

72 located on each side of the interface, i.e., in the Eu-
ler and the full potential subdomains, respectively. For
simplicity, we describe the first order flux calculation.
The approximation of the interface flux uses a classical
Roe approximate Riemann solver [20] for both control
volumes. Let us call ¥; ; the interface flux which can
be calculated from the vortex values of node ¢ and j as
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shown below

; = IS{;Il Froe(Ui,Uj,ni ;)
Froe(Us, Uj,mi ;) = 5 [F(Ui)+ F(Uj)]-mij+
AU, U i) (U = Uy
(16)

where n; ; is the outward unit normal of S{ ; and

A(U;,Uj,n; ;) is the Roe matrix. Note that node j
is not in the Euler domain and therefore we need to con-
vert, at this node, the potential ® to the Euler variable
U. For this conversion, we introduce an operator () re-
lated to the transfer of the potential variable to the Euler
variable defined as

U=Q(®). (17)

The calculation of the operator () is based on the values
of the potential, in fact, V® in the potential domain
and the volume average of the primitive variables in the
Euler domain. The resulting Roe flux is written as

fROG(Ui) Q((}J)a ni,j) =
5 [F(U) + F(Q(®)))] - my 5 (18)

+3 [A(Us, Q(®5),n,5)(U; — Q(®;5))] -

Finally, to obtain the flux conservation on TiE the contri-
bution \I’i,j is added to the other intercell fluxes. In this
brief presentation of the interface condition we have not
covered the second-order accurate discretization for the
Euler model. To obtain a second-order accuracy of the
Euler fluxes, the classical MUSCL method by van Leer
[16] is used for the flux calculation.

For the flux balance on T;b , the mass flux across the
interface, I'y, is calculated from the average velocity in
each of the elements that intersect the interface. To be
more precise this mass flux is calculated by using the
average velocity in that element. The interface solution
can be written as

S oVenrSL 4+ pij(VR)i; neSE; =0, (19)

I Tij

where pV is the average momentum in 77 which is an
element that intersects the interface I';.

The principal new ingredient in the implicit scheme
(15) is the calculation of the Jacobian. A discrete ap-
proximation of the Jacobian is calculated as in (12).
However, the multi-model formulation contains other

terms, including the interface terms. For a full poten-
tial and Euler coupled solver we write

;D 0vO) BYWU), IY(2) V(D)

At U 0® ou o

» (20)

where D is the diagonal matrix of cell volumes and At
is the time step. We have discussed in Section 2.3.2
how to approximate Y (®)/0®. In addition, the term
0¥ (U)/0U is obtained from a classical approximation
[12]. Note that ¥(U) and Y (®) exist only in their re-
spective domains and that the resulting Jacobian matrix
is of the form:

ow(U) 8w (V)
b 21)
aY(®)  HY(d)
U b

The calculation of 0¥ (U)/O® is somewhat less stan-
dard. As before, we use a finite—difference approximation
to calculate this term in the Jacobian. Our approxima-
tion becomes

0%,(U) N U;(U+0%;) —¥;(U)

od; 5®; - 22

Here again, we transfer §® to 60U using the above de-
scribed procedure. We calculate the Euler fluxes, ¥, as
n (18). Similarly, the following approximation is used

a(Y;(®)) _ Y;(@+dU;) —T;(®)
ou; oU; ‘

(23)

The calculation of Y; ; is performed by modifying the
value of node i with 0U;. Subsequently, the resulting
mass flux is added to Tj, associated with T;I).

We have omited on purpose the description of the up-
winding for the full potential solver because it is not
needed in our approach as we restrict the full potential
Recall that in the Euler
domain, the upwinding is intrinsic to the Roe’s scheme.

domain to subsonic regions.

