H'-NORM ERROR BOUNDS FOR PIECEWISE HERMITE BICUBIC
ORTHOGONAL SPLINE COLLOCATION SCHEMES FOR ELLIPTIC
BOUNDARY VALUE PROBLEMS
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Abstract. Two piecewise Hermite bicubic orthogonal spline collocation schemes are considered for
the approximate solution of elliptic, self-adjoint, nonhomogeneous Dirichlet boundary value problems
on rectangles. In the first scheme, the nonhomogeneous Dirichlet boundary condition is approximated
by means of the piecewise Hermite cubic interpolant, while the piecewise cubic interpolant at the
boundary Gauss points is used for the same purpose in the second scheme. The piecewise Hermite
bicubic interpolant of the exact solution of the boundary value problem is used as a comparison function
to show that the H'-norm of the error for each scheme is O(h3).
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1. Introduction. We consider two piecewise Hermite bicubic orthogonal spline
collocation schemes for the solution of the nonhomogeneous Dirichlet boundary value
problem

(1) Lu= f(z,y), (x,y)€Q=1(0,1)x(0,1),
u=g(w,y), (x,y) €I,

where 02 is the boundary of Q and L is the elliptic, self-adjoint operator given by

(2) Lu = _88_:1; (a(:p,y)g—z) . a% (b(x,y)g—Z) + e(a,y)u.

In both schemes, the approximate solutions, which are continuously differentiable in
Q) and piecewise cubic in x and y, are defined by collocating the differential equation
of (1) at the Gauss points. In the first scheme, the approximate solution on 9 is
equal to the piecewise Hermite cubic interpolant of ¢, while in the second scheme the
approximate solution on df) is equal to the piecewise cubic interpolant of ¢ at the
boundary Gauss points. Taylor’s theorem and the Bramble-Hilbert lemma are used to
bound the truncation errors for both schemes. Then energy inequalities, derived from
the Peano representation of the remainder in the two-point Gauss-Legendre quadrature,
are used to establish the uniqueness (and hence existence) of the collocation solutions
and their rates of convergence for a sufficiently small mesh size h of the partition of
Q. Tt is shown that the H'-norm error bounds for both schemes are O(%?), provided
that the exact solution u of (1) belongs to H®(2) in the case of the first scheme, and
HP(Q) N C*(f) in the case of the second scheme.

For the homogeneous Dirichlet boundary value problem ((1) with ¢ = 0), the L?
and H! norm error analyses of piecewise Hermite bicubic orthogonal spline collocation
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were given in [7] and [8]. However, in [8], assumptions on the existence of the collocation
solution and boundedness of partial derivatives of certain divided difference quotients
were imposed. In [7], these assumptions were removed and the error analysis was
carried out under the assumption that & be sufficiently small. However, the analysis of
[7], which makes use of the finite element Galerkin solution as a comparison function,
appears to be applicable only to homogeneous Dirichlet boundary value problems (1)
with the additional constraint that a = b.

In this paper, we use the piecewise Hermite bicubic interpolant u,, of the exact
solution u as a comparison function. The success of our approach depends essentially
on the rather surprising property of u,,, namely that, for u sufficiently smooth,

0*(u — uy,) .
M | G ay (€) (h%), 1=0,2,
where G is the set of Gauss points in ). In comparison, it should be noted that
0*(u — uyy) .
% | a0y (z,y) (h°), 1=0,2,

where the exponent 2 on A is known to be optimal [1].

An outline of the paper is as follows. Preliminaries are given in Section 2. The
piecewise Hermite bicubic orthogonal spline collocation schemes are defined in Section
3. The error analyses of the first and second schemes are given in Sections 4 and 5,
respectively. In Section 6, we consider a class of boundary value problems for which
the existence and uniqueness of collocation solutions as well as derivations of the cor-
responding error bounds require no restrictions on the size of h.

2. Preliminaries. Let {2}, and {y}1% be two partitions of [0, 1] such that
ro=0<m < <ana<an, =1, yp=0<y < - <yn,—1 <yn, =L
Let If = [wp—r, 2], I} = [yi—v, wi), b = xn — w1, B = yi — yio1, and let

h, = mkin hi,  hy = max hi,  hy, = mlinh?, hy, = max R,

h = max(h,, hy).

As in [1], it will be assumed that the collection of partitions of € generated by {z) 1},
and {yl}ﬁyo is regular, that is, there exist positive constants oy, o9, and o3 such that

Ulhx S ha;? Ulhy S hyv o) S S 7s3.

ml| gl

Y

Throughout the paper, C' denotes a generic positive constant which may depend on o4,
oy, and o3.



