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Space exploration is a catalyst for technology development and the cornerstone of a future in

which humans have established a sustainable presence in cislunar space; propellant depots facilitate

a growing space economy; fleets of small spacecraft explore celestial bodies throughout the solar

system; and advanced space telescopes assembled in space continue to unravel the history of the

universe. In pursuit of this future, trajectory design serves as a critical technology by extending the

capabilities of current spacecraft, supporting mission concept development for future spacecraft, and

enabling complex spacecraft operations in chaotic multi-body environments. The increasing number

and variety of spacecraft that are expected to operate within cislunar space and other multi-body

gravitational environments throughout the solar system necessitates the continued development of

strategies for rapid trajectory design and design space exploration. In the field of robotics, similar

needs have been addressed using motion primitives that capture the fundamental building blocks

of motion and are used to rapidly construct complex paths. Inspired by this concept, this work

leverages motion primitives to construct a framework for rapid and informed spacecraft trajectory

design in a multi-body gravitational system. First, motion primitives of fundamental solutions,

e.g., selected periodic orbits and their stable and unstable manifolds, are generated via clustering

to form a discrete summary of segments of the phase space. Graphs of motion primitives are then

constructed and searched to produce primitive sequences that form candidate initial guesses for

transfers of distinct geometries. Finally, continuous transfers are computed from each initial guess

using multi-objective constrained optimization and collocation. This approach is demonstrated

by constructing an array of geometrically distinct transfers in the Earth-Moon circular restricted

three-body problem with impulsive maneuvers.
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Chapter 1

Introduction

Due to an increasing number of spacecraft planned to operate in the chaotic regimes of

multi-body gravitational systems, traditional Keplerian motion is often insufficient for preliminary

trajectory design. Currently, spacecraft trajectory design in multi-body systems involves separat-

ing a mission itinerary into distinct phases, determining candidate trajectory segments for each

phase, and connecting these segments to discover a nearby continuous solution. However, current

methodologies require manual exploration of a complex multi-dimensional solution space that is

nontrivial, mission specific, and time-consuming for a human analyst. To address this challenge,

this dissertation research focuses on the use of motion primitives, a concept from robotics and

motion planning, to summarize the solution space in a multi-body system via fundamental, yet

representative, building blocks of motion. Motion primitives provide a means of summarizing the

solution space to reduce the burden on a human analyst and are leveraged to rapidly construct

complex trajectories in a multi-body gravitational environment.
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1.1 Motivation

Leveraging the mutual gravitational influence of multiple celestial bodies significantly in-

creases the complexity of the spacecraft trajectory design space for a transfer design scenario. In

a restricted two-body model, conic sections are the main building blocks of motion for trajectory

design. However, in a restricted three-body model, a variety of interesting and complex funda-

mental solutions are present throughout the system including equilibrium points, periodic orbits,

quasi-periodic orbits, and hyperbolic invariant manifolds [101, 61]. These solutions govern natural

flow throughout the multi-body system.

Fundamental solutions have previously been used to design complex trajectories to enable

new and innovative mission concepts in the Sun-Earth system. In 1978, the International Sun-Earth

Explorer-3 (ISEE-3) became the first spacecraft to insert into a halo orbit around the Sun-Earth L1

libration point [25]. Since the launch of ISEE-3, the Solar and Heliospheric Observatory (SOHO),

the Advanced Composition Explorer (ACE), and other spacecraft have also been placed in orbits

around the Sun-Earth L1 libration point to study solar activity and improve forecasting for space

weather events that impact Earth [53, 95, 24]. In addition, the Genesis spacecraft leveraged the

natural dynamics of the Sun-Earth system to collect solar wind particle samples while in orbit

around L1 and then L2 on its return to Earth to enable a daytime recovery [67]. More recently,

the James Webb Space Telescope (JWST) inserted into a halo orbit around the Sun-Earth L2

libration point and the Nancy Grace Roman Space Telescope is also planned to orbit around L2

by the mid to late 2020s [36, 10]. Building on the success of past and current missions, there

are a large number of future mission concepts proposed in the upcoming decades for a variety of

solar observatories and advanced space telescopes to operate throughout the Sun-Earth system. In

each of these missions or mission concepts, innovative trajectory solutions leveraging multi-body

dynamics enable the placement of spacecraft in key regions of high scientific interest.

In addition to exploring the Sun-Earth system, there is a strong and growing interest in lever-

aging multi-body dynamics for cislunar exploration. Analyzing the underlying dynamics governing
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motion in the Earth-Moon system is critical for developing spacecraft trajectories that may seem

nonintuitive but enable effective and efficient exploration of the system. The Hiten spacecraft was

the first spacecraft to utilize a low-energy transfer from Earth to a lunar orbit in order to recover the

mission after experiencing orbital injection errors [5]. Additionally, the Acceleration, Reconnection,

Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) spacecraft

leveraged a transfer between orbits around L1 and L2 in the Earth-Moon system as an extension

to the THEMIS mission [28]. Finally, the Artemis Program and Gateway is an international effort

that plans to establish a sustainable human presence in cislunar space by constructing an orbital

outpost, currently planned in a near-rectilinear halo orbit (NRHO) in the Earth-Moon system,

that will serve as a waypoint for lunar surface access and deep space transport [97]. As a precursor

to Gateway, the Cislunar Autonomous Positioning System Technology Operations and Navigation

Experiment (CAPSTONE) spacecraft recently inserted into an Earth-Moon L2 southern NRHO

and is currently testing and validating procedures for operating within cislunar space in an NRHO

[15]. This discussion of mission examples is not an exhaustive list of all the past, present, and future

missions that are enabled by leveraging multi-body dynamics; however, these missions demonstrate

the increasing interest in exploiting the natural dynamical structures that govern motion in a

multi-body system to enable innovative scientific explorations of the solar system.

1.2 Previous Contributions

1.2.1 Spacecraft Trajectory Design in Multi-Body Systems

A challenging aspect of trajectory design in multi-body systems is developing a systematic,

rapid, and robust process for initial guess construction. An initial guess for a spacecraft trajectory

is commonly constructed in a simplified dynamical model that adequately represents a desired

environment. The difficulty of constructing an initial guess is dependent on the complexity of the

solution space and the quality of the initial guess impacts the ability to recover a feasible solution.

Even in a low-fidelity approximation of a multi-body gravitational environment, such as the circular
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restricted three-body problem (CR3BP), the available design space is large and analytical solutions

do not exist [101]. Despite the lack of a generalized analytical solution, the CR3BP is commonly

used to model the motion of a spacecraft for preliminary trajectory design in a multi-body system.

Historical context is important for understanding the modern use of the CR3BP for spacecraft

trajectory design in multi-body systems. The three-body problem has been a focus of study since

Sir Issac Newton published the law of universal gravitation in Principia in 1687 [4]. Building on

Newton’s foundational work, Leonhard Euler presented the first formulation of the CR3BP and the

existence of the collinear equilibrium points in 1772; during the same year, Joseph-Louis Lagrange

discovered the existence of the triangular equilibrium points in addition to the collinear solutions

[4]. Years later in 1836, Carl Gustav Jacob Jacobi formulated an integral of motion in the CR3BP,

commonly known as the Jacobi constant, which led to George Hill introducing the concept of

zero velocity surfaces and allowable regions of motion in 1878 [4]. These results and discoveries

provided invaluable insight for studying motion in the CR3BP. Inspired by these developments,

the foundational work of Henri Poincaré on the three-body problem at the end of the 19th century

and the beginning of the 20th century led to the development of modern dynamical systems theory

and chaos theory [4]. Poincaré established that there is not a generalized analytical solution to

the CR3BP because no additional integrals of motion exist in the system and also established

the existence of an infinite number of periodic orbits in the CR3BP [4]. His work focused on a

geometric and qualitative study of the differential equations governing a dynamical system, which

inspired a plethora of researchers to study motion in the CR3BP as well as other dynamical systems

throughout the last century.

The application of dynamical systems theory to trajectory design in multi-body systems has

enabled the development of systematic analysis and design techniques in chaotic environments. In

1967, Szebehely [101] published a foundational and comprehensive book on the study of motion in

the CR3BP titled Theory of Orbits: The Restricted Problem of Three Bodies. In 1968, Conley [16]

characterized transitory and non-transitory behaviors of the flow in the CR3BP near the collinear

libration points to motivate the design of low-energy transfers between the Earth and Moon. Llibre
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et al. [65] studied the transversality of invariant manifolds associated with L2 Lyapunov orbits

in the CR3BP and Gómez et al. [33] presented a collection of works on the use of dynamical

systems techniques for studying dynamics and exploring mission design near libration points in the

CR3BP. Building on foundations in dynamical systems theory, Lo [66], Howell et al. [49], Koon et

al. [60], and Gómez et al. [32] pioneered the use of natural transport mechanisms in the CR3BP

to systematically study the natural motion of small celestial bodies and design complex transfer

trajectories in multi-body systems. These foundational techniques have led to the current state-of-

the-art for trajectory design in multi-body systems where dynamical insight into the solution space

obtained from dynamical systems theory is used to guide the design process. A vast number of

researchers, with only a few cited here, have since developed innovative trajectory design techniques

that extend the application of dynamical systems theory to increasingly complex design problems

[102, 80, 20, 39, 8]. However, the increasing complexity and number of future mission concepts that

leverage multi-body dynamics continues to drive a need for rapid trajectory design strategies that

reduce the burden on, and expertise required by, a human trajectory designer.

In multi-body systems, one current approach to rapid trajectory design begins with generating

a large database of solutions discretized along families of known fundamental solutions such as

periodic and quasi-periodic orbits [27, 81, 109]. Similarly, analysis of the natural transport of

spacecraft and celestial bodies throughout a multi-body system leverages the generation of stable

and unstable manifolds of periodic and quasi-periodic orbits [61]. Specialized design tools then

support the exploration and analysis of these families of solutions to identify trajectory segments

that are assembled to form an initial guess for a trajectory [22, 41, 40, 38, 94, 109]. However,

searching over a large and complex design space may impede analysis because it requires significant

time and resources from a human-in-the-loop.

A foundational technique in dynamical systems theory developed by Poincaré and leveraged

extensively in current rapid trajectory design strategies is a first return map, which is commonly

referred to as a Poincaré map [4, 61]. A Poincaré map provides a discrete and lower dimensional

description of motion in a continuous dynamical system [85, 61]. The first step in generating a
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Poincaré map is to define a surface of section that is transverse to the flow. Then, initial conditions

for a set of trajectories are seeded and propagated within the system. Finally, each intersection of

each trajectory with the selected surface of section is recorded and produces the resulting Poincaré

map. The resulting map reveals insight into the structure, or lack thereof, of the associated motion

in the dynamical system and therefore may simplify analysis of the solution space.

Poincaré maps are typically employed to select trajectory segments that are used to form an

initial guess for a trajectory in a multi-body system. For example, a Poincaré map may be used to

identify heteroclinic connections between two periodic orbits via their stable and unstable manifolds

[61, 39]. However, identifying connections between arcs via a Poincaré map is challenging when

considering spatial motion, motion at different energy levels, and a large number of trajectories.

Furthermore, it may be difficult for a human analyst to select an appropriate surface of section

without sufficient a priori knowledge and experience. Finally, identifying connections between arcs

from a Poincaré map typically involves manual processes, does not supply information about the

geometry of the resulting initial guess, and it may be challenging to efficiently conduct an expansive

exploration of the solution space for a transfer scenario. Accordingly, new strategies are required for

simplifying the analysis of the design space and reducing the burden on a human analyst with the

goal of supporting effective exploration and use of natural motion for increasingly complex mission

concepts, mission extensions, and real-time operations as well as the study of natural transport in

multi-body gravitational environments.

An initial guess constructed for a complex trajectory in a multi-body system to support a

mission concept is typically comprised of a sequence of discontinuous trajectory segments. Due

to the complexity of the nonlinear dynamics in a chaotic gravitational environment, a differential

corrections algorithm is commonly employed to recover a continuous solution from a discontinuous

initial guess [17, 6]. A variety of numerical methods, such as multiple shooting or collocation, may

be used within a corrections algorithm to solve the trajectory design problem [17]. The ability to

recover a continuous solution heavily depends on the quality of the initial guess; however, it may

also be influenced by the selected numerical method.
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Collocation schemes have been employed in corrections algorithms to compute end-to-end

trajectories in multi-body systems for a variety of applications [78, 35, 87]. Collocation is commonly

used due to its robustness with respect to the quality of an initial guess, which is particularly

important for being able to consistently recover continuous trajectories even when starting from a

poor initial guess [17]. The basin of convergence for a corrections problem leveraging collocation is

typically wider than when leveraging multiple shooting because collocation methods often involve

more design parameters and are not constrained by explicit propagation [17, 83]. Rather, a solution

to a dynamical system is recovered using collocation by approximating the solution as sets of

piecewise polynomials that satisfy the system dynamics at collocation nodes. Parrish and Scheeres

[83] demonstrated the robustness of collocation by designing low-thrust optimal trajectories between

periodic orbits in the CR3BP given an initial guess of random noise. Previous applications of

collocation have enabled robust recovery of continuous trajectories and motivates the continued use

of collocation schemes for recovering complex trajectories in multi-body systems [78, 35, 87, 83].

1.2.2 Clustering in Astrodynamics

Clustering is an unsupervised learning method for separating the members of a dataset into

groups based on a defined set of features [46]. In this work, clustering algorithms are leveraged to

summarize fundamental solutions in the CR3BP. The utility of clustering algorithms in grouping

solutions to nonlinear dynamical systems has been demonstrated by a variety of researchers. For

instance, spectral clustering has been employed by Hadjighasem et al. [44] to identify coherent

Lagrangian vortices from a set of trajectories within a dynamical system. In astrodynamics, the

partition-based clustering algorithm, k-means, has been used by Nakhjiri and Villac [74] to identify

regions of bounded motion on a Fast Lyapunov Indicator (FLI) map in both the circular and

elliptic restricted three-body problems and by Villac et al. [110] to group periodic orbits near

small bodies, such as asteroids, in an augmented Hill’s three-body problem. In addition, Bosanac

[9] and Bonasera and Bosanac [7] have applied hierarchical density-based clustering methods to

Poincaré maps in the CR3BP to group trajectories with similar geometries to facilitate analysis
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in the trajectory design process. These applications of clustering all demonstrate the value of a

data-driven approach to grouping members of a family or set of trajectories in a chaotic dynamical

system based on a defined set of features.

1.2.3 Motion Primitives for Motion Planning

To support continued advancement in trajectory design, the concept of a motion primitive

is used in this work to summarize sets of trajectories in a multi-body system. This concept has

been explored extensively in robotic motion planning, transportation applications, and human

body gesture analysis [29, 54, 79, 90, 112]. In each of these fields, motion primitives are used

to decompose complex actions or paths into a finite set of representative components, either via

analytical or data-driven techniques such as clustering.

Motion primitives have been used in various disciplines to construct a reduced basis set of

path segments, actions, configurations, or behaviors that reflects the characteristics of a solution

space; however, the exact definition of a motion primitive depends on the field of application

[29, 54, 79, 90, 112]. In robotic motion planning, motion primitives may be defined as sets of control

inputs that result in a common desired behavior, such as a circular path or an aggressive turn [79].

Similarly, in transportation applications, motion primitives may be defined as steering and velocity

profiles that result in different basic driving tasks such as a lane change or lane keeping [112].

A set of Euler angles may be used in human body gesture analysis to define motion primitives

as fundamental limb configurations [90]. Frazzoli defines trajectory primitives in the context of

autonomous vehicle motion planning as a set of path segments that capture the characteristics

of the solution space, support complex path construction, and support extraction of key state

description parameters [29]. Based on these examples, a motion primitive set is defined in this

research as a set of arcs that capture the characteristics of a larger set of trajectories and support

assembly of an initial guess for a more complex path in a multi-body system.

Motion primitive sets are an effective tool often leveraged in motion planning to construct

complex paths throughout an environment [117, 63]. Frazzoli et al. [30] compute a finite library
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of trim and maneuver primitives and leverage the library of primitives for motion planning. In

their investigation, a motion plan is defined as a sequence of concatenated motion primitives where

a finite-state machine, denoted as a Maneuver Automaton, is represented as a graph and governs

how primitives can be concatenated in a given sequence; a graph is a network of nodes connected

by either directed or undirected edges, where each edge is assigned an associated weight. Grymin

et al. [37] reframe the motion planning problem as a graph search problem, a common technique

in robotics and motion planning, by constructing a graph of reachable states in the environment

connected by primitives selected from a precomputed library. Previous applications of primitive-

based motion planning in robotics, such as the studies discussed here, motivate an exploration of

applying a graph-based approach to initial guess construction in a multi-body system.

1.2.4 Motion Planning in Astrodynamics

The utility of leveraging graph-based searches for initial trajectory design in astrodynam-

ics has been demonstrated by a variety of researchers. Tsirogiannis [105] explored a graph-based

methodology for designing impulsive transfers between periodic orbits in the CR3BP using Dijk-

stra’s algorithm. Trumbauer and Villac [104] developed an automated heuristic search-based frame-

work for redesigning trajectories onboard a spacecraft in the CR3BP by leveraging precomputed

dynamical structures, periapsis Poincaré maps, and the A* search algorithm. Das-Stuart et al. [18]

formulated a search-based trajectory design framework that constructs an initial guess in the low-

thrust enabled CR3BP using known dynamical structures, reinforcement learning, and Dijkstra’s

algorithm. Parrish [82] leveraged a graph-based approach for computing optimal continuous-thrust

trajectories in the two-body problem using the A* search algorithm. More recently, Bruchko and

Bosanac [14] leveraged probabilistic roadmap generation and Dijkstra’s algorithm to autonomously

generate transfers between Lyapunov orbits in the CR3BP. Each of these methods effectively lever-

age different solution space discretization approaches as well as automated graph-based search

methods; however, these contributions collectively demonstrate the value of simplifying the contin-

uous trajectory design problem by reframing it as a discrete graph search problem.
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1.3 Dissertation Overview

To support continued advancement in rapid trajectory design strategies and reduce the bur-

den on a human analyst during the trajectory design process, the main goal of this dissertation is

to develop a new approach for rapidly constructing an initial guess for a spacecraft trajectory in

a multi-body system by leveraging motion primitives and dynamical systems theory. To support

a proof of concept, motion primitives of fundamental solutions, e.g., selected periodic orbits and

their stable and unstable manifolds, are generated via clustering to form a discrete summary of

segments of the phase space. Graphs of motion primitives are then constructed and searched to

produce primitive sequences that form candidate initial guesses for transfers. Finally, continuous

maneuver-enabled transfers are computed from each initial guess using multi-objective constrained

optimization and collocation. Distinct sequences of motion primitives are then used to construct

trajectories of distinct geometries and explore the solution space.

1.3.1 Organization

The research presented in this dissertation is structured in the following manner:

Chapter 2: Dynamical models are used to approximate the motion of a spacecraft due to the

mutual gravitational influence of multiple celestial bodies. This chapter presents an overview of

the CR3BP as well as a point mass ephemeris model. Both of these dynamical models are used in

the primitive-based trajectory design framework presented in this work. In addition, the reference

frame transformations used in each model are defined and numerical propagation is discussed for

computing trajectories in each model.

Chapter 3: Fundamental solutions in the CR3BP often support the construction of initial guesses

for complex trajectories in a chaotic multi-body gravitational environment. This chapter presents

a detailed overview of the methods used to compute the equilibrium points, periodic orbit families,

and hyperbolic invariant manifolds associated with periodic orbits in the CR3BP; each fundamental

type of solution is leveraged to inform the primitive-based trajectory design framework.
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Chapter 4: In a multi-body system, a spacecraft trajectory is typically computed by solving a two-

point boundary value problem using multiple shooting or collocation methods. Collocation is used

in this work for numerically correcting transfers because it is often more robust with respect to the

quality of an initial guess compared to multiple shooting. This chapter presents a detailed overview

of a free variable and constraint vector formulation of collocation used to transform the trajectory

design problem into a parameter design problem and robustly compute continuous solutions from

primitive-based initial guesses.

Chapter 5: Generalizable and exact analytical criteria for grouping solutions along a set of trajec-

tories in a multi-body system according to both qualitative and quantitative characteristics do not

currently exist. Thus, clustering techniques are employed in this investigation to group similar tra-

jectories and construct summarizing sets of motion primitives. This chapter presents an overview

of the clustering techniques leveraged in this work.

Chapter 6: Rapid trajectory design in multi-body systems often leverages individual arcs along

natural dynamical structures that exist in an approximate dynamical model, such as the CR3BP.

To reduce the complexity of this analysis in a chaotic gravitational environment, motion primitive

sets are constructed to represent the finite geometric, stability, and/or energetic characteristics

exhibited by sets of trajectories. This chapter presents and demonstrates the motion primitive

construction process developed to summarize fundamental solutions in the CR3BP.

Chapter 7: The increasing number and variety of spacecraft that are expected to operate within

cislunar space and other multi-body gravitational environments throughout the solar system ne-

cessitates the continued development of strategies for rapid trajectory design and design space

exploration. In this chapter, the primitive-based trajectory design framework is presented and

demonstrated by evaluating a planar transfer design scenario from an L1 Lyapunov orbit to an L2

Lyapunov orbit in the Earth-Moon CR3BP with impulsive maneuvers.

Chapter 8: The primitive-based initial guess construction framework presented in Chapter 7

enables rapid generation of trajectories with distinct geometries for a transfer design scenario. In

this chapter, a variety of transfer design scenarios are explored to demonstrate the utility of this
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approach for preliminary trajectory design in multi-body systems. A more expansive exploration

of the planar transfer design scenario from an L1 Lyapunov orbit to an L2 Lyapunov orbit with

impulsive maneuvers is conducted. In addition, a spatial transfer design scenario from an L1

northern halo orbit to an L2 northern halo orbit with impulsive maneuvers is explored. Finally, a

subset of the transfer design space between an L2 southern NRHO and selected distant retrograde

orbits (DRO) is explored due to the recent interest in the use of NRHOs for cislunar exploration.

Chapter 9: This chapter summarizes the work completed in this dissertation. In addition, rec-

ommendations for future investigations and applications of the primitive-based trajectory design

framework are discussed.

1.3.2 Contributions

The primary contributions of this investigation to the astrodynamics community are as follows:

(1) Development of a motion primitive construction process that leverages consensus clustering

to summarize periodic orbit families and trajectories along hyperbolic invariant manifolds

associated with periodic orbits in the CR3BP. This contribution may support summarizing

the complex solution space admitted by a multi-body system and reducing the analytical

workload of a trajectory designer during the trajectory design process.

(2) Development of a modular primitive-based initial guess construction framework that en-

ables rapid generation of trajectories with distinct geometries and efficient design space

exploration in multi-body systems. The examples evaluated in this investigation demon-

strate that motion primitives can support rapid initial guess construction for spacecraft

trajectories in the CR3BP. Furthermore, distinct primitive sequences support rapid explo-

ration of the associated design space via the design of geometrically distinct trajectories.

The presented approach contributes to addressing the challenges present in current manual

design methodologies when attempting to identify different geometric solutions for a design

scenario, particularly in the case of spatial design scenarios at high energy levels.
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(3) Formulation of a robust corrections procedure that leverages collocation and multi-objective

optimization to recover continuous maneuver-enabled trajectories that balance geometri-

cally resembling a primitive-based initial guess with reducing impulsive maneuver require-

ments. The corrections process presented in this work builds upon previous collocation

formulations by incorporating it into a multi-objective optimization scheme that explicitly

encourages the recovery of a trajectory that geometrically resembles the initial guess.

Construction of this new rapid trajectory design strategy for multi-body systems may potentially

support rapid mission concept development and efficient response to post-launch trajectory design

scenarios, such as time-critical contingencies and development of mission extension options.



Chapter 2

Dynamical Models

This work focuses on the design of spacecraft trajectories in multi-body gravitational systems.

To support initial guess construction, the CR3BP is used as an approximate model of the motion of

a spacecraft due to the mutual gravitational influence of two primary celestial bodies, such as the

Earth and Moon. Despite being a low-fidelity approximation of a multi-body system, the CR3BP

admits a variety of fundamental dynamical structures that may be leveraged for preliminary trajec-

tory design. These fundamental solutions provide insight into the solution space in a higher fidelity

approximation of the space environment, such as a point mass ephemeris model. Accordingly, a

trajectory in a multi-body system is often first constructed in the CR3BP and then transitioned

into a high-fidelity model for use in the mission design process. This chapter presents an overview

of the CR3BP as well as a point mass ephemeris model. Both of these dynamical models are used in

the primitive-based trajectory design framework presented in this work. Furthermore, the reference

frame transformations used in each model are defined and numerical propagation is discussed for

computing trajectories in each model.
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2.1 Circular Restricted Three-Body Problem

2.1.1 Model Overview

The CR3BP is used to approximate the motion of a spacecraft, P3, under the gravitational

influences of two primary celestial bodies, P1 and P2. Initially, consider the general three-body

problem consisting of P1, P2, and P3 where all three bodies are considered point masses and the

only forces acting on each body are the gravitational attraction forces from the other two bodies.

The CR3BP relies on the assumption that P3 possesses a negligible mass compared to P1 with

constant mass M̃1 as well as P2 with constant mass M̃2, where M̃1 ≥ M̃2 and the tilde notation

denotes a dimensional quantity [101]. Therefore, the center of mass of the system lies on the line

between P1 and P2. Furthermore, P1 and P2 are an isolated two-body problem and consequently

follow conics about their mutual barycenter. Finally, P1 and P2 are assumed to travel on circular

orbits about their mutual barycenter [101]. The plane containing the motion of P1 and P2 is defined

as the XY -plane of a general inertial frame, I. This inertial reference frame is defined by placing

its origin at the barycenter of the system with axes {X̂, Ŷ , Ẑ}; throughout this work, vectors are

denoted in bold and the (̂·) notation denotes a unit vector. Figure 2.1 displays the configuration

of the multi-body system in the general inertial frame with Ẑ directed out of the page to complete

the right-handed orthogonal triad. The spacecraft P3 is able to move freely in space where r̃3 is

the position of P3 with respect to the origin of I, r̃1,3 is the position of P3 with respect to P1,

and r̃2,3 is the position of P3 with respect to P2. Following these assumptions and definitions, the

equations of motion for P3 in the CR3BP are derived.

2.1.2 Equations of Motion

Newtonian mechanics is used to derive the equations of motion for a spacecraft in the CR3BP.

First, consider the general three-body problem as mentioned in Section 2.1.1. The negative gravi-

tational potential of P3 per unit mass is defined as

Ũ3 =
G̃M̃1

r̃1,3
+

G̃M̃2

r̃2,3
(2.1)



16

Figure 2.1: Configuration of P1, P2, and P3 in the inertial frame I : {X̂, Ŷ , Ẑ} for the CR3BP.

where G̃ is the universal gravitational constant, r̃1,3 = ||r̃1,3|| is the distance of P3 with respect

to P1, r̃2,3 = ||r̃2,3|| is the distance of P3 with respect to P2, and || · || denotes the l2-norm [101].

Then, the inertial acceleration of P3 due to P1 and P2 is equal to the gradient of Equation 2.1 and

is therefore computed as

r̃
′′
3 = ∇Ũ3 =

∂Ũ3

∂r̃3
=

−G̃M̃1

r̃31,3
r̃1,3 −

G̃M̃2

r̃32,3
r̃2,3 (2.2)

where the (·)′ notation denotes a time derivative with respect to an inertial observer and the vectors

are expressed independent of a coordinate system [101]. Equation 2.2 can be rewritten as 3 scalar

second-order ordinary differential equations (ODEs) that describe the motion of P3 in the general

three-body problem. However, there are an additional 3 scalar second-order ODEs to describe the

motion of P1 as well as another 3 scalar second-order ODEs to describe the motion of P2. Therefore,

a complete description of the motion of P3 in the general three-body problem requires the use of 9

second-order ODEs which may be reformulated as 18 single-order ODEs [101]. A set of 10 integrals

of motion may be defined due to the conservation of linear momentum, angular momentum, and

energy in the closed system; however, 18 constants are needed to solve the general three-body



17

problem analytically [101]. The absence of a generalized analytical solution in the three-body

problem motivates the study and use of a simplified restricted three-body problem, such as the

CR3BP. Despite the simplifications, there is also no generalized analytical solution in the CR3BP

but it does provide a simpler approximation of a three-body system. The CR3BP is an appropriate

model for many physical environments found in the solar system, such as star-planet-moon, star-

planet-spacecraft, and planet-moon-spacecraft systems. Leveraging the CR3BP to study motion

in a three-body system simplifies the equations of motion, reduces the complexity of analysis, and

enables identification of particular solutions despite the lack of a generalized closed-form solution

[101].

Applying the assumptions of the CR3BP, the equations of motion for P3 defined in Equation

2.2 are simplified by using characteristic length, mass, and time quantities for nondimensionalization

and to express the problem as a function of a single system parameter [101, 61]. The characteristic

parameter for length, l∗, is selected as the assumed constant distance between P1 and P2. The

characteristic parameter for mass, m∗, is equal to the total mass of the system, i.e., m∗ = M̃1+M̃2,

and the mass ratio of the multi-body system is then defined as

µ =
M̃2

m∗ (2.3)

Finally, the characteristic parameter for time, t∗, is defined such that the nondimensional period of

the primary system is equal to 2π. Both P1 and P2 are assumed to move in circular orbits about

the barycenter of the system with a mean motion equal to

ñ =

(
G̃m∗

l∗3

) 1
2

(2.4)

[89]. Consequently, t∗ is defined as

t∗ =
1

ñ
=

(
l∗

3

G̃m∗

) 1
2

(2.5)

to produce a nondimensional period of 2π for the primary system. Using these characteristic

quantities to normalize the variables in Equation 2.2, the nondimensional equations of motion for
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P3 in the CR3BP with respect to an inertial observer are defined as

r
′′
3 =

−(1− µ)

r31,3
r1,3 −

µ

r32,3
r2,3 (2.6)

These equations of motion depend only on the mass ratio of the multi-body system and are therefore

only a function of a single system parameter. The characteristic quantities and mass ratio computed

for the Earth-Moon and Sun-Earth CR3BP systems are provided in Table 2.1 [76, 75, 106]. In this

work, trajectories are only computed in the Earth-Moon and Sun-Earth systems; however, the

nondimensional form of the equations of motion provides a useful formulation to efficiently study

motion in a variety of multi-body systems by simply adjusting the value of µ.

Table 2.1: Characteristic quantities and mass ratio computed for the Earth-Moon and Sun-Earth
CR3BP systems.

Parameter Earth-Moon Sun-Earth

l∗ 3.84400× 105 km 1.495978706996262× 108 km

m∗ 6.046804167273307× 1024 kg 1.988803216221062× 1030 kg

t∗ 3.751902588926273× 105 s 5.022635348636394× 106 s

µ 1.215058535056245× 10−2 3.003480640226780× 10−6

Next, a rotating frame is defined to reformulate the equations of motion for P3 in the CR3BP

with respect to a rotating observer. In the inertial frame, the positions of P1 and P2 depend on

time; however, a rotating reference frame is defined to remove this explicit dependence on time and

produce an autonomous system [101]. The rotating frame, R, is defined by placing its origin at

the barycenter of the system, i.e., coincident with the origin of I, with axes {x̂, ŷ, ẑ}: x̂ is directed

from P1 to P2, ẑ is aligned with the orbital angular momentum vector of the primary system which

is parallel to Ẑ, and ŷ completes the right-handed orthogonal triad [101]. Therefore, the angle

between x̂ and X̂ at a nondimensional time, t, is defined as

θ = nt+ θ0 (2.7)

where θ is labeled in Figure 2.1, n = ñt∗ is unity, and θ0 is the initial value of θ. Figure 2.2 displays

the configuration of the multi-body system in the rotating frame with ẑ directed out of the page.
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Figure 2.2: Configuration of P1, P2, and P3 in the rotating frame R : {x̂, ŷ, ẑ} for the CR3BP.

The transport theorem is used to define the equations of motion for P3 in the rotating frame

[93]. First, the time derivative of r3 with respect to an inertial observer fixed in I is equal to

r
′
3 = ṙ3 +

(
ωR/I × r3

)
(2.8)

where the ˙(·) notation denotes a time derivative with respect to a rotating observer fixed in R and

ωR/I is the angular velocity of R with respect to I. Applying transport theorem again, the time

derivative of r
′
3 with respect to an inertial observer fixed in I is defined as

r
′′
3 = ˙(r′

3

)
+
(
ωR/I × r

′
3

)
= r̈3 + 2

(
ωR/I × ṙ3

)
+
(
ωR/I ×

(
ωR/I × r3

))
(2.9)

Equating Equations 2.6 and 2.9 and then solving for r̈3 results in the following equations of motion

for P3 in the CR3BP with respect to a rotating observer fixed in R:

r̈3 = −2
(
ωR/I × ṙ3

)
−
(
ωR/I ×

(
ωR/I × r3

))
− (1− µ)

r31,3
r1,3 −

µ

r32,3
r2,3 (2.10)

Thus far, the nondimensional equations of motion for P3 have been derived in the CR3BP with

respect to an inertial observer fixed in I (Equation 2.6) and with respect to a rotating observer

fixed in R (Equation 2.10) expressed independent of a coordinate system.
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The equations of motion for P3 with respect to an inertial observer fixed in I, as defined in

Equation 2.6, may be evaluated by expressing the nondimensional positions of P1, P2, and P3 in I.

The position of P3 in I is defined as

Ir3 = XX̂ + Y Ŷ + ZẐ (2.11)

where, when included, the left superscript notation for a vector denotes the Cartesian coordinate

system in which the vector is expressed. Furthermore, the position of the center of mass of the

system is defined as

(1− µ)r1 + µr2 = 0 (2.12)

where r1 is the position of P1, r2 is the position of P2, and 0 is the zero vector with respect to the

origin of I. When θ = 0, Equation 2.12 is satisfied by Ir1 = −µX̂ and Ir2 = (1−µ)X̂. Therefore,

due to the circular motion of P1 and P2,
Ir1 and Ir2 may more generally be computed as

Ir1 = (−µ cos θ)X̂ + (−µ sin θ)Ŷ + 0Ẑ

Ir2 = ((1− µ) cos θ)X̂ + ((1− µ) sin θ)Ŷ + 0Ẑ

(2.13)

and, consequently, Ir1,3 and Ir2,3 are computed as

Ir1,3 = Ir3 − Ir1 = (X + µ cos θ)X̂ + (Y + µ sin θ)Ŷ + ZẐ

Ir2,3 = Ir3 − Ir2 = (X − (1− µ) cos θ)X̂ + (Y − (1− µ) sin θ)Ŷ + ZẐ

(2.14)

Finally, Equation 2.6 is evaluated using Equation 2.14 and results in the following set of scalar

second-order ODEs in the inertial frame I:

X
′′
=

−(1− µ)

r31,3
(X + µ cos θ)− µ

r32,3
(X − (1− µ) cos θ)

Y
′′
=

−(1− µ)

r31,3
(Y + µ sin θ)− µ

r32,3
(Y − (1− µ) sin θ)

Z
′′
=

−(1− µ)

r31,3
Z − µ

r32,3
Z

(2.15)

As previously discussed, there is no generalized analytical solution in the CR3BP for the motion

of P3; however, the motion of P3 in I may be computed via numerical propagation using Equation

2.15 given an initial state and time for P3 [101, 61].
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The motion of a spacecraft in the CR3BP is more commonly computed and analyzed in the

rotating frame due to the removal of the explicit time dependence. The equations of motion for P3

with respect to a rotating observer fixed in R, as defined in Equation 2.10, may be evaluated by

expressing the nondimensional positions of P1, P2, and P3 in R. The position of P3 in R is defined

as

Rr3 = xx̂+ yŷ + zẑ (2.16)

Then, to express r1 and r2 in the rotating frame, Ir1 and Ir2 are transformed into the coordinates

of the rotating frame using a single axis rotation about Ẑ [93]. The corresponding rotation matrix

is defined as

[
CRI] =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (2.17)

where the right superscript notation denotes the target coordinate system followed by the source

coordinate system from left to right; throughout this work, matrices are denoted in bold and

encompassed by brackets. Therefore, the positions of P1 and P2 are computed in the rotating

frame as
Rr1 =

[
CRI]Ir1 = −µx̂+ 0ŷ + 0ẑ

Rr2 =
[
CRI]Ir2 = (1− µ)x̂+ 0ŷ + 0ẑ

(2.18)

and are consequently fixed in R as expected. As displayed in Figure 2.2, Rr1,3 and Rr2,3 may then

be computed as

Rr1,3 = Rr3 − Rr1 = (x+ µ)x̂+ yŷ + zẑ

Rr2,3 = Rr3 − Rr2 = (x− 1 + µ)x̂+ yŷ + zẑ

(2.19)

Finally, Equation 2.10 is evaluated using Equations 2.16 and 2.19 where RωR/I = 1ẑ and Rṙ3 =
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ẋx̂+ ẏŷ + żẑ, resulting in the following set of scalar second-order ODEs in the rotating frame R:

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31,3
− µ(x− 1 + µ)

r32,3

ÿ = −2ẋ+ y − (1− µ)y

r31,3
− µy

r32,3

z̈ = −(1− µ)z

r31,3
− µz

r32,3

(2.20)

A pseudo-potential function, U∗, may then be defined by inspection to produce a compact form of

these equations of motion as

ẍ = 2ẏ +
∂U∗

∂x
ÿ = −2ẋ+

∂U∗

∂y
z̈ =

∂U∗

∂z
(2.21)

where

U∗ =
1

2
(x2 + y2) +

(1− µ)

r1,3
+

µ

r2,3
(2.22)

[101, 61]. As previously discussed, there is no generalized analytical solution to the CR3BP. Instead,

the motion of P3 in R may be computed via numerical propagation using Equation 2.21 given an

initial state for P3. However, there are a variety of fundamental solutions in the CR3BP that may

be computed numerically, such as equilibrium points, periodic orbits, quasi-periodic orbits, and

hyperbolic invariant manifolds [101, 61].