4 Algorithmic framework

A DeC—Krylov approach is used to obtain a steady state
solution of our coupled full potential and Euler equa-
tions. We perform a given number of DeC iterations
at the (n + 1)st pseudo-time step.
we solve the linear problem using a diagonally precondi-

tioned GMRES method such that

In each iteration

IB(Ja (W, =W ) g1 )l < ellgnrnslle
(24)
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where € > 0 is the linear tolerance and B is the diagonal
preconditioner for J,. The DeC iterations are used to
decrease the nonlinear residual. Less than the prescribed
number of iterations is used if the nonlinear tolerance
T > 0 is satisfied, i.e.,

lgn+1,sll2 < Tllgnll2- (25)

Furthermore, the solution is advanced using a pseudo—
time step. The final stopping criterion is

||gn+1,s||2 < 1075, (26)
llgall2

The advantage of using this approach is two-fold; first,
the calculation of the Jacobian matrix is only performed
at the first DeC iteration bringing additional saving and
second, we have noticed that the convergence rate is im-
proved for the full potential solver and the coupled solver
compared with doing just one DeC iteration, i.e., if we
double the number of DeC iterations per time step we ob-
serve more than a two-fold reduction in the total number
of iterations. We are presently investigating this behav-
ior.

In addition to the above strategy, we use an initial so-
lution for the entire computational domain. This global
solution is obtained from two full potential iterations.
This allows us to use a higher CFL number which leads
to a faster convergence. In general, the CFL number is
increased by a constant number at each iteration from
an initial value.

5 Results

5.1 First model problem: Flow past

a NACAO0012 airfoil

In this section we present heterogeneous full potential

and Euler solutions in three space dimensions. We test
our scheme for a two-dimensional flow over a NACA0012
airfoil in a three-dimensional computational domain.
Only half of the geometry is required for this symmet-
ric flow. The computational domain is such that () is a
rectangle domain of size 0.1 x 1.5 X 1.5, where an upper
surface of a NACA0012 is located on the bottom face
as in Figure 3. The boundary conditions of this problem
are as follows: on 'y, I's, and I's we impose farfield con-
ditions; on I'y, I'g, ['7, and I's we impose the nonpene-
tration condition for symmetry and on I'; we impose the
solid wall condition. Note that the implementation of the
nonpenetration and the solid wall conditions are identi-
cal. For the farfield boundary I'y, I's, and I's, the full

Figure 3: Computational domain for the NACA0012
geometry.
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Figure 4: Computational mesh and partition for the
NACAO0012 airfoil; subsonic flow.

potential discretization of this condition is different for
I's where we impose @, as a Dirichlet condition, and for
I'y and I's, where we only specify a flux on the boundary.
The computational mesh which contains 16200 nodes is
presented in Figure 4. For parallel processing, this mesh
is partitioned into eight or twelve subdomains, respec-
tively, for the transonic model problem and the subsonic
model problem. Each of the subdomains have roughly
the same number of mesh points even though ultimately
the node distribution per processor should take into ac-
count the type of solvers used, since cost reduction in
the full potential regions is one of the main motivations
of the work.
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5.1.1 Subsonic flow

We investigate a subsonic flow around the NACA(0012
wing at Mo, = 0.5 mainly to analyze the leading edge
solution sensitivity to low Mach numbers. The domain

partitioning of this mesh into the Euler domain and the
full potential domain is shown in Figure 4: the lower
right domain is the Euler domain and the rest is the full
potential domain which contain 4576 and 11624 nodes,
respectively. In Figure 5, the Mach number contours,
values of 0.33 to 0.60 with an increment of 0.01, show
reasonable agreement at the interface. In Figure 6, the
pressure distribution on the airfoil associated with this
solution is compared with results obtained for the com-
puter program TRANAIR used for aerodynamic analysis
and design at The Boeing Company [24]. We note the
good agreement between our full potential solution and
the full potential solution from TRANAIR. Also note the
numerical entropy generated by the Euler solver, in the
vicinity of the stagnation point, which appears as a peak
in the pressure distribution at the leading edge. This
feature is not present when using the coupled model. In-
deed, the full potential solver is more accurate in regions
when the Mach number is small.