Let M, and M, be spaces of piecewise Hermite cubics defined by
M, = {veC'0,1]: vl € P}, My ={ve C'o,1] vl € P},
where P; denotes the set of polynomials of degree < 3, and let

Mo ={veM,:v(0)=v(1)=0}, M)={veM,:v(0)=0(l)=0},

M=M, oM, M =M oM.

In the following, H™ () denotes the Sobolev space equipped with the norm

9 1/2
L2(Q)) 7

where || - [|12(q) is the standard L*-norm. Also, C"(Q) denotes the set of all functions
v(z,y) such that 9"*v/dx'dy’ are continuous in O for all 0 < ¢+ 5 < m. Similarly,
C™"(€2) represents the set of all functions v(x,y) such that 9"t/ /dx'dy’ are continuous
in Qforall 0 <i<mand0<j<n Ifve ™), then |[0]|cmgy is defined by

dtiv
Ox' Oy’

0<i45<m

[[ol[am(@) = ( >

dtiv

vl cmemy = 0<iyEm (fi,?é%

For u € C1Y(Q), let its piecewise Hermite bicubic interpolant u;, € M be defined
by

i+j _
%(l‘k,yﬂ:o, OSkSNm OSZSNy, OSZ
'y

It is well known that each u € C11(2) has a unique Hermite interpolant w,,. Moreover,
the following approximation result was proved in [1] (see also [2]).

LEMMA 2.1. Ifu € H*(R), then

(3) [ = upe|[ ) < CRP||ullse)-

Let G, = {&5; ivfzzl, G, = {f;"]}f\;fl be the sets of Gauss points
§oi=wa +hp&e, &=y +hE,
where
(4) G=0B-V3)/6, &=(3+V3)/

and let

G ={(".¢"): & €Ge, 8 €6y}
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For u and v defined on G, let (u,v)g and ||u||g be given by

1N$ Ny ey 2 2
<UU Zzhh ZZUU fkmfl]
klll =1 j5=1

and

lulle = (u,u)e/?.

The formula defining (-, -)¢ is obtained by applying to [ [, (uv)(x,y) dzdy the composite
two-point Gauss-Legendre quadratures with respect to = and y. Clearly,

(5) u v g — Z Z fl] €IJ)> - Z7k2<u(€lf,i7')7v(€lf,i7')>y7
k=1 =1
where, for v and v defined on G, and G,,

% hi
7 2

Z_:uv fl]

||FH12

(1,0 = 30 2 S ()€, (o)

Corollary 5.3 of [7] implies that each v € M is uniquely defined by its values at all
Gauss points £ € G. Therefore, if (v,v)g = 0 and v € M°, then v = 0. Hence, M" can
be regarded as a Hilbert space with (-,-)¢ as an inner product.

Let Aj, be the operator from M into M defined by

(Awv)(&) = Av(E), e,

where A is the Laplacian. The following lemma gives the most important properties of
the operator —Ay,.
LEMMA 2.2. —A, is a self-adjoint operator from M° into M. Moreover,

(6) C||v||?{1(9) S <_Ahv7v>gv v M07

(7) Cl]|2 < (=Apv,v)e, veE M.

Proof. The first part of the lemma follows from Lemma 3.1 in [4]. The inequalities
(6) and (7) are easily established using (2.6)—(2.8) of [7], and the Poincaré inequality
[o]lm@) < Cl|Vollr2q) for all v € H'(Q2) that vanish on 9. O

3. The piecewise Hermite bicubic orthogonal spline collocation schemes.
We consider two piecewise Hermite bicubic orthogonal spline collocation schemes for
the boundary value problem (1). The schemes differ in the way the nonhomogeneous
Dirichlet boundary condition is approximated. In the first scheme, the collocation
solution u; € M is defined by requiring that

(8) Lup(§) = f(§), €€,
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and

if, I
(9) W(ajkao{)zov Oé:(),l, OSkSNl’? i:0717
xl
O (ul — )

(10) () =0, a=0,1, 0<I<N,, ¢=0,1.

