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Summary. We present a parallel fully coupled implicit Newton-Krylov-Schwarz
algorithm for the numerical solution of the unsteady magnetic reconnection
problem described by a system of reduced magnetohydrodynamics equations
in two dimensions. In particular, we discuss the linear and nonlinear con-
vergence, the parallel performance of a third-order implicit algorithm and
compare to solutions obtained with an explicit method.

1 Introduction

In the magnetohydrodynamics (MHD) formalism plasma is treated as a con-
ducting fluid satisfying the Navier-Stokes equations coupled with Maxwell’s
equations [6]. The behavior of an MHD system is complex since it admits
phenomena such as Alfvén waves and their instabilities. One of the intrinsic
features of MHD is the formation of a singular current density sheet, which
is linked to the reconnection of magnetic field lines [3, 9, 10, 12], which in
turn leads to the release of energy stored in the magnetic field. Numerical
simulation of the reconnection plays an important role in our understanding
of physical systems ranging from the solar corona to laboratory fusion de-
vices. Capturing the change of the magnetic field topology requires a more
general model than ideal MHD. A resistive Hall MHD system is considered in
this paper. To simulate this multi-scale, multi-physics phenomenon, a robust
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solver has to be applied in order to deal with the high degree of nonlinear-
ity and the nonsmooth blowup behavior in the system. One of the successful
approaches to the numerical solution of the MHD system is based on the
splitting of the system into two parts, where equations for the current and the
vorticity are advanced in time, and the corresponding potentials are obtained
by solving Poisson-like equations in a separate step. In such an explicit ap-
proach, to satisfy the CFL condition, the time step may become very small,
especially in the case of fine meshes, and the Poisson solves must therefore
be performed frequently. On the other hand, implicit time stepping presents
an alternative approach that may allow the use of larger time steps. However,
the non-smooth nature of the solution often results in convergence difficulties.
In this work we take a fully coupled approach such that no operator splitting
is applied to the system of MHD equations. More precisely, we first apply a
third-order implicit time integration scheme, and then, to guarantee nonlinear
consistency, we use a one-level Newton-Krylov-Schwarz algorithm to solve the
large sparse nonlinear system of algebraic equations containing all physical
variables at every time step. The focus of this paper is on the convergence
and parallel performance studies of the proposed implicit algorithm.

2 Model MHD Problem

We consider a model MHD problem described as follows [2, 7]:

V2 =T
V2= (6 F)
dz
U o)=L : W
o + (o, U] = dg[F,’L/J]-i-VV U
oF 2 2 0

where U is the vorticity, F' is the canonical momentum, ¢ and @ are the
stream functions for the vorticity and current density, respectively, v is the
plasma viscosity, 7 is the normalized resistivity, d. = c¢/wpe is the inertial
skin depth, and ps = \/T./T;p; is the ion sound Larmor radius. The current
density is obtained by J = (F — v)/d?. The Poisson bracket is defined as:
[A,B] = (0A/0x)(0B/0y) — (0A/0y)(0B/dz). Every variable in the system
is assumed to be the sum of an equilibrium and a perturbation component; i.e.
¢ ="+, v =049, U =U4+U', and F = FO+F!, where ¢° = U° = 0,
Y0 = cos(z), and F? = (1 + d?) cos(z) are the equilibrium components. After
substitutions, we arrive at the following system for the perturbed variables:
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(2)
where F.p, = —(1 + d?)sin(z) and Begy = sin(z). The system is defined on
a rectangular domain 2 = [l;,l,] = [27,4x], and doubly periodic bound-
ary conditions are assumed. For initial conditions, we use a nonzero initial
perturbation in ¢' and a zero initial perturbation in ¢'. The exact form
of the perturbation follows after some useful definitions. The aspect ratio is
€ = lg/ly. The perturbation s magnitude is scaled by § = 10~*. We define
d, = max{d., ps} and v = ed,. For the initial value of the ¢ perturbation we
use

Y z . . ™
6 — erf — | sin(e if 0<e<—
€ (ﬁde) (<) -

¢*(2,y,0) = ¢ 0 % erf(“f/idfr) siney) if © <@ < 5 (3)

e

) % erf (x\/_i;j> sin(ey) if — < < 2m.

Other quantities are set as: U'(z,y,0) = V2¢!(x,5,0) and Fl(z,y,0) =
P(x,y,0) — d. V2 (z,y,0). From now on, we drop the superscript and as-
sume that the four fields ¢, v, U and F represent the perturbed components
only. In order to connect the stream functions to physical quantities the fol-
lowing definitions are used: v = e, x V¢ and B = Bye, + V¢ x e,. Here B
stands for the total magnetic field, By is the guiding field in the z direction,
and v is the velocity in the plane perpendicular to the guiding field.