2.1.3 Jacobi Constant

A constant of motion, commonly referred to as the Jacobi constant, exists in the CR3BP

and is inversely proportional to the total energy of P3 in the rotating reference frame [101]. The

CR3BP admits a constant of motion because the equations of motion for P3 defined in Equation

2.21 are Hamiltonian and autonomous [61]. The Jacobi constant may be derived directly using

the equations of motion [101, 61]. The time derivative of the specific kinetic energy of P3 in the

rotating frame is defined as

d

dt

(
1

2
v2
)

=
d

dt

(
1

2

(
ẋ2 + ẏ2 + ż2

))
= ẋẍ+ ẏÿ + żz̈ (2.23)
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where v is the magnitude of the velocity of P3 in R. Substituting Equation 2.21 into Equation 2.23

results in the following equation:

d

dt

(
1

2
v2
)

= ẋ

(
2ẏ +

∂U∗

∂x

)
+ ẏ

(
−2ẋ+

∂U∗

∂y

)
+ ż

(
∂U∗

∂z

)
=

∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.24)

where the right-hand side of Equation 2.24 is equal to the total time derivative of U∗. Therefore,

Equation 2.24 is simplified as

d

dt

(
1

2
v2
)

=
d

dt
(U∗) (2.25)

Finally, integrating both sides and introducing the constant of integration produces the following

definition for the Jacobi constant:

CJ = 2U∗ − v2 (2.26)

The Jacobi constant is inversely proportional to the total energy of P3 in R; therefore, increases in

CJ correspond to decreases in energy and vice versa [61]. This quantity is invaluable for validat-

ing numerical propagation of trajectories, supplying insight into allowable regions of motion, and

providing heuristics for maneuver design in the CR3BP [101, 61].

2.1.4 Zero Velocity Surfaces

The energy of a spacecraft in the rotating frame of the CR3BP provides insight into its

allowable regions of motion throughout the system. In the CR3BP, the value of CJ is constant for

the motion of P3 in R unless a propulsion system is used to alter its energy [101, 61]. At a fixed

Jacobi constant, there are possible motions of P3 that are bounded by surfaces where v = 0 [61].

The velocity of P3 in R would need to transition from real to imaginary for P3 to cross through

a boundary of motion, which is not physically possible. Therefore, the boundaries of motion in R

for a natural trajectory, commonly referred to as zero velocity surfaces (ZVS), are formed by the

set of points in the configuration space that satisfy the following equation for a fixed value of CJ :

2U∗ − CJ = 0 (2.27)

Regions bounded by a zero velocity surface where v is imaginary are identified as forbidden regions

of motion. Figure 2.3 displays an example of a zero velocity surface computed in the Earth-Moon
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CR3BP at CJ = 3.05; the Earth and Moon are plotted to scale and forbidden regions of motion

are colored in gray. Figures 2.3a and 2.3b display the intersection of the zero velocity surface with

the xy- and xz-planes of R, respectively. The zero velocity surface appears as zero velocity curves

(ZVC) when viewed in either plane. Based on the ZVCs displayed in Figure 2.3, P3 may move in

the local vicinity of both the Earth and Moon with bounds on its minimum/maximum x, y, and

z coordinates. However, P3 must travel near the vicinity of the Moon in order to reach exterior

regions of the system that lie outside the ZVS when CJ = 3.05. Examining the zero velocity surfaces

at distinct values of CJ provides a trajectory designer with invaluable insight into the constraints

on the natural motion of P3 in the vicinity of P1 and P2 as well as the manner in which changes in

energy impact the allowable regions of motion in the configuration space of the CR3BP.

(a) Zero velocity curve in the xy-plane of R at
CJ = 3.05.

(b) Zero velocity curve in the xz-plane of R at CJ =
3.05.

Figure 2.3: Example of a zero velocity surface computed in the Earth-Moon CR3BP at CJ = 3.05.
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2.1.5 Jacobian Matrix

In a dynamical system, the Jacobian matrix of the dynamics characterizes the first-order

response of the system to perturbations in the phase space relative to a reference solution [12, 85].

Consider a state q in a nonlinear, autonomous dynamical system where the equations of motion

are defined as q̇ = f(q). The Jacobian matrix of the dynamics is then defined as

[A] =
∂f(q)

∂q
(2.28)

where [A] may be evaluated along a reference solution. The Jacobian is constant if the reference

solution is a stationary state; however, the Jacobian is time-varying if the reference solution is a

trajectory. Evaluating the Jacobian matrix of the dynamics along a reference solution is critical

for understanding the qualitative behavior of nearby solutions.

A Jacobian matrix is derived to characterize the first-order response of the CR3BP to per-

turbations in the phase space relative to a reference trajectory. In this work, the motion of a

spacecraft in the CR3BP is computed with respect to a rotating observer fixed in R as defined

in Equation 2.21. The nondimensional rotating state vector of P3 expressed in R is defined as

Rq = [x, y, z, ẋ, ẏ, ż]
T

where Rq̇ = Rf(q) = [ẋ, ẏ, ż, ẍ, ÿ, z̈]
T
. Therefore, given the equations of

motion for P3 presented in Equation 2.21, [A] is defined as

[A] =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗
xx U∗

xy U∗
xz 0 2 0

U∗
xy U∗

yy U∗
yz −2 0 0

U∗
xz U∗

yz U∗
zz 0 0 0


(2.29)
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where

U∗
xx =

∂2U∗

∂x2
= 1 +

3(1− µ)(x+ µ)2

r51,3
− 1− µ

r31,3
+

3µ(x− 1 + µ)2

r52,3
− µ

r32,3

U∗
yy =

∂2U∗

∂y2
= 1 +

3(1− µ)y2

r51,3
− 1− µ

r31,3
+

3µy2

r52,3
− µ

r32,3

U∗
zz =

∂2U∗

∂z2
=

3(1− µ)z2

r51,3
− 1− µ

r31,3
+

3µz2

r52,3
− µ

r32,3

U∗
xy =

∂2U∗

∂x∂y
=

3(1− µ)(x+ µ)y

r51,3
+

3µ(x− 1 + µ)y

r52,3

U∗
xz =

∂2U∗

∂x∂z
=

3(1− µ)(x+ µ)z

r51,3
+

3µ(x− 1 + µ)z

r52,3

U∗
yz =

∂2U∗

∂y∂z
=

3(1− µ)yz

r51,3
+

3µyz

r52,3

(2.30)

This definition of [A] for the CR3BP (formulated with respect to a rotating observer fixed in R)

is used in subsequent chapters for fundamental solution analysis and differential corrections.

2.2 Point Mass Ephemeris Model

2.2.1 Model Overview

Transitioning a trajectory from a lower fidelity model, such as the CR3BP, into a point mass

ephemeris model is an important step in designing a trajectory in a realistic model of a multi-body

gravitational system. A point mass ephemeris model incorporates the gravitational influence of

N bodies (P1, P2, ..., PN ) where each body is assumed to be a point mass [106]. The first body

in the system (P1) is denoted as the central primary body, the second body (P2) is denoted as

the secondary primary body, and the third body (P3) is denoted as the spacecraft. If N > 3, the

remaining N − 3 bodies are denoted as perturbing bodies. Similar to the CR3BP, the spacecraft

is assumed to possess a negligible mass and therefore does not impact the motion of the primary

bodies. However, no assumptions are made about the motion of each body. Rather, the state

of each celestial body is obtained from ephemerides using the SPICE Toolkit developed by the

Navigation and Ancillary Information Facility (NAIF) at the NASA Jet Propulsion Laboratory

(JPL) [1, 2]. Figure 2.4 displays the configuration of the multi-body system in an inertial frame, E ,

with axes {X̂E , ŶE , ẐE}; besides P1 and P3, only one additional primary body is included in Figure
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Figure 2.4: Configuration of P1, P3, and Pi in the inertial frame E : {X̂E , ŶE , ẐE} for a point mass
ephemeris model.

2.4 and labeled generically as Pi to simplify visualization of the multi-body system. Following

these assumptions and definitions as well as the notation introduced in Section 2.1, the equations

of motion for P3 in a point mass ephemeris model are derived. Trajectories computed in a point

mass ephemeris model may serve as a foundation for evaluating motion in even higher fidelity

models of a multi-body system that incorporate additional common perturbations present in the

space environment.

2.2.2 Equations of Motion

The equations of motion for a spacecraft in a point mass ephemeris model are derived relative

to the central primary body and in an inertial frame using Newtonian mechanics [106]. From

Newton’s law of universal gravitation, the gravitational attraction force applied to Pj due to Pi is

defined as

Fi,j =
−G̃M̃iM̃j

r̃3i,j
r̃i,j (2.31)
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where G̃ is the universal gravitational constant, M̃i is the mass of Pi, M̃j is the mass of Pj , r̃i,j

is the position of Pj with respect to Pi, and r̃i,j = ||r̃i,j || is the distance of Pj with respect to Pi

[106]. Applying Newton’s laws of motion to P1 and P3, the inertial acceleration of P1 is defined as

r̃
′′
1 =

G̃M̃3

r̃31,3
r̃1,3 +

N∑
i=2,i ̸=3

G̃M̃i

r̃31,i
r̃1,i (2.32)

and the inertial acceleration of P3 is defined as

r̃
′′
3 =

−G̃M̃1

r̃31,3
r̃1,3 +

N∑
i=2,i ̸=3

G̃M̃i

r̃33,i
r̃3,i (2.33)

Therefore, the inertial acceleration of P3 relative to P1 is defined as

r̃
′′
1,3 = r̃

′′
3 − r̃

′′
1 =

−G̃(M̃1 + M̃3)

r̃31,3
r̃1,3 +

N∑
i=2,i ̸=3

G̃M̃i

(
r̃3,i
r̃33,i

−
r̃1,i
r̃31,i

)
(2.34)

Finally, the assumption that M̃3 is negligible compared to the mass of each primary body in the

system is applied and Equation 2.34 simplifies to

r̃
′′
1,3 =

−G̃M̃1

r̃31,3
r̃1,3 +

N∑
i=2,i ̸=3

G̃M̃i

(
r̃3,i
r̃33,i

−
r̃1,i
r̃31,i

)
(2.35)

where G̃M̃i is the standard gravitational parameter of Pi. Equation 2.35 presents the dimensional

equations of motion for P3 relative to P1 in a point mass ephemeris model with respect to an inertial

observer and expressed independent of a coordinate system.

To evaluate the motion of P3 relative to P1 in a point mass ephemeris model, the equations of

motion presented in Equation 2.35 are nondimensionalized. The equations are nondimensionalized

to improve the numerical conditioning of the system. The nondimensional standard gravitational

parameter of Pi is computed as

GMi = G̃M̃i
t∗

2

l∗3
(2.36)

where l∗ and t∗, as defined in Section 2.1.2, are the characteristic quantities computed for a reference

CR3BP system. The reference CR3BP system is selected based on P1 and P2 in the point mass

ephemeris model. However, it is important to note that M̃1 is not assumed to be greater than M̃2

in the ephemeris model; therefore, the order/numbering of these primary bodies in the reference
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CR3BP system is established based on their masses as formulated in Section 2.1. Furthermore, l∗

and t∗ are used to nondimensionalize the position and velocity vectors of each body in the system.

Finally, the resulting nondimensional equations of motion for P3 relative to P1 with respect to an

inertial observer are defined as

r
′′
1,3 =

−GM1

r31,3
r1,3 +

N∑
i=2,i ̸=3

GMi

(
r3,i
r33,i

−
r1,i
r31,i

)
(2.37)

Thus far, the nondimensional equations of motion for P3 relative to P1 have been expressed inde-

pendent of a coordinate system.

To compute the motion of P3, Equation 2.37 is expressed in the Cartesian coordinates of a

primary-centered inertial frame that uses the axes of the International Celestial Reference Frame

(ICRF) [86]. The ICRF is an inertial frame with its origin placed at the barycenter of the solar

system and its axes are computed based on the precise locations of a set of extragalactic radio

sources [86]. A primary-centered inertial frame is then defined by using the center of a primary

body and the axes of the ICRF. For the remainder of this work, assume the inertial frame E is

aligned with the axes of the ICRF and its origin is shifted to the position of P1. Therefore, the

state of each body in the system is expressed relative to P1. The nondimensional position of P3

relative to P1 in E is defined as

Er1,3 = XX̂E + Y ŶE + ZẐE (2.38)

and the nondimensional position of Pi relative to P1 in E is defined as

Er1,i = XiX̂E + YiŶE + ZiẐE (2.39)

where X̃i, Ỹi, and Z̃i are obtained at a given epoch and then nondimensionalized to obtain Xi, Yi,

and Zi. In this work, the Development Ephemeris (DE) file DE421 is used in SPICE to retrieve

the state of each desired celestial body at each epoch during numerical propagation [1, 2]. Finally,

the nondimensional position of Pi relative to P3 in E is computed as

Er3,i =
Er1,i − Er1,3 = (Xi −X)X̂E + (Yi − Y )ŶE + (Zi − Z)ẐE (2.40)
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These relative position vectors are then used in the following set of nondimensional, scalar second-

order ODEs expressed in the inertial frame E :

X
′′
=

−GM1

r31,3
X +

N∑
i=2,i ̸=3

GMi

(
(Xi −X)

r33,i
− Xi

r31,i

)

Y
′′
=

−GM1

r31,3
Y +

N∑
i=2,i ̸=3

GMi

(
(Yi − Y )

r33,i
− Yi

r31,i

)

Z
′′
=

−GM1

r31,3
Z +

N∑
i=2,i ̸=3

GMi

(
(Zi − Z)

r33,i
− Zi

r31,i

)
(2.41)

There is no generalized analytical solution for the motion of P3 in a point mass ephemeris

model; however, the motion of P3 relative to P1 may be computed in E via numerical propagation

using Equation 2.41 and ephemerides given an initial state and epoch for P3 [106]. In this work, a

reference epoch is specified as a Gregorian calendar date in Coordinated Universal Time (UTC).

SPICE is then used to convert the reference epoch from UTC into ephemeris time, equivalent to the

seconds past the J2000 epoch and denoted as t̃Eref
[106, 76]; the J2000 epoch corresponds to January

1, 2000, at 12:00:00.000 Barycentric Dynamical Time (TDB). Therefore, the epoch corresponding

to the nondimensional time t measured from the reference epoch is equal to

t̃E = t̃Eref
+ tt∗ (2.42)

which enables the state of each desired celestial body to be obtained using SPICE at each instance

of t when propagating a trajectory in a point mass ephemeris model.

2.2.3 Jacobian Matrix

A Jacobian matrix is derived to characterize the first-order response of a point mass ephemeris

model to perturbations in the phase space relative to a reference trajectory. The nondimensional

inertial state vector of P3 relative to P1 expressed in E is defined as EqE = [X,Y, Z,X
′
, Y

′
, Z

′
]
T

where Eq
′
E = Ef(qE , t) = [X

′
, Y

′
, Z

′
, X

′′
, Y

′′
, Z

′′
]
T
. Given the equations of motion for P3 presented

in Equation 2.41, the Jacobian is time-varying because the system is nonautonomous and is therefore
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defined as

[A(t)] =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂X
′′

∂X
∂X

′′

∂Y
∂X

′′

∂Z 0 0 0

∂Y
′′

∂X
∂Y

′′

∂Y
∂Y

′′

∂Z 0 0 0

∂Z
′′

∂X
∂Z

′′

∂Y
∂Z

′′

∂Z 0 0 0


(2.43)

where

∂X
′′

∂X
=

GM1

r51,3

(
3X2 − r21,3

)
+

N∑
i=2,i ̸=3

GMi

r53,i

(
3(Xi −X)2 − r23,i

)
∂Y

′′

∂Y
=

GM1

r51,3

(
3Y 2 − r21,3

)
+

N∑
i=2,i ̸=3

GMi

r53,i

(
3(Yi − Y )2 − r23,i

)
∂Z

′′

∂Z
=

GM1

r51,3

(
3Z2 − r21,3

)
+

N∑
i=2,i ̸=3

GMi

r53,i

(
3(Zi − Z)2 − r23,i

)
∂X

′′

∂Y
=

∂Y
′′

∂X
=

3GM1XY

r51,3
+

N∑
i=2,i ̸=3

3GMi(Xi −X)(Yi − Y )

r53,i

∂X
′′

∂Z
=

∂Z
′′

∂X
=

3GM1XZ

r51,3
+

N∑
i=2,i ̸=3

3GMi(Xi −X)(Zi − Z)

r53,i

∂Y
′′

∂Z
=

∂Z
′′

∂Y
=

3GM1Y Z

r51,3
+

N∑
i=2,i ̸=3

3GMi(Yi − Y )(Zi − Z)

r53,i

(2.44)

This definition of [A(t)] for a point mass ephemeris model (formulated with respect to an iner-

tial observer fixed in E) is used in subsequent chapters for differential corrections. Due to the

nonautonomous structure of a point mass ephemeris model, the following partial derivatives of the

equations of motion with respect to time are also used for differential corrections:

∂X
′′

∂t
=

N∑
i=2,i ̸=3

GMi

(
X

′
i

r33,i
−

3(Xi −X)(ErT3,i
Er

′
1,i)

r53,i
− X

′
i

r31,i
+

3Xi(
ErT1,i

Er
′
1,i)

r51,i

)

∂Y
′′

∂t
=

N∑
i=2,i ̸=3

GMi

(
Y

′
i

r33,i
−

3(Yi − Y )(ErT3,i
Er

′
1,i)

r53,i
− Y

′
i

r31,i
+

3Yi(
ErT1,i

Er
′
1,i)

r51,i

)

∂Z
′′

∂t
=

N∑
i=2,i ̸=3

GMi

(
Z

′
i

r33,i
−

3(Zi − Z)(ErT3,i
Er

′
1,i)

r53,i
− Z

′
i

r31,i
+

3Zi(
ErT1,i

Er
′
1,i)

r51,i

)
(2.45)
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2.3 Reference Frame Transformations

Examining the motion of a spacecraft with respect to different reference frames provides

various perspectives on the behavior and properties of a trajectory [101, 61]. For example, in the

CR3BP, the inertial frame is particularly useful for understanding the motion of all three bodies

in the system as an explicit function of time. On the other hand, the rotating frame is used

to effectively visualize the motion of P3 relative to P1 and P2 which are fixed in R. Therefore,

the rotating frame is particularly useful for identifying conjunctions with the P1-P2 line, eclipses,

resonances, and particular solution geometries that are not easily identified in the inertial frame

[101, 61]. Given the utility of analyzing trajectories in both an inertial frame and a rotating frame,

this section provides an overview of the reference frame transformations used in this work for

trajectories generated in the CR3BP and a point mass ephemeris model.

2.3.1 Transformations between an Inertial Frame and a Rotating Frame

In this subsection, transformations of a state vector are derived between a general inertial

frame and a general rotating frame. Assume a general inertial frame is defined as A with axes

{â1, â2, â3} and a general rotating frame is defined as B with axes {b̂1, b̂2, b̂3}. Given these

definitions, a rotation matrix constructed between A and B may be defined as

[
CAB] = [Ab̂1 Ab̂2

Ab̂3

]
(2.46)

where each axis of B is expressed in the coordinates of A [93]. Then, the position and velocity of an

arbitrary object with respect to a rotating observer fixed in B are defined as r and ṙ, respectively.

Applying transport theorem, the transformation of a rotating state vector expressed in B into the

corresponding inertial state vector expressed in A is defined as

Ar =
[
CAB]Br

Ar
′
=
[
CAB][BωB/A

]
x
Br +

[
CAB]Bṙ =

[
ĊAB]Br +

[
CAB]Bṙ (2.47)

where [·]x denotes a skew-symmetric matrix computed from the provided vector,
[BωB/A

]
x
Br =

BωB/A × Br, and
[
ĊAB] =

[
CAB][BωB/A

]
x
[119, 93, 26]. This system of equations may be
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rewritten in matrix form as Ar

Ar
′

 =

[CAB] [03×3][
ĊAB] [

CAB]

Br

Bṙ

 (2.48)

and, similarly, the inverse transformation is defined asBr

Bṙ

 =

[CAB]T [03×3][
ĊAB]T [

CAB]T

Ar

Ar
′

 (2.49)

These expressions provide simple equations to convert between a rotating state vector expressed in

a general rotating frame and the corresponding inertial state vector expressed in a general inertial

frame.

2.3.2 Transformations in the CR3BP

The inertial frame I and the rotating frame R are the primary frames of interest in the

CR3BP. In this work, trajectories in the CR3BP are computed and analyzed in R using Equation

2.21 and then, if applicable, transformed into I to study the resulting motion with respect to an

inertial observer. The nondimensional rotating state vector of P3 expressed in R is defined as

Rq =

Rr3

Rṙ3

 (2.50)

and the nondimensional inertial state vector of P3 expressed in I is defined as

IqI =

Ir3

Ir
′
3

 (2.51)

Furthermore,
[
CIR] is defined as

[
CIR] = [CRI]T =

[
Ix̂ I ŷ I ẑ

]
=


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.52)

from Equation 2.17 and RωR/I = 1ẑ as defined in Section 2.1.2. Finally, recall that θ = nt + θ0

where n = 1. Using these definitions in Equations 2.48 and 2.49, the procedures for computing the

reference frame transformations between R and I in the CR3BP are summarized as follows:
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Rotating to Inertial Frame

Given: A nondimensional trajectory in R defined relative to the origin of R from an initial time,

t1, to a final time, t2.

(1) Define θ0 and select a center point fixed in R (e.g., the origin of R, P1, P2).

(2) Shift the position of each state along the trajectory such that it is defined with respect to

the position of the selected center point in R.

(3) For each value of t ∈ [t1, t2]:

(a) Compute
[
CIR] and [ĊIR].

(b) Use Equation 2.48 to transform the shifted state at t from R to I.

Inertial to Rotating Frame

Given: A nondimensional trajectory in I defined relative to the origin of I from an initial time, t1,

to a final time, t2.

(1) Define θ0 and select a center point fixed in R (e.g., the origin of R, P1, P2).

(2) For each value of t ∈ [t1, t2]:

(a) Compute
[
CIR] and [ĊIR].

(b) Use Equation 2.49 to transform the state at t from I to R.

(3) Shift the position of each transformed state along the trajectory such that it is defined with

respect to the position of the selected center point in R.

2.3.3 Transformations in a Point Mass Ephemeris Model

The inertial frame E and the rotating frame R are the primary frames of interest in a point

mass ephemeris model. In this work, trajectories in a point mass ephemeris model are computed

in E using Equation 2.41; in addition, R is used when transitioning a trajectory from the CR3BP
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into an ephemeris model and when comparing trajectories computed in each dynamical model.

The axes of E are aligned with the axes of the ICRF and its origin is shifted to the position of P1

while R is defined instantaneously at a given epoch based on the reference CR3BP system. Recall

from Section 2.2.2, the reference CR3BP system is selected based on the masses of the central and

secondary primary bodies in the point mass ephemeris model. To avoid confusion between the

ephemeris model and the reference CR3BP system, P1 and P2 for the reference CR3BP system are

instead denoted as PA and PB, respectively. Therefore, the axes of R are defined instantaneously

at a given epoch as

x̂ = ˆ̃rA,B

ẑ =
ˆ̃
hA,B =

r̃A,B × r̃
′
A,B

||r̃A,B × r̃
′
A,B||

ŷ = ẑ × x̂

(2.53)

where r̃A,B is the position vector from PA to PB and h̃A,B is the orbital angular momentum vector

of PB about PA. Using these definitions, reference frame transformations between R and E are

defined.

The procedures for computing the reference frame transformations between R and E are

formulated for a point mass ephemeris model. The nondimensional rotating state vector of P3

relative to the origin of R and expressed in R is defined in Equation 2.50. The nondimensional

inertial state vector of P3 relative to P1 and expressed in E is defined as

EqE =

Er1,3

Er
′
1,3

 (2.54)

Furthermore,
[
CER] is defined instantaneously at a given epoch using Equation 2.53 as

[
CER] = [E x̂ E ŷ E ẑ

]
(2.55)

Finally, the instantaneous dimensional angular velocity of R with respect to E expressed in R is

defined as

Rω̃R/E =
||r̃A,B × r̃

′
A,B||

r̃2A,B

ẑ (2.56)
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[106]. The motion of PA and PB is not assumed to be circular in an ephemeris model and therefore

Rω̃R/E is not constant and must be recalculated at each epoch. It is also important to note

that dimensional vectors are utilized in the computation of both
[
CER] and Rω̃R/E due to the

instantaneous definition of R at each epoch. Using these definitions in Equations 2.48 and 2.49, the

procedures for computing the reference frame transformations between R and E in a point mass

ephemeris model are summarized as follows:

Rotating Frame to Primary-Centered Inertial Frame

Given: A nondimensional trajectory in R defined relative to the origin of R from an initial epoch,

t̃E1 , to a final epoch, t̃E2 .

(1) Shift the position of each state along the trajectory such that it is defined with respect to

the position of P1 in R. Note: If M̃1 ≥ M̃2, P1 corresponds to PA in the reference CR3BP

system; otherwise, P1 corresponds to PB.

(2) For each value of t̃E ∈ [t̃E1 , t̃E2 ]:

(a) Compute the instantaneous characteristic quantities for the reference CR3BP system

and dimensionalize the shifted state at t̃E.

(b) Compute
[
CER] and [ĊER].

(c) Use Equation 2.48 to transform the dimensional shifted state at t̃E from R to E .

(3) Nondimensionalize each transformed shifted state along the trajectory using the character-

istic quantities for the reference CR3BP system. Note: The characteristic quantities used

in this step are the constant quantities computed for the reference CR3BP system, i.e., not

instantaneous values computed based on epoch.

Primary-Centered Inertial Frame to Rotating Frame

Given: A nondimensional trajectory in E defined relative to the origin of E from an initial epoch,

t̃E1 , to a final epoch, t̃E2 .
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(1) Dimensionalize each state along the trajectory using the characteristic quantities for the

reference CR3BP system. Note: The characteristic quantities used in this step are the con-

stant quantities computed for the reference CR3BP system, i.e., not instantaneous values

computed based on epoch.

(2) For each value of t̃E ∈ [t̃E1 , t̃E2 ]:

(a) Compute
[
CER] and [ĊER].

(b) Use Equation 2.49 to transform the dimensional state at t̃E from E to R.

(c) Compute the instantaneous characteristic quantities for the reference CR3BP system

and nondimensionalize the transformed state at t̃E.

(3) Shift the position of each nondimensional transformed state along the trajectory such that

it is defined with respect to the origin of R. Note: If M̃1 ≥ M̃2, P1 corresponds to PA in

the reference CR3BP system; otherwise, P1 corresponds to PB.

2.4 Numerical Propagation

Trajectories for a spacecraft in the CR3BP and a point mass ephemeris model are computed

using numerical propagation due to the lack of generalized analytical solutions [101, 61]. Given

an initial condition, the equations of motion for a spacecraft derived in the CR3BP and in an

ephemeris model in Sections 2.1 and 2.2, respectively, each define an initial value problem. In this

work, MATLAB® is used as the main computing platform for numerical analysis [69]. However, the

GNU Scientific Library (GSL) is used in C++ and interfaced with MATLAB® to solve the initial

value problem for each dynamical model and numerically propagate trajectories [88]. In GSL, the

Runge-Kutta Prince-Dormand 8/9 method is used for explicit numerical integration with a relative

tolerance of 10−13 and an absolute tolerance of 10−14.

Note:

In this work, trajectories in the CR3BP are computed with respect to a rotating observer fixed

in R as previously discussed in this chapter. When applicable, trajectories are transformed from
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R into I for visual evaluation. Therefore, in all subsequent chapters, assume all vectors associated

with trajectory analysis in the CR3BP are expressed in R unless stated otherwise. Similarly, in

all subsequent chapters, assume all vectors associated with trajectory analysis in a point mass

ephemeris model are expressed in E unless stated otherwise. Given these assumptions, the left

superscript notation introduced in this chapter to denote the Cartesian coordinate system in which

a vector is expressed is omitted from subsequent chapters to simplify notation. Table 2.2 provides

a summary of this note for each dynamical model.

Table 2.2: Notation used for each dynamical model throughout the remainder of the dissertation,
unless stated otherwise.

Dynamical Model State Equations of Motion

CR3BP q = [x, y, z, ẋ, ẏ, ż]
T

q̇ = f(q) = [ẋ, ẏ, ż, ẍ, ÿ, z̈]
T

Ephemeris qE =
[
X,Y, Z,X

′
, Y

′
, Z

′]T
q

′
E = f(qE , t) =

[
X

′
, Y

′
, Z

′
, X

′′
, Y

′′
, Z

′′]T



Chapter 3

Fundamental Solutions in the CR3BP

Fundamental solutions in the CR3BP often support the construction of initial guesses for

complex trajectories in a chaotic multi-body gravitational environment. The CR3BP admits a

variety of fundamental dynamical structures, such as equilibrium points, periodic orbits, quasi-

periodic orbits, and hyperbolic invariant manifolds [101, 61]. In the CR3BP, the stability of each

equilibrium point supplies insight into the behavior of the nearby flow that may be leveraged in tra-

jectory design. For instance, periodic and quasi-periodic orbits centered around equilibrium points

support identifying candidates for mission and staging orbits whereas their hyperbolic invariant

manifolds may approximate natural transport mechanisms throughout the system [61, 32, 50]. Due

to the lack of generalized analytical solutions, numerical methods are employed to compute and

analyze these types of motion. This chapter presents a detailed overview of the methods used to

compute the equilibrium points, periodic orbit families, and hyperbolic invariant manifolds asso-

ciated with periodic orbits in the CR3BP; each fundamental type of solution is leveraged in this

work to inform the primitive-based trajectory design framework.
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3.1 First-Order Variational Equations of Motion

Studying the global behavior of motion in a nonlinear dynamical system is often complex and

challenging, particularly in the absence of a generalized analytical solution [85, 101, 61]. Therefore,

a common analysis technique is to linearize the nonlinear dynamics about a reference solution to

study the behavior of motion in the local vicinity of the solution [85]. In this section, the first-order

variational equations of motion are derived in the CR3BP. Consider a reference trajectory denoted

as q∗(t) where the nonlinear equations of motion in the CR3BP are denoted as q̇ = f(q). The

first-order Taylor series expansion of f(q) about q∗(t) is defined as

q̇(t) ≈ q̇∗(t) +
∂f(q)

∂q

∣∣∣∣
q∗(t)

(q(t)− q∗(t)) (3.1)

where q(t) = q∗(t) + δq(t) and higher-order terms are ignored because δq(t) is assumed to be a

small perturbation relative to the reference trajectory at each instance of t [85]. This expression

simplifies to

δq̇(t) ≈ [A]
∣∣
q∗(t)

δq(t) (3.2)

where [A] is the Jacobian matrix of the dynamics defined in Section 2.1.5. Therefore, Equation 3.2

produces the first-order variational equations of motion in the CR3BP about a reference trajectory.

The first-order variational equations of motion are a linear approximation of the evolution of

a perturbation applied to a reference trajectory [85, 61]. From the fundamental theorem for linear

systems, the solution to Equation 3.2 is defined as

δq(t) = [Φ(t, t1)]δq(t1) (3.3)

where [Φ(t, t1)] is referred to as the state transition matrix (STM), a linear mapping from a per-

turbation at time t1 to a perturbation at time t relative to the reference trajectory [85, 61]. Using

Equations 3.2 and 3.3, the evolution of the STM is derived as

[
Φ̇(t, t1)

]
= [A]

∣∣
q∗(t)

[Φ(t, t1)] s.t. [Φ(t1, t1)] = [I] (3.4)

where [I] is the identity matrix with the same shape as the STM. Therefore, the evolution of

the STM is governed by [A] evaluated along the reference trajectory and may be numerically
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propagated from t1 to t given its initial condition as the identity matrix at t1 [85, 61]. Finally, the

STM admits a variety of useful properties, such as

[Φ(t1, t2)] = [Φ(t2, t1)]
−1

[Φ(t3, t1)] = [Φ(t3, t2)][Φ(t2, t1)]

(3.5)

which hold for any instances of t [61]. The results for the first-order variational equations of

motion presented in this section provide a foundation for analyzing motion in the local vicinity of

fundamental solutions in the CR3BP.

3.2 Equilibrium Points

3.2.1 Location of the Equilibrium Points

There are five equilibrium points in the CR3BP when formulated in the rotating frame; the

equilibrium points are commonly referred to as libration or Lagrange points and denoted as Li for

i ∈ [1, 5] [101, 61]. In an autonomous dynamical system, an equilibrium point is a stationary state in

the system such that the time derivative of the state is equal to the zero vector [85]. Consequently,

an object placed at an equilibrium point will remain at that point for all time unless an external

perturbation is applied. In the CR3BP, defining the equations of motion for P3 with respect to a

rotating observer results in an autonomous system. Therefore, q∗ is an equilibrium point in the

CR3BP if f(q∗) = 0. Applying these conditions to the equations of motion for P3, as defined in

Equation 2.21, results in the following system of equations:

ẍ =
∂U∗

∂x
= x− (1− µ)(x+ µ)

r31,3
− µ(x− 1 + µ)

r32,3
= 0

ÿ =
∂U∗

∂y
= y − (1− µ)y

r31,3
− µy

r32,3
= 0

z̈ =
∂U∗

∂z
= −(1− µ)z

r31,3
− µz

r32,3
= 0

(3.6)
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By inspection, z = 0 must be true for all Li in order for the condition z̈ = 0 to hold. Therefore, all

five libration points are located in the xy-plane of R and Equation 3.6 may be rewritten as

x− (1− µ)(x+ µ)

r31,3
− µ(x− 1 + µ)

r32,3
= 0

y

(
1− (1− µ)

r31,3
− µ

r32,3

)
= 0

(3.7)

This resulting system of equations may then be used to solve for the x and y coordinates of each

Li by evaluating two different cases: y = 0 and y ̸= 0.

The first three libration points (L1, L2, L3) are computed for the case where y = 0 and

referred to as the collinear libration points. Assuming y = 0, Equation 3.7 is simplified as

f(x) = x− (1− µ)(x+ µ)

((x+ µ)2)
3
2

− µ(x− 1 + µ)

((x− 1 + µ)2)
3
2

= 0 (3.8)

where the roots of f(x) correspond to the x coordinates of L1, L2, and L3. Due to the complexity

of f(x), Newton’s method is employed to solve for the roots of this function. Given an initial guess

x = x1, Newton’s method is a numerical root-finding algorithm that iteratively updates the value

of x until the condition f(x) = 0 is satisfied to within a desired numerical tolerance [106]. The

update equation used in Newton’s method is defined as

xi+1 = xi − f(xi)

(
df(x)

dx

∣∣∣∣
xi

)−1

(3.9)

where xi is the current value of x and xi+1 is the updated value of x for the next iteration of the

algorithm. Based on the geometry of the CR3BP in the rotating frame, there are three regions to

consider along x̂: Region 1 where −µ < x < 1− µ, Region 2 where x > 1− µ, and Region 3 where

x < −µ [101]. Therefore, Newton’s method may be applied to Equation 3.8 by initializing x within

Region 1, 2, or 3 to compute the x-coordinate of L1, L2, or L3, respectively. Table 3.1 lists the

computed x-coordinate of each collinear libration point in the Earth-Moon CR3BP; furthermore,

Figure 3.1 displays each collinear libration point as a red diamond in R for the Earth-Moon CR3BP.

The Earth and Moon are displayed as gray circles and plotted to scale.

The final two libration points (L4, L5) are computed for the case where y ̸= 0 and referred

to as the triangular or equilateral libration points. In this case, the system of equations presented
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Table 3.1: x-coordinate of each libration point in the Earth-Moon CR3BP.

Libration Point Earth-Moon

x

L1 0.836915127047076

L2 1.155682164448510

L3 -1.005062645702342

L4/L5 0.487849414649438

Figure 3.1: Locations of the libration points in R for the Earth-Moon CR3BP.

in Equation 3.7 may be rewritten as

x

(
1− (1− µ)

r31,3
− µ

r32,3

)
− µ(1− µ)

r31,3
+

µ(1− µ)

r32,3
= 0

y

(
1− (1− µ)

r31,3
− µ

r32,3

)
= 0

(3.10)

By inspection, this system of equations is satisfied when r1,3 = r2,3 = 1. The nondimensional

distance between P1 and P2 in the CR3BP is also equal to unity. Therefore, the configuration of

P1, P2, and P3 forms an equilateral triangle at each triangular libration point. Given this condition
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and the fixed positions of P1 and P2 in R, x = 0.5− µ for both L4 and L5, y =
√
3/2 for L4, and

y = −
√
3/2 for L5. Table 3.1 lists the computed x-coordinate of the triangular libration points in

the Earth-Moon CR3BP; furthermore, Figure 3.1 displays each triangular libration point as a red

diamond in R for the Earth-Moon CR3BP.

Examining the ZVSs in relation to the libration points of the CR3BP provides insight into

the allowable regions of motion in R within different energy regimes [101, 61]. The Jacobi constant

at each libration point is denoted as CJLi
where CJL1

> CJL2
> CJL3

> CJL4/5
[61]. As discussed in

Section 2.1.4, examining the ZVSs in the CR3BP at distinct values of CJ provides critical insight

into the constraints on the natural motion of P3 in R. Figure 3.2 displays the evolution of the

ZVCs in the xy-plane of R computed in the Earth-Moon CR3BP at various values of CJ ; the

Earth and Moon are plotted to scale and forbidden regions of motion are colored in gray. When

CJ > CJL1
, P3 is not able to naturally transfer between the vicinity of P1 and P2 as evident from

the forbidden regions of motion displayed in Figure 3.2a at CJ = 3.2500 in the Earth-Moon system

[61]. However, the allowable regions of motion around P1 and P2 increase in size as CJ is decreased

and eventually intersect at L1 when CJ = CJL1
; this region is often referred to as the L1 gateway

[61]. An example where the L1 gateway is open is displayed in Figure 3.2b at CJ = 3.1780 in the

Earth-Moon system. In this regime, P3 is able to naturally transfer between the two primary bodies

via the L1 gateway. As CJ is decreased further, the L2 gateway is formed at CJ = CJL2
and then

the L3 gateway is formed at CJ = CJL3
[61]. In Figure 3.2c, P3 may depart the vicinity of both

primary bodies through the L2 gateway; however, in Figure 3.2d, P3 may depart the vicinity of

both primary bodies through either the L2 or L3 gateway. Finally, as CJ is decreased even further,

the forbidden regions of motion continue to shrink in the xy-plane of R and coalesce at L4/L5 when

CJ = CJL4/5
[61]. The motion of P3 is then unconstrained in the xy-plane of R when CJ < CJL4/5

but its out-of-plane motion is still constrained. This qualitative analysis of the ZVSs in relation to

the libration points of the CR3BP provides information about the energy regimes in which natural

trajectories are bounded in the vicinity of a primary body, may transfer between the vicinity of P1

and P2, or may depart the vicinity of both primary bodies [61].
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(a) CJ = 3.2500 > CJL1
(b) CJL1

> CJ = 3.1780 > CJL2

(c) CJL2
> CJ = 3.1400 > CJL3

(d) CJL3
> CJ = 3.0116 > CJL4/5

Figure 3.2: Zero velocity curves in the xy-plane of R computed in the Earth-Moon CR3BP at
various values of CJ .
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3.2.2 Stability of the Equilibrium Points

The first-order variational equations of motion presented in Section 3.1 are used to study

the stability of the libration points in the CR3BP and gain insight into the behavior of the flow

in the local vicinity of each point. Consider the reference solution q∗(t) to be a libration point

in the CR3BP; therefore, q∗(t) = q∗ for all t because f(q∗) = 0 and the system is autonomous.