Ayt
In the second scheme, the collocation solution u;’ € M is defined by requiring that

(11) Luy'(€) = f(£), €6,

and

(12) (up' —9)(€a) =0, a=0,1, &eg,,
(13) (up' —9)(a, &) =0, a=0,1, eg,,
(14) (uy =g, 3) =0, «,B=0,1

Clearly, uj and u;" on 0€ are the piecewise Hermite cubic interpolant of v and piecewise
cubic interpolant of u at the boundary Gauss points, respectively. From a practical
point of view, the second collocation scheme is preferable since it does not require the
knowledge or evaluation of the first partial derivatives of g. Obviously, if ¢ = 0, then
both schemes coincide. However, if ¢ # 0, then, in general, u; # uj’. If uj is expanded in
terms of Hermite basis functions, then the coefficients in such expansion corresponding
to the values of uj on 99 can be determined independently of all other coefficients.
Therefore, after moving these coefficients to the right-hand side in (8), the scheme (8)-
(10) with ¢ # 0 can be reduced, from the computational point of view, to that with
g = 0. Similar remarks apply also to the scheme (11)—(14), since the coefficients in the
Hermite basis expansion of u;’ corresponding to the values of uj’ on 9§} can be first
obtained by solving linear systems that typically arise in one-dimensional orthogonal
spline collocation.

4. Convergence analysis of the first collocation scheme. First we show that
if u is sufficiently smooth and wu,, is its piecewise Hermite bicubic interpolant, then
the truncation error max, g [L(u — us)(€)] is O(h*). Then we derive certain energy
inequalities for the orthogonal spline collocation operator corresponding to L. Using
these two results we are able to obtain an error bound on ||u — uj||f ().

4.1. Truncation error. The following lemmas are essential in the estimation of
the truncation error.

LEMMA 4.1. Let v(x,y) = a™y", where m,n are nonnegative integers such that
m+n < 4. Let v be the Hermite bicubic interpolant of v on Q, that is, v € P3® P53 and

9+ (6 — v)

Doy (,3)=0, «a,f=0,1, 0<4j <1,
oy

5
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Then

97~
(16) i) =0, pa=L2 =02,
where £ and & are given by (4).

Proof. We verify (16) for « = 0 only, since the proof for ¢ = 2 is similar. Set
]i(:z;) = 2" and ¢g(y) = y" so that v(z,y) = f(x)g(y). Clearly, o(x,y) = f(«)g(y), where
f and ¢ are the Hermite cubic interpolants of f and ¢ on [0, 1], respectively, that is,
f,f] € Ps, and

f0(a) = 9(a), §0(a) = g(a), a=0.1 i=0.1
Therefore,

%0 S 0%
@(fpqu) =f (fp)g(fq) = @(fpqu)a

since f”(fp) = (&) by (2.5) of [4] and since § = g for n < 3, and 9%0/02? = 9*v/da? =
0if n =4. a

LEMMA 4.2. Assume that v € H*(Q), and let u,, be its piecewise Hermite bicubic
interpolant. Then

O (u — uyy)
dx'dy’

(1) |

‘ < ORI ullpagey, 0<i4j <L
g

Moreover, if u € H°(), then

0*(u — uyy)

| < COR? 5 =0, 2.
D210y > [l @, 1 )

g

(15) |

Proof. First we verify (17). Let l;’il, p,g = 1,2, 0 < ¢4 5 < 1, be the linear
functional on H*(2) such that

9+ (v — )

axzay] (fp?fq)v

iy =
where ¢ is the Hermite bicubic interpolant of v defined by (15), and &, & are given
by (4). By the Sobolev embedding theorem (see, for example, [2]), l;]q is a well defined
bounded functional on H*(Q2). Moreover, l;’i]v = 0 for all polynomials v of degree
< 3, since then v = 0. Therefore, it follows from the Bramble-Hilbert lemma (see, for

example, [2]) that
(19) o] < Clolig, v e HY(Q),

where

o ?

4
o=/ [ >
Qm:O
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Assume now that v € H*(), and let u,, be its piecewise Hermite bicubic interpolant.

Let
. . 1/2
y Rih) G S~ [0 (u—usy) ’
gy = {%ZZla(xi—aﬂ(f’“p’%)] } ’

Bra = |U|4,ng1;’7
and let v € H*(Q) be defined by v(x,y) = u(xg_1 + xh§, yi—1 + yhy). Clearly,

Oti(u—u _Z. :
S ) = ()

and hence (19) and a simple change of variables give

Therefore, (17) follows, since

ai—l—j(u_uH 2 N. Ny
‘ dzi 0y’ . ,;ZZ; i) "
and
N.r NZI
ZZ@?,J = |u|42m < ||u||12114(9)
k=11=1

The proof of (18) is similar, since by Lemma 4.1, in place of (19), we have
|l”v| < Olsg, veH (). O

The following theorem gives a bound on the truncation error in the first collocation
scheme.