We discretize the system of PDEs with finite differences on a uniform mesh
of sizes h, and hy in x and y directions, respectively. At time level t*, we denote
the grid values of the unknown functions ¢(z,y,t), ¥(x,y,t), U(z,y,t), and
F(z,y,t), as ¢F 5> Wi j, U; J, and F’C The time independent components of the
system (2) are discretized with the standard second-order central difference
method. For the time discretization, we use some multistep formulas, known
as backward differentiation formulas (BDF) [8]. In this paper, we focus on a
third-order temporal and second-order spatial discretizations as shown in (4),
where R(’;H( 7), Rk+1(z 4), RE(i, ), and RE (i, 5) are the second-order
accurate spatial dlscretlzatlons of the time-independent components. We need
to know solutions at time steps k—2, k—1 and k in order to compute a solution
at time step k+ 1 in (4). Lower order schemes are employed at the beginning
of the time integration for these start-up values.
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3 One-level Newton-Krylov-Schwarz Method

At each time step, the discretized fully coupled system of equations (4) can
be represented by G(E) = 0, where E = {¢,4,U, F}. The unknowns are
ordered mesh point by mesh point, and at each mesh point they are in the
order ¢, ¥, U, and F'. The mesh points are ordered subdomain by subdomain
for the purpose of parallel processing. The system is solved with a one-level
Newton-Krylov-Schwarz (NKS), which is a general purpose parallel algorithm
for solving systems of nonlinear algebraic equations. The Newton iteration is
given as: Ejy1 = Ey — A\ J(Ex) " 'G(EL), k=0,1,..., where Ej is a solution
obtained at the previous time step, J(Ej) = G'(E},) is the Jacobian at Ej, and
Ak is the steplength determined by a linesearch procedure [4]. Due to doubly
periodic boundary conditions, the Jacobian has a one-dimensional null-space
that is removed by projecting out a constant. The accuracy of the Jacobian
solve is determined by some 7, € [0, 1) and the condition |G(Ey)+J(Ek)sk| <
Nk ||G(Ek)||- The overall algorithm can be described as follows:

1. Inexactly solve the linear system J(Ey)sp = —G(Ey) for s; using a pre-
conditioned GMRES(30) [11].

2. Perform a full Newton step with A\g = 1 in the direction sg.

3. If the full Newton step is unacceptable, backtrack Ao using a backtrack-
ing procedure until a new A is obtained that makes E, = Ej + As; an
acceptable step.

4. Set Eyy1 = E, go to step 1 unless a stopping condition has been met.

In step 1 above we use a right-preconditioned GMRES to solve the linear sys-
tem; i.e., the vector sy is obtained by approximately solving the linear system
J(Ep) M (Mysy) = —G(Ey), where M, ' is a one-level additive Schwarz
preconditioner. To formally define M, 1 we need to introduce a partition
of £2. We first partition the domain into non-overlapping substructures (2;,
l=1,---,N. In order to obtain an overlapping decomposition of the domain,
we extend each subregion (2; to a larger region 2/, i.e., £2; C (2]. Only simple
box decomposition is considered in this paper — all subdomains (2; and (2] are
rectangular and made up of integral numbers of fine mesh cells. The size of
2, is Hy x H, and the size of (2] is H], x H;, where the H's are chosen so that
the overlap, ovlp, is uniform in the number of fine grid cells all around the
perimeter, i.e., ovlp = (H; — H,)/2 = (H, — H,)/2 for every subdomain. The
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boundary subdomains are also extended all around their perimeters because
of the doubly periodic physical boundary. On each extended subdomain (2],
we construct a subdomain preconditioner B, whose elements are Bli’j = {Ji;},
where the node indexed by (i, j) belongs to {2;. The entry .J;; is calculated with
finite differences J;; = 1/(20)(G;(E; +6) — Gi(Ej — ¢)), where 0 < § < 1 is
a constant. Homogeneous Dirichlet boundary conditions are used on the sub-
domain boundary 0(2]. The additive Schwarz preconditioner can be written
as

Myt = (R)" By 'Ry + -+ (Ry)" By' Ry (5)

Let n be the total number of mesh points and nj the total number of mesh
points in £2/. Then, R; is an njxn block matrix that is defined as: its 4x 4 block
element (R;); ; is an identity block if the integer indices 1 < ¢ <njand 1 < j <
n belong to a mesh point in {2/, or a block of zeros otherwise. The R; serves as
a restriction matrix because its multiplication by a block n x 1 vector results
in a smaller nj x 1 block vector by dropping the components corresponding
to mesh points outside {2]. Various inexact additive Schwarz preconditioners
can be constructed by replacing the matrices B; in (5) with convenient and
inexpensive to compute matrices, such as those obtained with incomplete and
complete factorizations. In this paper we employ the LU factorization.