Consequently, Equation 3.2 may be rewritten as

q̇(t) ≈ [A]
∣∣
q∗δq(t) (3.11)

When evaluated at a libration point, [A] is constant because q∗ is a stationary solution. Therefore,

the local behavior of the nonlinear system near q∗ may be qualitatively analyzed based on the

properties of the linear time invariant system formulated about q∗ in Equation 3.11 [85].

The stability of a linear time invariant system is determined by computing the eigenvalues

and eigenvectors of [A] [12, 85]. Each eigenvalue possesses the form λ = a+ bj where a, b are real

numbers and j =
√
−1; complex eigenvalues always occur in complex conjugate pairs when [A]

is a real matrix [85]. Furthermore, each eigenvalue and its associated eigenvector correspond to

a mode of the system where the qualitative behavior of the mode is determined by the location

of the eigenvalue in the complex plane [85]. Table 3.2 summarizes the qualitative behavior of a

mode in a linear time invariant system. Assuming [A] is a real matrix, stable, unstable, and center

invariant subspaces are formed by the span of the eigenvectors of [A] associated with eigenvalues

where a < 0, a > 0, and a = 0, respectively [85]. The stable, unstable, and center subspaces are

denoted as Es, Eu, and Ec, respectively, where the dimension of each subspace is equal to the

number of eigenvectors used to define the subspace. These subspaces form a basis for the phase

space of the linear system.

In the CR3BP, the in-plane and out-of-plane variations about each libration point are decou-

pled and therefore the in-plane and out-of-plane stability of each libration point may be evaluated

independently [101, 61]. The phase space of the CR3BP is 6-dimensional; consequently, [A] is a

(6 × 6)-dimensional real matrix that possesses a set of 6 eigenvalues and associated eigenvectors
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Table 3.2: Qualitative behavior of a mode in a linear time invariant system based on the location of
its associated eigenvalue in the complex plane such that the eigenvalue possesses the form λ = a+bj.

Mode Type a b

Stable a < 0 b = 0

Unstable a > 0 b = 0

Oscillatory a = 0 b ̸= 0

Stable (Spiral) a < 0 b ̸= 0

Unstable (Spiral) a > 0 b ̸= 0

and is constant when evaluated at each libration point. The eigenvalues denoted as λi for i ∈ [1, 4]

correspond to the in-plane modes and the eigenvalues denoted as λi for i ∈ [5, 6] correspond to the

out-of-plane modes. For a given value of µ, the eigenvalues of [A] evaluated at Li are computed as

λ1,2 = ±
√

Λ1

λ3,4 = ±
√

Λ2

λ5,6 = ±

(√∣∣∣U∗
zz

∣∣
q∗

∣∣∣) j

(3.12)

where | · | denotes the absolute value of a quantity and Λ1,2 are computed from the characteristic

equation for the planar variational equations of motion as

Λ1,2 =

(
U∗
xx

∣∣
q∗ + U∗

yy

∣∣
q∗ − 4

)
±

√(
4− U∗

xx

∣∣
q∗ − U∗

yy

∣∣
q∗

)2
− 4

(
U∗
xx

∣∣
q∗U∗

yy

∣∣
q∗ −

(
U∗
xy

∣∣
q∗

)2)
2

(3.13)

[101, 61]. The second-order partial derivatives of U∗ are defined explicitly in Section 2.1.5 and

are evaluated at Li in Equations 3.12 and 3.13. Table 3.3 summarizes the resulting linear modes

associated with each libration point in the CR3BP as a function of µ.

A linear stability analysis of an equilibrium point in a nonlinear system can often provide

qualitative information about the structure of solutions in its local vicinity. From the center man-

ifold theorem, local stable, unstable, and center invariant manifolds exist tangentially to Es, Eu,

and Ec of the linearized system at an equilibrium point, respectively [85]. Motion along a local

stable (unstable) manifold asymptotically approaches the equilibrium point in forward (reverse)
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Table 3.3: Summary of the linear modes associated with each libration point in the CR3BP as a
function of µ; note: µcritical = 0.03852089650455143.

Libration Point µ Range Mode Types

L1, L2, L3 (0.0, 0.5]

Unstable In-Plane (λ1)
Stable In-Plane (λ2)

Oscillatory In-Plane (λ3, λ4)
Oscillatory Out-of-Plane (λ5, λ6)

L4, L5

(0.0, µcritical)
Oscillatory In-Plane (λ1-λ4)

Oscillatory Out-of-Plane (λ5, λ6)

(µcritical, 0.5]
Unstable Spiral In-Plane (λ1, λ3)
Stable Spiral In-Plane (λ2, λ4)

Oscillatory Out-of-Plane (λ5, λ6)

time; these manifold structures are commonly referred to as hyperbolic invariant manifolds. The

corresponding global stable (unstable) manifold may then be defined by allowing states along the

local stable (unstable) manifold to flow in reverse (forward) time. The stable, unstable, and center

invariant manifolds associated with an equilibrium point are denoted as W s, W u, and W c and have

the same dimension as Es, Eu, and Ec, respectively [85]. Furthermore, from the Hartman-Grobman

theorem, hyperbolic invariant manifolds associated with an equilibrium point in an autonomous

nonlinear system share the same qualitative structure as the hyperbolic invariant subspaces in the

linearized system locally near the equilibrium point [85]. However, determining the structure of a

center manifold associated with an equilibrium point often requires higher-order analysis and may

not always be qualitatively derived from the structure of the center subspace [85, 61].

The linear modes at each libration point in the CR3BP, as summarized in Table 3.3, provide

qualitative information about the structure of solutions near each libration point. From the center

manifold theorem and Hartman-Grobman theorem, the presence of stable or unstable modes at a li-

bration point in the CR3BP indicate the presence of local hyperbolic invariant manifolds that either

approach or depart the libration point, respectively [85, 61]. Therefore, all three collinear libration

points admit hyperbolic invariant manifolds. Additionally, as previously discussed, determining the

structure of a center manifold associated with an equilibrium point often requires higher-order anal-
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ysis of the equilibrium point [85, 61]. However, the CR3BP formulated with respect to a rotating

observer is an autonomous Hamiltonian system. Therefore, from the Lyapunov center theorem, a

one-parameter family of periodic orbits emanates from an equilibrium point for each pair of complex

conjugate eigenvalues that are purely imaginary [72, 61]. Accordingly, each oscillatory mode at a

libration point in the CR3BP indicates the presence of a center manifold comprised of a continuous

family of periodic orbits emanating from the libration point [101, 61]. Families of periodic orbits

emanate in- and out-of-plane from all five libration points. Furthermore, quasi-periodic motion may

also be recovered when simultaneously exciting multiple oscillatory modes [101, 61]. Szebehely pro-

vides a detailed modal decomposition analysis in which the behavior of motion governed by the

linearized and nonlinear dynamics is computed and compared in the vicinity of each libration point

in the CR3BP [101]. As a result, the linear modes associated with each libration point provide

substantial information about the qualitative structure of nearby motion in the CR3BP and reveal

the presence of fundamental dynamical structures that may be leveraged for trajectory design.

3.3 Periodic Orbits

A periodic orbit in the CR3BP is a trajectory that precisely repeats in the rotating frame,

where the minimum time interval for repetition is defined as the orbit period [101, 61]. More

specifically, a periodic orbit in R satisfies the following condition:

q(t1) = q(t1 + TPO) (3.14)

where q(t1) is an initial state and TPO is the period of the orbit. As discussed in Section 3.2.2,

periodic orbits exist in the CR3BP within continuous one-parameter families. Periodic orbit families

support identifying candidates for mission and staging orbits in the trajectory design process [101,

61].

The natural dynamics of the CR3BP provide a rich structure of continuous periodic orbit

families that enable expansive exploration of a multi-body system. Periodic orbit families in the

CR3BP may be classified based on a variety of properties. Orbits centered around a libration
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point are referred to as libration point orbits; similarly, orbits centered around a primary body are

referred to as primary-centered orbits while orbits that exhibit orbital resonance with the inertial

motion of P2 about P1 are referred to as resonant orbits [101, 61]. Families of periodic orbits may

be further classified based on the location of selected members relative to a particular primary

body or libration point, bifurcations that occur along the family, the type of orbital resonance

admitted by selected members, or the direction of motion of selected members. The direction of

motion at a state in R is typically described relative to a reference location: a state that is labeled

as prograde (retrograde) produces an instantaneous orbital angular momentum vector with respect

to the selected reference location that possesses a positive (negative) z component. This section

discusses the stability of periodic orbits and provides a detailed overview of the numerical methods

used to compute a family of periodic orbits in the CR3BP.

3.3.1 Orbital Stability

The first-order variational equations of motion presented in Section 3.1 are used to study the

stability of a periodic orbit in the CR3BP and gain insight into the behavior of the flow in its local

vicinity. Characterizing the stability of a periodic orbit is critical in the trajectory design process

because periodic orbits often serve as mission or staging orbits in a mission concept: analyzing the

dynamics in the local vicinity of a periodic orbit may influence station-keeping requirements and

determine whether natural dynamical structures may be leveraged to arrive onto the orbit, depart

from the orbit, and/or remain bounded near the orbit [61]. Accordingly, consider the reference

solution q∗(t) to be a periodic orbit with an orbit period denoted as TPO in the CR3BP. The

resulting Jacobian in the first-order variational equations of motion is time-varying and periodic

when evaluated along q∗(t), which results in a linear time-varying system [61]. Given an initial

state for the periodic orbit and a small perturbation applied to the initial state at t, the first-order

evolution of the small perturbation after TPO is defined as

δq(t+ TPO) = [Φ(t+ TPO, t)]δq(t) (3.15)
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where the monodromy matrix of the periodic orbit is defined as

[M(t)] = [Φ(t+ TPO, t)] (3.16)

which is the STM propagated for one orbit period [85, 61].

Characterizing the properties of [M(t)] associated with a periodic orbit provides necessary

insight for evaluating the local qualitative stability of the periodic orbit [61]. Consider two distinct

states along a periodic orbit at t1 and t2, respectively. Using the properties of the STM defined in

Section 3.1 as well as the periodicity of the orbit, [M(t2)] may be defined as

[M(t2)] = [Φ(t2 + TPO, t2)]

= [Φ(t2 + TPO, t1 + TPO)][Φ(t1 + TPO, t2)]

= [Φ(t2 + TPO, t1 + TPO)][Φ(t1 + TPO, t1)][Φ(t1, t2)]

= [Φ(t2, t1)][Φ(t1 + TPO, t1)][Φ(t1, t2)]

= [Φ(t1, t2)]
−1[M(t1)][Φ(t1, t2)]

(3.17)

which demonstrates that [M(t1)] and [M(t2)] are similar matrices and possess the same eigenval-

ues [12]. Consequently, the eigenvalues of [M(t)] are constant for all t along the periodic orbit

and [M(t)] may be evaluated using any reference state along the periodic orbit to determine the

qualitative behavior of motion in the local vicinity of the orbit.

In the CR3BP, linearizing about a periodic orbit results in a nonautonomous linear system;

however, from Floquet theory, the nonautonomous linear system can be reduced to a discrete

autonomous linear system formulated about a selected state along the periodic orbit [85, 61]. The

discrete system possesses a mapping interval of TPO and is governed by the map [M(t)], which is

constant at the selected state along the periodic orbit. Therefore, the first step in analyzing the

stability of a periodic orbit in the CR3BP is to evaluate the eigenstructure of [M ]. In the CR3BP,

[M ] is a symplectic matrix due to the autonomous Hamiltonian structure of the system and the

eigenvalues of a symplectic matrix always occur in reciprocal pairs [61]. Furthermore, [M ] is a real

matrix and therefore all complex eigenvalues occur in complex conjugate pairs [61]. Finally, [M ]
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always admits a trivial pair of eigenvalues that are both equal to unity due to its formulation about

a periodic solution and the symplectic structure of the CR3BP [61]. In the phase space of the

CR3BP, one of the trivial eigenvalues corresponds to the mode associated with the periodic orbit

itself while the other trivial eigenvalue corresponds to the mode associated with nearby periodic

motion due to its existence in a continuous family [61].

Given the eigenstructure of [M ] associated with a periodic orbit in the CR3BP, the qualitative

stability of the periodic orbit may be studied. The qualitative behavior of each mode in a discrete

linear time invariant system is determined by the location of the associated eigenvalue in the

complex plane relative to the unit circle [12, 85]. Consequently, Table 3.4 summarizes the qualitative

behavior of a mode in a discrete linear time invariant system. Assuming [M ] is a real matrix,

stable, unstable, and center invariant subspaces are formed by the span of the eigenvectors of [M ]

associated with eigenvalues where |λ| < 1, |λ| > 1, and |λ| = 1, respectively. Similar to the linear

stability analysis of libration points in Section 3.2.2, the stable, unstable, and center subspaces

are denoted as Es, Eu, and Ec, respectively, where the dimension of each subspace is equal to the

number of eigenvectors used to define the subspace [85, 61]. Recall, [M ] is associated with a single

state along the periodic orbit and the selection of the state is arbitrary because the eigenvalues of

[M ] are constant along the periodic orbit as previously demonstrated; however, the eigenvectors of

[M ] are not constant along the periodic orbit [85, 61]. Therefore, it is important to note that the

existence and dimension of each subspace at each state along the periodic orbit is constant, but

the structure of each subspace varies along the orbit due to variations in the eigenvectors of [M ]

evaluated at different states.

A linear stability analysis of a periodic orbit in the CR3BP provides qualitative information

about the structure of solutions in the local vicinity of each state along the periodic orbit [85].

From the stable and center manifold theorems for periodic orbits, local stable, unstable, and center

invariant manifolds exist tangentially to Es, Eu, and Ec of the linearized system at each fixed state

along the periodic orbit, respectively [85]. Furthermore, these invariant manifolds intersect each

other transversally at each fixed state along the periodic orbit. The stable and unstable manifolds,
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i.e., the hyperbolic invariant manifolds, share the same qualitative structure as the hyperbolic

invariant subspaces in the linearized system locally near each fixed state along the periodic orbit.

However, determining the structure of the center manifold typically requires higher-order analysis

[85, 61]. In the CR3BP, the existence of center linear modes associated with a periodic orbit

indicates the presence of quasi-periodic orbit families centered around the periodic orbit [85, 61].

As a result, the linear modes associated with a given periodic orbit provide substantial information

about the qualitative structure of nearby motion in the CR3BP and reveal the presence of additional

fundamental dynamical structures that may be leveraged for trajectory design.

Table 3.4: Qualitative behavior of a mode in a discrete linear time invariant system based on the
location of its associated eigenvalue in the complex plane relative to the unit circle.

Mode Type Form of λ |λ|
Stable λ = a |λ| < 1

Unstable λ = a |λ| > 1

Oscillatory λ = a+ bj |λ| = 1

Stable (Spiral) λ = a+ bj |λ| < 1

Unstable (Spiral) λ = a+ bj |λ| > 1

Stability information for a periodic orbit is often summarized using the stability indices, s1

and s2 [48]. Each of these indices is computed in this work as the following sum of a pair of

nontrivial eigenvalues, λ and λ−1, of the monodromy matrix associated with the periodic orbit:

si = λ+ λ−1 (3.18)

for i ∈ [1, 2]. For planar periodic orbits, s1 is defined as the stability index associated with planar

modes while s2 corresponds to out-of-plane modes; together, their values offer useful insights into

the local neighborhood of the orbit. However, the stability indices of spatial periodic orbits do

not provide this clear distinction between in-plane and out-of-plane stability; in this case, the

nontrivial pairs of eigenvalues corresponding to s1 and s2 are selected arbitrarily for a given orbit

and correlated along its corresponding family. A value of the stability index between -2 and 2

indicates the existence of an oscillatory mode and, therefore, a center invariant manifold that
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contains nearby quasi-periodic orbits; this is only the case when the associated eigenvalues of the

stability index lie on the unit circle. An index possessing a magnitude greater than 2, however,

indicates the existence of stable and unstable invariant manifolds that govern natural motion onto

and away from the orbit, respectively [61]. When the order of magnitude of the stability index

associated with stable and unstable modes is low, nearby trajectories exciting these modes are

relatively slow to arrive onto or depart from the periodic orbit.

3.3.2 Numerical Computation via Multiple Shooting

A multiple shooting method is commonly employed in the CR3BP to compute periodic orbits;

multiple shooting is a numerical method that splits a two-point boundary value problem into a

series of initial value problems coupled with continuity conditions [61, 8]. Discretizing a two-point

boundary value problem in this manner is particularly useful in nonlinear systems due to the

sensitivity of trajectories governed by nonlinear dynamics over large time intervals. In this work,

a free variable and constraint vector formulation of multiple shooting is leveraged to numerically

compute periodic orbits in the CR3BP [61, 8].

The first step in computing a single periodic orbit in the CR3BP is to generate an initial guess

and formulate a free variable vector. Depending on the desired type of orbit, an initial guess is

constructed using either Poincaré mapping, stability analysis of a libration point, resonance analysis

in the two-body problem, or bifurcation analysis of another periodic orbit family [101, 61, 43, 8].

Using one of these analysis techniques, an estimate for an initial state and period of the desired

periodic orbit are obtained and denoted as q(t1) and TPO, respectively. Given these estimates, the

initial guess is formed by numerically propagating q(t1) forward in time for TPO nondimensional

time units. The initial guess is then discretized into a total of narc arcs with equal integration times.

The state at the beginning of the i-th arc is denoted as qi = q(ti) and the common integration

time along each arc is defined as

∆t =
TPO

narc
(3.19)

The state at the beginning of each arc and the common integration time are then used to define
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the free variable vector as

V =

[
qT1 qT2 · · · qTnarc

∆t

]T
(3.20)

resulting in a nfree-dimensional vector where nfree = 6narc + 1. This free variable vector defines a

set of parameters that may be tuned or adjusted iteratively in a differential corrections algorithm

to compute a periodic orbit.

Given a free variable vector, a constraint vector is then constructed such that it is a function

of the free variables and equals the zero vector when a computed trajectory is a periodic orbit. The

first required constraint type is a continuity constraint applied between each neighboring pair of

arcs along the orbit. The continuity constraint between the i-th and (i+ 1)-th arc along the orbit

is defined as

Fci = qi+1 − qif (3.21)

where qif is the final state of the i-th arc computed by propagating qi for ∆t nondimensional

time units. The continuity constraints enforce continuous and smooth transitions between each

neighboring pair of arcs. Similarly, the second required constraint type is a periodicity constraint

applied between the initial and final arcs of the orbit. The periodicity constraint is defined as

Fp =

q1{1 : 4} − qnarcf
{1 : 4}

q1{6} − qnarcf
{6}

 (3.22)

where the {·} notation denotes the rows of the associated vector (or matrix) that are included in the

constraint. The periodicity constraint on ẏ between q1 and qnarcf
is removed because it is implicitly

enforced due to the conservation of CJ along a continuous natural trajectory in the CR3BP [8].

The final constraint type included in the problem formulation is a constraint on the y-coordinate

of q1, which is defined as

Fy = y1 − ydes (3.23)

where ydes is the desired y-coordinate. Fixing the y-coordinate of q1 at ydes helps facilitate better

convergence behavior by removing the ambiguity of the initial state for a periodic orbit. The
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selection of ydes depends on the desired type of orbit. Finally, the full constraint vector is defined

as

F (V ) =

[
FT
c1 FT

c2 · · · FT
cnarc−1

FT
p Fy

]T
(3.24)

resulting in a ncon-dimensional vector where ncon = 6narc. This constraint vector mathematically

defines the constraints that must be satisfied in order for a trajectory described by V to correspond

to a periodic orbit.

Given a free variable and constraint vector formulation of multiple shooting for a periodic

orbit, the resulting series of initial value problems is solved using Newton’s method [61, 8]. The

constraint vector F (V ) is comprised of equality constraints and formulates a system of equations in

which each equation is satisfied when it is equal to zero. Consequently, the goal of the vector-valued

Newton’s method is to determine V such that F (V ) = 0 to within a small tolerance. Consider a

current free variable vector denoted as V and a desired free variable vector denoted as Vsol that

corresponds to a periodic orbit. As a result, F (Vsol) = 0 and assume Vsol is in the local vicinity of

V . Therefore, the first-order vector-valued Taylor series expansion of F (Vsol) about V is defined

as

F (Vsol) = 0 ≈ F (V ) + [DF (V )] (Vsol − V ) (3.25)

where

[DF (V )] =
∂F (V )

∂V

∣∣∣∣
V

(3.26)

and [DF (V )] is a (ncon×nfree)-dimensional matrix. To the first-order, Equation 3.25 may then be

solved for the desired free variable vector to produce the following update equation at iteration i:

Vi+1 =


Vi − [DF (Vi)]

−1F (Vi) if nfree = ncon

Vi − [DF (Vi)]
T
[
[DF (Vi)][DF (Vi)]

T
]−1

F (Vi) if nfree > ncon

(3.27)

Equation 3.27 produces the general update equation used in a vector-valued Newton’s method.

Given an initial guess V = V1, Newton’s method is used to iteratively update V until a terminal

condition is met. Due to numerical integration errors and the use of a numerical method, the
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condition F (V ) = 0 may not be achieved exactly. Therefore, potential terminal conditions are

||F (V )|| ≤ ϵ or a maximum number of iterations is exceeded. In this work, the value of ϵ is set

as 10−12 and the maximum number of iterations is set at 50 for computing periodic orbits in the

CR3BP. Newton’s method is an efficient numerical technique for computing periodic orbits in the

CR3BP; however, a good initial guess is needed for robust convergence behavior due to the linear

assumptions of the methodology [106].

Implementing the vector-valued Newton’s method as described relies on defining [DF (V )]

and evaluating the matrix at each iteration of the algorithm for the current free variable vector.

This matrix is the Jacobian of the constraints with respect to the free variables and characterizes

how variations in the free variables impact the constraints [61, 8]. Numerical finite differencing

algorithms are often leveraged to approximate [DF (V )]; however, when possible, it is more accurate

and computationally efficient to define analytical expressions for the elements of [DF (V )]. Given

the free variable and constraint vector formulation of multiple shooting for a periodic orbit presented

in this subsection, [DF (V )] is defined analytically as

[DF (V )] =



∂Fc1
∂V

∂Fc2
∂V

...

∂Fcnarc−1

∂V

∂Fp

∂V

∂Fy

∂V


(3.28)

where

∂Fci

∂V
=

[
[06×(6(i−1))] −[Φ(ti +∆t, ti)] [I6×6] [06×(6(narc−i)−6)] −q̇if

]
∂Fp

∂V
=

[I6×6]{1 : 4} [04×(6narc−12)] −[Φ(tnarc +∆t, tnarc)]{1 : 4} −q̇narcf
{1 : 4}

[I6×6]{6} [01×(6narc−12)] −[Φ(tnarc +∆t, tnarc)]{6} −q̇narcf
{6}


∂Fy

∂V
=

[
0 1 [01×(6narc−1)]

]
(3.29)
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Equipped with an explicit definition for [DF (V )], Newton’s method is leveraged to compute peri-

odic orbits in the CR3BP.

3.3.3 Pseudo-Arclength Continuation

Pseudo-arclength continuation is used to numerically compute a family of periodic orbits in

the CR3BP [58]. As discussed throughout this section, periodic orbits exist within the CR3BP in

continuous one-parameter families. Starting from an initial periodic orbit, a continuation method

may be used to traverse along the parameterized family by successively computing nearby periodic

orbits. Figure 3.3 depicts a conceptual example of pseudo-arclength continuation where a family

of periodic orbit solutions is represented as a blue curve in the space defined by a free variable

vector V and a parameter p. Given a current periodic orbit at pi, a nearby periodic orbit along

the solution curve is desired as depicted in Figure 3.3. First, a unit vector that is tangent to the

solution curve at pi is computed and scaled by δs. Then, an initial guess for the nearby periodic

orbit is generated by perturbing the current orbit solution along the tangent vector. Finally, a new

periodic orbit at pi+1 along the solution curve is recovered from the initial guess. This process

may then be repeated to compute additional members along the family. There are a variety of

numerical techniques that may be used for continuation; however, pseudo-arclength continuation

is specifically leveraged because it does not require a priori knowledge of the solution curve and is

more robust than simpler methods, such as natural parameter continuation [58, 8].

The free variable and constraint vectors defined in Section 3.3.2 for computing periodic orbits

in the CR3BP are formulated such that the null space of [DF (V )] is 1-dimensional and there are

an infinite number of solutions to F (V ) = 0. Consider a current periodic orbit denoted as Vcurr

that is computed using Newton’s method as described in Section 3.3.2. The unit vector that is

tangent to the solution curve of the corresponding family at the current periodic orbit is computed

as the null space of [DF (Vcurr)] and denoted as n̂curr [58, 8]. An initial guess for a new periodic

orbit along the family is then computed as

Vnew = Vcurr + δsn̂curr (3.30)
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Figure 3.3: Conceptual example of pseudo-arclength continuation (derived from [8]).

where δs is specified by a human analyst. Finally, Newton’s method is used to recover a new

periodic orbit along the family given the initial guess V = Vnew. However, the constraint vector is

modified to ensure the new periodic orbit is recovered at a step size of δs from Vcurr along n̂curr.

The modified constraint vector is defined as

H(V ) =

 F (V )

(V − Vcurr)
T n̂curr − δs

 (3.31)

and the modified Jacobian of the constraints with respect to the free variables is defined as

[DH(V )] =

[DF (V )]

n̂T
curr

 (3.32)

Using this modified system of equations within Newton’s method, a new periodic orbit is recovered

and the process may be repeated to successively step along the desired family of periodic orbits.

In this work, the continuation process terminates when a desired number of orbits is computed or

Newton’s method fails to converge. As an example, Figure 3.4 displays segments of the L1, L2, and

L3 Lyapunov orbit families as well as segments of the L1, L2, and L3 northern halo orbit families

computed in the Earth-Moon CR3BP using Newton’s method and pseudo-arclength continuation.
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(a) L1 Lyapunov Orbits (b) L2 Lyapunov Orbits (c) L3 Lyapunov Orbits

(d) L1 Northern Halo Orbits (e) L2 Northern Halo Orbits (f) L3 Northern Halo Orbits

Figure 3.4: Segments of the L1, L2, and L3 Lyapunov orbit families as well as segments of the L1,
L2, and L3 northern halo orbit families computed in the Earth-Moon CR3BP.

3.4 Hyperbolic Invariant Manifolds

Hyperbolic invariant manifolds may approximate natural transport mechanisms throughout

a multi-body system [61, 32, 50]. In the CR3BP, the existence of stable and unstable linear modes

associated with a state along a periodic orbit indicate the presence of hyperbolic invariant manifolds

that naturally approach and depart a periodic orbit, respectively [101, 61]. Due to the eigenstructure

of the monodromy matrix associated with a periodic orbit in the CR3BP, the existence of a stable
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manifold guarantees the existence of an associated unstable manifold. The stable and unstable

manifolds associated with a periodic orbit may be denoted as W s
PO and W u

PO, respectively. A

trajectory along W s
PO asymptotically approaches the periodic orbit as t → ∞ and a trajectory

along W u
PO asymptotically approaches the periodic orbit as t → −∞ [61]. When the magnitude of

the eigenvalues associated with the stable and unstable modes are close to unity, trajectories along

the stable and unstable manifolds are relatively slow to arrive onto and depart from the periodic

orbit, respectively.

In the absence of generalized analytical descriptions, an approximation of a stable or unstable

manifold in the CR3BP is typically computed numerically. First, an unstable periodic orbit is

discretized into a set of states. At a selected state along the periodic orbit, qPO, a perturbation of

magnitude d is applied in the direction of either a stable eigenvector, vs, or an unstable eigenvector,

vu, of [M ] computed at qPO. The resulting perturbed state depends on the desired manifold

structure and is defined as
qsPO = qPO ± d

(
vs

||vs{1:3}||

)
for the stable manifold

quPO = qPO ± d
(

vu
||vu{1:3}||

)
for the unstable manifold

(3.33)

where vs/u is normalized by the magnitude of its position components [61]. The perturbed state

approximately lies along the desired local manifold because the corresponding linear subspace is

tangent to the manifold at the selected state along the periodic orbit as discussed in Section 3.3.1.

Depending on the desired manifold, the perturbed state is propagated backward (forward) in time

to produce a trajectory along the global stable (unstable) half-manifold. This numerical process is

then repeated for multiple states along the periodic orbit to produce a discrete approximation of the

global half-manifold over a time interval of interest. Termination criteria within the time interval

of interest may include reaching a maximum number of apses with respect to a reference location,

crossing a specified boundary in the configuration space, or impacting a primary body [61]. As an

example, Figure 3.5 displays trajectories computed along the stable and unstable half-manifolds

associated with an L1 Lyapunov orbit at CJ ≈ 3.1802 in the Earth-Moon CR3BP.
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(a) Stable and unstable half-manifolds directed towards the
Earth.

(b) Stable and unstable half-manifolds directed towards the Moon.

Figure 3.5: Trajectories computed along the stable (blue) and unstable (red) half-manifolds asso-
ciated with an L1 Lyapunov orbit at CJ ≈ 3.1802 in the Earth-Moon CR3BP.



Chapter 4

Numerically Correcting Trajectories via Collocation

In a multi-body system, a spacecraft trajectory is typically computed by solving a two-point

boundary value problem using multiple shooting or collocation methods [17, 6]. Collocation is

used in this work for numerically correcting transfers because it is often more robust with respect

to the quality of an initial guess compared to multiple shooting [17]. Collocation is a numerical

method used to implicitly integrate the differential equations of a dynamical system [17, 6, 103].

Using collocation, a solution to a dynamical system is recovered by approximating the solution as

sets of piecewise polynomials that satisfy the system dynamics at collocation nodes. This chapter

presents a detailed overview of a free variable and constraint vector formulation of collocation used

to transform the trajectory design problem into a parameter design problem and robustly compute

continuous solutions from primitive-based initial guesses. The formulation summarized in this

chapter is based upon the generalized odd-degree collocation scheme with hybrid mesh refinement

presented by Grebow and Pavlak [35]. Note: An earlier version of the discussion in Section 4.1

appeared in a conference paper by Smith and Bosanac [98].
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4.1 Correcting Trajectories in the CR3BP

4.1.1 Trajectory Discretization

Consider an initial guess for a trajectory that is comprised of a sequence of discontinuous

segments. Given an initial guess for a trajectory containing nseg segments in the CR3BP, the first

step of the corrections process is to define a discrete mesh of nodes along the trajectory. The i-th

segment is discretized into mi arcs and a total of mi + 1 nodes at their boundaries. The method

used to discretize each segment depends on the design application and may be tailored by the

trajectory designer. The nodes generated in this discretization process are referred to as boundary

nodes, where each node is described by its state and time along the trajectory. The state and time

associated with a given node are defined as qij,k and tij,k, respectively, where i refers to the segment

index along the trajectory, j refers to the arc index along the i-th segment, and k refers to the node

index along the j-th arc in the i-th segment. Across the nseg segments, this discretization produces

a total of m arcs and the mesh is defined as the following set:

Π = {qij,k | qij,k ∈ Rnstate , tij,k ∈ {ti1,1, ti2,1, ..., timi,1, t
i
mi,n} ∀ i ∈ [1, nseg]} (4.1)

where nstate = 6 is the dimension of each instance of q; n is the number of nodes along each arc;

each pair of consecutive arcs within a segment share a common boundary node; and it is assumed

that timi,n is equal to ti+1
1,1 for each pair of consecutive segments despite not sharing a common

boundary node. Accordingly, the resulting mesh Π is comprised of all the boundary nodes placed

along the trajectory.

After Π is defined for the given trajectory, collocation nodes are placed along each arc in

the mesh using an implicit integration method and node spacing strategy. The implicit integra-

tion method is selected first because it determines the number of nodes placed along each arc.

Higher-order polynomials have successfully been used for implicit integration in nonlinear dynami-

cal systems due to the complexity of the dynamics [17, 103, 59]. Lower-order polynomials may also

be used; however, to achieve a similar level of accuracy, a fine mesh with many small arcs is needed
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when using lower-order polynomials compared to a coarser mesh with less arcs when using higher-

order polynomials. Based on previous successful applications of collocation for trajectory design

in multi-body systems and the Mission Analysis, Operations, and Navigation Toolkit Environment

(MONTE) Collocation tool, the degree of the polynomials is assumed to be odd and 7-th order

polynomials are used in this work [78, 35, 87]. Therefore, n = 7 collocation nodes are placed along

each of the mi arcs within each of the nseg segments of the trajectory such that the placement of

the nodes is determined by a selected node spacing strategy.

In collocation, a node spacing strategy is used to determine the location of the collocation

nodes placed along each arc of the trajectory. First, each arc is parameterized by a normalized time

quantity, τ , spanning from -1 to 1. The transformation from the time t to the normalized time τ

at a state along the j-th arc in the i-th segment is defined as

τ = 2

(
t− tij,1
∆tij

)
− 1 (4.2)

where ∆tij = tij,n − tij,1 is the total integration time along the j-th arc in the i-th segment. Using

this normalized time parameterization, a node spacing strategy is selected to place the collocation

nodes along each arc. A common node spacing strategy that has successfully been used by a

variety of researchers in spacecraft trajectory design is Legendre-Gauss-Lobatto (LGL) node spacing

[17, 116, 35]. In this method, collocation nodes are placed at the boundary nodes of each arc and

at the normalized times τ equal to the roots of the derivative of the (n − 1)-th order Legendre

polynomial, ranging from -1 to 1. In addition, an LGL weighting term, w, is computed for each

node. Table 4.1 lists the computed values of τk and wk for the collocation nodes placed along an arc

using LGL node spacing where n = 7 [45]. Leveraging LGL node spacing is advantageous because

it simplifies the corrections problem by considering boundary nodes as collocation nodes [35].

Along each arc, the odd-numbered collocation nodes are classified as free nodes and the even-

numbered collocation nodes are classified as defect nodes. The free nodes are used to construct the

approximating polynomials along each arc, whereas the defect nodes are used to evaluate how well

the system dynamics are approximated by the polynomials along each arc. The polynomials of the
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Table 4.1: Computed values of τk and wk for the collocation nodes placed along an arc using 7-th
order LGL node spacing.

Node Index (k) τk wk

1 -1.0 0.04761904761904762

2 -0.8302238962785670 0.2768260473615659

3 -0.4688487934707142 0.4317453812098626

4 0.0 0.4876190476190476

5 0.4688487934707142 0.4317453812098626

6 0.8302238962785670 0.2768260473615659

7 1.0 0.04761904761904762

j-th arc in the i-th segment are denoted as pi
j(τ); the explicit definition of the polynomials along

each arc is discussed in Section 4.1.2. Figure 4.1 depicts a conceptual example of the trajectory

discretization with each arc containing a set of 7 nodes, including 4 free nodes (blue) and 3 defect

nodes (red), as determined by the 7-th order implicit integration method; these nodes are spaced

along each arc using LGL node spacing. Furthermore, the boundary nodes (outlined in black) are

considered collocation nodes and are classified as free nodes. As depicted in Figure 4.1, consecutive

arcs within a segment share a common free boundary node. However, the final free boundary

node along segment i is distinct from the initial free boundary node along segment i + 1 despite

the assumption that timi,n = ti+1
1,1 holds for each pair of consecutive segments. This discretization

process provides the foundation for the collocation scheme and differential corrections strategy

discussed throughout the remainder of this section.

4.1.2 Collocation Scheme

The implicit integration method and node spacing strategy selected for trajectory discretiza-

tion govern the collocation scheme utilized in the differential corrections process. Given a mesh Π

for a trajectory, collocation nodes are placed along each arc in the mesh based on the selected im-

plicit integration method and node spacing strategy. The placement of the free nodes then dictates

the structure of the polynomial sets computed along each arc. Each state variable along the j-th
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Figure 4.1: Conceptual example of collocation nodes placed along multiple arcs of segment i and
i+ 1 using 7-th order LGL node spacing.

arc in the i-th segment of the trajectory is approximated with a distinct n-th order polynomial

parameterized by τ . Therefore, the state vector at τ along the j-th arc in the i-th segment is

approximated as

pi
j(τ) =

[
Ccoll

i
j

]
τ (4.3)

where
[
Ccoll

i
j

]
is a (nstate × (n+ 1))-dimensional matrix and

τ =

[
1 τ τ2 · · · τn−1 τn

]T
(4.4)

The matrix
[
Ccoll

i
j

]
defines the coefficients for a set of nstate polynomials, i.e., a distinct polynomial

for each dimension of the state, where each row of the matrix provides the coefficients for each

distinct polynomial. The vector τ may then be used to evaluate these polynomials and compute

an approximated state along the corresponding arc at a desired value of τ . Furthermore, the

normalized time derivative of pi
j(τ) is defined as

ṗi
j(τ) =

[
Ccoll

i
j

]
τ̇ (4.5)

where

τ̇ =

[
0 1 2τ · · · (n− 1)τn−2 nτn−1

]T
(4.6)
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Although n = 7 is used in this work, n is a design parameter in this collocation scheme and may

be selected as any odd integer where n ≥ 3.