THEOREM 4.1. Let L be given by (2), where a € C°(Q), b € C%(Q), c € C(Q).
Assume that uw € H°(Q), and let u,, be its piecewise Hermite bicubic interpolant. Then

(20) 1L(u = w)lle < CH[Jul ()

Proof. Inequality (20) follows easily from the triangle inequality for || - ||g, (17),
and (18). O



4.2. Energy inequalities. Let L, be the operator from M° into M? defined by

(21) (Liv)(&) = Lo(§), €€g,

where L is given by (2). The next result shows that L, can be bounded from below,

with respect to the inner product (-,-)g, by the operator —A,.
THEOREM 4.2. Assume that a € C*°(Q), b€ C**(Q), c € C(N), and that

a(z,y),b(z,y) >0, clz,y)>0, (z,y)€ Q.
Then
(22) (e1 — Cegh) (= Apv,v)e < (Lpv,v)g, v € M,
where the positive constants c1, ¢y are given by

al
ax( )7

o'b
5gwwﬂ.

Proof. We prove the theorem by adapting the approach of Cooper and Prenter (see
proof of Theorem 4.4 in [3]). Assume that &V € G,. The Peano representation of the
remainder in the two-point Gauss-Legendre quadrature (see, for example, Section 4.2

€1 = (E;gﬁ [a(l‘,y), b(x7y)]’ “ = %Efgé irll/aéi) [

in [5]) and Leibnitz’ formula give

0 [ Ov
2 = (650 €€ = B+ )
where
! v\’
]l(avvvfy) = /0 [a (8_:1;) ] (x,fy)dl'
Ak z\4 v y T — Tk
3 (1) / [(a—)]< ,5>1( T )d,
Lia,v, ) =>" > ol S (h“’)“/ a_laaiv@;b (2,6 K s N R
A _1:1 i+j=6-1 st ’ 1z |02t Ozt Qwd | hi ’

(0

the constants «a; ; are independent of A, and

1
24

Since Iy(1,v,£Y) = 0, we find that

(2)  0<K()=—{(0-t=20&G -0} +(G-13]p<C telo1),

0*v
(25) cglg<_ag—x('7€y)7v('7£y)>l’ < ]1(a,v,fy),
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where

¢ = min_a(x,y).
(z,y)EQ

On the other hand, (24) and the Cauchy Schwarz inequality in L*(I}) give

v
e seay & S| gee| gseel|
I=1 i+j=6-1 k=1 L2( r L2 (1)
0<i,j<3
where
al
= g max |5l y>‘
Hence, using the inverse inequality (cf., for example, [2])
(26) 12y < CRE) T a2z, 0 <1< <3, we Py,

with I = 1, 2 < ¢ < 3, the Cauchy Schwarz inequality in R™*, and the Poincaré

inequality [|u|r2(0,1) < C|v'||12(0.1) for u € M, we get

2

— 1|0
[La(a.0,€0)] < C5he || 5= (.€)
X L2(0,1)

Further, Lemma 3.3 of [4] implies that

Y T 9%v Y Y
(27) |]2(a7v7€ )| < Cc2hl’<_%('7€ )71)('75 )>l’
Therefore, (23), (25), (27), and (5) yield

- - dD*v o ([ ov

29 (¢ = O =t oo = (= a0

Hence, (22) follows from (28) and the similar inequality for (—d(bdv/dy)/dy,v)s. O
COROLLARY 4.1. Let the functions a,b, and ¢ satisfy the assumptions of Theorem

4.2. If h is sufficiently small, then Ly is an invertible operator from M° onto M°.
Proof. Tt is enough to show that if L,v = 0 and v € M", then v = 0. But this

follows easily from (22) and (7), since ¢; — Cezh > 0 for h sufficiently small. O

4.3. Error bound. Using results established in previous sections we prove the
following theorem.

THEOREM 4.3. Let the functions a,b, and ¢ satisfy the assumptions of Theorem
4.2. Then, for h sufficiently small, there exists a unique collocation solution u; € M
satisfying (8)-(10). Moreover, if u € H*>(Q) is a solution of the boundary value problem
(1), then

(29) [lu = up ) < CF||ull s @
9



Proof. The existence and uniqueness of u; for sufficiently small & follow from
Corollary 4.1. To show (29), we set v = uj — uy, where u,, is the piecewise Hermite
bicubic interpolant of . Equations (1), (8) and inequality (20) give