Figure 7 compares the nonlinear iterations of the var-
ious solvers: the full potential model, the Euler model
and the coupled model. The CFL number is 100 at the
first iteration and is increased by 50 on each iteration
thereafter. Note that the full potential solver is very
fast. The solution is obtained in three iterations with
a residual less than 108, However, when this solver is
coupled with the Euler solver, the number of iterations
increased to 167. This is far more than the 58 pseudo-
time iterations needed in the Euler model. In this paper
we do not show the total CPU time comparison, because,
at present we have not yet implemented a load balancing
procedure which is mandatory for such a comparison.

5.1.2 Transonic flow

To illustrate the multi-model formulation for transonic
problems, we investigate a flow around the NACA(0012
wing at My, = 0.8. The domain is partitioned along a
constant 2 plane located at Z = 0.35. The Euler domain
(bottom) and the full potential domain (top) contain the
same number of nodes. This simulation is performed on
8 processors. In Figure 8 and Figure 9, we show the
Mach number contours, values of 0.37 to 1.24 with an
increment of 0.03, for the Euler solution and the coupled
solution, respectively. Note the smooth transition of the
isocontours between the Euler and full potential domains
in the latter. We also report that the pressure coefficient

J))

Figure 5: Mach number contours for the NACA0012
airfoil at M., = 0.5.

0.6

i " x——-x full potential model (TRANAIR)

O—-—-© full potential model
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Figure 6: Pressure coefficient distribution on a
NACAO0012 airfoil at My, = 0.5.
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Figure 7: Convergence iteration history for subsonic
flow around the NACA0012.

distribution over the airfoil is almost unchanged between
the Euler and the coupled solution, Figure 10. The full
potential solution obtained from TRANAIR, is also pre-
sented in this figure. As expected the full potential shock
is further back and stronger.

The Euler solution is obtained using a CFL history
evolution different from the coupled solution. The CFL
number is increased by 30 instead of 50 otherwise the
convergence is not possible. Similarly to the subsonic
case, the performance of the coupled nonlinear solver, in
terms of number of iterations presented in Figure 11, is
less desirable. The factors leading to this slow conver-
gence are presently under investigation.

5.2 Second model problem: Flow
over a AGARD wing 445.6

We now simulate a three-dimensional flow over a
AGARD wing 445.6 at My, = 0.84 with an angle of
attack of 3.06°. Details of this wing can be found in
[22]. The numerical discretization is performed on an

unstructured mesh containing 22014 nodes; the surface
mesh is presented in Figure 12. This mesh is decomposed
in two domains, i.e., full potential and Euler domains, as
shown in Figure 12.

The Mach number isocontours (from 0.60 to 1.95 with
an increments of 0.05) on the surface of the wing and on
the symmetry plane is presented in Figure 14 for the
coupled solution and in Figure 13 for the Euler solution.
We report that the solutions in both cases are almost
identical. The iteration history, Figure 15, indicates the
slow convergence of the coupled solver. The procedure,

Figure 8: Mach number contours for the NACA0012
airfoil at M, = 0.8; Euler solution.

Figure 9: Mach number contours for the NACA0012
airfoil at M, = 0.8; coupled solution.
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Figure 10: Pressure coeflicient distribution on a
NACAO0012 airfoil at M., = 0.8.
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Figure 11: Comparison of the convergence in terms
of number of iterations for Euler and the coupled
solution.

10

Full Potential Domain

Figure 12: Surface mesh and domain partitioning for
the AGARD wing 445.6.

in both cases, uses five DeC iterations and a CFL number
which is increased by ten at each pseudo-time step. The
first two iterations only solve the full potential equation
before activating each of the solvers.

6 Remarks and conclusions

Before concluding, we comment on our analytical and
numerical experience of the implicit coupling of the full
potential equation and the Euler equations.