The free nodes are used to construct the approximating polynomials along each arc of the

trajectory. Therefore, the polynomial coefficient matrix along the j-th arc in the i-th segment is

computed as [
Ccoll

i
j

]
=
[
Ucoll

i
j

]
[Acoll]

−1 (4.7)

where [
Ucoll

i
j

]
=

[
qij,1 qij,3 · · · qij,n | q̇ij,1 q̇ij,3 · · · q̇ij,n

]
(4.8)

and

[Acoll] =

[
τ1 τ3 · · · τn | τ̇1 τ̇3 · · · τ̇n

]
(4.9)

The matrix
[
Ucoll

i
j

]
is comprised of the states at the free nodes along the j-th arc in the i-th segment

as well as their corresponding normalized time derivatives. The normalized time derivative of qij,k

is defined as

q̇ij,k =
∆tij
2

f(qij,k) (4.10)

using the equations of motion for the CR3BP defined in Equation 2.21. Finally, the states and

corresponding normalized time derivatives of the defect nodes are approximated by the constructed

polynomials along each arc of the trajectory. The states at the defect nodes along the j-th arc in

the i-th segment are computed using the polynomials as

[
Pcoll

i
j

]
=
[
Ccoll

i
j

]
[Bcoll] (4.11)

where [
Pcoll

i
j

]
=

[
pi
j(τ2) pi

j(τ4) · · · pi
j(τn−1)

]
(4.12)

and

[Bcoll] =

[
τ2 τ4 · · · τn−1

]
(4.13)
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Similarly, the normalized time derivatives of the defect nodes along the j-th arc in the i-th segment

are approximated by the polynomials as

[
Ṗcoll

i
j

]
=
[
Ccoll

i
j

]
[Dcoll] (4.14)

where [
Ṗcoll

i
j

]
=

[
ṗi
j(τ2) ṗi

j(τ4) · · · ṗi
j(τn−1)

]
(4.15)

and

[Dcoll] =

[
τ̇2 τ̇4 · · · τ̇n−1

]
(4.16)

The matrices [Acoll]
−1, [Bcoll], and [Dcoll] are all constant matrices that only need to be computed

once based on the selected implicit integration method and node spacing strategy. Using this

collocation scheme, a free variable and constraint vector are formulated to transform the trajectory

design problem into a parameter design problem.

4.1.3 Trajectory Corrections

To formulate a corrections problem that uses collocation, a free variable vector is defined

using the state at each free node and the time elapsed along each of the m arcs of a trajectory.

Mathematically, the free variable vector V i for the i-th segment, composed of mi arcs, is defined

as

V i =





qi1,1

qi1,3
...

qi1,n−2



T 

qi2,1

qi2,3
...

qi2,n−2



T

· · ·



qimi−1,1

qimi−1,3

...

qimi−1,n−2



T 

qimi,1

qimi,3

...

qimi,n



T 

∆ti1

∆ti2
...

∆timi



T


(4.17)

where n = 7. The free variable vector for the entire trajectory is then defined as

V =

[
V 1 V 2 · · · V nseg

]T
(4.18)

to produce a nfree-dimensional vector for nseg segments where nfree = (3n− 2)m+ 6nseg.
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To compute a continuous trajectory described by V , a set of continuity constraints must be

satisfied. Continuity is automatically enforced between arcs within a segment due to the use of LGL

nodes because each pair of consecutive arcs shares a common free boundary node [35]. However,

continuity is not automatically enforced between consecutive segments, as depicted conceptually in

Figure 4.1 between nodes qimi,n and qi+1
1,1 . Therefore, the continuity constraint is defined between

each pair of consecutive segments as

F i
c =


qi+1
1,1 − qimi,n if natural motion

ri+1
1,1 − rimi,n if impulsive maneuver applied

(4.19)

where r contains only the position components of q if an impulsive maneuver is applied prior to

the beginning of the (i+ 1)-th segment.

Defect constraints must also be satisfied along each arc of the entire trajectory to enforce the

system dynamics at each defect node. The state of each defect node is computed directly from the

constructed polynomials along the corresponding arc. Then, each defect constraint evaluates the

difference between the approximated dynamics, computed using the normalized time derivatives of

the polynomials, and the actual dynamics, computed at each defect node using Equation 4.10. The

defect constraint vector for the j-th arc in the i-th segment is defined as

F i
dj

=



∆i
j,2

∆i
j,4

...

∆i
j,n−1


=



(ṗi
j(τ2)− q̇ij,2)w2

(ṗi
j(τ4)− q̇ij,4)w4

...

(ṗi
j(τn−1)− q̇ij,n−1)wn−1


(4.20)

where n = 7 and each wk term is the LGL weight associated with the k-th collocation node. Then,

the defect constraint vector for the i-th segment is defined as F i
d =

[
F iT

d1
F iT

d2
· · · F iT

dmi

]
.

A constraint vector for the entire trajectory captures both the continuity and defect con-

straints. This constraint vector is defined as

F (V ) =

[
F 1T
c F 2T

c · · · F
nseg−1T

c F 1
d F 2

d · · · F
nseg

d

]T
(4.21)



71

to produce a ncon-dimensional vector, where ncon = (3n − 3)m + 6(nseg − 1) − 3nman and nman is

the number of impulsive maneuvers applied along the trajectory. Using a corrections algorithm,

the free variable vector may be iteratively updated from an initial guess to compute a trajectory

that satisfies these constraints to within a tolerance of 10−12 in the CR3BP.

The free variable and constraint vectors defined in Equations 4.18 and 4.21, respectively, may

be modified in a straightforward manner to also include impulsive maneuvers between consecutive

arcs within a given segment. For example, consider the general case of an impulsive maneuver

applied between arcs j and j + 1 along the i-th segment. In this case, qij,n is included in Equation

4.18 and considered distinct from qij+1,1; therefore, a position continuity constraint defined as F i
cj =

rij+1,1−rij,n must be included in Equation 4.21 to account for the desired maneuver. Accordingly, the

free variable and constraint vector formulation of collocation presented in this subsection defines

the constraints that must be satisfied in order for a trajectory described by V to numerically

correspond to a continuous solution that may include impulsive maneuvers. Additional path and

boundary constraints may also be incorporated in Equation 4.21 depending on the design scenario.

The Jacobian matrix of the constraints with respect to the free variables characterizes how

variations in the free variables impact the constraints in a corrections problem. The nonzero

elements of [DF (V )] for the free variable and constraint vector formulation presented in this

subsection are computed analytically as:
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Nonzero Elements of [DF (V )] for the Continuity Constraints in the CR3BP

∂F i
c

∂qi+1
1,1

=


[I6×6] if natural motion[
[I3×3] [03×3]

]
if impulsive maneuver applied

∂F i
c

∂qimi,n

=


−[I6×6] if natural motion[
−[I3×3] [03×3]

]
if impulsive maneuver applied

∂F i
cj

∂qij+1,1

=

[
[I3×3] [03×3]

]
∂F i

cj

∂qij,n
=

[
−[I3×3] [03×3]

]

(4.22)

Nonzero Elements of [DF (V )] for the Defect Constraints in the CR3BP

Defect constraints along the j-th arc in the i-th segment:

[∆i
j ] =

[
∆i

j,2 ∆i
j,4 · · · ∆i

j,n−1

]
=
[
Ucoll

i
j

]
[Gcoll]−

[
Vcoll

i
j

]
[Wcoll] (4.23)

where [
Vcoll

i
j

]
=

∆tij
2

[
f(pi

j(τ2)) f(pi
j(τ4)) · · · f(pi

j(τn−1))

]
[Gcoll] = [Acoll]

−1[Dcoll][Wcoll] ∈ R(n+1)×((n−1)/2)

[Hcoll] = [Acoll]
−1[Bcoll] ∈ R(n+1)×((n−1)/2)

[Wcoll] =



w2 0 · · · 0

0 w4 · · · 0

...
...

. . .
...

0 0 · · · wn−1



(4.24)

Definitions required for computing the nonzero elements of [DF (V )] for the defect constraints:

[A] = Jacobian matrix of CR3BP dynamics defined in Equation 2.29

k ∈ {1, 2, 3, ..., n} → ko ∈ {1, 3, ..., n} , ke ∈ {2, 4, ..., n− 1}

% is the modulo operator

(4.25)
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Partial derivative of ∆i
j,ke

with respect to qij,ko :

∂∆i
j,ke

∂qij,ko
= wke

∂ṗi
j(τke)

∂qij,ko
− wke

∆tij
2

∂f(pi
j(τke))

∂pi
j(τke)

∂pi
j(τke)

∂qij,ko
(4.26)

where

wke

∂ṗi
j(τke)

∂qij,ko
=
[
Gcoll

]{ko + 1

2
,
ke
2

}
[I6×6] +

[
Gcoll

]{ko + 9

2
,
ke
2

}
∆tij
2

[A]
∣∣
qi
j,ko

∂f(pi
j(τke))

∂pi
j(τke)

= [A]
∣∣
pi
j(τke )

∂pi
j(τke)

∂qij,ko
=
[
Hcoll

]{ko + 1

2
,
ke
2

}
[I6×6] +

[
Hcoll

]{ko + 9

2
,
ke
2

}
∆tij
2

[A]
∣∣
qi
j,ko

(4.27)

Partial derivative of ∆i
j,ke

with respect to ∆tij :

∂∆i
j,ke

∂∆tij
= wke

∂ṗi
j(τke)

∂∆tij
− wke

∂

∂∆tij

(
∆tij
2

f(pi
j(τke))

)
(4.28)

where

wke

∂ṗi
j(τke)

∂∆tij
=

1

2

 n∑
ko=1,

ko%2=1

[Gcoll]

{
ko + 9

2
,
ke
2

}
f
(
qij,ko

)
∂

∂∆tij

(
∆tij
2

f(pi
j(τke))

)
=

1

2
f(pi

j(τke)) +
∆tij
2

[A]
∣∣
pi
j(τke )

∂pi
j(τke)

∂∆tij

∂pi
j(τke)

∂∆tij
=

1

2

 n∑
ko=1,

ko%2=1

[Hcoll]

{
ko + 9

2
,
ke
2

}
f
(
qij,ko

)
(4.29)

4.1.4 Mesh Refinement

The numerical accuracy of a trajectory computed using collocation depends on its mesh of

boundary nodes, Π, as well as the collocation scheme used to place nodes along each arc in Π.

Despite the defect constraints being satisfied along each arc in Π, a solution may not accurately

approximate the system dynamics between collocation nodes, particularly in sensitive regions of

the dynamical system [87]. Therefore, a mesh refinement procedure is coupled with collocation to

improve the accuracy of the solution. In this work, a hybrid mesh refinement algorithm is employed

that closely follows the procedure presented by Grebow and Pavlak, which uses both analytical and

numerical analysis to control the error along a trajectory computed using collocation [35, 87].
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Once a solution is computed via corrections, Π is iteratively refined to ensure the resulting

solution constructed using sets of piecewise polynomials is numerically accurate. The trajectory

discretization process presented in Section 4.1.1 produces a total of m arcs along a trajectory and Π

is comprised of the resulting boundary nodes. To facilitate a clear discussion of the mesh refinement

process an alternative index notation is first introduced. The index notation introduced in Section

4.1.1 to differentiate between segments of the trajectory, arcs along each segment, and nodes along

each arc is critical for defining the corrections problem because a primitive-based initial guess is

comprised of a set of discontinuous trajectory segments. However, the mesh refinement procedure

is primarily concerned with the state and time of each boundary node as well as the integration

time along each arc, i.e., ∆tij . Therefore, to simplify notation for discussing the mesh refinement

process, the index a is used to denote the index of a given arc along the entire trajectory such

that a ∈ [1,m]. Consequently, for the purpose of mesh refinement, the state and time associated

with the k-th collocation node along the a-th arc of the trajectory are denoted as qa,k and ta,k,

respectively, where k ∈ [1, n]. The boundary nodes of the a-th arc correspond to k = 1 and k = n.

Furthermore, the integration time along the a-th arc is alternatively denoted as ∆ta = ta,n − ta,1.

Using this alternative index notation, an overview of the mesh refinement procedure is presented

in this subsection.

Given an initial corrected trajectory, the first step of the mesh refinement procedure is to use

Carl de Boor’s method to iteratively distribute error equally between the arcs along the current

solution [21, 92, 35]. During this process, the number of arcs in the mesh and the total flight

time for the trajectory are constant, whereas the integration time along each arc varies. At each

iteration of de Boor’s method, the error along the a-th arc is calculated as

ea = K(∆ta)
n+1ξa (4.30)

where K is a constant that depends on the selected polynomial degree and type and ξa is a scalar

approximation of the (n+ 1)-th unnormalized time derivative of pa(τ). A detailed overview of the

method for computing K is provided by Russell and Christiansen: K = 2.935793951418951× 10−9
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for polynomials constructed using 7-th order LGL node spacing [92]. Furthermore, ξa is defined as

ξa =



2max

(∣∣pa+1(τ)(n)−pa(τ)(n)
∣∣

∆ta+∆ta+1

)
if a = 1

max

(∣∣pa(τ)(n)−pa−1(τ)(n)
∣∣

∆ta−1+∆ta

)
+max

(∣∣pa+1(τ)(n)−pa(τ)(n)
∣∣

∆ta+∆ta+1

)
if 1 < a < m

2max

(∣∣pa(τ)(n)−pa−1(τ)(n)
∣∣

∆ta−1+∆ta

)
if a = m

(4.31)

where

pa(τ)
(n) =

2n

(∆ta)
n

[
Ccoll

i
j

]
τ (n) (4.32)

such that

τ (n) =

[
[01×n] n!

]T
(4.33)

[21, 92, 35]. Equation 4.32 defines the n-th unnormalized time derivative of pa(τ). Using these

equations, an estimate of the error due to the use of a polynomial approximation may be computed

for each arc along the current trajectory.

Once the error for each arc along the current trajectory is computed, the mesh is updated

to equally distribute the current total error between the arcs along the trajectory. The time at

the first boundary node of the a-th arc is updated such that ta,1 = tbnd where tbnd satisfies the

following equation:

I(tbnd) =
(a− 1)

m
I(tm,n) s.t. I(t) =

∫ t

t1,1

ξ(s)
1

n+1 ds (4.34)

where ξ(s) is a piecewise constant function equal to ξa when s ∈ [ta,1, ta,n] [21, 92, 35]. These

updated times form a new time distribution of boundary nodes and supply a foundation for updating

the collocation nodes to equally distribute error along the trajectory. Given a new time distribution

of boundary nodes, the polynomials of the previous mesh are used to compute the updated state

at each boundary node along the trajectory. The free LGL nodes for each arc are then recomputed

using the polynomials of the previous mesh between the updated boundary nodes. This process

equally distributes the approximated error along the entire solution between all arcs in the mesh.

Once the mesh is updated, the differential corrections process outlined in Section 4.1.3 is used

to compute a refined continuous trajectory with the updated mesh as an initial guess. This error
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distribution process repeats until one of the following terminal conditions is met: the maximum

error difference along the current solution between any two arcs is ≤ 10−5; the maximum error

difference along the current solution changed by ≤ 10% from the previous iteration; or a maximum

number of iterations, selected in this work as 5, is exceeded. The values for these termination

criteria are selected empirically based on the convergence behavior of the transfers constructed in

this work. The equal error distribution process is summarized as follows using de Boor’s method:

Equal Error Distribution Refinement for a Natural Trajectory

Given: A mesh Π for a corrected trajectory with no impulsive maneuvers between t1,1 and tm,n.

Note: Impulsive maneuvers may occur at t1,1 and tm,n but the trajectory is natural between t1,1

and tm,n.

(1) Using Equation 4.30, compute the error ea for each arc along the current trajectory defined

by Π.

(2) Compute the maximum error difference, ∆emax, between any two given arcs along Π. The

error difference between two arcs, a1 and a2, along Π is computed as ∆e = |ea1 − ea2 |.

(3) Terminate the equal error distribution procedure if ∆emax ≤ 10−5, ∆emax changed by ≤

10% from the previous iteration, or the maximum number of iterations is reached. Other-

wise, execute Steps 4-7 of the procedure.

(4) Using Equation 4.34 and the assumption that ξ(s) is a piecewise constant function along

each arc, compute the boundary nodes for a new mesh Πnew:

(a) Define q1,1 and t1,1 in Πnew based on Π. The initial boundary node in Πnew and Π are

equivalent.

(b) Define qm,n and tm,n in Πnew based on Π. The final boundary node in Πnew and Π

are equivalent.

(c) Compute I(tm,n) =
∑m

a=1 ξ
1

n+1
a ∆ta based on Π.

(d) For a ∈ [2,m]:
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(i) Compute I(tbnd) =
(a−1)
m I(tm,n) based on Π.

(ii) Locate the arc index, a∗, along Π such that I(ta∗,1) < I(tbnd) ≤ I(ta∗,n).

(iii) Solve for tbnd such that (I(tbnd)− I(ta∗,1)) = ξ
1

n+1

a∗ (tbnd − ta∗,1).

(iv) Compute τbnd = 2
(
tbnd−ta∗,1

∆ta∗

)
− 1.

(v) Define qa,1 and ta,1 in Πnew such that qa,1 = pa∗(τbnd) and ta,1 = tbnd, where

pa∗(τbnd) is computed from the polynomials constructed along the arc a∗ in Π.

(vi) If arcs a− 1 and a do not share a common free boundary node in Π, then define

qa−1,n and ta−1,n in Πnew such that qa−1,n = pa∗(τbnd) and ta−1,n = tbnd. Note:

Arcs a− 1 and a do not share a common free boundary node if arc a is the start

of a new segment.

(5) Compute the free nodes along each arc in Πnew. Using an odd-degree LGL node spacing

strategy, the boundary nodes are considered collocation nodes and are classified as free

nodes. Therefore, only the internal free nodes along each arc must be computed in this

step. For each τk along the a-th arc:

(a) Compute ta,k =
(
τk+1
2

)
∆ta + ta,1 where ta,1 and ∆ta are obtained from Πnew.

(b) Locate the arc index, a∗, along Π such that ta,k occurs within the arc.

(c) Compute τk∗ = 2
(
ta,k−ta∗,1

∆ta∗

)
− 1.

(d) Compute qa,k = pa∗(τk∗), where pa∗(τk∗) is computed from the polynomials con-

structed along the arc a∗ in Π.

(6) Compute the new sets of polynomials along each arc in Πnew using the updated collocation

nodes computed in the previous steps.

(7) Construct an initial guess from Πnew and use the differential corrections process outlined

in Section 4.1.3 to compute a refined continuous trajectory. Then, return to Step 1 where

the mesh of the refined continuous trajectory is defined as Π.
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This procedure outlines the process of using de Boor’s method to equally distribute error between

arcs defined along a natural trajectory.

In this work, a trajectory may contain impulsive maneuvers between t1,1 and tm,n. Therefore,

a slightly modified error distribution approach may be used to equally distribute error between arcs

defined along a maneuver-enabled trajectory. The first modification occurs in Step 2: the maximum

error difference between any two given arcs is computed between each pair of consecutive maneuvers

and then ∆emax is defined for the current trajectory as the maximum value of these error differences.

The second and final modification of the procedure occurs in Step 4: during each iteration of the

procedure, Step 4 is applied separately to the sequence of arcs between each pair of consecutive

impulsive maneuvers. For example, consider a pair of consecutive impulsive maneuvers where the

first maneuver occurs at the beginning of arc a∆vi and the second maneuver occurs at the end of

arc a∆vi+1 . In this case, the boundary nodes are adjusted between ta∆vi
,1 and ta∆vi+1

,n instead of

between t1,1 and tm,n. Therefore, the modified procedure equally distributes the cumulative error

between each pair of consecutive maneuvers rather than along the entire solution. Given these

modifications, de Boor’s method may be used to effectively distribute error between arcs defined

along either a natural or a maneuver-enabled trajectory.

When the equal error distribution step is terminated, the next step of the mesh refinement

procedure is to use Control with Explicit Propagation (CEP) to iteratively merge arcs along the

mesh in order to reduce the size of the sparse corrections problem [35, 87]. This step of mesh

refinement numerically computes the error at the end of each pair of consecutive arcs in the mesh,

except when an impulsive maneuver occurs between them. For example, the state at the initial

boundary node of the first arc is propagated until the time associated with the final boundary node

of the second arc. Then, the state error is computed between the final propagated state and the

state associated with the final boundary node of the second arc. If the magnitude of the error

vector is below a tolerance of 10−13, then the two arcs are merged into a single arc. In this case,

the initial boundary node of the first arc and the final boundary node of the second arc serve as

the initial and final boundary nodes, respectively, of the merged arc. Then, the free LGL nodes are
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recomputed between the updated boundary nodes using the polynomials of the previously converged

mesh and the procedure is repeated for the next two consecutive arcs in the mesh. If any arcs are

merged along the entire trajectory, then the updated mesh is used to compute a refined continuous

trajectory by reapplying the differential corrections process outlined in Section 4.1.3. The merging

process is repeated until no arcs are merged along the solution or a maximum number of iterations

is exceeded. In this work, the maximum number of merging iterations is selected empirically as 10

based on the convergence behavior of the transfers computed in this investigation.

After completing the merging process, CEP is also used to iteratively split arcs along the

mesh by numerically computing the error at the end of each arc. For example, the state at the initial

boundary node of an arc is propagated until the time associated with the final boundary node of

the arc. Then, the state error is computed between the final propagated state and the state at the

final boundary node of the arc. If the magnitude of the error vector is above a tolerance of 10−12,

then the arc is split into two separate arcs at its midpoint in terms of time. The polynomials from

the previously converged mesh are used to compute the state and time at the midpoint of the arc

and then the free LGL nodes are recomputed for each of the resulting arcs as previously described.

If any arcs are split along the entire trajectory, then the updated mesh is used to compute a refined

continuous trajectory by reapplying the differential corrections process outlined in Section 4.1.3.

This process is repeated until no arcs are split along the solution. Similar to the merging loop, the

splitting process is also terminated if a maximum of 10 iterations is exceeded.

The goal of the hybrid mesh refinement process presented in this subsection is to ensure

a trajectory computed using collocation is numerically accurate. Therefore, the mesh refinement

process is terminated early if a trajectory fails to converge when computing a refined continuous

trajectory from an updated mesh. Furthermore, a trajectory that successfully completes the mesh

refinement process may not achieve the desired level of accuracy due to the maximum iteration

limits set within each step. Consequently, a final evaluation of the resulting trajectory is required.

Using CEP, the state error is computed at the end of each arc and if the magnitude of the error

vector is above a tolerance of 10−12 along any arc then the trajectory is considered unconverged.
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In this case, the maximum iteration limits may be adjusted and the mesh refinement procedure

may be reapplied. However, the tolerances and termination criteria defined for de Boor’s method

and CEP are considered design parameters and are selected in this work empirically based on the

convergence behavior of the transfers constructed in this investigation.

4.2 Correcting Trajectories in an Ephemeris Model

4.2.1 Initial Guess Generation from the CR3BP

A continuous trajectory computed in the CR3BP may be used as an initial guess to attempt

to recover a similar solution in a point mass ephemeris model [61, 106]. However, as discussed

in Section 2.2, a point mass ephemeris model is a higher fidelity approximation of a multi-body

system that is nonautonomous. Therefore, transitioning a trajectory from the CR3BP into a point

mass ephemeris model depends on the initial epoch. In some cases, the geometry of a trajectory is

well-preserved between the CR3BP and the selected ephemeris model. However, in other cases, the

initial guess from the CR3BP may not lead to successful convergence or the trajectory recovered

in the ephemeris model may no longer resemble the initial guess. In this subsection, a procedure

for transitioning a trajectory from the CR3BP into an ephemeris model to form an initial guess is

discussed.

The first step of transitioning a trajectory from the CR3BP into a point mass ephemeris

model is to specify a desired reference epoch, t̃Eref
, and select a list of primary bodies (P1, P2, ...,

PN ). As discussed in Section 2.2.2, the reference epoch is specified as a Gregorian calendar date

in UTC and then converted into ephemeris time using SPICE [106, 76]. Furthermore, as discussed

in Section 2.3.3, the primary bodies in the reference CR3BP system are denoted as PA and PB. If

M̃1 ≥ M̃2, P1 corresponds to PA in the reference CR3BP system; otherwise, P1 corresponds to PB.

Given these specifications, a continuous trajectory computed in the CR3BP may be transformed

from R into E .

The continuous trajectory computed in the CR3BP is a nondimensional trajectory in R
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defined relative to the origin of R from an initial time, t1, to a final time, t2. Using Equation 2.42,

the nondimensional times, t1 and t2, are converted into the corresponding epochs, t̃E1 and t̃E2 , based

on t̃Eref
. The procedure presented in Section 2.3.3 to transform a trajectory from the rotating frame

to a primary-centered inertial frame that uses the axes of the ICRF is then applied to the trajectory.

The state at each free node along the continuous trajectory is transformed from R into E . The

corresponding trajectory is no longer continuous when transformed into E ; however, this process

provides an initial guess of free nodes in E defined relative to the origin of E from t1 to t2 with

a reference epoch t̃Eref
. Given the initial guess, a continuous trajectory may be computed in the

specified point mass ephemeris model using the same collocation scheme and a similar differential

corrections strategy as presented for the CR3BP in Section 4.1.

4.2.2 Trajectory Corrections

To formulate a corrections problem that uses collocation in a point mass ephemeris model, a

free variable vector is defined using the state at each free node and the initial time of each of the

m arcs of a trajectory. Mathematically, the free variable vector V i for the i-th segment, composed

of mi arcs, is defined as

V i =





qE
i
1,1

qE
i
1,3

...

qE
i
1,n−2



T 

qE
i
2,1

qE
i
2,3

...

qE
i
2,n−2



T

· · ·



qE
i
mi−1,1

qE
i
mi−1,3

...

qE
i
mi−1,n−2



T 

qE
i
mi,1

qE
i
mi,3

...

qE
i
mi,n



T 

ti1,1

ti2,1
...

timi,1



T


(4.35)

where n = 7. The free variable vector for the entire trajectory is then defined as

V =

[
V 1 V 2 · · · V nseg t

nseg
m,n

]T
(4.36)

to produce a nfree-dimensional vector for nseg segments where nfree = (3n− 2)m+ 6nseg + 1.

To compute a continuous trajectory described by V , a set of continuity constraints must be

satisfied. As discussed in Section 4.1.3, continuity is automatically enforced between arcs within

a segment due to the use of LGL nodes because each pair of consecutive arcs shares a common
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free boundary node [35]. However, continuity is not automatically enforced between consecutive

segments. Therefore, the continuity constraint is defined between each pair of consecutive segments

as

F i
c =


qE

i+1
1,1 − qE

i
mi,n if natural motion

rE
i+1
1,1 − rE

i
mi,n if impulsive maneuver applied

(4.37)

where rE contains only the position components of qE if an impulsive maneuver is applied prior to

the beginning of the (i+ 1)-th segment.

Defect constraints must also be satisfied along each arc of the entire trajectory to enforce the

system dynamics at each defect node. The defect constraints are defined in the same manner as

presented for the CR3BP in Section 4.1.3. However, it is important to note that the differential

corrections scheme is formulated in E for a point mass ephemeris model. Therefore, the time

derivatives are denoted using the (·)′ notation instead of the ˙(·) notation introduced in Chapter 2.

The defect constraint vector for the j-th arc in the i-th segment is defined as

F i
dj

=



∆i
j,2

∆i
j,4

...

∆i
j,n−1


=



(
p

′
E
i

j(τ2)− q
′
E
i

j,2

)
w2(

p
′
E
i

j(τ4)− q
′
E
i

j,4

)
w4

...(
p

′
E
i

j(τn−1)− q
′
E
i

j,n−1

)
wn−1


(4.38)

where n = 7 and each wk term is the LGL weight associated with the k-th collocation node. Then,

the defect constraint vector for the i-th segment is defined as F i
d =

[
F iT

d1
F iT

d2
· · · F iT

dmi

]
.

A constraint vector for the entire trajectory captures both the continuity and defect con-

straints. This constraint vector is defined as

F (V ) =

[
F 1T
c F 2T

c · · · F
nseg−1T

c F 1
d F 2

d · · · F
nseg

d

]T
(4.39)

to produce a ncon-dimensional vector, where ncon = (3n − 3)m + 6(nseg − 1) − 3nman and nman

is the number of impulsive maneuvers applied along the trajectory. As discussed in Section 4.1.3,

impulsive maneuvers may also be included between consecutive arcs within a given segment. Given

an impulsive maneuver applied between arcs j and j+1 along the i-th segment, a position continuity
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constraint is defined as F i
cj = rE

i
j+1,1−rE

i
j,n. To account for the desired maneuver in the corrections

problem formulation, qE
i
j,n is included in Equation 4.36 and considered distinct from qE

i
j+1,1;

furthermore, F i
cj is included in Equation 4.39. Using a corrections algorithm, the free variable

vector may be iteratively updated from an initial guess to compute a trajectory that satisfies these

constraints to within a tolerance of 10−8 in a point mass ephemeris model.

The free variable and constraint vector formulation presented in this subsection for correcting

a trajectory in a point mass ephemeris model is very similar to the formulation presented for the

CR3BP; however, there are a few differences. Due to the nonautonomous structure of a point mass

ephemeris model, the times associated with the boundary nodes are included in the free variable

vector rather than the integration times along the corresponding arcs. Furthermore, as previously

discussed and indicated with the use of the (·)′ notation, all time derivatives are computed with

respect to an inertial observer fixed in E rather than with respect to a rotating observer fixed

in R. In addition, a larger constraint tolerance of 10−8 is used due to an increase in numerical

sensitivity when transitioning from the CR3BP into a point mass ephemeris model. Finally, the

mesh refinement procedure presented in Section 4.1.4 may be applied in the same manner for

either dynamical model. The only differences occur in the selection of the tolerances for removing

and adding arcs to the mesh. In a point mass ephemeris model, tolerances of 10−9 and 10−8

are specified for merging and splitting arcs, respectively, during the CEP refinement procedure.

However, as previously discussed, the selection of numerical tolerances and termination criteria for

the differential corrections process are considered design parameters that may be adjusted based

on the design scenario.

Leveraging collocation for differential corrections results in a sparse corrections problem be-

cause the Jacobian matrix of the constraints with respect to the free variables is primarily comprised

of elements that are equal to zero. The nonzero elements of [DF (V )] for the free variable and con-

straint vector formulation presented in this subsection are computed analytically as:
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Nonzero Elements of [DF (V )] for the Continuity Constraints in a Point Mass Ephemeris Model

∂F i
c

∂qE
i+1
1,1

=


[I6×6] if natural motion[
[I3×3] [03×3]

]
if impulsive maneuver applied

∂F i
c

∂qE i
mi,n

=


−[I6×6] if natural motion[
−[I3×3] [03×3]

]
if impulsive maneuver applied

∂F i
cj

∂qE
i
j+1,1

=

[
[I3×3] [03×3]

]
∂F i

cj

∂qE
i
j,n

=

[
−[I3×3] [03×3]

]

(4.40)

Nonzero Elements of [DF (V )] for the Defect Constraints in a Point Mass Ephemeris Model

Defect constraints along the j-th arc in the i-th segment:

[∆i
j ] =

[
∆i

j,2 ∆i
j,4 · · · ∆i

j,n−1

]
=
[
Ucoll

i
j

]
[Gcoll]−

[
Vcoll

i
j

]
[Wcoll] (4.41)

where

[
Vcoll

i
j

]
=

∆tij
2

[
f(pE

i
j(τ2), t

i
j,2) f(pE

i
j(τ4), t

i
j,4) · · · f(pE

i
j(τn−1), t

i
j,n−1)

]
[Gcoll] = [Acoll]

−1[Dcoll][Wcoll] ∈ R(n+1)×((n−1)/2)

[Hcoll] = [Acoll]
−1[Bcoll] ∈ R(n+1)×((n−1)/2)

[Wcoll] =



w2 0 · · · 0

0 w4 · · · 0

...
...

. . .
...

0 0 · · · wn−1



(4.42)
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Definitions required for computing the nonzero elements of [DF (V )] for the defect constraints:

[A(t)] = Jacobian matrix of point mass ephemeris dynamics defined in Equation 2.43

[At(t)] =

[
0 0 0 ∂X

′′

∂t
∂Y

′′

∂t
∂Z

′′

∂t

]T
defined from Equation 2.45

∂tij,k
∂tij,1

=
−τk + 1

2
,

∂tij,k
∂tij,n

=
τk + 1

2

k ∈ {1, 2, 3, ..., n} → ko ∈ {1, 3, ..., n} , ke ∈ {2, 4, ..., n− 1}

% is the modulo operator

(4.43)

Partial derivative of ∆i
j,ke

with respect to qE
i
j,ko

:

∂∆i
j,ke

∂qE
i
j,ko

= wke

∂p
′
E
i

j(τke)

∂qE
i
j,ko

− wke

∆tij
2

∂f
(
pE

i
j(τke), t

i
j,ke

)
∂pE

i
j(τke)

∂pE
i
j(τke)

∂qE
i
j,ko

(4.44)

where

wke

∂p
′
E
i

j(τke)

∂qE
i
j,ko

=
[
Gcoll

]{ko + 1

2
,
ke
2

}
[I6×6] +

[
Gcoll

]{ko + 9

2
,
ke
2

}
∆tij
2

[A(t)]
∣∣
qE

i
j,ko

,tij,ko

∂f
(
pE

i
j(τke), t

i
j,ke

)
∂pE

i
j(τke)

= [A(t)]
∣∣
pE

i
j(τke ),t

i
j,ke

∂pE
i
j(τke)

∂qE
i
j,ko

=
[
Hcoll

]{ko + 1

2
,
ke
2

}
[I6×6] +

[
Hcoll

]{ko + 9

2
,
ke
2

}
∆tij
2

[A(t)]
∣∣
qE

i
j,ko

,tij,ko

(4.45)

Partial derivative of ∆i
j,ke

with respect to tij,1:

∂∆i
j,ke

∂tij,1
= wke

∂p
′
E
i

j(τke)

∂tij,1
− wke

∂

∂tij,1

(
∆tij
2

f
(
pE

i
j(τke), t

i
j,ke

))
(4.46)

where

wke

∂p
′
E
i

j(τke)

∂tij,1
=

n∑
ko=1,

ko%2=1

[Gcoll]

{
ko + 9

2
,
ke
2

}(
−1

2
f
(
qE

i
j,ko , t

i
j,ko

)
+

∆tij
2

∂f(qE
i
j,ko

, tij,ko)

∂tij,1

)

∂f(qE
i
j,ko

, tij,ko)

∂tij,1
= [At(t)]

∣∣
qE

i
j,ko

,tij,ko

∂tij,ko
∂tij,1

∂

∂tij,1

(
∆tij
2

f
(
pE

i
j(τke), t

i
j,ke

))
=

−1

2
f
(
pE

i
j(τke), t

i
j,ke

)
+

∆tij
2

∂f
(
pE

i
j(τke), t

i
j,ke

)
∂tij,1

(4.47)
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such that

∂f
(
pE

i
j(τke), t

i
j,ke

)
∂tij,1

= [At(t)]
∣∣
pE

i
j(τke ),t

i
j,ke

∂tij,ke
∂tij,1

+ [A(t)]
∣∣
pE

i
j(τke ),t

i
j,ke

∂pE
i
j(τke)

∂tij,1

∂pE
i
j(τke)

∂tij,1
=

n∑
ko=1,

ko%2=1

[Hcoll]

{
ko + 9

2
,
ke
2

}(
−1

2
f
(
qE

i
j,ko , t

i
j,ko

)
+

∆tij
2

∂f(qE
i
j,ko

, tij,ko)

∂tij,1

) (4.48)

Partial derivative of ∆i
j,ke

with respect to tij,n:

∂∆i
j,ke

∂tij,n
= wke

∂p
′
E
i

j(τke)

∂tij,n
− wke

∂

∂tij,n

(
∆tij
2

f
(
pE

i
j(τke), t

i
j,ke

))
(4.49)

where

wke

∂p
′
E
i

j(τke)

∂tij,n
=

n∑
ko=1,

ko%2=1

[Gcoll]

{
ko + 9

2
,
ke
2

}(
1

2
f
(
qE

i
j,ko , t

i
j,ko

)
+

∆tij
2

∂f(qE
i
j,ko

, tij,ko)

∂tij,n
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Chapter 5

Clustering Techniques

Generalizable and exact analytical criteria for grouping solutions along a set of trajectories in

a multi-body system according to both qualitative and quantitative characteristics do not currently

exist. Thus, clustering techniques are employed in this investigation to group similar trajectory so-

lutions and construct summarizing sets of motion primitives. Clustering is an unsupervised learning

method for separating the members of a dataset into a finite number of groups based on a defined set

of features [46]. Data in the same cluster possess similar properties while data in different clusters

possess dissimilar properties in the prescribed feature space. Manually processing and analyzing a

large and complex dataset in a rapid and effective manner may not be feasible for a human analyst.

Therefore, a clustering approach may be used to numerically discover and summarize fundamental

patterns within a dataset while limiting the burden on a human analyst [46]. This chapter presents

an overview of the clustering techniques leveraged in this work to generate sets of motion primitives

that summarize families of fundamental trajectories in the CR3BP. Note: The discussion presented

in this chapter was first published in an article by Smith and Bosanac in Celestial Mechanics and

Dynamical Astronomy Vol. 134 No. 7 (2022) by Springer Nature [99].
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5.1 Clustering Algorithms

A clustering algorithm divides a dataset into separate groupings, or clusters, such that data

in the same cluster are similar and data in different clusters are dissimilar [46]. Consider a general

dataset composed of nd members where each member is described by an mf-dimensional feature

vector denoted as f . A clustering algorithm may then be applied to the (nd × mf)-dimensional

dataset to construct groupings of the members. The resulting clusters are influenced by various

factors including: the dataset supplied to the clustering algorithm, the selected feature space de-

scription, the type of clustering method and associated algorithm used to perform the clustering,

and the input parameters governing the selected algorithm [3]. Constructing the data source and

defining an appropriate feature space is determined by a human analyst and may impact the util-

ity of the clustering results. The features that may be incorporated in f depend on the type of

objects in the dataset and should be selected based on the primary features of interest for a desired

application. Furthermore, it is often challenging to select an appropriate algorithm for a desired

application because the structure of the dataset is typically not known a priori. Each clustering

algorithm also typically requires the selection of one or more input parameters that can produce

fundamentally different clustering results for the same dataset. Despite these challenges, clustering

is a powerful data mining method that may be used to efficiently analyze and summarize complex

datasets while reducing the burden on a human analyst [3].