(30) [Lvlle = [[L(u — uy)lls < Ch3||u||H5(Q)-
Since v € M°, (22), the Cauchy Schwarz inequality for {-,-)s, (21), and (30) imply
C(=Apv,v)e < (Lpv,v)e < CR3Jul|gs () lo]]s-
Consequently, by (7) and (6),
Cllollmey < (=Awv,0)e? < CR[[ul s o),

and hence (29) follows from the triangle inequality and (3). O

5. Convergence analysis of the second collocation scheme. Since, in gen-
eral, ul’ —u,, ¢ M°, the piecewise Hermite bicubic interpolant wu;, cannot be used
directly as a comparison function in the error analysis of the second collocation scheme
of Section 3. Therefore, we first introduce the piecewise bicubic Gauss-Hermite inter-
polant wug,, of u (so that ul’ — ug,, € M) and prove some approximation results for
u — Ugy. Then using an analysis similar to that of Section 4, we establish a bound on

v —up!|| 51 (q)-

5.1. Piecewise cubic Gauss and piecewise bicubic Gauss-Hermite inter-
polants. For u € C]0,1], let its piecewise cubic Gauss interpolant ug € M, be defined
by

(ug —u)(&") =0, & €G,, (ug—u)(a)=0, a=0,1

The existence and uniqueness of the Gauss interpolant ug for each v € C10, 1] are proved
in Lemma 2.3 of [4]. Moreover, we have the following approximation result.

LEMMA 5.1. Ifu e C*0,1], then
(31) 1w = ug) Mo < C(he) ' [lullesprs 7 =0, 1.

Proof. Let u;, be the piecewise Hermite cubic interpolant of u. Then it follows from

(2.17) in [1] (see also [2]) that
(32) 1w = w)Dlero) < C(he)*ulleson,  J=0,1.

Corollary 5.3 and Lemma 5.4 of [7] imply that any v € M2 can be written in the form

2

Ng
v=2_ > v(&)0L

k=1:i=1
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where the basis functions 67 ; satisfy
10 llogpy < O30 i=1.2, 1 <k I<N,.

Therefore, for any x € [0, 1],

Nz 2

(33) [(ug — up)(z)] = Z Z(u - UH)(ffz)%z(w) < Cllu - UH||O[0,1]-

k=1 :=1

Hence (31) follows from the triangle inequality, (32), (33), and the inverse inequality
[Vl < Clha) ™ lvllepa, v € M,

applied to v = ug — uy. a
For u € CYY(Q), let its piecewise bicubic Gauss-Hermite interpolant ug,, € M be
defined by

O (ugy, — u)

B iaci (2, y) =0, 1<k<N,—1, 1<I<N,—1, 0<i,j<1,
z'oy

81+i(ugH —u)

Jrdy (g, ) =0, a=0,1, 1<k<N,—1, :=0,1,

81+j(ugH —u)

W () =0, a=0,1, 1<I<N,—1, =01,
Ty

0*(ugr — u)

(UQH - u)(av 6) = 07 6:1;8y

(, ) =0, «a,8=0,1,

(ugH - u)(fxvoé) = 07 51’ S ng (ugH - u)(avfy)v fy € gyv o = 07 1

Clearly, on any side of Q, ugy is equal to the piecewise cubic Gauss interpolant of u
with respect to a or y. Also, ug,, = uy, on all interior cells of the partition of Q (a cell
I7 x I} is interior if its boundary does not have common points with 9€). However,
in general, ugy # uy on boundary cells of the partition of Q (a cell I} x I} is a
boundary cell if its boundary has common points with 9€). It is easy to show that
each u € CYY(Q) has a unique Gauss-Hermite interpolant ug,. In addition, we have
the following approximation result.
LEMMA 5.2. [fu € C*Q), then

ai"'j(u — Ugy)

pRpY <CR T ullosm, 0<i+i<L

(34) |

c(@)
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Proof. Let u,, be the piecewise Hermite bicubic interpolant of u. Then for (x,y) €
IF < I,
du—u du—u
(=)o) = L g goyigtenetto + 2 ey

= ) o )50 0) + 22 )t

du—u
o ) 3005 (0)080) + ) )i,
(35)
where &7, ¥}, ¢}, and ¢} are defined on [0, 1] (see, for example, Section 1.7 in [9]) by
¢ . ;xxk 5 L < Lk, hglgqvb (%) 5 L < T,
36)  ein=1 " = N M
¢ - 5 L > Ly hk+177b |7 > Lk,
hi 1 hi 1
y—y y—y
¢( By l)7y§y17 h?@/)( hY l)7y§y17
(37) ol = ! vill) = -
Yy—U v y—U
</5(hy ),yZyz, his hy—),yZyl,
I+1 I+1

_ (1 + 2|t|)(1 - |t|)27 |t| < 17 _ t(l - |t|)27 |t| < 17
(38)  ¢() _{ 0, i >1, ¥® —{ 0, 1> 1.