4 Numerical Results

To illustrate model behavior, we choose nominal values of the inertial skin
depth d. = 0.08 and the ion sound Larmor radius p; = 0.24. The normal-
ized resistivity and viscosity are chosen in the range n, v € [10~4,1072]. Time
in the system is normalized to the Alfvén time 74 = /4mnm;l, /By, where
B, is the characteristic magnitude of the equilibrium magnetic field and I,
is the macroscopic scale length [7]. {2 is uniformly partitioned into rectan-
gular meshes up to 600 x 600 in size. The stopping conditions for the iter-
ative processes are given as follows: relative reduction in nonlinear function
norm ||G(Ey)|| < 1077||G(Ejp)||, absolute tolerance in nonlinear function norm
|G(Ex)|| <1077, relative reduction in linear residual norm ||ry | < 1071||rq|],
and absolute tolerance in linear residual norm |[|ry| < 1077.

A typical solution is shown in Fig. 1. The initial perturbation in ¢ produces
a feature-rich behavior in ¥, U, and F'. The four variables in the system evolve
at different rates: ¢ and ¢ evolve at a slower rate than I and U. For n = 1073
and v = 1073 we observe an initial slow evolution of current density profiles
up to time 10074 and the solution blows up at time near 29074. In the middle
of the domain the notorious “X” structure is developed, as can be seen in
the F' contours, where the magnetic flux is reconnected. Similar reconnection
areas are developed on the boundaries of the domain due to the periodicity
of boundary conditions and the shape of the initial ¢ perturbation. In the
reconnection regions sharp current density peaks (Fig. 2 (a)) are formed. We
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Fig. 1. Contour plots of ¢ (top left), ¥ (top right), U (bottom left), and F (bottom
right). The results are obtained on 300 x 300 mesh, At = 1.074, t = 10074, n = 1073,
v = 1073, implicit time stepping.

compare solutions obtained by our implicit method with these obtained with
an explicit method [5]. Fig. 2 (b) shows that the third-order implicit method
allows for much larger time steps and produces a solution that is very close to
the solution obtained with the explicit algorithm, where the size of the time
step is determined by the CFL constraint.

Next, we look at some of the machine dependent properties of the algo-
rithm. Our main focus is on the scalability, which is an important quality in
evaluating parallel algorithms. First, we look at the total computing time as
a function of the number of subdomains and calculate ¢(16)/t(np) which gives
a ratio of time needed to solve the problem with sixteen processors to the
time needed to solve the problem with np processors. Fig. 3 shows the results
for a 600 x 600 mesh, and an overlap of 6 is used in all cases. We can see
that the one-level algorithm scales reasonably well in terms of the compute
time. Table 1 illustrates results obtained on a 600 x 600 mesh. The compute
time scalability is attained despite the fact that the total number of linear
iterations increases with the number of subdomains.
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Fig. 2. a) Formation of current density peaks in the reconnection region, J, 100 x 100
mesh, n = 1072, v = 1072, At = 1.074. b) Comparison plots of J obtained with the
explicit method (At = 0.00174) and the implicit with At = 1.074 at ¢ = 20074 on
300 x 300 mesh with n = 1073 and v = 1073.

Table 1. Scalability with respect to the number of processors, 600 x 600 mesh. LU
factorization for all subproblems, ovlp = 6. Time step At = 1.074, 10 time steps,
t = 28074. The problem is solved with 16 — 400 processors.

np| t[sec] | Total Nonlinear|Total Linear|Linear/Nonlinear
16 [2894.8 30 1802 60.1
36 {1038.1 30 2154 71.8
64 | 542.8 30 2348 78.3
100| 340.5 30 2637 87.9
1441 239.5 30 2941 98.0
225 167.8 30 3622 120.7
400 120.4 30 4792 159.7

{(16)/t(np)

* experimental

Fig. 3. Computing time scalability t(16)/t(np), 600x 600 mesh, n = 1073, v = 1073,
At = 1.074 with 16 — 400 processors, t = 28074. The data are collected over 10
time steps. The ”*” shows experimental speedup values and ”+” depicts the ideal
speedup.
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5 Conclusions and Future Work

The proposed fully coupled implicit scheme with a third-order temporal dis-
cretization allows much larger time steps than the explicit method, while
still preserving the solution accuracy. One-level NKS converges well with the
problem parameters in the specified range, given the right stopping condi-
tions. Without a coarse space, the algorithm scales reasonably well for a large
number of processors with a medium subdomain overlap. Future continua-
tion of this work may include solutions of the MHD problem on finer meshes
with a larger number of processors. Longer time integration with various 7
and v values, as well as higher p, to d. ratios, may be helpful in the further
understanding of the algorithm for the numerical solutions of MHD problems.
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