In this investigation, a consensus clustering approach is employed to construct motion prim-

itives from families of fundamental solutions in the CR3BP. Consensus clustering uses an ensemble

of individual clustering results to form a single clustering solution [3, 31]. Furthermore, consensus

clustering may mitigate the challenges of algorithm and input parameter selection in the clustering

process. Weighted Evidence Accumulation Clustering (WEAC) is leveraged to perform consensus

clustering due to its capacity to produce clusters of arbitrary shapes, sizes, and densities [31, 52].

As an input to the WEAC algorithm, individual clustering results are constructed using k-means,

a partition-based method, and agglomerative clustering, a hierarchical method, each governed by



89

a variety of input parameters. The k-means algorithm is used due to its iterative nature and

computational efficiency, while agglomerative clustering is used due to its deterministic nature and

the useful insights gained from the resulting dendrogram [46]. Furthermore, both of these cluster-

ing algorithms have successfully been used in shape-based time-series clustering applications [3].

This section supplies an overview of these clustering algorithms. All clustering results produced

throughout this work are generated in Python using the Scikit-Learn v1.0.2 module and a custom

implementation of the WEAC algorithm [84, 52].

5.1.1 K -Means

The k-means algorithm is a partition-based clustering method that groups members of a

dataset according to their distance from k centroids. The centroid of a cluster is defined as the

mean feature vector of the members assigned to the cluster [46]. The algorithm requires the number

of clusters, k, as an input; then, the centroids are initialized by randomly selecting k members of

the dataset [46]. Clusters are then formed by associating each member of the dataset to the

closest centroid using the l2-norm as a distance metric. After assigning each member to a cluster,

the centroid of each cluster is recomputed and the members are reassigned to their new closest

centroids to form new clusters. This process is repeated iteratively with the goal of minimizing

the sum of the squared Euclidean distances between the centroid of each cluster and its associated

members, which tends to produce evenly-sized and globular clusters. These steps are depicted

conceptually in Figure 5.1 for a 2-dimensional dataset where k = 3. The algorithm terminates

either when the clusters remain unchanged from one iteration to the next or a maximum number of

iterations is exceeded. If k-means clustering converges on a clustering result prior to reaching the

specified maximum number of iterations, the algorithm recovers a local minimum that depends on

the selection of the initial centroids [84]. Furthermore, the primary limitation of k-means is selecting

the desired number of clusters when the structure of the dataset is not known or understood a priori.

However, using k-means within the consensus clustering process offers one approach to selecting

an appropriate value of k without a priori knowledge of the dataset or significant reliance on a
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human-in-the-loop when applied to a variety of distinct datasets.

To increase the stability and robustness of using k-means clustering, the algorithm is often

applied multiple times to the same dataset but with different initial centroids [84, 46]. Then,

the clustering result with the lowest inertia, E, is selected; minimizing the inertia indicates the

computation of more compact clusters that minimize the sum of the squared Euclidean distances

between the centroid of each cluster and its associated members. The inertia is a metric that is

defined as

E =
k∑

i=1

∑
f∈Ci

||f − ci||2 (5.1)

where Ci is the i-th cluster, f is the feature vector of a member in the i-th cluster, and ci is the

centroid of the i-th cluster [84, 46]. By selecting the clustering result with the lowest inertia, the

algorithm becomes more stable and less dependent on the selection of the initial centroids.

(a) Randomly assign k centroids. (b) Assign each point to a cluster
and compute new centroids.

(c) Reassign each point to a clus-
ter and compute new centroids.

Figure 5.1: Example of k-means performed on a 2-dimensional dataset where k = 3.

5.1.2 Agglomerative Clustering

Agglomerative clustering uses a bottom-up approach to hierarchically represent a dataset as

a tree with each node corresponding to a cluster. For a dataset composed of nd members, the

tree has nd leaves, each initially corresponding to a separate cluster [46]. At each step of the

algorithm, the distances between all of the current clusters are computed and the pair of clusters

with the smallest inter-cluster distance is combined. This process continues until all members are
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grouped into a single cluster. The resulting tree of clusters is often summarized by a dendrogram

that reflects the structure of the dataset at various inter-cluster distances [46]. The dendrogram

also captures the lifetime of a specified number of clusters, defined as the range of inter-cluster

distances at which those clusters are present and constant [31]; long lifetimes in the dendrogram

often indicate natural groupings of the dataset. Figure 5.2 provides a conceptual example of the

agglomerative clustering process on a 2-dimensional dataset. In Figure 5.2, all of the data points

are initially allocated to separate clusters (gray) and combine into new clusters at various inter-

cluster distances (red, light orange, purple, and dark orange) until all of the clusters are merged

together (black). To generate the final clustering result, the dendrogram is cut at a specified inter-

cluster distance and the corresponding clusters in the hierarchy are obtained. A suitable value

of the inter-cluster distance may be selected either: manually, automatically as the midpoint of

the inter-cluster distance range with the longest lifetime, or automatically as the midpoint of the

inter-cluster distance range corresponding to a desired number of clusters.

The method used to compute the inter-cluster distance, known as the linkage type, funda-

mentally influences the underlying tree structure produced by agglomerative clustering. Common

linkage types include single, complete, average, and Ward linkage [3, 46]. Single linkage measures

(a) Initialize each data point as
a separate cluster.

(b) Consecutively form clusters
based on increasing inter-cluster
distance.

(c) Generate a hierarchy tree,
i.e., a dendrogram, based on in-
creasing inter-cluster distance.

Figure 5.2: Example of agglomerative clustering performed on a 2-dimensional dataset.



92

the inter-cluster distance between two clusters as the distance between the closest two members in

the two clusters whereas complete linkage uses the farthest two members. Average linkage measures

the inter-cluster distance as the average of the distances between all of the members of the two

clusters. Ward linkage, however, captures the increase in the sum of squared distances between each

member of two clusters and its associated centroid due to merging the clusters. Mathematically,

Ward linkage defines the inter-cluster distance between clusters Ci and Cj as

d(Ci, Cj) =

√
2|Ci||Cj |
|Ci|+ |Cj |

||ci − cj || (5.2)

where |Ci| and |Cj | are the number of members in the i-th and j-th clusters, respectively; and ci and

cj are the centroids of the i-th and j-th clusters, respectively [57]. Using Equation 5.2, Ward linkage

tends to produce compact and well-separated clusters while considering the overall structure of each

cluster. Average linkage is also useful for considering the overall structure of clusters throughout

the merging process. However, single and complete linkage only focus on the local and global

structure of clusters, respectively, during the merging process and are more sensitive to noise and

outliers in a dataset [3]. Distinctly different tree structures and, subsequently, clustering results

may be produced using different definitions of inter-cluster distance.

5.1.3 Weighted Evidence Accumulation Clustering

WEAC generates a consensus clustering result from an ensemble of base clustering results.

A significant benefit of using consensus clustering is the capacity to produce better quality and

more robust results than a single clustering solution for a variety of datasets, while also supporting

automated input parameter selection [3, 31, 52]. The WEAC algorithm requires an ensemble of

Nc base clustering results as an input, defined as the set P. Each base clustering result, Pi for

i ∈ [1, Nc], is the set of cluster labels assigned to the members of a dataset. These base clustering

results may be generated in any manner. For example, the ensemble may be generated by a single

algorithm with varying input parameters and/or a variety of clustering algorithms [31, 52]. In

this work, both k-means and agglomerative clustering with Ward linkage are used to generate an
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ensemble of base clustering solutions, each for several distinct values of k within a specified range.

Each base clustering solution is considered a piece of independent evidence for the natural groupings

within the dataset that is used in generating a consensus result from the ensemble of accumulated

evidence in P.

Given an ensemble of base clustering results, WEAC assumes two members of a dataset

naturally belong to the same cluster if they are consistently co-located in the base clustering

results. This characteristic is quantified by a weighted ensemble co-association matrix. First, a

co-association matrix, [Si], is computed for each base clustering result. Each matrix is a (nd×nd)-

dimensional similarity matrix in which [Si]{a, b} = 1 if members a and b are grouped in the same

cluster and [Si]{a, b} = 0 if members a and b are grouped in different clusters within a single

base clustering result. Then, a weight, wi, is computed for each base clustering result using its

normalized crowd agreement index (NCAI) [52]. To compute each weight, the crowd agreement

index (CAI) for each base clustering result is defined as

CAI(Pi) =
1

Nc − 1

Nc∑
j=1,j ̸=i

Sim(Pi,Pj) (5.3)

where Sim(Pi,Pj) measures the similarity between two base clustering results as the maximal

normalized mutual information shared between the two solutions as defined by Strehl and Ghosh

[100]. Therefore, CAI(Pi) quantifies the average amount of information that Pi shares with the

ensemble and is normalized as

NCAI(Pi) =
CAI(Pi)

argmaxPj∈PCAI(Pj)
(5.4)

The NCAI of each base clustering result ranges from 0 to 1 and is used to calculate the weight, wi,

for the co-association matrix of each clustering result Pi as

wi =
INCAI(Pi)∑Nc
j=1 INCAI(Pj)

(5.5)

where INCAI(Pi) = (NCAI(Pi))
β and β is selected to adjust the influence of the NCAI weighting.

Based on the parameter analysis conducted by Huang et al. [52] on a variety of datasets, a value
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of β = 2 is used in this work. Finally, the weighted ensemble co-association matrix, [Acoa], is

computed as

[Acoa] =

Nc∑
i=1

wi[Si] (5.6)

This weighted ensemble co-association matrix describes the similarity between the members of a

dataset based on how consistently the members are co-located in the same cluster throughout the

ensemble of base clustering results.

The final clustering solution is produced in WEAC based on the weighted ensemble co-

association matrix. Agglomerative clustering with average linkage is applied to the dataset using

[Acoa] as a precomputed similarity matrix to generate a consensus clustering result; average linkage

is selected for the linkage type due to its capacity to support a general similarity measure and

capture the average characteristics of entire clusters. Each element of [Acoa] is a measure of

the similarity between two members of the dataset and approximately reflects the percentage of

results in which the members are co-located in the same cluster throughout the clustering ensemble.

Consequently, the distance between two members of the dataset, a and b, is equal to 1−[Acoa]{a, b}.

The final number of clusters is then selected by sampling the resulting dendrogram at the midpoint

of the inter-cluster distance range with the longest lifetime above a specified threshold [31, 52]. By

formulating an alternative measure of similarity between members of a dataset, WEAC leverages

the evidence accumulated by a large ensemble of clustering solutions to generate a single consensus

result. As a result, WEAC reduces the sensitivity and complexity of algorithm and input parameter

selection during the clustering process.

5.2 Clustering Refinement

A clustering algorithm attempts to identify the natural groupings of the members within a

dataset based on a prescribed feature space. However, in some cases, additional cluster refinement is

useful due to the potential sparsity of a dataset or the relative weighting between components of the

feature vector incorrectly grouping members of the dataset that are similar yet distinct; such issues
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may occur in high-dimensional feature spaces due to the curse of dimensionality [3]. Incorporating

a post-clustering refinement step into a clustering approach may also make the process more robust

with respect to algorithm and input parameter selections. Inspired by a previous use of graph

theory for more complex cluster refinement in hierarchical clustering, a k-nearest neighbor (k-NN)

graph is a simple and powerful tool that may be used to determine if a cluster should be further

split into smaller groups [56, 46].

To construct a k-NN graph for a dataset, each member of the dataset is considered a node

in the graph and is connected to its knn nearest neighbors via directed edges [46]. The knn nearest

neighbors for each member of the dataset are computed based on a desired distance measure, such

as the l2-norm. Depending on the use case of the k-NN graph, additional conditions may be placed

on the graph construction process. When using a k-NN graph for cluster refinement, a graph may

be constructed for each cluster using the feature vectors of its members. The number of connected

components in a graph for a given cluster is then used to decide whether the associated cluster

should be further split into separate additional clusters.

A compact cluster will likely only contain one connected component in a k-NN graph, whereas

a cluster consisting of several smaller and separated subclusters may contain multiple connected

components depending on the selected value of knn. When knn = 1, a sparse graph is produced

and may contain a large number of connected components that each possess only two members,

resulting in an excessive fragmentation of an original cluster. However, knn ≥ 2 generates a more

connected graph that may avoid this issue and preserve the structure of compact clusters. A larger

value of knn naturally results in a more connected graph because knn dictates the number of nearest

neighbors each member is connected to in the graph [46]. Therefore, knn may be selected based on

the desired scale of cluster refinement. Figure 5.3 depicts a conceptual example of a k-NN graph

constructed for a cluster of objects that admits three connected components when knn = 2. In this

case, the cluster would be split into three separate clusters based on the connected components in

the graph. Leveraging a k-NN graph for cluster refinement limits the burden on a human analyst

when additional refinement is deemed appropriate.
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Figure 5.3: Conceptual example of a k-NN graph constructed for a cluster of objects that admits
three connected components when knn = 2.

5.3 Motion Primitive Definition and Extraction

Motion primitives have been used in various disciplines to construct a reduced basis set of

path segments, actions, configurations, or behaviors that reflects the characteristics of a solution

space; however, the exact definition of a motion primitive depends on the field of application

[29, 54, 79, 90, 112]. Frazzoli defines trajectory primitives in the context of autonomous vehicle

motion planning as a set of path segments that capture the characteristics of the solution space,

support complex path construction, and support extraction of key state description parameters

[29]. Similarly, a motion primitive set is defined in this investigation as a set of arcs that capture

the characteristics of a larger set of trajectories and support assembly of an initial guess for a more

complex path in a multi-body system. Although motion primitives may be extracted analytically

or by a human analyst in simple environments, their extraction is significantly more challenging

and time-consuming in complex and higher-dimensional dynamical systems [29, 54, 112].

In complex dynamical environments, data is often sampled or observed from the environment

and then data mining techniques such as feature selection, dimensionality reduction, and clustering

are employed to uncover the fundamental primitives in the system. Due to the complexity of the

solution space in a multi-body system, clustering is leveraged in this work to group solutions that

possess a similar set of characteristics; these characteristics of interest are defined using domain

knowledge. A representative member from each cluster is then designated as the motion primitive

[9, 55, 46]. Together, the reduced set of trajectories that form a motion primitive set summarize a

larger set of trajectories that exist in a multi-body system.
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A motion primitive is extracted as the most representative member of a cluster of similar

trajectories. In the data-driven approach employed in this work, the medoid of a cluster is the

member of the cluster that is most similar to all other members in the cluster within the prescribed

feature space; as a guaranteed member of the cluster, this definition is particularly advantageous for

arbitrarily-shaped clusters [46]. Using the definition of a medoid, the motion primitive associated

with the i-th cluster is identified as

fMPi = argmin
f∈Ci

|Ci|∑
j=1

||f − fj || (5.7)

where fMPi is the feature vector of the motion primitive of the i-th cluster, Ci; |Ci| is the number

of members in the i-th cluster; and fj is the feature vector of the j-th member in the i-th cluster

[107]. Figure 5.4 depicts a conceptual example of motion primitives identified from a set of clusters

where the primitive of each cluster is denoted in the associated color. Each motion primitive may

be used to represent and summarize the members within its cluster. Despite the simplicity of this

example, it demonstrates the concept and value of identifying a representative member from a

cluster as a motion primitive.

Figure 5.4: Conceptual example of motion primitives identified from a set of clusters.



Chapter 6

Motion Primitive Construction in a Multi-Body System

Rapid trajectory design in multi-body systems often leverages individual arcs along natural

dynamical structures that exist in an approximate dynamical model, such as the CR3BP. To reduce

the complexity of this analysis in a chaotic gravitational environment, motion primitive sets are

constructed to represent the finite geometric, stability, and/or energetic characteristics exhibited

by sets of trajectories. The summarizing sets of motion primitives may then support the construc-

tion of initial guesses for complex trajectories. In the absence of generalizable analytical criteria

for extracting these representative solutions, a data-driven procedure is formulated. Specifically,

k-means and agglomerative clustering are used in conjunction with WEAC, a form of consensus

clustering, to construct sets of motion primitives in an unsupervised manner. This data-driven

procedure is used to construct motion primitive sets that summarize a variety of periodic orbit

families and natural trajectories along hyperbolic invariant manifolds in the CR3BP. This chap-

ter presents and demonstrates the motion primitive construction process developed to summarize

fundamental dynamical structures in the CR3BP. Note: The approach and examples presented in

this chapter were first published in an article by Smith and Bosanac in Celestial Mechanics and

Dynamical Astronomy Vol. 134 No. 7 (2022) by Springer Nature [99].
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6.1 Translating Trajectory Characteristics into a Feature Vector

The results of a clustering approach depend on the feature space encoding that translates

domain knowledge into a quantitative description of the dataset [3]. Selecting a feature vector is

member-specific because the available features depend on the type of members in the dataset, but

it is also application-specific because the features should be selected to recover a useful summary

of the dataset for the desired application. During the early stages of trajectory design and the

study of natural motion in complex gravitational environments, human analysts tend to examine

the geometry, stability, and energy of fundamental dynamical structures [61, 38, 40]. This section

outlines the feature vectors formulated to reflect one approach to encoding these characteristics

for periodic orbits and nonperiodic trajectories that lie along stable or unstable manifolds in the

CR3BP. The definitions of the feature vectors support the motion primitive extraction process

presented in this work.

6.1.1 Describing Trajectory Geometry

The geometry of a trajectory in the CR3BP is quantitatively described by discretizing the

solution into a sequence of states [120]. Sampling a trajectory at equally spaced times may capture

small geometric variations along the path. However, selecting a single time distribution or number

of states that sufficiently represent a general set of trajectories in a chaotic dynamical system is

challenging. Rather, this work uses a generalizable and curve-based approach to produce a lower-

dimensional description: sampling a trajectory at apses relative to a specified stationary reference

point, such as a primary body or libration point [9, 120]. Each apsis corresponds to either a local

minimum or maximum distance from the reference point along the trajectory; furthermore, the

state at each apsis along the trajectory is denoted as qrefPti , where refPt indicates the specified

reference point for the apsis and i is the index of the apsis along the trajectory.

The state information at each apsis along a trajectory is scaled to prevent unintended feature

biases during clustering [46]. First, the state at each apsis is translated relative to a stationary
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center point, i.e., cenPt, which is specified for the corresponding set of trajectories; by default,

the selected center point is the same as the reference point used to compute the apses along each

trajectory in the dataset. However, these two points may be different because in some cases it may

be desirable to compute apses with respect to one location and then define the resulting states

relative to a distinctly different location. Then, the relative state at each apsis is decomposed

into its position and velocity components. The relative position vector at each apsis is defined as

rcenPt,i = rrefPti −rcenPt and the relative velocity vector at each apsis is defined as ṙcenPt,i = ṙrefPti ,

where rcenPt is the position of the selected center point with respect to the origin of R. Using

these definitions, the relative position components at the i-th apsis along a trajectory are normalized

between -1 and 1 as

řcenPt,i =
rcenPt,i
rmax

(6.1)

where the (̌·) notation denotes a normalized quantity and rmax is the global maximum distance of

an apsis from cenPt along all members of the corresponding set of trajectories. Furthermore, the

relative velocity at the i-th apsis along a trajectory is normalized as

˙̌rcenPt,i =
ṙcenPt,i

||ṙcenPt,i||
(6.2)

which reflects the velocity unit vector at each apsis with components possessing values between -1

and 1. Equations 6.1 and 6.2 may be used to define a feature vector that describes the geometry

of a trajectory.

Consider a trajectory that admits s apses computed with respect to a specified stationary

reference point in the CR3BP. The geometric component of a feature vector, fg, describing the

trajectory is defined in this work as

fg =

[
řTcenPt,1

˙̌rTcenPt,1 · · · řTcenPt,s
˙̌rTcenPt,s [01×(6(smax−s))]

]
(6.3)

where all features are in the range [−1, 1]. This geometric component of a feature vector possesses

a dimension of 1×6smax where smax is the maximum number of apses that occur along any member

of the corresponding set of trajectories. The clustering algorithms leveraged in this work require
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the feature vectors to have the same length. Therefore, if the number of apses is not constant across

all members of a set of trajectories, then a placeholder zero vector is included in the remaining

elements of fg as indicated in Equation 6.3 [9]. Setting the placeholder features to zero ensures that

the placeholder states are distinct from the states describing actual apses. Using these definitions,

this component of the feature vector supplies a straightforward geometric description of a trajectory

that is computationally efficient to construct, limits unintended feature bias, may be generalized

across various trajectories, and, when applied to the trajectory sets examined in this investigation,

does not produce an excessively high-dimensional description.

6.1.2 Describing Orbital Stability

A function is defined to incorporate stability indices into the feature vector for a periodic

orbit. This function is designed to: reduce unintended feature bias when the maximum value along

the family possesses a large order of magnitude, offer a continuous stability description to avoid

a loss of information, and mitigate excessive compression between the critical values of -2 and

2. To appropriately characterize the stability properties along a periodic orbit family, it may be

desirable to capture complex variations of the stability indices within the oscillatory mode regime,

differentiate between a pair of oscillatory or stable and unstable modes, and avoid an artificial

separation between strictly oscillatory modes and the pairs of eigenvalues that possess magnitudes

that are close to unity. Furthermore, it may not be essential to distinguish between stability indices

with large magnitudes. To achieve these goals in characterizing a periodic orbit in the CR3BP, the

stability component of a feature vector, fs, is defined using a hyperbolic tangent function, which

retains continuity and produces values between -1 and 1. Mathematically, the stability component

of the feature vector is defined in this work as

fs =

[
tanh

(
s1
2

)
tanh

(
s2
2

)]
(6.4)

For a planar periodic orbit, s1 and s2 are calculated using the in-plane and out-of-plane modes,

respectively. However, for a spatial periodic orbit, s1 and s2 each reflect the evolution of a single



102

pair of eigenvalues along the family, ensuring continuity in the stability indices as discussed in

Section 3.3.1. Through the definition in Equation 6.4, stability indices within the range [−2, 2]

produce a feature vector component within the approximate range [−0.7616, 0.7616] to maintain

significant resolution in the stability component of the feature vector. Due to continuity in the

hyperbolic tangent function, there is also no artificial separation between a stability index with a

magnitude that is strictly below 2 and one that is only slightly above. In addition, the asymptotes

of the hyperbolic tangent function limit the differentiation between stability indices with large

magnitudes.

6.1.3 Describing Orbital Energy

Orbital energy is often used to supply preliminary insight into accessible regions of motion

and heuristics for maneuver planning. In the CR3BP, the Jacobi constant, as defined in Equation

2.26, is inversely proportional to the total energy of P3 in R [61]. Therefore, the energy component

of a feature vector, fe, for a natural trajectory in the CR3BP is defined as

fe = ČJ (6.5)

where ČJ is the Jacobi constant normalized to within the range [−1, 1] using the minimum and

maximum values of CJ along the corresponding set of trajectories. This component of the feature

vector supplies a single parameter to describe the energetic properties of each member of a set of

trajectories in the CR3BP.

6.1.4 Defining Feature Vectors

Leveraging the geometric, stability, and energetic properties of a trajectory in the CR3BP,

feature vector definitions are formulated separately for periodic orbits and trajectories along a

stable or unstable manifold. The feature vector fPO is constructed to describe a periodic orbit and

simultaneously capture a variety of considerations of interest to a trajectory designer during initial
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guess construction. This parametric feature vector is defined as

fPO =

[
fg fs fe

]
(6.6)

and possesses a length of mf = 6smax + 3. For a planar periodic orbit, the out-of-plane position

and velocity features are omitted, resulting in a feature vector with a length of mf = 4smax + 3.

Similarly, the feature vector fMani is constructed to describe the geometry of a trajectory along

either a stable or unstable manifold associated with an unstable periodic orbit. This feature vector

is defined as

fMani =

[
fg ∆ť1 · · · ∆ťs−1 [01×(smax−s)]

]
(6.7)

where ∆ťi is the nondimensional time between two consecutive apses, normalized by the total

integration time of the trajectory. Note, the terminal state of the trajectory is included in fg,

which may or may not correspond to a desired apsis. The additional normalized time features are

included in fMani to capture the variations in transit time along a nonperiodic trajectory. Similar

to the use of placeholder states in fg, values of zero are used for the remaining normalized time

features in fMani when s < smax for a trajectory. Furthermore, fe is not included in the feature

vector because in this work all of the manifold trajectories in a given dataset are associated with

one periodic orbit and, therefore, possess the same value of the Jacobi constant. Therefore, fMani

possesses a length of mf = 7smax−1 for a spatial manifold, or mf = 5smax−1 in the planar case, and

quantitatively summarizes the geometry of a trajectory along a stable or unstable manifold. Both

feature vector definitions supply a finite, quantitative description of trajectories along a family to

create an (nd×mf)-dimensional dataset that is input to a clustering algorithm for motion primitive

extraction.

6.2 Summarizing Periodic Orbit Families

The motion primitive construction process is defined for periodic orbits in the CR3BP and

demonstrated in detail via application to the planar distant prograde orbit (DPO) and spatial

L1 northern halo orbit families in the Earth-Moon CR3BP. Each of these periodic orbit families
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exhibits several changes in geometry, stability, and energy along the family. Some of these changes

may be identified through analytical separation criteria capturing a change in the number of apses

or locating when a critical value or turning point occurs for a parameter calculated along the family.

These analytically identifiable changes supply a straightforward verification of some of the groupings

within the clustering results. However, the clustering process should be able to produce additional

differentiation between periodic orbits that a human may be able to visually identify but may not be

described by an associated set of generalizable and clear analytical criteria formulated as a function

of the feature space description. Thus, both of these families of periodic orbits serve as a suitable

example for demonstrating the procedure for extracting motion primitives that summarize the

finite set of geometric, stability, and energetic characteristics admitted by its members. Following a

detailed demonstration in the context of these two families, the motion primitive extraction process

is applied to a wider variety of periodic orbit families in the Earth-Moon and Sun-Earth CR3BP

systems.

6.2.1 Motion Primitive Construction Process for Periodic Orbits

For a family of periodic orbits, the motion primitive construction procedure consists of the

following steps:

Motion Primitive Construction Process for Periodic Orbits in the CR3BP

Given: A family of periodic orbits computed in a desired system in the CR3BP, composed of nd

members with refPt and cenPt specified for the family.

(1) For each orbit along the periodic orbit family: compute the apses that occur along the

orbit with respect to refPt, the stability indices, and the Jacobi constant.

(2) Construct an (nd ×mf)-dimensional dataset containing the mf-dimensional feature vector

fPO of each orbit, as defined in Equation 6.6, to describe the geometry, stability, and

energy of each periodic orbit.

(3) Generate an ensemble of Nc base clustering results by applying k-means and agglomerative
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clustering with Ward linkage to the dataset, each for Nc/2 values of k in a specified range.

(4) Specify an inter-cluster distance threshold, dmin, ranging from 0 to 1 and apply WEAC to

the ensemble of base clustering results computed in Step 3. The clustering result selected

using WEAC possesses a number of clusters with the largest lifetime above dmin.

(5) Extract a set of motion primitives as the medoids of the clusters in the final consensus

clustering result to summarize the periodic orbit family.

Once the desired set of trajectories is computed, this procedure only requires a human analyst

to select the range of values of k to form the base clustering results and the value of dmin used

within WEAC. In applying this procedure to the DPO and L1 northern halo orbit families in the

Earth-Moon CR3BP, the following values are selected: k ∈ [3, 18] to produce Nc = 2×16 = 32 base

clustering results that are input to WEAC, and dmin = 0.4. The range of selected k values is a wide

range that encompasses a reasonable number of expected distinct characteristics along each family;

however, the range may be adjusted based on the given family. The threshold value of dmin = 0.4

(i.e., a similarity value of 0.6) is selected because it ensures that clusters with members that are

co-located more than approximately 60% of the time on average remain clustered together in the

final consensus-derived result. The final “cut” of the dendrogram is above dmin = 0.4 and therefore

WEAC identifies a natural cluster boundary where the additional merging of two smaller clusters

no longer results in a cluster with members that are frequently co-located. The computation time

for this clustering procedure to generate motion primitives summarizing a periodic orbit family is

on the order of 100 seconds for each example in this section using an iMac with a 3GHz 6-Core

Intel Core i5 processor.

6.2.2 Summarizing the Earth-Moon Distant Prograde Orbit Family

The DPO family is composed of members that exhibit multiple distinct geometric and sta-

bility properties while encircling the Moon [13, 62]. Figure 6.1 displays a subset of the DPO family,

computed in the Earth-Moon CR3BP using multiple shooting for corrections and pseudo-arclength
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continuation. Each orbit in the computed segment of the family is plotted in R with the black

arrows indicating direction of motion. The libration points are displayed using red diamonds while

the Moon is plotted to scale using a gray circle. Additionally, the in-plane (s1) and out-of-plane

(s2) stability indices along this segment of the DPO family are displayed in Figure 6.2 as a function

of the Jacobi constant. Note that the stability indices are scaled in Figure 6.2 using the function

2 sinh−1(si)/ sinh
−1(2) to improve visualization. A stability index associated with oscillatory modes

produces a value of this function within the range [−2, 2] while a stability index associated with a

stable and unstable mode pair produces a function value that is greater than 2 in magnitude; note

that the sign of the stability index is preserved through this normalization. In addition, four orbits,

each denoted with a distinct color, are highlighted in Figure 6.1 and their associated parameters

are plotted in Figure 6.2 to facilitate a clear description of the family. These two figures reveal

Figure 6.1: Computed segment of the DPO family displayed in R in the Earth-Moon CR3BP [99].
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Figure 6.2: Stability indices, s1 and s2, along the computed segment of the DPO family in the
Earth-Moon CR3BP [99].

distinct changes in geometry, stability, and energy along the DPO family: some changes may be

described via quantitative separation criteria, whereas other changes are challenging to define in

an analytical and generalizable manner. These complex variations render the planar DPO family

a useful first scenario for demonstrating the motion primitive construction process.

To support verification of the recovered motion primitives, the geometry and stability of

members of the DPO family are characterized. At one end of the computed segment of the family

near CJ ≈ 3.1487, denoted in purple in Figures 6.1 and 6.2, the orbits possess stable and unstable

in-plane modes and oscillatory out-of-plane modes. In addition, motion along these orbits is gen-

erally prograde in the rotating frame: there are two prograde perilunes, with one occurring close

to the Moon and one located close to L2, and two retrograde apolunes that occur near L2 and

symmetrically about the x-axis. As the Jacobi constant increases, the magnitude of the velocity

vector at the two apolunes decreases. After reaching a magnitude of zero in the rotating frame, the
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velocity vector changes direction and the associated orbit possesses two prograde apolunes. These

prograde apolunes approach the x-axis as the Jacobi constant continues to increase. Eventually,

the orbits evolve to possess only one perilune and one apolune; both apses relative to the Moon are

prograde and located on the x-axis. This evolution of the geometry is accompanied by a change

in the in-plane stability such that these members of the DPO family do not possess any stable or

unstable modes. As the Jacobi constant increases further, the perilune distance increases and the

apolune distance decreases until the orbit resembles an oval. Eventually, the orbits possess two pro-

grade perilunes on the x-axis and two prograde apolunes symmetrically located about the x-axis.

As the Jacobi constant reaches a maximum, denoted in red in Figures 6.1 and 6.2, another change

in the stability occurs and the associated members of the DPO family possess stable and unstable

in-plane modes. With a decreasing Jacobi constant, the apolunes occur at increasing values of

y and decreasing values of x, with a speed that decreases. After the velocity magnitude passes

through zero, denoted in light blue in Figures 6.1 and 6.2, and at low values of the Jacobi constant,

orbits along the DPO family possess low prograde perilunes and high retrograde apolunes. The

out-of-plane stability also changes, resulting in these members of the DPO family possessing only

stable and unstable modes through the end of the computed segment of the family, as indicated in

light brown in Figures 6.1 and 6.2.

The observed distinct changes in geometry and stability are summarized to facilitate verifi-

cation of the clustering results. Table 6.1 lists these changes using labels beginning with “G” to

indicate a change in the geometry, assessed via the number and direction of motion at each apsis,

and a prefix “S” indicating a qualitative change in stability; the numbers in each label are assigned

to changes that occur as the family is traversed from a Jacobi constant starting at CJ ≈ 3.1487,

reaching a maximum at CJ ≈ 3.1827, and ending at CJ ≈ 2.9511. A horizontal bar in Table 6.1

indicates that a change did not occur in a specific property. These distinct changes in the geome-

try and stability support verifying some of the cluster-based differentiation between orbits during

the motion primitive construction process. Specifically, the final clustering result should at least

separate solutions of distinct geometries, as listed in Table 6.1, while also admitting additional
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Table 6.1: Dominant geometric and stability changes along the computed segment of the DPO
family; prograde is abbreviated as “pro.” and retrograde is abbreviated as “retro.” to describe
direction of motion [99].

Label Before Change After Change Approx. CJ

Apses Stability Apses Stability

G1 2 retro. apolune s1 < −2 2 pro. apolune — 3.1610
2 pro. perilune −2 < s2 < 2 — —

G2/S1 2 pro. apolune s1 < −2 1 pro. apolune −2 < s1 < 2 3.1698 (G2)
2 pro. perilune −2 < s2 < 2 1 pro. perilune — 3.1700 (S1)

G3/S2 1 pro. apolune −2 < s1 < 2 2 pro. apolune s1 > 2 3.1822 (G3)
1 pro. perilune −2 < s2 < 2 2 pro. perilune — 3.1827 (S2)

G4 2 pro. apolune s1 > 2 2 retro. apolune — 3.0859
2 pro. perilune −2 < s2 < 2 — —

S3 2 retro. apolune s1 > 2 — — 3.0264
2 pro. perilune −2 < s2 < 2 — s2 > 2

differentiation for geometric changes that are challenging to describe in an analytical and gener-

alizable manner. Due to the form of the stability component of the feature vector for a periodic

orbit, the stability changes listed in Table 6.1 may potentially, but not necessarily, lie close to the

boundaries of some clusters.

Consensus clustering is used to differentiate periodic orbits within the DPO family. First, the

parametric feature vector defined in Equation 6.6 is used to represent the geometric, stability, and

energetic properties of 400 members of the family, computed using multiple shooting for corrections

and pseudo-arclength continuation. The geometry of each orbit is represented as a sequence of apses

computed with respect to the Moon, where both refPt and cenPt are specified as P2. Furthermore,

the out-of-plane position and velocity features of each apsis are omitted because all members of

the DPO family lie in the plane of the primaries. The feature vectors of the selected members of

this family are used to form a (400 × 19)-dimensional dataset where smax = 4. Then, k-means

and agglomerative clustering with Ward linkage are applied to the dataset, each for 16 values of

k ranging from 3 to 18, to produce 32 base clustering results. The resulting dendrogram formed

when WEAC is applied to this ensemble of clustering results is displayed in Figure 6.3. Each
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vertical blue line represents a cluster and each horizontal blue line represents the merging of two

clusters at various values of the inter-cluster distance, displayed on the vertical axis. Values on

the horizontal axis are not labeled because they indicate the cluster identification numbers, which

are arbitrarily set by the algorithm as new clusters are formed with new values of inter-cluster

distance. Furthermore, the solid black line indicates the specified inter-cluster distance threshold

of dmin = 0.4. Analyzing the dendrogram, the number of clusters with the largest lifetime above

this threshold is k = 9, as indicated by the bounding dashed red lines. Other potential natural

cluster boundaries in the dataset occur for k = 6 and k = 7 as evident in the dendrogram based on

the size of each cluster lifetime. However, k = 9 is selected consistent with possessing the largest

lifetime above the threshold. Motion primitives are extracted from this clustering result as the

medoid of each cluster.

Figure 6.3: Dendrogram constructed via WEAC to determine clusters of periodic orbits in the DPO
family [99].

The motion primitives and associated clusters are depicted in the configuration space and as

a function of Jacobi constant to support further analysis. First, the 9 clusters of periodic orbits

are displayed in Figure 6.4 in R using unique colors, with the black arrows indicating direction
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(a) (b)

Figure 6.4: Motion primitives constructed for the DPO family in the Earth-Moon CR3BP, displayed
with respect to the corresponding clusters in R; clusters and motion primitives are split across two
subfigures for visual clarity [99].

of motion relative to the Moon. Within each cluster, the periodic orbit selected as the motion

primitive is highlighted in bold while additional members lie within the region of the same color.

To support further analyzing these results, these clusters and motion primitives are also displayed

on the left of Figure 6.5 as a function of CJ . DPOs at various values of CJ are displayed on the

right of Figure 6.5 for reference; the selected orbits correspond to those highlighted in Figure 6.1.

Each cluster in Figure 6.5 is colored consistent with Figure 6.4 and each motion primitive is located

by a black diamond. Furthermore, the four dominant geometry changes (G1, G2, G3, G4) and the

three dominant stability changes (S1, S2, S3) summarized in Table 6.1 are denoted with dashed

black and gray lines, respectively.

Analysis of the clustering results in Figures 6.4 and 6.5 reveals that the motion primitive

set successfully captures variations in geometry and stability of members along the DPO family:
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Figure 6.5: Clustering result and motion primitives for the DPO family in the Earth-Moon CR3BP
as a function of CJ ; dominant changes in geometry and stability are labeled on left of figure [99].

including those identified in Table 6.1 and more subtle changes that are challenging to describe in an

analytical and generalizable manner. The presented procedure successfully identifies, at a minimum,

all four distinct changes in geometry via changes in the number of and direction of motion at the

apses. Additional clusters capture more subtle changes in Jacobi constant, stability, and geometry.

For example, as CJ decreases after the change in geometry at G4, WEAC identifies three different

clusters of orbits with two high retrograde apolunes and two low prograde perilunes due to the

variations in CJ and stability. In fact, the third stability change, S3, is identified by the clustering

approach but not exactly at the boundary due to the continuous feature description used to capture

orbital stability. The distinct geometric differences between each of these clusters is visible in Figure

6.4a: although members of these clusters admit a similar general shape, regions along each orbit

with a different direction of motion possess a distinctly different relative size in the configuration

space. Another example of successful geometric differentiation is visible in Figure 6.4b: the pink
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cluster possessing members with the largest y-amplitudes admit a significantly different geometry

and evolution of the location of apses compared with members in the neighboring cluster that

possess smaller y-amplitudes. This example demonstrates the capacity to use clustering to extract

a small set of motion primitives representing a family of planar periodic orbits.