It follows from Lemma 5.1 that
|(u - ugH)(xm yl)

(=g ) (21, 90)| < Ch4||u||04(§)’

Iu—u du—u

(39) |%(%’yo)|’ |%($oayo)| < Ch3||u||c4(§)7
Iu—u du—u
|(87yw)(1’07y1)|7 |%(x1,yo)| < CR*|[ullgs -

Using (36)—(38), we also find that
(40) 65(2) s 161 (2)] < O, |lgp] (2)] [[65] (2)] < CR7Y, @ € I,
|96 ()|, |7 (@)] < Ch, ] (@)], [[91] (@) < €, @ € Iy

The functions ¢, ¢{ and 1§, ] satisfy similar inequalities on [{. Therefore, (35), (39),
and (40) yield

‘ ai"'j(uH — Ugy)

dxrdi
Since similar inequalities also hold for all remaining boundary cells and since ug; = uy

<O ullpagy, 0<i45 <1
Gy xIy)

on all interior cells, (34) follows from the triangle inequality and the error bound (see,
for example, [1] or [2])

ai"'j(u — Uyy) . o
(41) ‘ A < CR T ullewgzegyy, 0<i45 <2,
oz 6y1 C(IExIY) E X4

forall 1 <k <N, 1 <I<N,. O

12



5.2. Truncation error. Let G° be the subset of G consisting of all those Gauss
points in ) which are located in the boundary cells of the partition of €). The following
results are counterparts of Lemma 4.2 and Theorem 4.1.

LEMMA 5.3. Assume that u € C*(Q), and let ugy be its pieccewise bicubic Gauss-
Hermite interpolant. Then

0*(u — ugy)

(12) mae| =)

Proof. We prove (42) for ¢ = 0 only since the proof for ¢ = 2 is similar. Consider
£ =(&71,6141)- It follows from (35) and (36)-(38) that

O*(uy — u L O0lu—u . O0u—u
Pt ton) . ey = ayn %@; yo) + Agsh; h%(:ﬂ o)
u—u
+AQYAT (u — gy (w0, 31) + Agﬁhﬁhz%(%’ Y1)
O(u — ugy)

+ATORT (u — ugr) (21, y0) + A%:Shfle, Yo),

where hy = h{, hy = h{, and the coefficients A2 are independent of h. Therefore, by
(39),

0*(uy, — ugy) )

axQ S Ch2||u||04(ﬁ)

Similar inequalities are satisfied for the other three Gauss points in I¥ x [{ and all
remaining Gauss points in boundary cells. Hence (42) for ¢ = 0 follows from (41) and
the triangle inequality. O

THEOREM 5.1. Let L be given by (2), where a € C°(Q), b € COHQ), and ¢ €
C(Q). Assume that u € C*(Q), and let ugy, be its piecewise Gauss-Hermite interpolant.
Then

(43) max [L(u — ug)(§)] < Chz”””“@)'
¢eG

Proof. Inequality (43) follows easily from (34) and (42). O

5.3. Error bound. To bound |[u — uj||g1(q), we rewrite v — uj" in the form
(44) U— Uy = U — Ugy + Ugy — Uy

Clearly, (34) provides a bound on |[u — ugy || (n). To bound ||ug, — uj'||m1(q), assume
that Ly, given by (21), is an invertible operator from M" onto M° (cf. Corollary 4.1),
and consider 7, n° € M? defined as follows

0, teg,
(45) (Lhn)(f) = { L(u N Ugﬁ)(f), teg \ gb7

13
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Since ul! — ugy € M° and since by (1), (11), (45), and (46),

(Laluy! = ugr])(€) = L{u = ue)(€) = (Laln +0")(E), €€,
it follows that
(47) U;LI — Ugy =N + Ub-

Therefore, in order to find a bound on ||ug, —uj|[g1(q) it is sufficient to bound ||n|[ 1 (q)
and ||Ub||H1(Q) o o o
LEMMA 5.4. Assume that a € C7°(Q), b€ C%(Q), c € C(Q),

a(z,y),b(z,y) >0, c(z,y)>0, (z,9)€

Then, for h sufficiently small, there exists a unique n € M° satisfying (45). Moreover,
if u € H*(Q) is a solution of the boundary value problem (1), then