First, we report that the solution is smooth across the
interface which indicates that our conservative coupling
approach is well suited for coupling of the full potential
and the Euler equations.

Second, physical solutions for potential flow over a
wing are obtained by imposing the Kutta condition; that
the flow leaves the trailing edge smoothly. For a full po-
tential solver such a condition is enforced by adding a
jump in the potential equal to the circulation. For non—
lifting airfoils, such as in the first model problem, we
do not need to enforce the Kutta condition. For com-
plete lifting wings, such as the flow over the AGARD
wing 445.6 in the second model problem , it is fortunate
that the Euler solution intrinsically respects this condi-
tion. For such lifting wings we define the Euler domain
to cover the wing and the wake region. This partition
avoids any special treatment in the full potential domain
because the full potential region does not cross the trail-
ing edge vortex sheet.

Finally, we discuss the convergence. In general, the
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Figure 13: Mach number isocontours on the surface
of the AGARD wing 445.6; Euler solution.

Figure 14: Mach number isocontours on the surface
of the AGARD wing 445.6; the coupled solution.
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Figure 15: Iteration history for the AGARD wing
445.6.

Jacobian matrix J is ill-conditioned and Krylov meth-
ods need a large number of iterations. It is clear that
the introduction of a preconditioner is mandatory. A
Krylov—Schwarz method, such as a restricted additive
Schwarz [7] preconditioned GMRES, is being studied in
part because of good data locality which is an advantage
for parallel computing.

Other more practical issues are related to automate
the multi-model formulation leading to additional reduc-
tion in computation time and memory. We plan to de-
velop a procedure to automatically position the interface
based on the existing field variables (i.e., dynamic zonal
configuration). In addition, load balancing for parallel
computations is needed in the proposed software devel-
opment to take full advantage of parallel computing, in
particular when dynamic zonal configuration procedures
are used. Recall that different partial differential equa-
tions are solved in different regions but each equation
One
palliative is to breakdown each region into subregions

does not require the same number of operations.
equal to the number of processors. By using this de-
composition each processor will contain one subregion
of each type and therefore executes the same number of
operations. A novel multi-level model approach to in-
crease the convergence rate is under investigation. Such
an approach uses different solvers not only in different
areas of the computational domain but also at different
computational steps to obtain a faster solution which is
later improved upon by a more accurate model.

In conclusion, the goal of this research is to develop
a general-purpose software to calculate numerical solu-
tions of compressible three-dimensional flows with a sig-
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nificant reduction in computation time and memory. A
multi-model formulation based on unstructured grids is
chosen due to their geometric flexibility. To be com-
petitive with implicit approaches that run on multiple
processors, the proposed software must also include the
most advanced solution methods and parallel computing
techniques. Numerous extensions can be incorporated in
this software to address more types of applications. For
example, additional models can be coupled into the iter-
ative framework such as structural models for aeroelastic
applications.

We have showed herein the extension of the explicit
multi-model formulation to an implicit approach. At
this point we note that both the linear and the nonlinear
convergence are slow. Implementation of a restricted ad-
ditive Schwarz [7] should improve the linear convergence.
Further research is needed to analyze and improve the
nonlinear convergence.
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A Transfer Operators

To carry out our multi-model formulation, we do not
require a transfer operator from potential to Euler R :
U — ®. Only the mass flux, given by G(R(U)), is
required to update the potential in each control volume.

The full potential to Euler transfer operator is defined
as the map

Q:d—U. (27)

Recall that U has five components. To obtain its first
component, we appeal to

1 ve(z \ /O-1
P(®) = poo (1 + M2 —2 )) (28)
2 950

The next three components can be computed with rela-

tion (3). The last component pE is computed via

u? +v? + w?
2 )

u? + 02 4+ w? D

E: =
pE = p(e+ 5 ) pog|

+p

where the pressure satisfies the isentropic equation of

y
P = P <L> .
Poo

state
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