6.2.3 Summarizing the Earth-Moon L1 Northern Halo Orbit Family

The L1 halo orbits comprise a spatial family that emerges from a bifurcation along the L1

Lyapunov orbit family [11, 118]. Figure 6.6 displays a subset of the L1 northern halo family

computed in the Earth-Moon CR3BP with selected members highlighted in distinct colors; note,

only the northern orbits are analyzed due to their symmetry with the southern halo orbits about

the plane of the primaries. At one end of the computed segment of the L1 northern halo family,

denoted in light brown in Figure 6.6, members intersect the L1 planar Lyapunov orbit family and

revolve in a clockwise manner about L1. At the other end of the computed segment of the family,

denoted in purple in Figure 6.6, members possess large z-amplitudes above the plane of the primaries

and a low perilune. Analysis of Figure 6.6 reveals a variation in the shape and three-dimensional

geometry along this spatial family. However, unlike the previous example with the DPO family,

these geometric changes cannot be straightforwardly identified or analytically separated because

the number of apses and the direction of motion at each apsis relative to the Moon are constant

along the family. There are some changes in the number of apses relative to L1, but the direction

of motion at these apses also remains constant along the family. With geometry changes that are

visually identifiable but challenging to locate analytically, the L1 northern halo orbit family offers

a suitable second demonstration case for the motion primitive construction process.

The stability indices of the computed segment of the L1 northern halo orbit family also admit

multiple qualitative changes. Figure 6.7 displays the stability indices, s1 and s2, scaled using the

same normalization function as Figure 6.2 and plotted as a function of the Jacobi constant; the

parameters associated with the highlighted orbits in Figure 6.6 are indicated in Figure 6.7 using

the same color scheme. In addition, the qualitative changes in the orbital stability along the family



114

Figure 6.6: Computed segment of the L1 northern halo orbit family displayed in R in the Earth-
Moon CR3BP [99].

Figure 6.7: Stability indices, s1 and s2, along the computed segment of the L1 northern halo orbit
family in the Earth-Moon CR3BP [99].



115

Table 6.2: Dominant stability changes along the computed segment of the L1 northern halo orbit
family [99].

Label Before Change After Change Approx. CJ

S1 −2 < s1 < 2 — 2.9435
−2 < s2 < 2 s2 < −2

S2 −2 < s1 < 2 s1 > 2 2.9470
s2 < −2 —

S3 s1 > 2 −2 < s1 < 2 3.0040
s2 < −2 —

S4 −2 < s1 < 2 — 2.9986
s2 < −2 −2 < s2 < 2

S5 −2 < s1 < 2 s1 > 2 2.9978
−2 < s2 < 2 —

are summarized in Table 6.2 using the same configuration as Table 6.1. There are five primary

changes in stability along the computed segment of the family. The s1 index exhibits three changes

in stability that occur in regions of the family where the halo orbits possess a large inclination

and low perilune. For members of the family that approach the L1 libration point with a Jacobi

constant that is above CJ = 3.0, s1 possesses a large positive value that indicates the existence of

stable and unstable modes governing fast arrival onto or departure from the periodic orbit. Finally,

s2 exhibits two changes in stability: the value of s2 passes through the critical value of -2 near

Jacobi constants of CJ ≈ 2.9435 and CJ ≈ 2.9986. For members of the L1 northern halo orbit

family that possess a high inclination, low perilune, and values of the Jacobi constant that are less

than CJ = 3.0, the magnitudes of s1 and s2 are on the order of 100. Consequently, the orbits in this

region of the family that possess stable and unstable modes admit relatively slow natural arrival

and departure motion along the associated hyperbolic invariant manifolds.

Using the geometric, stability, and energetic properties of members along the L1 northern halo

orbit family, an associated set of motion primitives is constructed. Similar to the DPO example,

multiple shooting and pseudo-arclength continuation are used to compute 498 orbits along the L1

northern halo orbit family. Then, the feature space encoding is constructed using Equation 6.6,
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where both refPt and cenPt are specified as P2 which is consistent with the evolution of this family

towards the Moon. Together, these orbits and feature vectors produce a (498 × 15)-dimensional

dataset where smax = 2. Next, k-means and agglomerative clustering with Ward linkage are applied

to the dataset, each for 16 values of k ranging from 3 to 18, to generate the ensemble of base

clustering results. WEAC is then applied to this ensemble with an inter-cluster distance threshold

of dmin = 0.4. Figure 6.8 displays the dendrogram produced by WEAC for this family of halo

orbits. As denoted in Figure 6.8 with dashed red lines, the clusters produced using k = 11 possess

the largest lifetime. The associated clusters, denoted by unique colors, and the motion primitives,

denoted with black diamonds, are displayed in Figure 6.9a as a function of the discretized orbit

number along the family; although this quantity does not possess a physical significance, it enables

a clear and unique initial visualization of the results. Furthermore, the five dominant stability

changes (S1, S2, S3, S4, S5) summarized in Table 6.2 are denoted with dashed gray lines. Figures

6.9b and 6.9c display two different views of the members of each cluster in R; the motion primitives

are highlighted in bold and the corresponding clusters capture the regions of the family that possess

similar properties to each motion primitive.

Despite the absence of distinct or hard boundaries between members within the 15-dimensional

feature space, the motion primitive set successfully captures the variety of geometric and stability

characteristics exhibited by the L1 northern halo orbit family. Figure 6.9a reveals that members

are differentiated into separate clusters in the vicinity of, but not exactly at the location of, each

qualitative change in orbital stability; such a result is not unexpected due to the definition of the

stability component of the feature vector as a continuous function. S1, S2, S3, and S4 each describe

stability changes where the two nontrivial pairs of eigenvalues of the monodromy matrix remain

close to the unit circle in the complex plane and, therefore, the values of the stability component of

the feature vector are similar on either side of each soft boundary. On the other hand, S5 is more

closely captured by the clustering approach because it marks a more distinct change in stability as

the magnitude of s1 increases significantly away from the critical value of 2. The remaining clusters

along the family above the dashed line for S5 in Figure 6.9a primarily reflect changes in geometry.
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Figure 6.8: Dendrogram constructed via WEAC to determine clusters of periodic orbits in the L1

northern halo orbit family [99].

In fact, analysis of Figures 6.9b and 6.9c reveals that these clusters capture the evolution of the

eccentricity, inclination, shape, and location of members along this family as they evolve towards

the plane of the primaries near L1 and away from the Moon. The reduced set of motion primitives

effectively captures the characteristics of the computed members of the L1 northern halo orbit

family, thereby supplying a simplified representation of the continuous family of spatial periodic

orbits for use in rapid and informed trajectory design strategies.

6.2.4 Summarizing Periodic Orbit Families throughout a Multi-Body System

To further demonstrate the utility of summarizing a subset of the solution space of a multi-

body system, the motion primitive construction process is applied to a variety of planar and spatial

periodic orbit families throughout the Earth-Moon CR3BP. In addition, the motion primitive con-

struction process is also applied to a couple of periodic orbit families in the Sun-Earth CR3BP to

demonstrate the general applicability of the approach in any system. Each family of orbits is sum-

marized based on its geometric, stability, and energetic properties following the procedure outlined
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(a) (b)

(c)

Figure 6.9: Clustering result and motion primitives for the L1 northern halo orbits in the Earth-
Moon CR3BP [99].
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in Section 6.2.1. Figures 6.10-6.13 display the set of motion primitives constructed to summarize

a variety of planar periodic orbit families in the Earth-Moon CR3BP including: the low prograde

orbits (LoPOs); distant retrograde orbits (DROs); L1, L2, and L3 Lyapunov orbits; L5 short and

long period orbits; and 3:1 resonant orbits. The black arrows indicate direction of motion, while

each color indicates a distinct cluster and the associated motion primitive is highlighted in bold.

The corresponding cluster for each motion primitive also reflects the region of existence of the prim-

itive in the configuration space. Note that although colors are frequently repeated across distinct

families for visual clarity, each cluster is localized to a single family of periodic orbits.

Using a similar configuration as Figures 6.10-6.13, Figures 6.14-6.16 display the motion prim-

itives generated to summarize the northern L2 and L3 halo orbits; the L1, L2, and L3 axial orbits;

and the L1, L2, and L3 vertical orbits. These orbit families are diverse in terms of their geometric,

stability, and energetic properties as well as their locations in the configuration space of the Earth-

Moon system. Finally, Figure 6.17 displays the motion primitives generated to summarize the L2

Lyapunov orbits and the L2 northern halo orbits computed in the Sun-Earth CR3BP. Despite the

diversity and complexity exhibited by each family of periodic orbits, the general motion primitive

construction process presented in Section 6.2.1 is applied to each family in the same manner with

identical input parameters. This automated, unsupervised approach successfully constructs group-

ings that capture the fundamental characteristics of members along each family. As a result, these

examples indicate the capacity for a data-driven procedure to extract smaller sets of motion prim-

itives that summarize the wide variety of periodic orbits that influence the solution space within a

multi-body system. This simpler representation of periodic orbit families may be used in reducing

the complexity of constructing an initial guess for a complex trajectory.



120

(a) LoPO (b) DRO

Figure 6.10: Motion primitives summarizing segments of the low prograde orbit (LoPO) and dis-
tant retrograde orbit (DRO) families in the Earth-Moon CR3BP, displayed with respect to the
corresponding clusters in R [99].

(a) L1 Lyapunov Orbits (b) L2 Lyapunov Orbits (c) L3 Lyapunov Orbits

Figure 6.11: Motion primitives summarizing segments of the Lyapunov orbit families in the Earth-
Moon CR3BP, displayed with respect to the corresponding clusters in R [99].
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(a) L5 SPO (b) L5 LPO

Figure 6.12: Motion primitives summarizing segments of the L5 short period orbit (SPO) and long
period orbit (LPO) families in the Earth-Moon CR3BP, displayed with respect to the corresponding
clusters in R [99].

(a) (b)

Figure 6.13: Motion primitives summarizing a segment of the 3:1 resonant orbit family in the
Earth-Moon CR3BP, displayed with respect to the corresponding clusters in R; clusters and motion
primitives are split across two subfigures for visual clarity [99].
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(a) L2 Northern Halo Orbits (b) L3 Northern Halo Orbits

Figure 6.14: Motion primitives summarizing segments of the northern halo orbit families in the
Earth-Moon CR3BP, displayed with respect to the corresponding clusters in R [99].

(a) L1 Axial Orbits (b) L2 Axial Orbits (c) L3 Axial Orbits

Figure 6.15: Motion primitives summarizing segments of the axial orbit families in the Earth-Moon
CR3BP, displayed with respect to the corresponding clusters in R [99].

6.3 Summarizing Hyperbolic Invariant Manifolds

The role of hyperbolic invariant manifolds in governing natural transport throughout a multi-

body system has resulted in trajectory designers analyzing the geometry of arcs of finite duration

along stable and unstable manifolds and assembling them to construct initial guesses for complex
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(a) L1 Vertical Orbits (b) L2 Vertical Orbits (c) L3 Vertical Orbits

Figure 6.16: Motion primitives summarizing segments of the vertical orbit families in the Earth-
Moon CR3BP, displayed with respect to the corresponding clusters in R [99].

(a) L2 Lyapunov
Orbits (b) L2 Northern Halo Orbits

Figure 6.17: Motion primitives summarizing segments of the L2 Lyapunov and L2 northern halo
orbit families in the Sun-Earth CR3BP, displayed with respect to the corresponding clusters in R.

transfers [61]. In this section, the motion primitive construction process is defined for summarizing

a set of arcs computed along a stable or unstable manifold associated with a periodic orbit in

the CR3BP. The process is demonstrated by summarizing arcs along an unstable half-manifold

associated with a single L1 Lyapunov orbit in the Earth-Moon CR3BP. This procedure is similar to
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the process presented in Section 6.2.1 for periodic orbit families with some modifications, primarily

in the computation and description of the nonperiodic trajectories comprising the dataset and the

incorporation of additional cluster refinement.

6.3.1 Generating a Set of Arcs along a Hyperbolic Invariant Manifold

In the absence of generalized analytical descriptions, an approximation of a stable or unstable

manifold is typically computed numerically as discussed in Section 3.4. First, an unstable periodic

orbit is selected and discretized into a set of NPO states equally spaced in time or arclength. Then,

each state along the periodic orbit is perturbed such that it approximately lies along the desired local

half-manifold. Finally, each state is propagated backward (forward) in time to produce a trajectory

along the desired global stable (unstable) half-manifold over a time interval of interest with a set

of termination criteria. The termination criteria depend on the desired manifold and therefore

must be specified by a human analyst when generating the manifold structure. Depending on the

termination criteria, the resulting trajectories along the desired half-manifold may be propagated

for long time intervals and exhibit complex variations in geometry, particularly near a primary

body. Consequently, each of the NPO trajectories is discretized into multiple shorter arcs.

Given a set of NPO trajectories computed along a desired half-manifold, each trajectory is

first discretized into a sequence of nodes, where each node corresponds to either an apsis computed

relative to a specified refPt or the terminal state of the trajectory. Each trajectory is then discretized

into multiple shorter arcs based on a node window and shift size. The node window size, nwindow,

determines the length of each arc while the node shift size, nshift, determines the manner in which the

arcs are generated along each trajectory. Figure 6.18 provides a conceptual example of discretizing

a trajectory composed of 8 nodes into multiple shorter arcs where nwindow = 4 and nshift = 1. The

first arc is defined from the first node of the trajectory to the fourth node, the second arc is defined

from the second node to the fifth node, and so forth until the final computed arc terminates at the

final recorded node of the trajectory. Based on this selection of nwindow = 4 and nshift = 1, the

conceptual trajectory segment depicted in Figure 6.18 is split into a total of 5 shorter overlapping
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arcs. In some cases, the final shift along the trajectory may cause the node window to extend past

the final node of the trajectory. In this case, the final computed arc terminates at the final recorded

node of the trajectory and contains fewer nodes than nwindow. Similarly, if nwindow is larger than

the total number of nodes computed along a given trajectory, then the trajectory is considered a

single arc. Using this discretization process, each trajectory along a desired half-manifold may be

split into multiple shorter arcs that capture the complex variations in geometry over shorter time

intervals along the manifold structure. The resulting set of arcs may then be used to construct a

summarizing set of motion primitives.

Figure 6.18: Conceptual example of discretizing a trajectory into multiple shorter arcs where
nwindow = 4 and nshift = 1.

6.3.2 Motion Primitive Construction Process for Hyperbolic Invariant Manifolds

To construct a set of motion primitives summarizing arcs along a hyperbolic invariant man-

ifold, the clustering procedure is defined as follows:

Motion Primitive Construction Process for Hyperbolic Invariant Manifolds in the CR3BP

Given: A set of arcs computed along a stable or unstable half-manifold associated with an unstable

periodic orbit in a desired system in the CR3BP, composed of nd members with with refPt and

cenPt specified for the set of arcs.

(1) For each arc along the desired half-manifold: compute the apses that occur along the arc

with respect to refPt, the terminal state of the arc if it does not coincide with the last
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apsis, and the time between each pair of consecutive apses (including the terminal state).

(2) Construct an (nd ×mf)-dimensional dataset containing the mf-dimensional feature vector

fMani of each arc, as defined in Equation 6.7, to describe the geometry of each arc.

(3) Generate an ensemble of Nc base clustering results by applying k-means and agglomerative

clustering with Ward linkage to the dataset, each for Nc/2 values of k in a specified range.

(4) Specify an inter-cluster distance threshold, dmin, ranging from 0 to 1 and apply WEAC to

the ensemble of base clustering results computed in Step 3. The clustering result selected

using WEAC possesses a number of clusters with the largest lifetime above dmin.

(5) If applicable, refine the clusters produced by WEAC using the following refinement proce-

dure:

(a) Specify values for lcsize, lsim, and knn. Each of these parameters is used in the refine-

ment procedure: lcsize is a cluster size limit, lsim is a similarity value limit, and knn is

used for constructing a k-NN graph.

(b) For each cluster Ci produced by WEAC:

(i) Compute the number of members in Ci, i.e. |Ci|.

(ii) If |Ci| > lcsize, construct a k-NN graph from the members of Ci using the specified

value of knn. To construct the k-NN graph, each member of Ci is defined by

its position features contained in fMani and the l2-norm is used to compute

the distance between two members in Ci. If there is more than one connected

component in the resulting graph, then Ci is split into distinct subclusters that

each correspond to one connected component in the graph. Note: A subcluster

that is comprised of only one or two members cannot be identified using a k-NN

graph when knn ≥ 2; these types of subclusters may be considered as outliers. To

address these edge cases and include outlier detection, two rules are formulated

during the graph construction process:
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(ii.a) Consider the case where member a in Ci is not a nearest neighbor of any

other members in Ci. If the average similarity of member a with its nearest

neighbors in Ci (evaluated using [Acoa]) is ≥ lsim, then connect member a

to only its closest nearest neighbor; otherwise, do not connect member a to

any of its nearest neighbors.

(ii.b) Consider the case where member a in Ci is only a nearest neighbor of mem-

ber b in Ci. If member a also considers member b to be a nearest neighbor,

then connect member a to member b; otherwise, do not connect member a

to any of its nearest neighbors.

(iii) If |Ci| ≤ lcsize, use the similarity values from [Acoa] computed in WEAC to

refine Ci. Two members in Ci are grouped together in the same subcluster if

they have a similarity value ≥ lsim. If this grouping process produces more than

one subcluster, then Ci is split into its distinct subclusters. Note: For small

clusters, a k-NN graph is well-connected for even small values of knn due to its

size. Therefore, the similarity values computed in WEAC are leveraged to refine

small clusters and ensure members in each resulting subcluster have a high degree

of similarity.

(6) Extract a set of motion primitives as the medoids of the clusters in the final clustering result

to summarize the set of arcs computed along the desired stable or unstable half-manifold.

Once the set of arcs are computed along the desired stable or unstable half-manifold, this proce-

dure only requires a human analyst to select the range of values of k to form the base clustering

results, the value of dmin used within WEAC, and, if applicable, lcsize, lsim, and knn used for cluster

refinement.

In applying this process to an unstable half-manifold associated with an L1 Lyapunov orbit in

the Earth-Moon CR3BP, the inter-cluster distance threshold is set at dmin = 0.4. Furthermore, the

range of k values used to generate the cluster ensemble is selected based on the size of the dataset
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as k ∈ [10, 75] [31, 52]. This range is selected to ensure the evidence supplied to WEAC in the

form of base clustering results encompasses both a small number of clusters, which tends to raise

the average similarity values between members in [Acoa], and a large number of clusters, which

tends to lower the average similarity values in [Acoa]; as a result, a wide range of k values tends to

balance out these effects to more clearly reflect the natural structure of a complex dataset [31, 52].

The computation time for this clustering procedure to generate motion primitives summarizing the

arcs along a hyperbolic invariant manifold is on the order of 101 seconds for the example in this

section using an iMac with a 3GHz 6-Core Intel Core i5 processor.

An additional step for cluster refinement is included in the motion primitive construction

procedure due to the potential sparsity of arcs computed along a hyperbolic invariant manifold

and for cases when related, yet visually distinct arcs are incorrectly clustered together; such issues

may occur in high-dimensional feature spaces due to the curse of dimensionality [3]. The cluster

refinement procedure requires three input parameters to be specified by a human analyst: lcsize, lsim,

and knn. The value of lcsize is used to differentiate between large and small clusters. As outlined

in Step 5 of the motion primitive construction procedure, large clusters are refined using a k-NN

graph and small clusters are refined using the similarity values from [Acoa] computed in WEAC.

This distinction is needed because a k-NN graph for a small cluster may be well-connected for even

small values of knn due to its size. Consequently, using the similarity values from [Acoa] provides an

effective method for ensuring members within each small cluster have a high degree of similarity, as

determined by the selected value of lsim ∈ [0, 1]. A larger value of lsim results in more differentiation

while a smaller value of lsim results in less differentiation within small clusters. Finally, the value

of knn determines the degree of connectivity in the k-NN graph constructed for each large cluster.

A larger value of knn naturally results in a more connected graph because knn dictates the number

of nearest neighbors each member is connected to in the graph [46]. Consequently, lcsize, lsim,

and knn may be intuitively selected based on the desired scale of cluster refinement. Similar to

the input parameters for the clustering process, these input parameters for the cluster refinement

procedure may be selected and then adjusted in an iterative fashion by inspecting the resulting
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clusters. Despite the need to select input parameters, the unsupervised refinement process limits

the burden on a human analyst when additional cluster refinement is deemed appropriate.

6.3.3 Summarizing an Unstable Half-Manifold of an Earth-Moon L1 Lyapunov

Orbit

A set of motion primitives is constructed to summarize segments of a global unstable half-

manifold associated with an L1 Lyapunov orbit in the Earth-Moon CR3BP. The global unstable

half-manifold is generated for a motion primitive extracted from the L1 Lyapunov orbit family;

specifically, the L1 Lyapunov orbit primitive is an unstable orbit that exists at CJ ≈ 3.1670. The

trajectories that lie along this unstable manifold exhibit many close approaches and revolutions

around the Moon, while some trajectories impact the Moon or leave the vicinity of the Moon

through the L1 or L2 gateways. Figure 6.19a displays short segments of trajectories, denoted in

red, computed along the unstable half-manifold departing the selected L1 Lyapunov orbit, denoted

in black, towards the Moon. In Figure 6.19, the Moon is plotted to scale and the gray regions

correspond to the forbidden regions of motion bounded by ZVCs.

The selected L1 Lyapunov orbit is discretized into a set of NPO = 500 states equally spaced

in time. Then, 500 trajectories are propagated along the desired unstable half-manifold of the L1

Lyapunov orbit. Each trajectory is propagated until either 15 subsequent apses occur relative to

the Moon, an impact with the Moon occurs (assuming a spherical approximation of the Moon),

or the trajectory departs the lunar vicinity through either the L1 or L2 gateways. Figure 6.19b

displays the resulting Poincaré map with an apsis surface of section recording up to 15 apses with

respect to the Moon. In addition, the terminal state of each trajectory that impacts the Moon

or departs the lunar vicinity in also included in Figure 6.19b even if it does not correspond to

an apsis event. Next, each trajectory is discretized into multiple shorter arcs using the method

outlined in Section 6.3.1 where nwindow = 4 and nshift = 1. This discretization process produces up

to 12 smaller overlapping arcs along each trajectory, where each arc possesses up to 4 apses with

respect to the Moon. These arcs are then used to form the dataset that describes the unstable
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half-manifold of the selected L1 Lyapunov orbit.

The motion primitive construction process for a general hyperbolic invariant manifold out-

lined in Section 6.3.2 is applied to the set of arcs generated from the unstable half-manifold of the

selected L1 Lyapunov orbit. Using the feature vector fMani defined in Equation 6.7, the resulting

dataset is a (1196 × 19)-dimensional dataset. Given the expected diverse and complex geometric

variations along manifold structures as well as the size of the dataset, k ∈ [10, 75] is selected to

encompass a reasonable number of distinct characteristics in the dataset. WEAC is then applied

to the resulting 132 base clustering results; in addition, the cluster refinement procedure is also

leveraged with the following input parameter selections: lcsize = 5, lsim = 0.9, and knn = 2. As a

result of this process, 69 clusters and their associated motion primitives are generated to summarize

the manifold structure.

(a) Unstable half-manifold of the selected L1 Lya-
punov orbit generated towards the Moon for up to
two returns to an x = 1− µ surface of section.

(b) Poincaré map with an apsis surface of section
recording up to 15 apses with respect to the Moon
for 500 trajectories that lie along an unstable half-
manifold of the selected L1 Lyapunov orbit. In ad-
dition, the terminal state of each trajectory that im-
pacts the Moon or departs the lunar vicinity is also
included on the map.

Figure 6.19: Unstable half-manifold of an L1 Lyapunov orbit at CJ ≈ 3.1670 generated towards
the Moon with up to 500 trajectories [99].
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Trajectory arcs lying along the unstable half-manifold of an L1 Lyapunov orbit at CJ ≈ 3.1670

exhibit a variety of distinct geometries in the lunar vicinity. Following application of the presented

procedure to this dataset, the resulting 69 clusters and motion primitives are displayed in Figures

6.20 and 6.21. Each cluster and its corresponding motion primitive is labeled with the prefix

“U” followed by a number to facilitate discussion of the results. In these figures, the corresponding

trajectories for each cluster are plotted in R with the motion primitives denoted in bold and unique

colors assigned to distinct clusters. Clusters that contain only two members, such as U37, depict

both members of the cluster with one member arbitrarily selected as the motion primitive because

either arc is suitable to summarize the motion in the cluster. Analysis of these figures reveals that

the motion primitives extracted from clusters U2, U3, U7, U14, U16, U26, and U66 effectively

capture several distinct geometries admitted by arcs that impact the Moon after departing the

vicinity of the L1 Lyapunov orbit. Furthermore, a variety of motion primitives summarize different

types of motion that depart the lunar vicinity through the L1 gateway (U1, U17, U18, U30, U35,

U59, U60, U63, U64, U67, U68) as well as the L2 gateway (U19-21, U24, U46). In addition,

multiple fundamental departure geometries from the initial L1 Lyapunov orbit are uncovered via

clusters U4, U5, U9, U45, and U65-U69. The remaining motion primitives effectively summarize

the geometries admitted by subsequent arcs along the selected unstable half-manifold in the lunar

vicinity: a variety of arcs revolving around the Moon with varying close approaches are recovered as

well as the flow of trajectories towards the L2 gateway. Some of the arcs revolving around the Moon

possess segments that resemble known periodic orbits. For example, clusters U33, U34, U38-U44,

U47-U50, and U53-U57 contain segments with similar geometries to members of the DPO family

at CJ ≈ 3.1670. This set of motion primitives supplies a succinct summary of the trajectories along

an unstable half-manifold that may be useful when designing a transfer in cislunar space.

Due to the feature space definition and the potential sparsity of trajectories discretized along

a hyperbolic invariant manifold, the original WEAC results may sometimes produce clusters that

appear to contain distinct smaller subclusters. Before refining the clusters, the initial WEAC result

for the arcs computed along the unstable half-manifold associated with the L1 Lyapunov orbit at
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Figure 6.20: Trajectory clusters U1-U35 computed along the unstable half-manifold directed to-
wards the Moon for an L1 Lyapunov orbit at CJ ≈ 3.1670; motion primitives are denoted in
bold.

CJ ≈ 3.1670 identifies 33 distinct clusters; 20 of these clusters are refined. A majority of these

clusters consist of one dense subcluster and one or more smaller sparse subclusters containing only
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Figure 6.21: Trajectory clusters U36-U69 computed along the unstable half-manifold directed to-
wards the Moon for an L1 Lyapunov orbit at CJ ≈ 3.1670; motion primitives are denoted in
bold.

a few members, typically ranging from 1 to 7 members. A total of 36 outlier arcs are identified

(approximately 3.01% of the total members of the dataset) such that 23 of the final 69 clusters
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contain only one or two members.

To demonstrate the utility of the cluster refinement procedure, consider clusters U11 and

U23 in Figure 6.20. The WEAC approach originally produced the cluster displayed in Figure 6.22a

that appears to contain one dense subcluster (U11) and one smaller sparse subcluster consisting of

6 members (U23); these subclusters are distinct despite sharing some similarities in their general

geometries. As a result, the cluster is automatically refined using the process outlined in Step 5

of the motion primitive construction procedure for hyperbolic invariant manifolds. A k-NN graph

is constructed from the original cluster and is used to separate it into two distinct clusters, U11

and U23, as displayed in Figure 6.22b. To provide additional context, a representation of the k-

NN graph used to separate U11 and U23 into distinctly separate clusters is displayed in Figure

6.22c. As previously discussed, due to the sparsity of the dataset there may be clusters with only

a few members that are incorrectly grouped with trajectories that are most similar to them in the

prescribed feature space. In these cases, the presented refinement approach is able to successfully

identify and form smaller subclusters to improve the final clustering result for the dataset while

limiting the burden on a human analyst. However, the refinement procedure may sometimes lead to

excessive fragmentation of the original clustering results; furthermore, a clustering approach is not

expected to be 100% accurate [3]. Consequently, selecting input parameters for both the clustering

procedure and the cluster refinement approach are considered design choices that may be iteratively

updated by a human analyst until the clustering result and set of motion primitives is considered

sufficient for the desired application; this process of tuning input parameters is simplified by using a

consensus clustering approach and is significantly less difficult and time-consuming than manually

inspecting datasets containing thousands of trajectories.
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(a) An original cluster produced by WEAC ap-
pearing to contain one dense subcluster and one
smaller sparse subcluster.

(b) Refined pair of clusters generated from the
original cluster produced by WEAC.

(c) Representation of the k-NN graph used to
refine the cluster displayed in Figure 6.22a.

Figure 6.22: Refinement of a single cluster produced by WEAC into two distinct clusters during
the motion primitive construction process for the unstable half-manifold of an L1 Lyapunov orbit
at CJ ≈ 3.1670 [99].



Chapter 7

Motion Primitive Approach to Trajectory Design in a Multi-Body System

The increasing number and variety of spacecraft that are expected to operate within cislunar

space and other multi-body gravitational environments throughout the solar system necessitates

the continued development of strategies for rapid trajectory design and design space exploration.

In the field of robotics, similar needs have been addressed using motion primitives that capture the

fundamental building blocks of motion and are used to rapidly construct complex paths. Inspired

by this concept, this work leverages motion primitives to construct a framework for rapid and in-

formed spacecraft trajectory design in a multi-body gravitational system. First, motion primitives

of fundamental solutions, e.g., selected periodic orbits and their stable and unstable manifolds, are

generated via clustering to form a discrete summary of segments of the phase space. Graphs of

motion primitives are then constructed and searched to produce primitive sequences that form can-

didate initial guesses for transfers of distinct geometries. Continuous transfers are computed from

each initial guess using multi-objective constrained optimization and collocation. In this chapter,

the primitive-based trajectory design framework is presented and demonstrated by evaluating a

planar transfer design scenario from an L1 Lyapunov orbit to an L2 Lyapunov orbit in the Earth-

Moon CR3BP with impulsive maneuvers. Note: An earlier version of the approach presented in

this chapter appeared in a conference paper by Smith and Bosanac [98].
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7.1 Primitive-Based Trajectory Design Process

In this chapter, a primitive-based initial guess construction framework is formulated to rapidly

generate trajectories in the CR3BP. This procedure consists of the following steps:

(1) Construct a motion primitive library that summarizes the characteristics of arcs that exist

within segments of the solution space.

(2) Construct a motion primitive graph that discretely approximates a subset of the continuous

solution space.

(3) Search the graph for motion primitive sequences that serve as candidates for initial guesses

for trajectories.

(4) Construct an initial guess for each trajectory by refining each motion primitive sequence.

(5) Correct each initial guess to produce a continuous trajectory with impulsive maneuvers

using direct collocation and optimization.

(6) Compute additional transfers spanning segments of the design space, where appropriate.

This chapter summarizes and demonstrates each step of the initial guess construction process using

the example of a planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov orbit in the

Earth-Moon CR3BP with impulsive maneuvers.

7.2 Step 1: Construct a Motion Primitive Library

The first step in the initial guess construction framework is to construct a library of motion

primitives along with information approximating the regions of the phase space spanned by arcs

with similar properties. In existing applications, motion primitives have been extracted using

a variety of methods such as manual labeling, analytical approximations via basis functions, or

clustering [29, 79, 112, 90]. Then, an initial guess for a trajectory may be coarsely constructed

from an ordered sequence of motion primitives within the library [117, 63, 29]. In the absence of
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general analytical expressions to describe the solution space and due to the significant burden of

manual labeling, data mining techniques are used to construct sets of motion primitives, as outlined

in Chapter 6, that are leveraged as the fundamental building blocks for initial guess construction.

Consider a set of motion primitives and their corresponding clusters generated from a larger

set of trajectories. The region within the phase space spanned by trajectories resembling a specific

motion primitive supplies information that is valuable in constructing a motion primitive graph that

is searched to form an initial guess for a trajectory. In robotics, a motion primitive is commonly

defined as a type of control input or fundamental type of action a robot may take to move any-

where within its environment unless hindered by a hardware or operational constraint [29, 79, 112].

However, trajectories in the chaotic environment of the CR3BP that resemble a specific motion

primitive, given the specific definition used in this work, only exist within a particular region of the

phase space. Furthermore, it may be challenging or computationally expensive to analytically or

numerically describe the volumes of the phase space spanned by each cluster of similar trajectories.

Thus, in the proof of concept presented in this investigation, a small set of representative members

from the cluster associated with each motion primitive is also stored in the motion primitive library.

This set is defined as Re = {qR(t) ∈ C}, where qR(t) is one of a small number of representative

trajectories that exist across cluster C corresponding to a specific motion primitive.

To select the representative trajectories that form the set Re for a given primitive without

requiring manual labeling or a prespecified sampling scheme, a straightforward clustering approach

is used. First, the cluster C associated with a given motion primitive is partitioned into k subclusters

using the k-means algorithm, which is computationally efficient and tends to produce evenly-sized

clusters [46]. A representative trajectory is then computed as the medoid from each subcluster [99].

Appended to this set of k trajectories is a set of trajectories that lie at the extrema of the values

of the following quantities calculated across each cluster: for periodic orbit families, the Jacobi

constant; and for hyperbolic invariant manifolds, the total propagation time along an arc. Finally,

if C contains fewer than k members, then all of the trajectories in C are labeled as representative

trajectories. Although this approach used within this proof of concept admits a low complexity,
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a parametric approximation that directly describes the region of the phase space spanned by arcs

with similar characteristics to the motion primitive is an interesting avenue for future work.

To demonstrate this step of the design process, fundamental solutions are generated to sup-

port the construction of a planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov orbit

in the Earth-Moon CR3BP. The selected L1 Lyapunov orbit exists at CJ ≈ 3.1670 whereas the

selected L2 Lyapunov orbit exists at CJ ≈ 3.1666. Both of these orbits are primitives of their

associated periodic orbit families, as computed in Chapter 6 and displayed in Figure 6.11, and

are unstable. Next, the planar stable and unstable half-manifolds of these L1 and L2 Lyapunov

orbits are generated towards the Moon. Trajectories within each half-manifold are propagated until

either completing up to 15 apses relative to the Moon in backward and forward time, respectively;

departing through the L1 or L2 gateways; or impacting the Moon. These trajectories that lie along

the stable or unstable manifolds of the selected periodic orbits are then sampled to produce a

larger set of arcs, each spanning a shorter time interval. Each arc begins at a perilune or apolune

and is propagated for up to 3 additional apses relative to the Moon, unless meeting the specified

termination conditions [99].

Motion primitives of the arcs along the stable and unstable half-manifolds of the selected L1

and L2 Lyapunov orbits are extracted using the procedure summarized in Chapter 6. Table 7.1 lists

the number of primitives calculated within each set. Furthermore, Figure 7.1 displays the initial

L1 Lyapunov orbit primitive, the target L2 Lyapunov orbit primitive, and a small subset of motion

primitives from their stable and unstable half-manifolds. Each primitive is denoted in bold and the

region of the configuration space spanned by the associated small set of representative trajectories

is depicted as a transparent surface. The entire set of primitives generated for these stable and

unstable manifolds appear in Appendix A. Although the planar stable and unstable manifolds

of a Lyapunov orbit are symmetric about the x-axis in the CR3BP, Table 7.1 reveals that they

are not summarized by an equivalent number of motion primitives. The small difference is likely

attributable to the nondeterministic nature of k-means clustering, which is used to generate part of

the ensemble of clustering results. Specifically, k-means clustering is observed to sometimes produce
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slightly different clusters of arcs in sparsely-covered regions of the higher-dimensional feature space

that is used to describe the arcs along each of the stable and unstable manifolds. Nevertheless,

these motion primitives supply a summary of the distinct geometries of arcs along each stable or

unstable half-manifold. Together, they form a condensed primitive library for the example design

scenario used to demonstrate the technical approach in this chapter.

Table 7.1: Motion primitives in the library for the planar transfer design scenario from an L1 to
L2 Lyapunov orbit.

Fundamental Solution Number of Primitives Approx. CJ

L1 Lyapunov orbit 1 3.1670

L1 Lyapunov orbit unstable manifold 69 3.1670

L1 Lyapunov orbit stable manifold 68 3.1670

L2 Lyapunov orbit 1 3.1666

L2 Lyapunov orbit unstable manifold 88 3.1666

L2 Lyapunov orbit stable manifold 89 3.1666

Figure 7.1: Summary of information stored in the motion primitive library for the planar L1 to
L2 Lyapunov orbit transfer design scenario in the Earth-Moon CR3BP: selected motion primitives
(bold) and regions spanned by the representative trajectories of each cluster (transparent).

7.3 Step 2: Construct a Motion Primitive Graph

A motion primitive graph is constructed to discretely represent a region of the continuous

solution space in a multi-body system. In general, a graph is a discrete data structure composed
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of a set of nodes and edges that is often used to model the properties and internal relationships of

a network of objects [63, 46]. When applied to motion primitive and funnel libraries, Frazzoli and

Majumdar and Tedrake defined the nodes of a graph as primitives or funnels and added directed

edges between only those nodes that may be composed in a sequence [29, 68]. Similar to this

formulation, this work defines each node in the graph as a motion primitive and its associated

representative trajectory set. Then, weighted, directed edges reflect the potential for selected

pairs of primitives to be composed in a sequence to produce a nearby continuous trajectory with

similar geometric properties. Using this application of graph theory, the trajectory design problem

is reframed as a discrete graph search problem. However, to incorporate designer expertise and

reduce computational complexity, the graph construction process is composed of two steps: (1)

constructing subgraphs reflecting the potential connectivity between motion primitives associated

with a single type of dynamical structure and (2) constructing a modular, high-level itinerary graph

to connect these subgraphs.

Formulating a motion primitive graph begins with determining the sequential composability

of an ordered pair of primitives; a property that is described by Majumdar and Tedrake as their

potential to produce a nearby trajectory [68]. In funnel libraries, this property is straightforwardly

calculated by identifying overlapping funnels [68]. However, to avoid overfitting to an incomplete

approximation of the region of the phase space spanned by trajectories with similar properties

to each primitive, the potential for sequential composability of two motion primitives qMPi
(t) and

qMPj
(t) and, potentially, their associated sets of representative trajectories Rei and Rej is estimated

using the following measure:

∆q = αpos∆r + αvel∆v (7.1)

where ∆r,∆v are the magnitudes of the position and velocity difference, respectively, between two

primitives and, potentially, their associated sets of representative trajectories. In addition, αpos

and αvel are selected to scale the position and velocity differences, respectively. Selecting αvel ̸= 0

is useful when maneuver requirements are a high design priority. With this definition, a lower value
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of ∆q corresponds to a higher potential for two sequentially composed motion primitives to produce

a nearby continuous path when corrected with impulsive maneuvers.