(48) Inllma) < O[]0

Proof. For h sufficiently small, Corollary 4.1 implies the existence and uniqueness of
n. Since ug; = uy on the interior cells of the partition of €, it follows from (45) and

(20) that
[ Linlle < CR2|Jul |5 (g

Hence (48) is easily obtained by repeating the proof of Theorem 4.3 with 7 in place of
v. 0

When applied to 5°, the approach used in the proof of Lemma 5.4 yields only
n°l|rr ) < Ch2'5||u||04(§). However, negative energy inequalities, which were used
for finite differences in [6], can also be applied in the context of orthogonal spline
collocation. In order to prove Lemma 5.7, which shows that ||n°||z(q) < Ch3||u||c4(§)
we need two additional results.

LEMMA 5.5. Assume that v € M° and w € M are such that

(19) o) =506, €eg

Then
(50) <(—Ah)_1v, g < CZ Z (- fl] ||L2 (0,1)-

Proof. Setting z = (—=A,) 'v, and using (49) and (5), we get

B {(~a) 0)e = (20)o = (2, 0 Z””z e, 20 e,

14



With ¥ = ¢/;, the Peano representation of the remainder in the two-point Gauss-
Legendre quadrature gives (cf. (23))

N . 200, - /ONg ) e f;) . B
-y [ (5 e (S

k=1

where K is given by (24). Interchanging of z and w in (52), we also have
0z Ll 0z
TE gy gy — v
(G €0l ) /0( agg)( ) da
(53) Ne gt (9. —_
— x _ Y - r-
2, () /Izaw“( dx )( R ( g )dx'

Since z(+,£¥) € M2 and w € M,, equations (52), (53), and Leibnitz’ formula give

(54) (80, D)0 = —(O2 )l ). — T

where

Nz 0%z Pw  0*w PPz T — Tp_q
_ z\4 Y\ I
I=103 () /I (W st 8:1;3) (, €K ( T ) de.

Using the Cauchy-Schwarz inequality for (-,-),, and Lemma 3.2 and (3.4) of [4], we
obtain

9z .

||w('7 fy)HL?(O,l)-
L2(0,1)

(55) ‘<§—;<-,5y>,w<-,5y>>x

<c|

Similarly, using (24), the Cauchy-Schwarz inequality in L?(I}), the inverse inequality
(26), and then the Cauchy-Schwarz inequality in R™*, we get

(56) 7] < 0‘

(5 ¢")

||w(‘7€y)||L2(0,1)-
L2(0,1)

Therefore, it follows from (54)—(56) and (3.2) of [4] that

61 (), 22 < O T, 2Ny

Finally, (51), (57), and the Cauchy-Schwarz inequality in R*\* yield

1/2
Nyhy2 /

8
(=2n)"o,0)s < O{=57,2) [ Z (&2

and hence (50) follows, since (—0?%z/02?,2)g < (—Apz,2)g = ((=AL) o, v)e. O
15



LEMMA 5.6. Let v € M2 be such that v(&5;) =0,2< k<N, i=0,1, and let
w € M, be given by

Ny
w=ayg + ) o,
k=1

where the functions f, ¢ are defined in (36), and

= VB o) A= () + ()

Then w'(¢°) = v(¢), € € G, and

lwl]z20,0) < Chmax o(&7)]-

Proof. The first part of the lemma follows by a simple verification, since

. Lk=yj,1=1,2,
z z 1 1 = 1 = = 1 ’
W’o]/(fu) = 2\/—{ =2, (03] ( T = hl’ —lk=y—-1,1=12,
0, 0therw1se.

To prove the second part of the lemma, observe that

N k+1
w||7201) = @ o7 dx + 2a 0@y dx + 2 dz.
el ke 20 [uisi ety 3 [oier

1£0,Ny+1

Therefore, the desired inequality is obtained using (36) and (38). O

We are now in a position to prove the following result.