To evaluate the potential for sequential composability of two motion primitives, the state

difference between two trajectories is calculated. First, each trajectory is discretized into a sequence

of states: in the Lyapunov design example, each periodic orbit primitive is discretized into 50 states

equally spaced in arclength and each manifold arc primitive is discretized into apses with respect

to the Moon as well as its boundary states. Then, the state difference between two trajectories is

calculated using one of the following four measures:

(1) the difference between the final state of the first trajectory and the initial state of the

second trajectory

(2) the minimum difference between any state along the first trajectory and the initial state of

the second trajectory

(3) the minimum difference between the final state of the first trajectory and any state along

the second trajectory

(4) the minimum difference between any state along the first trajectory and any state along

the second trajectory

Figure 7.2 supplies a conceptual depiction of each of these state difference definitions; note that

the last three definitions enable identification of two trajectories with closely located segments

that could produce a nearby, continuous path. To evaluate Equation 7.1, the state difference may

be calculated using only the primitives or both the primitives and the associated representative

trajectory sets. If these representative trajectories are used, the state difference is calculated as the

minimum state difference between any representative trajectory (including the primitive) from the

first set and any representative trajectory (including the primitive) from the second set.

Using the potential for sequential composability, a subgraph of each motion primitive set is

independently formed. With a motion primitive at each node of a subgraph, weighted and directed



143

Figure 7.2: Conceptual depiction of Measures 1-4 used to compute the state difference between an
ordered pair of trajectories that are each summarized by a sequence of states.

edges are added to the knn nearest neighbors of each node where knn ≥ 0 is a parameter selected

by the trajectory designer. If knn = 0, the subgraph has no internal edges and therefore motion

primitives within the subgraph may not be sequentially composed. However, for knn > 0, the

neighbors for each primitive are identified using the knn lowest values of ∆q for each possible ordered

primitive pair, calculated using Measure 1 between the primitives and, if desired, their associated

representative trajectories. Measure 1 is used to prioritize reducing overlapping segments between

pairs of primitives derived from the same dynamical structure. However, this is a choice that may

be modified by the trajectory designer as appropriate. The edge weights are then assigned as the

sequential composability, ∆q, for each connected pair of primitives. A conceptual representation

of a subgraph is depicted in Figure 7.3a where each black circle is a node in the graph and is

connected to its three nearest neighbors in the set (knn = 3). As a result, the subgraph reflects

the potential for an ordered sequence of two motion primitives summarizing arcs along the same

dynamical structure to be useful in the initial guess construction process.



144

(a) (b)

Figure 7.3: (a) Conceptual representation of a subgraph and (b) a high-level itinerary graph for
the planar L1 to L2 Lyapunov orbit transfer design scenario in the Earth-Moon CR3BP.

The subgraphs are then connected according to a modular high-level itinerary graph that

is constructed by the trajectory designer. In particular, the designer specifies any external con-

nections, i.e., directed edges, between the subgraphs that each capture members of a primitive set

associated with a single dynamical structure. This step enables the designer to incorporate their

expertise, or even lack thereof, in a scenario into the structure of the graph. To construct the exter-

nal connections between subgraphs, each individual primitive in the source subgraph is connected

to its knn nearest neighbors in the target subgraph via directed edges. However, there is one excep-

tion: if the target subgraph only contains a single primitive then only the edges between the single

target primitive and its knn nearest neighbors in the source subgraph are created. Similar to the

subgraph construction process, the external edge weights are assigned as the potential sequential

composability between each connected pair of primitives: Measure 2 is used to compute ∆q if the

source primitive is a periodic orbit and the target primitive is a manifold arc but otherwise Measure

3 is used. Measure 3 prioritizes connecting the source primitive to target primitives that are closely

located with its terminal state while also allowing overlapping segments between connected pairs

of primitives from different subgraphs. These measures used to calculate the edge weights may also

be modified by the trajectory designer as appropriate. In the resulting complete motion primitive
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graph, the selected value of knn determines the degree of connectivity while also influencing the

computational complexity of storing and searching the graph.

To demonstrate the presented approach, consider a high-level itinerary graph constructed

using selected primitive sets from the library in Table 7.1 for the planar L1 to L2 Lyapunov orbit

transfer example. A conceptual representation of this graph appears in Figure 7.3b. In this figure,

the arrows within the icon associated with an unstable manifold of the initial L1 Lyapunov orbit

indicate that the nodes of the subgraph are connected by internal edges, thereby allowing multiple

primitives from the unstable manifold set to be sequentially composed in an initial guess. In

contrast, the icon for the L1 Lyapunov orbit denotes a subgraph with no internal edges, indicating

that two primitives from this set may not be sequentially composed. The unidirectional arrows

between subgraphs then indicate a desired order for composing primitives from each set. This

high-level itinerary graph indicates that in this example an initial guess may only be composed of

the following primitives in the specified order: one primitive from the L1 Lyapunov orbit family

set, one or more primitives from the unstable half-manifold of the selected L1 Lyapunov orbit,

one or more primitives from the stable half-manifold of the selected L2 Lyapunov orbit, and one

primitive from the L2 Lyapunov orbit family set. If these arrows were bidirectional, then primitives

from each subgraph could be composed in any order, consistent with the designer either having less

insight into the transfer geometry or considering a wider variety of solution itineraries.

For the planar L1 to L2 Lyapunov orbit transfer example, a motion primitive graph is con-

structed using the high-level itinerary graph in Figure 7.3b and the corresponding primitive sets

from the library in Table 7.1. The primitives within and between each subgraph are connected with

their knn = 15 nearest neighbors using αpos = 10 and αvel = 1, which are selected empirically to

capture both position and velocity differences between motion primitives but emphasize position

differences. Additionally, the set of representative trajectories associated with each motion primi-

tive, excluding the selected initial and target orbit primitives, is incorporated into the edge weight

computations. In this case, the sets of representative trajectories associated with the selected initial

and target orbit primitives are not considered because the exact orbits are desired. However, this
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(a) (b)

Figure 7.4: A motion primitive sequence for a planar transfer from an L1 to L2 Lyapunov orbit
in the Earth-Moon CR3BP displayed in (a) the constructed motion primitive graph and (b) the
configuration space in R.

may not always be the case and a human analyst may decide when it is applicable to incorporate

the representative trajectory sets for the initial and target orbit primitives; incorporating these sets

may be applicable when the designer is more generally interested in transfers between orbits that

simply resemble the selected initial and target orbit primitives. The resulting motion primitive

graph is displayed in Figure 7.4a: each node in the graph is depicted as a black dot, the internal

edges within the L1 Lyapunov unstable manifold subgraph are denoted in red, the internal edges

within the L2 Lyapunov stable manifold subgraph are denoted in light blue, and all external edges

between nodes in different subgraphs are depicted with dark blue arrows. Although challenging for

a designer to visualize, this motion primitive graph is searched to construct coarse, primitive-based

initial guesses for trajectories of distinct geometries.

7.4 Step 3: Identify Candidate Motion Primitive Sequences

A motion primitive graph is searched to produce primitive sequences that support coarsely

constructing initial guesses for trajectories. There are many different graph search techniques that

may be used. In this proof of concept, the common brute-force search algorithm, depth-first search
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(DFS), is used to enumerate all potential paths in a motion primitive graph from an initial node

to a target node with a desired length [63]; the use of alternative and potentially more efficient

search algorithms is an avenue of future work. The sequence length is defined as the number of

primitives assembled in a single sequence. The quality of each candidate primitive sequence in

predicting a nearby continuous trajectory is then captured by the average edge weight along the

path. These candidate sequences are then ranked based on their quality and the trajectory designer

may consider a desired subset for refinement and corrections in subsequent steps.

Given a ranked list of candidate primitive sequences generated from a motion primitive graph,

a designer may explore the design space by either examining all possible sequences or querying the

list of candidates. In this work, a straightforward filtering approach is used for rapid exploration:

only the top Q sequences that each begin with a unique motion primitive after the initial node

are examined. Of course, some transfers with unique geometries may be generated from two

sequences of equal length that share a common motion primitive after the initial node. However,

this approach enables a trajectory designer to systematically sift through a smaller ranked list as

opposed to potentially thousands or millions of primitive sequences. Furthermore, this approach

biases the filtered subset of primitive sequences towards exhibiting sufficiently distinct geometries

to support a proof of concept. An interesting avenue of future work involves examining alternative

and, potentially, automated approaches to querying the unfiltered list to produce the best unique

primitive sequences connecting the initial and target nodes.

To demonstrate this step of the framework in the context of the planar L1 to L2 Lyapunov

orbit transfer example in the Earth-Moon CR3BP, the top-ranked sequence of four primitives with

the lowest average edge weight is generated from the motion primitive graph displayed in Figure

7.4a. This primitive sequence is plotted in the Earth-Moon rotating frame in Figure 7.4b: each

primitive is denoted in bold using a distinct color along with a transparent region generated from

the associated representative trajectories. Furthermore, the initial (final) state of each primitive

is denoted with a filled (empty) circle. This candidate sequence is not guaranteed to predict a

nearby continuous trajectory with similar geometric properties. However, a trajectory designer
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may examine the primitive sequence and average value of ∆q to determine whether to perform

further analysis and refinement. Although this example presents only the top-ranked sequence of

four motion primitives, it supports demonstrating the coarse construction of an initial guess for

a transfer using motion primitives. Additional primitive sequences for this design scenario are

presented in Chapter 8.

In this step of the primitive-based trajectory design process, a path may not exist between

the selected initial node and the selected target node in the constructed motion primitive graph.

The existence of a path, or multiple paths, between the initial and target nodes depends on the

structure and connectivity of the motion primitive graph. If a path between the initial and target

nodes does not exist, a human analyst needs to revert back to Step 2 and construct a modified

motion primitive graph. The human analyst may adjust the structure of the high-level itinerary

graph, select different measures for evaluating the sequential composability of primitives within

each subgraph and between subgraphs, and/or adjust the value of knn used to create the edges in

the motion primitive graph. It is also important to note that the existence of a path between the

initial and target nodes may depend on the selected path length. Therefore, an avenue of future

work is to characterize the properties of a motion primitive graph in order to inform and assist a

human analyst in either (1) selecting a range of suitable path lengths to evaluate or (2) reverting

back to Step 2 to refine the structure and connectivity of the motion primitive graph.

7.5 Step 4: Construct an Initial Guess from a Primitive Sequence

A candidate motion primitive sequence is refined to improve the quality of a coarsely-

constructed initial guess and facilitate a successful numerical corrections process. The primitive

sequence displayed in Figure 7.4b possesses state discontinuities between each consecutive pair

of primitives and exhibits a significant overlap between the second and third primitives in the

sequence. The first refinement step is to morph the primitives to further reduce the state discon-

tinuities along the initial guess. Recall that a finite set of representative trajectories with similar

properties to each motion primitive are also stored within the library; using a combination of these
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representative trajectories may produce a better initial guess than using the primitives. Thus, all

possible candidate initial guesses with similar geometry to the original motion primitive sequence

are constructed by using either each motion primitive or one of the associated representative trajec-

tories. As discussed in Section 7.3, the representative trajectory sets for the initial and target orbit

primitives may be excluded depending on the design scenario. The average value of the potential

sequential composability (defined in Section 7.3 as the quantity ∆q) along each candidate sequence

of trajectory segments is then computed using the corresponding state difference measures from

the motion primitive graph for each consecutive pair of primitives. The sequence of segments with

the smallest average value of ∆q produces the morphed initial guess.

Generating the morphed initial guess may suffer from combinatorial explosion depending

on the length of the original primitive sequence as well as the number of representative trajec-

tories associated with each primitive. Figure 7.5 provides a conceptual example of the potential

combinations of trajectory segments for a four-primitive sequence where each primitive, denoted

using the same color scheme as Figure 7.4b, has three associated representative trajectories. In

this conceptual example, there are 256 potential sequences and the sequence with the smallest

average of ∆q produces the morphed initial guess. However, the number of potential sequences

during the morphing process may become intractable as longer primitive sequences and larger sets

of representative trajectories associated with each motion primitive are considered. To mitigate

this challenge, the morphing process may be split into a series of smaller combinatorial problems.

For example, consider a sequence of 10 primitives that is split into three subsequences where the

subsequences consist of primitives 1-4, 5-8, and 9-10, respectively. The morphing process is then

applied to each subsequence individually and a desired number of the top-ranked candidates are

retained for each subsequence. Finally, the candidate subsequences are successively merged such

that only the desired number of top-ranked candidates are retained after each merging step until

the final merger where the top-ranked sequence serves as the morphed initial guess. This alter-

native morphing process is only applied in this work for motion primitive sequences comprised of

more than six primitives. In this process, the human designer specifies the maximum number of
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Figure 7.5: Conceptual depiction of the potential combinations of trajectory segments during the
morphing process for a four-primitive sequence where each primitive, denoted using the same color
scheme as Figure 7.4b, has three associated representative trajectories.

primitives to include in each subsequence and selects the desired number of top-ranked candidates

to retain for each morphing subproblem.

The second refinement step is to trim each segment in the morphed initial guess to remove any

overlapping portions. The trimming process is applied only to the internal segments between the

initial and final periodic orbits and is completed automatically using one of three different methods:

forward, backward, or joint sequential trimming. Figure 7.6 depicts a conceptual example of each

trimming method. The forward method trims each segment to start at its closest state in the phase

space relative to the final state of the previous segment in the sequence. Conversely, the backward

method trims each segment to end at its closest state in the phase space relative to the initial state

of the next segment in the sequence. Finally, the joint method trims each pair of segments to begin

or end at their closest states in the phase space. In each case, the difference between two individual

states is evaluated using ∆q as defined in Section 7.3.

(a) (b) (c)

Figure 7.6: Conceptual depiction of the (a) forward, (b) backward, and (c) joint sequential trimming
methods that may be used to refine an ordered sequence of primitives.
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A single trimming method is not generally applicable to all candidate initial guesses; therefore,

the trimming process that produces the best refined initial guess is selected. First, the morphed

initial guess is trimmed using each of the three possible trimming methods. Then, the average value

of the potential sequential composability along each trimmed sequence of segments is computed

using the following measures: Measure 2 is used to measure the state difference between the initial

periodic orbit and the second segment in the sequence; Measure 1 is used to measure the state

difference between each pair of interior segments because the interior segments have been trimmed;

and Measure 3 is used to measure the state difference between the second to last segment in the

sequence and the final periodic orbit. Note that Measures 2 and 3 are used here to supply flexibility

in the departure or arrival locations along a periodic orbit. Similar to the morphing process, the

trimming method that produces an initial guess with the lowest average value of ∆q is selected to

produce the refined initial guess. Finally, there is a possibility that a segment may be trimmed

such that it possesses a brief integration time and does not impact the geometry of the initial

guess, but may cause numerical issues during corrections. Therefore, segments that do not exceed

a specified minimum integration time are removed from the initial guess; in this work, this threshold

is selected empirically as 0.01 nondimensional time units and may be adjusted as applicable based

on the design scenario.

Using the outlined refinement process, the primitive sequence depicted in Figure 7.4b is

morphed and trimmed. Figure 7.7 displays the original primitive sequence in dashed gray and the

resulting refined initial guess in blue. The overlap between the second and third arcs, as evident

in Figure 7.4b, is removed using backward sequential trimming. Morphing the initial guess and

then trimming the resulting segments significantly improves the quality of the initial guess in the

sensitive region of the phase space near the Moon.

7.6 Step 5: Recover a Continuous, Optimal Trajectory

The final step of the initial guess construction framework is to compute a continuous trajec-

tory that resembles a primitive-based initial guess. To implement this step, the goal is to correct
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Figure 7.7: Refined primitive-based initial guess for a planar transfer from an L1 to L2 Lyapunov
orbit in the Earth-Moon CR3BP.

the trajectory while also minimizing the dissimilarities between the final continuous trajectory and

the initial guess in the configuration space. In robotic motion planning as well as periodic orbit

computation in multi-body systems, constrained optimization methods have previously been used

to compute trajectories with similar geometries as a reference path [47, 8]. However, computing a

geometrically similar solution to an initial guess may not be the only design objective for a mission

scenario. Maneuver magnitudes are also often a common concern. Thus, a multi-objective con-

strained optimization problem is formulated using a free variable and constraint vector formulation

of collocation applied to a transfer between two periodic orbits with impulsive maneuvers.

First, for transfers between two periodic orbits in the CR3BP, the periodic orbits are removed

from the initial guess and the corrections scheme is formulated such that the transfer is constrained

to depart from the desired initial orbit and arrive onto the desired target orbit. Each segment of the

initial guess is then discretized into a set of arcs. For the planar L1 to L2 Lyapunov orbit transfer

example, each segment is discretized into arcs based on apses with respect to the Moon and then

each resulting arc is further discretized into an additional set of 5 arcs with equal arclength to

produce an initial mesh. The number of arcs with equal arclength between each apsis is a design

parameter that may be adjusted by the trajectory designer. However, if the time elapsed along
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the j-th arc in the i-th segment, ∆tij , produced during the discretization step is below a specified

threshold then it is not further discretized into smaller arcs. In this work, the threshold on the

minimum value of ∆tij is 0.10 nondimensional time units; this quantity is selected empirically and

may be altered by the trajectory designer. Adjusting the discretization of each segment in this

manner attempts to avoid placing too many nodes in a short span of time and is observed to

facilitate better convergence behavior in the corrections process.

Given a discretized initial guess and using the collocation approach outlined in Chapter 4,

7-th order polynomials and LGL nodes are used to place collocation nodes along each arc and

formulate both the continuity and defect constraints for the constrained optimization problem.

The free nodes and ∆tij along each arc of the initial guess are included in the free variable vector,

as defined in Equation 4.18. The bounds on each ∆tij variable are set as [10
−5, 1.0] where the upper

limit is greater than the time along any arc in the initial guess and may be adjusted accordingly.

Two additional free variables, ∆tdepart and ∆tarrival, are defined as the time measured from specified

states along the initial and final periodic orbits. The quantities are included in the free variable

vector to allow the departure and arrival locations along each periodic orbit to vary. The bounds

on ∆tdepart are set as [−Ti, Ti] and the bounds on ∆tarrival are set as [−Tf, Tf], where Ti and Tf

are the period of the initial and target orbit, respectively. Furthermore, ∆tdepart is initialized in

the range [−Ti/2, Ti/2] and ∆tarrival is initialized in the range [−Tf/2, Tf/2] based on the closest

departure and arrival states for the initial guess.

A set of boundary constraints is required to ensure the transfer departs from the desired

initial orbit and arrives onto the desired target orbit. The free variable ∆tdepart determines the

departure location along the initial orbit and ∆tarrival determines the arrival location along the

target orbit. Figure 7.8 depicts a conceptual example of ∆tdepart and ∆tarrival where the resulting

state at departure is denoted as qdepart and the resulting state at arrival is denoted as qarrival.

Assuming impulsive maneuvers are used to depart from the initial orbit and arrive onto the target



154

Figure 7.8: Conceptual depiction of the boundary conditions for a transfer between two periodic
orbits in the CR3BP.

orbit, the boundary constraints are defined as

Fdepart = r11,1 − rdepart

Farrival = r
nseg
mi,n − rarrival

(7.2)

and the nonzero elements of the Jacobian matrix for differential corrections are defined as

∂Fdepart

∂q11,1
=

[
[I3×3] [03×3]

]
∂Fdepart

∂∆tdepart
= −ṙdepart

∂Farrival

∂q
nseg
mi,n

=

[
[I3×3] [03×3]

]
∂Fdepart

∂∆tarrival
= −ṙarrival

(7.3)

These boundary constraints provide flexibility in the departure and arrival conditions of the transfer

and are incorporated in the corrections process for computing maneuver-enabled transfers between

the initial and target orbit.

Impulsive maneuvers are placed along the transfer at locations that are specified by a trajec-

tory designer. In this investigation, maneuvers are applied at the beginning and end of the initial

guess to depart from the initial orbit and arrive onto the target orbit. Impulsive maneuvers are

also placed between each neighboring pair of trimmed primitives and/or at apses with respect to

a specified reference point. While mission requirements for specific applications may constrain the

placement of these maneuvers at alternative locations, this maneuver placement approach supports
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the proof of concept in this work. However, if two consecutive maneuvers are placed too close

together in configuration space then one maneuver is removed: the departure and arrival maneu-

vers are always retained and the maneuvers placed between consecutive trimmed primitives are

prioritized above maneuvers at apses. In this work, a maneuver is removed when two consecutive

maneuvers are within 0.03 nondimensional distance units; a threshold that is selected empirically

but may be adjusted as needed.

Using these definitions, a constrained optimization problem is formulated to compute a tra-

jectory that balances geometrically resembling a primitive-based initial guess with reducing the

maneuver requirements. A summary of the corrections procedure is depicted in Figure 7.9. First,

the free variable vector is defined as Vtrans = [V T,∆tdepart,∆tarrival]
T and the constraint vector is

defined as Ftrans(Vtrans) = [F (V )T,FT
depart,F

T
arrival]

T, where V and F (V ) are defined in Equa-

tions 4.18 and 4.21, respectively. Then, an objective function is formulated as a linear combination

of the difference in geometry between two trajectories and the cumulative maneuver requirements.

This objective function is defined as

J(Vtrans) = wgeo((Vpos − VIGpos)
T(Vpos − VIGpos)) + wman

(
nman∑
i=1

∆v2i

)
(7.4)

where Vpos and VIGpos reflect only the position components of the free variable vector at the current

iteration and the free variable vector of the initial guess, respectively; wopt = [wgeo, wman] are the

relative weights of the geometric difference and maneuver requirement terms, respectively; ∆vi is

the magnitude of the i-th impulsive maneuver; and nman is the total number of maneuvers. Given

an initial guess, the open source Interior Point OPTimizer (IPOPT) software library equipped with

the MA97 linear solver from the Harwell Subroutine Library (HSL) is used to solve the trajectory

corrections problem while minimizing this objective function with the selected values of wgeo and

wman for up to 1000 iterations [111, 51].

The mesh associated with the solution to the constrained optimization problem is then refined

to ensure the trajectory approximated by a sequence of polynomials meets a desired level of accu-

racy. As depicted in Figure 7.9, the mesh refinement process involves sequentially distributing error
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along the solution, removing any unnecessary arcs to reduce the size of the parameter optimization

problem, and finally adding arcs to the mesh to ensure the solution is numerically accurate. These

mesh refinement steps are implemented using the approach outlined in Chapter 4 while holding

the time-of-flight (TOF) of the trajectory constant. After each refinement step, the updated mesh

supplies an initial guess for the trajectory that is corrected via optimization as indicated with a gold

triangle in Figure 7.9. This optimization step during the merging and splitting phases of refinement

uses wgeo = 1.0 and wman = 0.0 as indicated in Figure 7.9 to prioritize preserving the geometry

of the refined solution. Each refinement step continues until the terminal conditions outlined in

Chapter 4. Following this mesh refinement process, the final output is a continuous trajectory that

meets a desired accuracy threshold while also balancing minimizing maneuver requirements and

retaining the geometry of the initial guess.

The numerical corrections procedure summarized in Figure 7.9 is applied to the initial guess

displayed in Figure 7.7 for the L1 to L2 Lyapunov orbit transfer example. The objective function

weights in Equation 7.4 are selected as wopt = [0.9, 0.1] to prioritize maintaining the transfer ge-

ometry of the initial guess while computing a more maneuver-efficient solution. Of course, these

Figure 7.9: Conceptual overview of the corrections algorithm used to compute a trajectory that
balances resembling a primitive-based initial guess with reducing maneuver requirements.
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weights may be adjusted to prioritize a different balance of these two objectives. Following op-

timization, the resulting continuous trajectory is displayed in Figure 7.10 with the refined initial

guess displayed in dashed gray, the initial and target periodic orbits displayed in solid gray, and the

final continuous solution displayed in solid blue. The corrected transfer includes a departure ma-

neuver of 2.71 m/s, an arrival maneuver of 6.47 m/s, a total ∆v of 9.18 m/s, and a TOF between

the initial and final periodic orbits that is equal to 22.34 days. This trajectory closely resembles

the refined initial guess due to the objective function formulation, the selected values of the coeffi-

cients wgeo and wman, and the quality of the initial guess. Despite the foundational nature of this

example, it demonstrates the procedure for using motion primitives to coarsely construct an initial

guess with a desired transfer geometry and generate a nearby continuous trajectory.

Figure 7.10: Continuous 22.34 day planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov
orbit in the Earth-Moon CR3BP, computed from a primitive-based initial guess.

Recall from Section 7.4, a primitive-based initial guess is not guaranteed to predict a nearby

continuous trajectory with similar geometric properties. As a result, the refinement process out-

lined in Section 7.5 is used to improve the quality of a primitive-based initial guess. However, this

refinement process still does not guarantee the existence of a continuous solution that is geomet-
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rically similar to the initial guess. Therefore, the corrections algorithm presented in this section

may fail to converge in some cases. If the corrections algorithm fails to converge, a human analyst

may adjust a variety of design parameters and rerun the algorithm to attempt to achieve successful

convergence. For example, alternative discretization and maneuver placement approaches may be

used, higher-order polynomials may be used in the collocation scheme, additional path constraints

may be incorporated in the constraint vector, the selected values of wopt may be adjusted, and

so forth. Adjusting one or more of these design parameters may produce a continuous solution.

However, the corrections algorithm may still fail to converge depending on the quality of the initial

guess and the existence of a nearby solution to the dynamical system. If needed, a human analyst

may then revert back to Steps 3-4 of the design framework to identify an alternative primitive-based

initial guess if one exists.

7.7 Step 6: Explore the Transfer Design Space

The primitive-based trajectory design process presented in this chapter supports efficient

exploration of a transfer design space via rapid construction of transfers of various geometries,

flight times, and maneuver requirements. First, a set of individual transfers are generated by

correcting multiple initial guesses formed using unique sequences of motion primitives. Because

motion primitives are extracted in this work to represent the finite array of geometries of arcs

along individual orbit families and their stable or unstable manifolds, distinct sequences of motion

primitives support the recovery of point solutions with distinct geometries. Next, each of these point

solutions is used as a foundation for exploring the design space in its local neighborhood. Through

natural parameter continuation, additional transfers are computed by varying the weights, wgeo and

wman, used in the multi-objective optimization process outlined in Section 7.6. As wgeo is decreased

and wman is increased, the resulting transfers place more emphasis on minimizing the cumulative

maneuver requirements and less emphasis on closely resembling the initial guess. Accordingly,

for each unique primitive sequence, this numerical continuation process tends to produce a set

of trajectories with gradually varying geometries, flight times, and maneuver requirements. This
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section supplies a description of the technical approach for each component of the design space

exploration as well as selected examples for demonstration purposes; however, a wider array of

results appear in Chapter 8.

A motion primitive graph that has been constructed for a specific transfer scenario is searched

to produce a variety of motion primitive sequences that could lead to transfers of distinct geometries.

Using the search methodology outlined in Section 7.4, these sequences may possess either distinct

lengths or correspond to the top Q ranked motion primitive sequences of the same length; recall

that the value of Q is selected by the trajectory designer and may be bounded based on the

connectivity of the graph. Then, each unique sequence of motion primitives produced during this

search is used to construct an initial guess that is corrected using the procedure outlined in Section

7.6. Figure 7.11 displays an example of two additional planar and maneuver-enabled transfers with

distinct geometries computed for the L1 to L2 Lyapunov orbit transfer design scenario explored

throughout this chapter. The transfer displayed in Figure 7.11a is constructed from a four-primitive

sequence. Although this transfer completes a single revolution around the Moon, it exhibits a

distinct geometry compared to the transfer presented in Figure 7.10. On the other hand, the

transfer displayed in Figure 7.11b is constructed from a six-primitive sequence, exhibiting a more

complex geometry with multiple revolutions around the Moon while also possessing some segments

that resemble arcs along the simpler transfer presented in Figure 7.10. Repeating this procedure

for each unique sequence of motion primitives produces a set of continuous transfers with various

geometries.

Natural parameter continuation is used to compute additional trajectories with a similar

geometry to each corrected transfer but with varying flight times and maneuver requirements.

These transfers are generated by varying the relative values of the weights wgeo and wman used

in the multi-objective optimization process described in Section 7.6. In this work, these weights

are linearly varied from wopt = w1 = [0.9, 0.1] to wopt = w2 = [0.1, 0.9]; wgeo is decremented

by 0.05 and wman is incremented by 0.05 during each iteration. This continuation process begins

with a corrected transfer (computed using wopt = w1) that already possesses a mesh of nodes
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(a) Planar transfer constructed from a four-
primitive sequence.

(b) Planar transfer constructed from a six-
primitive sequence.

Figure 7.11: Examples of planar transfers with distinct geometries from an L1 Lyapunov orbit to
an L2 Lyapunov orbit in the Earth-Moon CR3BP, computed from primitive-based initial guesses.

with a suitable error distribution, i.e., the output of Block 4 in Figure 7.9. Each iteration of the

continuation procedure then repeats the corrections process depicted in Figure 7.9 by updating

wopt, starting in Block 2, and then skipping the error distribution loop during mesh refinement

by moving directly to the gray dashed box in Block 3. As these weights are varied, the corrected

solution from the previous iteration serves as the initial guess for the current iteration. However,

to prevent the optimizer from producing solutions with significantly longer flight times, e.g., by

adding revolutions near the initial or final orbits, as wgeo is decreased and wman is increased, the

transfer TOF is constrained at each step of the continuation process to not exceed an increase of

5% from the last computed solution; this threshold may be adjusted as desired. This constraint is

only applied in Block 2 because the TOF is fixed during the mesh refinement process. Finally, the

continuation process is terminated early if the optimizer does not converge on a solution during a

given iteration. The output of the natural parameter continuation procedure is a set of transfers

with gradually varying geometries, flight times, and maneuver requirements.

The process for using natural parameter continuation to produce transfers with varying ma-

neuver requirements and flight times is applied to the transfer displayed in Figure 7.11a. The center
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of Figure 7.12 presents a summary of the flight time and total ∆v of each transfer computed with

distinct values of the weights wgeo and wman. For clarity, the characteristics of each transfer are

indicated by a marker that varies from black when wopt = w1 to copper when wopt = w2. For se-

lected values of these weights, annotated and numbered in the center of Figure 7.12, the associated

transfers are plotted at the boundaries of the figure. The four solutions displayed in Figure 7.12

demonstrate the gradual evolution of geometry, TOF, and maneuver requirements across transfers

in the local vicinity of the first solution displayed in Figure 7.11a.

Figure 7.12: Evolution of the geometry, TOF, and maneuver requirements across transfers in the
local vicinity of the point solution displayed in Figure 7.11a, computed using the continuation
procedure that varies the weights of the multi-objective optimization problem.

In some cases, distinct primitive sequences may produce geometrically similar solutions after

either refinement or the application of natural parameter continuation. Accordingly, the complete

set of transfers that are generated during the design space exploration are grouped by their geometry

using a k-NN graph. The geometric difference between two transfers, A and B, is assessed using a

modified Hausdorff distance, dH(A,B), that is calculated as

dH(A,B) = max


∑NA

i=1 min
j=1,...,NB

∥rAi − rBj∥

NA
,

∑NB
i=1 min

j=1,...,NA

∥rBi − rAj∥

NB

 (7.5)

where NA (NB) is the number of states sampled along trajectory A (B) and rAi (rBi) is the i-th
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position vector sampled along trajectory A (B) and measured relative to a specified reference point

[23]. Each transfer is discretized by sampling the initial state of each arc of its mesh generated

during corrections as well as the final state of the entire transfer. By using a modified Hausdorff

distance to evaluate the difference between two transfers in the configuration space, each transfer

may be sampled with a distinct number of nodes.

A k-NN graph is constructed by connecting each transfer to its knn nearest neighbors via

edges, assessed using dH(A,B). However, if two transfers do not mutually consider each other a

nearest neighbor, their edge is removed; this step assists with identifying a single transfer with a

unique geometry. In addition, a TOF difference limit denoted as l∆TOF is also used to determine if

an edge should be removed between two transfers due to differences in TOF. The parameter l∆TOF

may be specified as either a percentage value or a time quantity. If l∆TOF is specified as a percentage

value, then the edge between two transfers, A and B, is removed if |(TOFB − TOFA)|/TOFA >

l∆TOF; otherwise, if l∆TOF is specified as a time quantity, then the edge between transfers A and

B is removed if |TOFB − TOFA| > l∆TOF. The parameters TOFA and TOFB are the flight times

of transfers A and B, respectively. Each group of geometrically similar transfers is then identified

as each connected component in the k-NN graph; this approach is similar to the process used for

cluster refinement. Finally, manual inspection is performed to further separate any transfers that

admit similar yet distinct geometries. Leveraging the primitive-based trajectory design process

presented in this chapter enables this rapid exploration of a transfer design space and the ability

to efficiently identify solutions with distinct geometries.



Chapter 8

Primitive-Based Trajectory Design Space Exploration

The primitive-based initial guess construction framework presented in Chapter 7 enables rapid

generation of trajectories with distinct geometries in a multi-body system. In this chapter, a variety

of transfer design scenarios are explored to demonstrate the utility of this approach. Each transfer

design scenario considered in this work is evaluated within the Earth-Moon system; however, the

design framework may be generally applied within any multi-body system. First, a more expansive

exploration of the planar transfer design scenario from an L1 Lyapunov orbit to an L2 Lyapunov

orbit with impulsive maneuvers is conducted. Then, a spatial transfer design scenario from an L1

northern halo orbit to an L2 northern halo orbit with impulsive maneuvers is explored. Finally, a

subset of the transfer design space between an L2 southern NRHO and selected DROs is explored

due to the recent interest in the use of NRHOs for cislunar exploration. Each of these transfer

design scenarios showcases different capabilities of the presented framework: the Lyapunov and

northern halo orbit transfers demonstrate the ability to design both planar and spatial transfers,

respectively; whereas, the L2 southern NRHO to DRO transfer scenario demonstrates the ability to

design transfers between mission orbits with large energy and geometric differences. The primitive-

based trajectory design process supports efficient exploration of each transfer design space via rapid

construction of transfers of various geometries, flight times, and impulsive maneuver requirements.

Note: An earlier version of the results and discussion presented in Sections 8.1 and 8.2 appeared

in a conference paper by Smith and Bosanac [98].
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8.1 Planar Transfers from an L1 to L2 Lyapunov Orbit in the Earth-Moon

System

8.1.1 Constructing Transfers with Distinct Geometries

Planar transfers are constructed from an L1 Lyapunov orbit at CJ ≈ 3.1670 to an L2 Lya-

punov orbit at CJ ≈ 3.1666 in the Earth-Moon CR3BP with impulsive maneuvers. Figure 8.1

displays the selected Lyapunov orbits in the Eath-Moon rotating frame and Table 8.1 lists the

properties of each orbit. The transfers constructed between these orbits are computed using a mo-

tion primitive graph that includes primitives extracted from both the stable and unstable manifolds

of the initial and final orbits, as listed in Table 7.1 and displayed in Appendix A. The associated

high-level itinerary graph is depicted in Figure 8.2, allowing motion primitives that summarize arcs

along each manifold to be composed in any order. Accordingly, this graph expands both the array

of primitives and their potential sequences compared to the graph in Figure 7.3b previously used

for demonstration purposes in Chapter 7. The graph used in this section may, for example, reflect

that the trajectory designer possesses limited insight into a desired itinerary or may be interested

in exploring a wider region of the solution space. To construct the motion primitive graph, the

following configuration parameters are used: knn = 15, αpos = 10, and αvel = 1. Additionally, the

set of representative trajectories associated with each motion primitive, excluding the selected ini-

tial and target orbit primitives, is incorporated into the edge weight computations and the average

edge weight is used to evaluate the quality of each primitive sequence. The computation time for

constructing the motion primitive graph in this scenario is on the order of 100 minutes using an

iMac with a 3GHz 6-Core Intel Core i5 processor.

A variety of initial guesses are constructed by searching the motion primitive graph in Figure

8.2 to produce unique sequences of four, five, and six motion primitives. There are a total of 665,

45,202, and 2,681,481 primitive sequences from the initial node to the target node in the graph

consisting of four, five, and six primitives, respectively; of course, not all primitives sequences

necessarily predict the existence of a nearby continuous and maneuver-enabled trajectory. However,
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Figure 8.1: Configuration of the initial L1 Lyapunov orbit at CJ ≈ 3.1670 and the target L2

Lyapunov orbit at CJ ≈ 3.1666 in R for the Lyapunov orbit transfer design scenario in the Earth-
Moon CR3BP.

Table 8.1: Properties of the initial L1 Lyapunov orbit and the target L2 Lyapunov orbit for the
Lyapunov orbit transfer design scenario in the Earth-Moon CR3BP.

Initial Orbit Target Orbit

Orbit Type L1 Lyapunov L2 Lyapunov

CJ 3.167002726384443 3.166629662653735

TPO 2.771947883503871 (≈ 12.04 days) 3.384017960434504 (≈ 14.70 days)

s1 2206.96970174085 1383.83755114156

s2 2.01702391788686 1.95156115640437

using the filtering process presented in Section 7.4, the Q = 15 top-ranked sequences that begin with

a unique primitive are examined for each path length. The result is 45 primitive sequences that are

each refined to produce an initial guess for a transfer. The computation time required to search for

and construct these 45 primitive-based initial guesses is on the order of 100 minutes using an iMac

with a 3GHz 6-Core Intel Core i5 processor; a majority of the computation time is associated with

computing the sequences of six motion primitives. The time complexity of searching the motion

primitive graph and refining each top-ranked motion primitive sequence increases significantly as

the path length increases due to the combinatorial challenges of using DFS. As discussed in Chapter
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Figure 8.2: High-level itinerary graph for a planar L1 to L2 Lyapunov orbit transfer design scenario
in the Earth-Moon CR3BP.