LEMMA 5.7. Let the functions a, b, and ¢ satisfy the assumptions of Lemma 5.4.
Then, for h sufficiently small, there exists a unique n® € M satisfying (46). Moreover,
if u€ CYQ) is a solution of the boundary value problem (1), then

(58) 1"y < CR[[ulles @

Proof. Corollary 4.1 implies the existence and uniqueness of n° for A sufficiently small.
Let gf, 1 < i <4, be subsets of G* such that

Gy ={(" ¢ e &ell}, G={¢.¢)eg el
Ga={(&, ) €eg a1 <& <an,1,8 € ¥},

gi = {(fxvfy) € gb RTINS 51’ < wNm—lvfy € ]]zfy}v
and let v; € M° be defined by

(£ — L(u — ugy)(€), feg?,
”Z“)‘{o, £eg\g"

16



It follows from (43) that

(59) ma (O] < OWllulleny 10 <4

Let n; € MY be a solution of Lyn; = v;, 1 < i < 4. Clearly * = 2?21 n;, and hence it
is enough to show that

(60) Il iy < CRNlullpey,  1<i <4

Here, we verify (60) for ¢ = 1 only since all other cases can be treated similarly. Using
the Cauchy-Schwarz inequality for (-,-)g, we get

A N-1/20 A \1/2 A1 1/2/ 1/2
- 9 — 9 g 9 g
(Lunsm)e = ((=An)7 o, (=A0) P ni)e < ((=Ak) 7 v, v1) (= A1, m)
and hence (cf. proof of Theorem 4.3)
(61) [l sy < C(=20) " or,vn) ¢/

Let ¥%, ¢7, 1 < k < N, be defined by (36), (38), and let 6/

1> 1 SZS Ny,j: 1727 be
basis functions for M} (cf. Corollary 5.3 of [7]) such that

(62) 0 (&) = dirdji, 1< k<N, =12

It w € M is defined by

Ny 2 Ny
w@wzzzﬁmmwﬂmzﬁ@ﬁmm
=1 j7=1 k=1

where

xr

hl z Y T Yy
Qs = \/g[vl(fflvfij) - vl(fi%f%y’)]v B = 7[”1(51,1751,]‘) + vl(fl,zafl,g‘)]a

then it follows from (62), Lemma 5.6, and (59) that

ow
(63) oi(§) = 58, €€, lwl &2 = Chlullcamys € € Gy

Therefore, (61), (63) and Lemma 5.5 imply (60) for ¢ = 1. O

The following result is a counterpart of Theorem 4.3.

THEOREM 5.2. Let the functions a,b, and ¢ satisfy the assumptions of Lemma
5.4. Then, for h sufficiently small, there exists a unique collocation solution u;’ € M
satisfying (11)-(14). Moreover, if u € H°(2) N C4R) is a solution of the boundary
value problem (1), then

|l = wil ||z < CR([Jullms@) + [ulloa))-

Proof. For h sufficiently small, the existence and uniqueness of u;’ follow from Corollary
4.1. The desired error bound is easily obtained from the triangle inequality using (44),
(34), (47), (48), and (58). O
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6. Hermite orthogonal spline collocation for separable boundary value
problems. In this section we apply Hermite orthogonal spline collocation to a class of
boundary value problems for which the existence and uniqueness of collocation solutions
as well as derivations of the corresponding error bounds do not require any conditions
on the size of h.

Consider the boundary value problem

Lu= f(z,y), (v,y) €Q=(0,1)x(0,1),
(64) u=gley), (c.y) €00,

where

. 0? 0? .
Lu = —ar(@)aay) 55 = hlo)baly) g7 + e,y

Let uj € M be the collocation solution of (64) such that
(65) Luj(&) = f(&), ¢eg,

and such that (9) and (10) are satisfied. Similarly, the collocation solution u;’ € M is
required to satisfy

(66) Luj/(¢) = [(¢), ¢€6,

and (12)—(14).
THEOREM 6.1. Assume that a;,b; € C[0,1], 1= 1,2, ¢ € C(Q), and that

Then, for arbitrary h, there exist unique collocation solutions u;,u;’ € M satisfying
(65), (9), (10), and (66), (12)-(14), respectively. Moreover, if u € H*>(Q) is a solution
of the boundary value problem (64), then

|l = up gy < CF||ul|ms (g
Similarly, if u € H>(Q) N CYQ), then

lu = w |y < CR([Jullms) + [lullcsy)-

Proof. Let L and f be defined by

0 [aly)du) O [bi(x)du) vy o~ f
w(@@@ﬁ ay@mw@)+mwmwyf<”)cuwﬂw‘

Clearly, (65) and (66) are equivalent to (8) and (11), respectively. Hence, the required

error bounds follow easily from the results of Sections 4 and 5 on Hermite orthogonal
spline collocation schemes (8)-(10) and (11)—(14). In particular, the constant ¢y in (22)
18



is equal to 0, which implies the existence and uniqueness of u; and w;' for arbitrary
value of h. O
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