7, the use of alternative and more efficient search algorithms is an avenue of future work. Finally, a

similar computation time is also observed for constructing the initial guesses in the transfer design

scenarios presented in Sections 8.2 and 8.3.

Each initial guess is corrected with several unconstrained impulsive maneuvers. Specifically,

each initial guess incorporates a departure maneuver from the initial orbit, an arrival maneuver

onto the target orbit, a maneuver between each neighboring pair of segments, and a maneuver

at each apse with respect to the Moon. However, as discussed in Section 7.6, a maneuver is

removed if two consecutive maneuvers are placed too close together in configuration space. Of

course, maneuver placement schemes may vary across applications and be subject to constraints,

potentially impacting the corrected trajectories. However, with this maneuver placement scheme,

all 45 initial guesses are successfully corrected using wopt = [0.9, 0.1] to produce nearby continuous,

maneuver-enabled, and planar transfers from the desired initial L1 Lyapunov orbit to the target

L2 Lyapunov orbit.

An initial summary of the transfers that solve the multi-objective optimization problem with

wopt = [0.9, 0.1] is presented using the cumulative maneuver requirements for each transfer and
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the sequential composability of the associated refined initial guesses. In Figure 8.3a, the total ∆v

of each transfer is displayed on the vertical axis using a log10 scale and the horizontal axis displays

the normalized average potential for sequential composability, ∆q̌avg, of the refined initial guess for

each transfer; a min-max normalization scheme is used to normalize ∆qavg between 0 and 1 for each

path length. In Figure 8.3a, the properties of corrected transfers that do not impact a spherical

approximation of the Moon are indicated with blue markers, whereas gray markers correspond to

continuous transfers that impact the Moon. Although there is no explicit altitude constraint during

corrections, only three of the corrected transfers impact the Moon. Furthermore, red markers, where

applicable, correspond to discontinuous trajectories that are not successfully corrected; their values

of total ∆v are estimated using the free variable vector at the final iteration of the optimization

algorithm. Finally, as denoted in Figure 8.3, the shape of each marker indicates the number of

sequentially composed motion primitives used to compute the associated transfer. Across the set

of 45 transfers, Figure 8.3a reveals a gradual increase in total ∆v requirements, from 9.96 m/s to

1150.83 m/s, with increasing values of ∆q̌avg. A wide range of ∆v requirements is expected given

the variability in the quality of each initial guess, the emphasis placed on recovering transfers that

resemble their respective initial guesses, and the use of unconstrained impulsive maneuvers.

Continuation is used to compute additional transfers that prioritize minimizing maneuver

requirements more heavily than resembling the initial guess. Specifically, each of the 45 corrected

transfers displayed in Figure 8.3a forms an initial guess for the natural parameter continuation

process discussed in Section 7.7. The relative optimization weights are gradually varied from

w1 = [0.9, 0.1] to w2 = [0.1, 0.9] and only 42 transfers are successfully corrected to solve the

optimization problem with w2; three transfers could not be computed using these scalar weights,

likely due to numerical sensitivities near the Moon. In Figure 8.3b, these transfers are summarized

using the same configuration as Figure 8.3a. Using this continuation-based approach, the corrected

transfers possess cumulative maneuver requirements between 6.81 m/s and 67.18 m/s, which are

significantly lower than the original transfers summarized in Figure 8.3a.

To effectively examine a set of transfers that exist within a subset of the design space, the
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(a) wopt = [0.9, 0.1] (b) wopt = [0.1, 0.9]

Figure 8.3: Total ∆v of planar transfers computed from an L1 Lyapunov orbit to an L2 Lyapunov
orbit in the Earth-Moon CR3BP as a function of ∆q̌avg.

transfers summarized in Figure 8.3b are grouped by their geometry using the process described in

Section 7.7. In this example, the parameters knn = 4 and l∆TOF = 10% are selected empirically to

construct the k-NN graph; as described in Section 7.7, knn determines the degree of connectivity for

the k-NN graph and l∆TOF is a TOF difference limit. Figure 8.4a displays the resulting total ∆v of

each transfer with respect to its TOF, with each group of geometrically similar transfers indicated by

distinctly colored markers. The transfer with the minimum ∆v cost from each group is highlighted

with a black circle and numbered. A total of 16 distinct types of transfers are extracted from the

set of 42 planar, maneuver-enabled transfers that are corrected using w2 to connect the selected

L1 Lyapunov orbit to the target L2 Lyapunov orbit in the Earth-Moon CR3BP. As displayed in

Figure 8.4a, the corrected transfers possess flight times ranging from 20.90 days to 53.28 days and

maneuver requirements from 6.81 m/s to 67.18 m/s.

The continuation process for each transfer generally results in significant reductions in total
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(a) Transfers computed using wopt = [0.1, 0.9]. (b) Minimum ∆v solutions transitioned from wopt =
[0.9, 0.1] to wopt = [0.1, 0.9].

Figure 8.4: Total ∆v and TOF of planar transfers computed from an L1 Lyapunov orbit to an L2

Lyapunov orbit in the Earth-Moon CR3BP, where geometrically similar transfers are denoted in
the same color and the minimum ∆v solution for each transfer geometry is highlighted.

maneuver cost coupled with increases in TOF. This information is evident in Figure 8.4b, which

displays the evolution of the characteristics of the minimum ∆v solution from each group during

the continuation process. In this figure, the solutions computed using w2 are indicated by a filled

marker with a black edge while the associated solutions computed using w1 are indicated by only a

filled marker with no edge color. These results indicate that motion primitives support the coarse

design of a set of initial guesses for trajectories with distinct geometries that may also be refined

to possess various flight times and maneuver requirements.

To visualize the geometric variations across the recovered set of transfers, the minimum ∆v

transfer from each of the 16 groups is plotted in the configuration space. These transfers are

displayed in Figure 8.5 in the xy-plane of the Earth-Moon rotating frame using the same colors

and numbering scheme as in Figure 8.4a. In each subfigure, the Moon is displayed as a gray circle

plotted to scale while L1 and L2 are depicted with red diamonds. The refined primitive-based
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initial guess for each transfer is displayed in dashed gray, the initial and target orbits are displayed

in solid gray, each impulsive maneuver is located with a red circle, and black arrows indicate the

direction of motion. Below each transfer is the associated flight time and total ∆v. These transfers

recovered using the presented motion primitive approach to trajectory design exhibit a variety of

geometries.

Most of the minimum ∆v transfers that solve the multi-objective optimization problem us-

Figure 8.5: Planar transfers with distinct geometries computed from primitive-based initial guesses
between an L1 and L2 Lyapunov orbit in the Earth-Moon CR3BP, displayed in the xy-plane of R.
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ing w2 closely resemble their refined primitive-based initial guess. In Figure 8.5, the initial guess

(dashed gray) lies close to the continuous transfer (solid color) in most cases, indicating the utility

of coarsely designing transfers with specific geometries using motion primitives when ∆qavg is suf-

ficiently low. Noticeable deviations between the corrected transfer and initial guess are, however,

evident in Transfers 4, 10, and 11, which are derived from motion primitive sequences with larger

discontinuities, i.e., larger values of ∆qavg. Prioritizing maneuver requirements more heavily than

resembling the initial guess can lead to more significant changes in geometry during the continua-

tion process when the original primitive-based initial guess possesses larger discontinuities. Finally,

Transfer 6 uses the same primitives as the example presented in Chapter 7. This result demon-

strates the capacity to recover similar, straightforward solutions when limited a priori knowledge

is incorporated into the graph construction process.

The k-NN graph approach for grouping transfers based on their geometry may separate

transfers that could potentially belong to the same group or place transfers in a single group

that could be separated. In some cases, transfer groups that are identified as possessing distinct

geometries only vary in their departure or arrival locations along the initial or target orbits. For

instance, Transfers 5 and 6 are constructed from unique primitive sequences and have slightly

different departure locations along the initial orbit but share a similar geometry, flight time, and

total ∆v. These transfers could potentially be considered to belong within the same transfer group

but are located in distinct components of the k-NN graph. Alternative values for knn and l∆TOF,

incorporation of the transfers constructed during natural parameter continuation, or modification

of the grouping process may lead to these transfers being placed in the same group. However,

differentiating between transfers with different departure or arrival locations along the initial or

target orbits may also be desirable to identify transfers with similar overall geometries yet distinct

characteristics near the boundary orbits.

The solutions presented in Figure 8.5 reveal that transfers constructed from sequences of

additional primitives generally exhibit complex geometries but often contain some common elements

with the transfers constructed from fewer primitives. For example, Transfers 15 and 16 initially
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exhibit a similar geometry to Transfer 9 but perform additional revolutions around the Moon

before approaching the target L2 Lyapunov orbit. These transfers possess similarly low maneuver

requirements and flight times that differ by 6-7 days with each additional revolution as evident

in Figure 8.4a. The separation of these similar, yet distinct transfer geometries demonstrates

the value of incorporating l∆TOF into the transfer grouping process discussed in Section 7.7. The

modified Hausdorff distance used to construct the k-NN graph (defined in Equation 7.5) assesses the

geometric similarity between transfers described by a distinct number of nodes but does not consider

temporal variations in the transfers. The selected value of l∆TOF = 10% prevents some transfers

from being grouped together due to their TOF differences despite their geometric similarities.

Leveraging this graph-based grouping procedure reduces the burden on a human analyst during

the design space exploration process by eliminating the need to manually identify each group of

geometrically similar transfers.

8.1.2 Examining the Local Neighborhood of Transfers

The minimum ∆v transfers identified in Figure 8.5 provide a summary of solutions with

distinct geometries that may be considered during the trajectory design process for a mission

concept. However, the design of a trajectory for a mission concept is often heavily constrained based

on spacecraft hardware properties and operational requirements. Therefore, it is often important

to assess the flexibility of a trajectory based on geometry, flight time, and maneuver requirements

with respect to mission constraints. A more flexible solution is desirable to accommodate evolving

design requirements throughout the mission design process and it may present a more robust

nominal trajectory profile with respect to operational contingency scenarios, such as inefficient

engine performance. The primitive-based trajectory design space exploration process presented in

this work may support this type of analysis during preliminary mission concept development. Each

point solution identified in Figure 8.4a may correspond to an associated group of similar geometric

solutions and is derived from a series of transfers with evolving properties computed using natural

parameter continuation.
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Transfer 1 displayed in Figure 8.5 is examined in more detail to study the associated set of

transfers in its local vicinity. Figure 8.6 displays the group of transfers associated with Transfer

1 in the xy-plane of R in the Earth-Moon CR3BP where Transfer 1 is denoted in bold. Using

this figure, a human analyst may visually identify variations in geometry and maneuver placement

across the group of similar solutions. These solutions are also depicted in the TOF-∆v trade space

in Figure 8.4a in the same color: the group of transfers possess flight times ranging from 21.18

days to 23.31 days and maneuver requirements from 11.53 m/s to 20.33 m/s. Analyzing a group of

similar transfers in this manner provides insight into the potential flexibility of the overall geometry

with respect to changes in TOF and total ∆v.

Figure 8.6: Group of planar transfers associated with Transfer 1 from Figure 8.5 between an L1

and L2 Lyapunov orbit in the Earth-Moon CR3BP.

Each transfer displayed in Figure 8.4a is derived from a set of transfers computed using nat-

ural parameter continuation starting with a primitive-based initial guess. This set of associated

transfers may expand the applicable region of the TOF-∆v trade space for the given transfer geom-

etry. Figures 8.7-8.9 display the evolution of Transfer 1 during the natural parameter continuation

process. Figure 8.7 displays the continuous transfer (blue) computed from the primitive-based ini-

tial guess (dashed gray) using wopt = [0.9, 0.1]: Figure 8.7a displays the transfer in R with the



174

(a) Transfer displayed in the xy-plane of R. (b) Evolution of CJ along the transfer.

Figure 8.7: Continuous 21.90 day planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov
orbit in the Earth-Moon CR3BP, computed from a primitive-based initial guess using wopt =
[0.9, 0.1].

(a) Transfer displayed in the xy-plane of R. (b) Evolution of CJ along the transfer.

Figure 8.8: Continuous 23.30 day planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov
orbit in the Earth-Moon CR3BP, computed at wopt = [0.1, 0.9] using the continuation procedure
that varies the weights of the multi-objective optimization problem starting from the transfer
displayed in Figure 8.7.

magnitude of each impulsive maneuver provided and Figure 8.7b displays the evolution of CJ along

the transfer as a function of time. The Jacobi constant of the initial orbit is indicated with a dashed
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black line and the Jacobi constant of the target orbit is indicated with a solid black line in Figure

8.7b. Given the quality of the initial guess, the recovered continuous solution closely matches the

initial guess with a flight time of 21.90 days and a total ∆v requirement of 31.10 m/s. Using the

same visualization method as Figure 8.7, Figure 8.8 displays the continuous transfer computed

using wopt = [0.1, 0.9] at the end of the continuation process with a flight time of 23.30 days and a

total ∆v requirement of 11.53 m/s. Comparing the transfers in Figures 8.7 and 8.8, the impulsive

maneuver magnitudes are significantly reduced as a result of the continuation process while still

preserving the overall geometry of the transfer. However, as evident in Figure 8.8, the solution

computed using wopt = [0.1, 0.9] deviates more significantly from the primitive-based initial guess

but exhibits fewer large changes in CJ along the transfer. Finally, Figure 8.9 displays all of the

intermediate transfers computed during the natural parameter continuation process using the same

black to copper color scheme as Figure 7.12. As more emphasis is placed on the maneuver require-

ments, the total ∆v of the transfers decreases while the TOF increases. Yet, the overall transfer

geometry is well preserved. The most significant change in geometry corresponds to a change in

the departure location along the initial orbit as evident in Figure 8.9.

An additional interesting transfer to examine in more detail is Transfer 11 displayed in Figure

8.5. Transfer 11 appears to contain some similar geometric elements as Transfer 10 but exhibits

a significantly longer TOF due to an additional revolution around the Moon; furthermore, this

transfer is not grouped with any of the other transfers computed using wopt = [0.1, 0.9]. Using the

same format as Figures 8.7-8.9 for Transfer 1, Figures 8.10-8.12 display the evolution of Transfer

11 throughout the natural parameter continuation process. As depicted in Figure 8.10, the transfer

computed using wopt = [0.9, 0.1] closely resembles the primitive-based initial guess but the total

∆v requirement for this transfer is 404.32 m/s, which is significantly larger than most of the other

computed transfers. As a result of the continuation process, the total ∆v requirement is reduced

to 57.10 m/s and the flight time increases by 2.96 days; however, this reduction in total ∆v is

achieved primarily through altering the geometric structure of the transfer. The transfer computed

using wopt = [0.1, 0.9] is displayed in Figure 8.11 and its evolution throughout the continuation
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(a) Transfers displayed in the xy-plane of R. (b) Evolution of CJ along each transfer.

(c) Evolution of the TOF and total ∆v for the set of
transfers due to changes in wopt.

Figure 8.9: Evolution of the geometry, TOF, and maneuver requirements across transfers in the
local vicinity of Transfer 1 from Figure 8.5, computed using the continuation procedure that varies
the weights of the multi-objective optimization problem.

process is displayed in Figure 8.12. As evident in Figure 8.12, the most significant change in

geometry occurs throughout the first revolution of the transfer around the Moon with a noticeable

apsidal rotation. Despite these changes in geometry, the transfer computed using wopt = [0.1, 0.9]

still loosely resembles the original primitive-based initial guess. The geometric evolution of each

transfer during the continuation procedure is often dependent on the quality and structure of the

initial guess. In some cases, the geometry of a transfer is tightly preserved and primarily exhibits
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(a) Transfer displayed in the xy-plane of R. (b) Evolution of CJ along the transfer.

Figure 8.10: Continuous 39.60 day planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov
orbit in the Earth-Moon CR3BP, computed from a primitive-based initial guess using wopt =
[0.9, 0.1].

(a) Transfer displayed in the xy-plane of R. (b) Evolution of CJ along the transfer.

Figure 8.11: Continuous 42.56 day planar transfer from an L1 Lyapunov orbit to an L2 Lyapunov
orbit in the Earth-Moon CR3BP, computed at wopt = [0.1, 0.9] using the continuation procedure
that varies the weights of the multi-objective optimization problem starting from the transfer
displayed in Figure 8.10.

changes in its departure or arrival locations as shown for Transfer 1; however, in other cases, the

geometry of a transfer deviates more significantly from the original primitive-based initial guess as
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shown for Transfer 11. In either case, the design procedure effectively computes a set of transfers

in the local neighborhood of a primitive-based initial guess that varies continuously as wopt is

modified.

(a) Transfers displayed in the xy-plane of R. (b) Evolution of CJ along each transfer.

(c) Evolution of the TOF and total ∆v for the set of
transfers due to changes in wopt.

Figure 8.12: Evolution of the geometry, TOF, and maneuver requirements across transfers in the
local vicinity of Transfer 11 from Figure 8.5, computed using the continuation procedure that varies
the weights of the multi-objective optimization problem.
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8.1.3 Exploring Additional Transfers

Amotion primitive graph is used to generate a discrete representation of the continuous design

space for a given transfer scenario. In Section 8.1.1, a variety of initial guesses are constructed by

searching the motion primitive graph in Figure 8.2 to produce unique sequences of four, five, and

six motion primitives between the initial L1 Lyapunov orbit and the target L2 Lyapunov orbit.

However, the search process, as described in Section 7.4, can be applied generally between any

two given primitives within the graph for sequences of any desired length. The efficiency of the

search process depends on the complexity of the motion primitive graph, the algorithm used to

conduct the search, the selection of the initial and target nodes in the graph, and finally the desired

path length. Using DFS to enumerate all potential paths from an initial node to a target node

with a desired length may become intractable as the path length and/or the complexity of the

graph is increased. DFS is a brute-force search technique and therefore cannot efficiently handle

the combinatorial explosion that may occur due to increases in the desired path length and/or

the complexity of the graph structure. An avenue of future work is to use more efficient search

algorithms in this design framework to address this challenge; however, DFS is the only search

algorithm used in this investigation and therefore a waypoint search process may be formulated

to mitigate the computational challenge of constructing initial guesses comprised of longer motion

primitive sequences.

A preliminary exploration of the design space may lead to the identification of base paths

in the motion primitive graph that warrant further exploration. Given a selected base path, the

final node in the path is considered a waypoint node. Then, the motion primitive graph may be

searched from the waypoint node to the desired target node using the same process described in

Section 7.4: Figure 8.13 provides a conceptual depiction of the waypoint search process in which a

human analyst may specify a base path and then the graph is searched for paths of a desired length

between the waypoint node and the target node. Using this procedure, longer motion primitive

sequences may be recovered from the motion primitive graph between the initial node and the
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Figure 8.13: Conceptual depiction of the waypoint search process used to find paths in a motion
primitive graph from a waypoint node to a target node.

Figure 8.14: Planar transfers computed from primitive-based initial guesses that contain a common
base path (black) between an L1 and L2 Lyapunov orbit in the Earth-Moon CR3BP, displayed in
the xy-plane of R. Note: The base path in each transfer may exhibit variations due to the morphing
and trimming process used to refine each initial guess before applying the corrections procedure.

target node without significantly increasing the complexity of the search process.

In the context of the L1 to L2 Lyapunov orbit transfer design scenario, consider the base

path displayed in Figure 8.14 comprised of three motion primitives (including the initial orbit).

This base path is derived from Transfer 7 in Figure 8.5 and the third primitive is considered the
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waypoint primitive. The motion primitive graph is then searched from the waypoint primitive

to the target orbit for sequences composed of five primitives. The resulting sequences are then

combined with the fixed base path to produce longer motion primitive sequences. In this case, each

resulting path is composed of seven motion primitives from the initial orbit to the target orbit.

Figure 8.14 displays continuous transfers constructed from the top Q = 3 paths stemming from the

base path denoted in black. The first initial guess is used to recover a similar solution as Transfer

14 displayed in Figure 8.5 and the remaining two transfers are similar to Transfers 5-7 displayed

in Figure 8.5 but include additional revolutions around the Moon. Transfers 2 and 3 displayed

in Figure 8.14 present two additional transfer geometries that were not previously recovered in

the design space exploration conducted in Section 8.1.1. Leveraging this waypoint search process

enables a trajectory designer to efficiently construct longer sequences of motion primitives and

identify additional transfer geometries after conducting a preliminary design space exploration.

8.1.4 Transitioning Transfers to a Point Mass Ephemeris Model

A continuous trajectory computed in the CR3BP is used as an initial guess to attempt to

recover a similar solution in a point mass ephemeris model. The process of transitioning a trajectory

from the CR3BP into a point mass ephemeris model is outlined in Chapter 4. In this subsection,

this procedure is applied to Transfers 1 and 11 displayed in Figure 8.5 for the L1 to L2 Lyapunov

orbit transfer design scenario. The reference epoch for both transfers is selected arbitrarily as

January 1, 2023, at 00:00:00.000 UTC for demonstration purposes. During the corrections process,

the initial epoch of each transfer is allowed to vary relative to this selected reference epoch. Finally,

the primary bodies included in the point mass ephemeris model are the Moon, Earth, and Sun.

A periodic orbit does not retain its periodic structure when transitioned from the CR3BP

into a point mass ephemeris model; instead, the resulting path may resemble quasi-periodic motion.

Therefore, the boundary constraints described in Section 7.6 for the CR3BP are not applicable in

an ephemeris model. Instead, multiple revolutions of the initial and target orbits are included in

the initial guess to approximately retain the structure of the periodic orbits at each boundary of
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the transfer where possible [26]. For each transfer, 5 revolutions of the initial orbit and a partial

revolution that terminates at the departure state along the initial orbit are included at the beginning

of the transfer. Similarly, a partial revolution of the target orbit that begins at the arrival state

along the target orbit and an additional 5 revolutions are included at the end of each transfer.

Due to the incorporation of these periodic orbit revolutions, the flight time of the initial guess may

increase significantly. Therefore, in some cases, the time variables in the free variable vector may

be scaled by the total TOF of the initial guess and inequality constraints may be introduced to

enforce positive implicit integration times along each arc to improve the numerical conditioning of

the corrections problem.

Using this configuration and wopt = [0.1, 0.9], Transfers 1 and 11 are corrected in E (E is

a Moon-centered inertial frame because P1 is selected as the Moon in the ephemeris model) and

transformed back into R for comparison with the solutions in the CR3BP. Figure 8.15 displays

Transfer 1 computed in the Earth-Moon CR3BP (dashed black) with respect to the resulting

solution computed in a Moon-Earth-Sun point mass ephemeris model (blue). The transfer generated

in the ephemeris model extends out of the xy-plane; however, only the projection of the transfer

onto the xy-plane is displayed because the maximum extension in the z-coordinate is minimal. The

initial epoch of the corrected trajectory is January 2, 2023, at 02:35:50.693 UTC, the flight time is

approximately 23.93 days, and the total ∆v is 15.27 m/s. In this case, the transfer time increased

by 0.63 days and the total ∆v increased by 3.74 m/s compared to the associated solution in the

CR3BP. Similarly, Figure 8.16 displays Transfer 11 computed in the Earth-Moon CR3BP (dashed

black) with respect to the resulting solution computed in a Moon-Earth-Sun point mass ephemeris

model (blue). As discussed for Figure 8.15, only the projection of the transfer onto the xy-plane is

displayed. The initial epoch of the corrected trajectory is January 2, 2023, at 21:23:16.294 UTC,

the flight time is approximately 43.27 days, and the total ∆v is 50.91 m/s. In this case, the transfer

time increased by 0.71 days and the total ∆v decreased by 6.19 m/s compared to the associated

CR3BP solution. In both cases, the geometry of the transfer as well as the initial and final orbits

are well preserved in the ephemeris model. These solutions demonstrate the utility of using the
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CR3BP for preliminary trajectory design.

Figure 8.15: Continuous 23.93 day transfer from an L1 Lyapunov orbit to an L2 Lyapunov orbit
in a Moon-Earth-Sun point mass ephemeris model with an initial epoch of January 2, 2023, at
02:35:50.693 UTC, computed from Transfer 1 displayed in Figure 8.5 using wopt = [0.1, 0.9]. Note:
The spatial transfer generated in the ephemeris model is displayed as a projection onto the xy-plane.

8.2 Spatial Transfers from an L1 to L2 Northern Halo Orbit in the Earth-

Moon System

8.2.1 Constructing Transfers with Distinct Geometries

The primitive-based trajectory design framework is used to construct spatial transfers from

an L1 northern halo orbit at CJ ≈ 3.0635 to an L2 northern halo orbit at CJ ≈ 3.0669 in the Earth-

Moon CR3BP with impulsive maneuvers. Figure 8.17 displays the selected northern halo orbits

in R and Table 8.2 lists the properties of each orbit. In this scenario, Poincaré maps capturing

spatial motion at high energy levels may be difficult to analyze due to the complexity of the solution

space and higher-dimensional description of the map crossings. As a result, it may be challenging

to use existing dynamical systems techniques alone to construct point solutions and explore the

broader design space spanned by geometrically dissimilar solutions. Thus, this challenging scenario
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Figure 8.16: Continuous 43.27 day transfer from an L1 Lyapunov orbit to an L2 Lyapunov orbit
in a Moon-Earth-Sun point mass ephemeris model with an initial epoch of January 2, 2023, at
21:23:16.294 UTC, computed from Transfer 11 displayed in Figure 8.5 using wopt = [0.1, 0.9].
Note: The spatial transfer generated in the ephemeris model is displayed as a projection onto the
xy-plane.

Table 8.2: Properties of the initial L1 northern halo orbit and the target L2 northern halo orbit for
the northern halo orbit transfer design scenario in the Earth-Moon CR3BP.

Initial Orbit Target Orbit

Orbit Type L1 northern halo L2 northern halo

CJ 3.063534530378191 3.066884796159840

TPO 2.777323978103622 (≈ 12.06 days) 3.165890567984349 (≈ 13.75 days)

s1 218.429599140514 -0.226466014391004

s2 -0.813864903041833 180.278208268368

supports demonstration of the utility of the presented motion primitive framework for trajectory

design in a multi-body system.

To construct a motion primitive graph in this scenario, the high-level itinerary graph is

designed to possess the same structure as in Figure 8.2 but uses primitives of the selected northern

halo orbit families and their stable and unstable manifolds. Consistent with the Lyapunov transfer

design scenario, each manifold is generated for up to 15 apses relative to the Moon and sampled

to produce shorter arcs that span up to 4 apses relative to the Moon. The entire set of motion
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primitives generated to summarize arcs along these stable and unstable manifolds are provided in

Appendix A and all components of the motion primitive library are listed in Table 8.3. Furthermore,

the high-level itinerary graph is depicted in Figure 8.18. To construct the motion primitive graph,

the following configuration parameters are specified: knn = 15, αpos = 100, and αvel = 1. These

selections place a much stronger emphasis on position discontinuities between primitives compared

to the previous transfer design scenario, consistent with an observed increase in sensitivity for higher

energy spatial transfers with close lunar passes. Additionally, the set of representative trajectories

associated with each motion primitive, excluding the selected initial and target orbit primitives, is

incorporated into the edge weight computations and the average edge weight is used to evaluate the

quality of each primitive sequence. The computation time for constructing the motion primitive

graph in this scenario is on the order of 100 minutes using an iMac with a 3GHz 6-Core Intel Core

i5 processor.

The motion primitive graph is searched to produce unique sequences of four, five, and six

primitives that each form an initial guess for a transfer from the L1 northern halo orbit to the L2

Figure 8.17: Configuration of the initial L1 northern halo orbit at CJ ≈ 3.0635 and the target L2

northern halo orbit at CJ ≈ 3.0669 in R for the northern halo orbit transfer design scenario in the
Earth-Moon CR3BP.
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northern halo orbit. There are a total of 331, 19,764, and 1,148,147 primitive sequences from the

initial node to the target node in the graph consisting of four, five, and six primitives, respectively.

However, using the filtering process presented in Section 7.4, the Q = 10 top-ranked sequences

that begin with a unique primitive are examined for each path length. A smaller value of Q

is selected for this scenario compared to the previous example because the quality of the initial

guesses degrades more significantly as additional sequences are considered. This approach produces

30 unique primitive sequences that are each refined to produce an initial guess.

Each initial guess is corrected with several unconstrained impulsive maneuvers distributed

Table 8.3: Motion primitives in the library for the spatial transfer design scenario from an L1 to
L2 northern halo orbit.

Fundamental Solution Number of Primitives Approx. CJ

L1 northern halo orbit 1 3.0635

L1 northern halo orbit unstable manifold 198 3.0635

L1 northern halo orbit stable manifold 194 3.0635

L2 northern halo orbit 1 3.0669

L2 northern halo orbit unstable manifold 226 3.0669

L2 northern halo orbit stable manifold 223 3.0669

Figure 8.18: High-level itinerary graph for a spatial L1 to L2 northern halo orbit transfer design
scenario in the Earth-Moon CR3BP.
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along the transfer using the same maneuver placement scheme as in the previous example. All

30 primitive-based initial guesses are successfully corrected using wopt = [0.9, 0.1] to produce

continuous transfers from the desired initial L1 northern halo orbit to the target L2 northern

halo orbit. However, 6 of the corrected transfers impact a spherical approximation of the Moon.

Continuation is then used to gradually vary the weights of the the multi-objective optimization

problem described in Section 7.6 from w1 = [0.9, 0.1] to w2 = [0.1, 0.9]. Following this process,

only 27 of these transfers are successfully corrected with wopt = w2.

An initial summary of the transfers that solve the multi-objective optimization problem

with each value of wopt is presented. In Figure 8.19a, the total ∆v of each of the 30 transfers

that is corrected with wopt = w1 is displayed with respect to the normalized average potential for

sequential composability, ∆q̌avg, of its initial guess; this figure uses the same configuration as Figure

8.3. In Figure 8.19b, however, this information is presented for the 27 transfers that are corrected

with wopt = w2 to prioritize minimizing maneuver requirements. Across the set of 30 transfers

computed with wopt = w1 to emphasize recovering transfers that are geometrically similar to their

initial guesses, the total ∆v ranges from 86.05 m/s to 1705.78 m/s. However, when prioritizing

minimizing maneuver requirements, the 27 transfers corrected with wopt = w2 require a total ∆v

ranging from 44.06 m/s to 342.99 m/s. Furthermore, the transfers summarized in Figure 8.19b no

longer exhibit a clear correlation between ∆q̌avg and the total ∆v requirements compared to the

planar Lyapunov orbit transfers presented in Section 8.1.

The 27 corrected transfers that prioritize minimizing maneuver requirements are grouped

based on geometry to extract the distinct types of transfers that connect the selected northern

halo orbits. When applying the k-NN graph approach described in Section 7.7, knn = 3 and

l∆TOF = 5% are selected empirically and produce 18 groups of geometrically distinct transfers.

The resulting properties of each transfer are plotted in Figure 8.20 using the same configuration as

Figure 8.4 where the minimum ∆v solution in each group is circled and numbered. These transfers

require flight times ranging from 18.79 days to 60.80 days and total ∆v requirements ranging from

44.06 m/s to 342.99 m/s when placing more emphasis on recovering maneuver-efficient transfers.
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(a) wopt = [0.9, 0.1] (b) wopt = [0.1, 0.9]

Figure 8.19: Total ∆v of spatial transfers computed from an L1 northern halo orbit to an L2

northern halo orbit in the Earth-Moon CR3BP as a function of ∆q̌avg.

Figure 8.20b displays the evolution of the flight time and total ∆v for each of the transfers circled

in Figure 8.20a as the weights of the multi-objective optimization problem are varied, resulting in

significant reductions in total ∆v. However, some transfers exhibit decreases in TOF while others

exhibit increases in TOF. As the objective function weights are adjusted, the specific evolution

of each transfer in the TOF-∆v trade space depends on the geometry of the initial guess, the

placement of maneuvers, and how the departure and arrival locations along the initial and target

orbit, respectively, are adjusted to reduce the total maneuver requirements.

The minimum ∆v transfer in each group is visualized in the configuration space of the Earth-

Moon CR3BP; specifically, Figures 8.21 and 8.22 display each transfer in R of the Earth-Moon

system. Figure 8.21 displays the transfers as a projection onto the xz-plane of R and Figure 8.22

displays the transfers as a projection onto the xy-plane of R. In these figures, each corrected trans-

fer geometrically resembles its initial guess (dashed gray) but with more noticeable deviations than
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(a) Transfers computed using wopt = [0.1, 0.9]. (b) Minimum ∆v solutions transitioned from wopt =
[0.9, 0.1] to wopt = [0.1, 0.9].

Figure 8.20: Total ∆v and TOF of spatial transfers computed from an L1 northern halo orbit to
an L2 northern halo orbit in the Earth-Moon CR3BP, where geometrically similar transfers are
denoted in the same color and the minimum ∆v solution for each transfer geometry is highlighted.

in the planar transfers constructed in Section 8.1. As discussed in Section 8.1, more significant

deviations from the primitive-based initial guesses are observed throughout the natural parameter

continuation procedure for transfers that are constructed from initial guesses with larger disconti-

nuities. Furthermore, the computed transfers all exhibit distinct transfer geometries in the vicinity

of the Moon with several close approaches and apolunes at high z-amplitudes above the plane of

the primaries. The exceptions are Transfers 7-9 and Transfers 12-14: both groups of transfers could

potentially each be combined into a single group because these transfers exhibit only slight differ-

ences in geometry during the transit phase of the itinerary. Each of these transfers exhibits more

distinct geometries during the departure and arrival phases of the itinerary. As a comparison with

a previous result, Transfers 7-9 geometrically resemble a 51.2 day transfer computed by Haapala

between two northern halo orbits at similar energy levels but with a lower total maneuver magni-

tude of 11.9 m/s [39]; this difference is likely due to alternative corrections problem formulations,
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Figure 8.21: Spatial transfers with distinct geometries computed from primitive-based initial guesses
between an L1 and L2 northern halo orbit in the Earth-Moon CR3BP, displayed as a projection
onto the xz-plane of R.

an alternative number and location of maneuvers, and the explicit use of manifold arcs that gradu-

ally approach or depart each periodic orbit. Nevertheless, the recovered transfers demonstrate the

capability to achieve a significant reduction in total maneuver magnitude while still preserving the

approximate geometry of a coarsely-constructed primitive-based initial guess.
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Figure 8.22: Spatial transfers with distinct geometries computed from primitive-based initial guesses
between an L1 and L2 northern halo orbit in the Earth-Moon CR3BP, displayed as a projection
onto the xy-plane of R.

8.2.2 Examining the Local Neighborhood of Transfers

To understand the evolution of each transfer during the natural parameter continuation pro-

cess, some insight can be obtained from continuous thrust trajectory optimization. The primary

objective considered in the continuous thrust problem is commonly either to minimize propellant

mass usage or to minimize control effort [96, 91, 42, 83]. Minimizing propellant mass usage along a

trajectory often results in a “bang-bang” thrust profile that is comprised of trajectory segments that

alternate between thrusting and coasting; in the impulsive case, minimizing propellant mass usage

equates to minimizing the sum of the impulsive maneuver magnitudes along a trajectory [42, 83].

However, minimizing control effort often results in smoother thrust profiles where the thrust mag-
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nitude varies but the spacecraft is continuously thrusting; in the impulsive case, minimizing control

effort is similar to minimizing the sum of the squared impulsive maneuver magnitudes [42, 83]. In

this investigation, the maneuver requirement term of the objective function is defined as the sum of

the squared impulsive maneuver magnitudes along a trajectory (Equation 7.4). Consequently, dur-

ing the continuation process, it is observed that increasing wman typically translates to smoother

trajectory profiles in the configuration space and more evenly distributed maneuver magnitudes

along a trajectory. Transfer 2 from Figure 8.21 is examined in more detail as an example.

Figures 8.23-8.25 display the evolution of Transfer 2 throughout the natural parameter con-

tinuation process using a similar format as the Lyapunov transfer design analysis. In addition,

Table 8.4 lists the maneuver magnitudes for the transfers displayed in Figures 8.23 and 8.24. The

transfer displayed in Figure 8.23 exhibits sharp changes in direction during the departure phase

of the transfer, particularly at each of the first three maneuvers. However, as shown in Figures

8.24 and 8.25, these sharp changes in direction are gradually smoothed during the continuation

process and results in more significant geometric variations from the primitive-based initial guess.

This change in structure is also apparent in the evolution of CJ along each transfer. Finally, Table

8.4 demonstrates that the largest maneuver magnitudes decreased while the smallest maneuver

magnitudes increased between the transfers computed using wopt = [0.9, 0.1] and wopt = [0.1, 0.9].

A similar evolution is observed for many of the transfers computed throughout this investigation

that initially exhibit sharp changes in direction of motion and large velocity discontinuities along

the corresponding primitive-based initial guess. Although the maneuver requirement term of the

objective function formulated in this work does not directly minimize the total ∆v of a transfer,

the solutions obtained as wman is increased during the continuation procedure generally exhibit sig-

nificant reductions in total ∆v and may serve as starting points to compute nearby local minimum

total ∆v solutions.
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Figure 8.23: Continuous 26.80 day spatial transfer from an L1 northern halo orbit to an L2 northern
halo orbit in the Earth-Moon CR3BP, computed from a primitive-based initial guess using wopt =
[0.9, 0.1].

Table 8.4: Maneuver magnitudes for the transfers displayed in Figures 8.23 and 8.24 from an L1

northern halo orbit to an L2 northern halo orbit in the Earth-Moon CR3BP.

∆vi [m/s] Total ∆v [m/s]

Maneuver Index 1 2 3 4 5 6 7 -

wopt = [0.9, 0.1] 182.74 148.05 79.25 31.74 22.83 21.46 4.87 490.94

wopt = [0.1, 0.9] 54.01 53.20 70.58 31.49 50.66 34.14 41.09 335.17

8.2.3 Transitioning Transfers to a Point Mass Ephemeris Model

As discussed in Section 8.1.4, transitioning a trajectory from the CR3BP into a point mass

ephemeris model demonstrates the value of using a lower fidelity dynamical model for preliminary
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Figure 8.24: Continuous 30.06 day spatial transfer from an L1 northern halo orbit to an L2 north-
ern halo orbit in the Earth-Moon CR3BP, computed at wopt = [0.1, 0.9] using the continuation
procedure that varies the weights of the multi-objective optimization problem starting from the
transfer displayed in Figure 8.23.

trajectory design. In this subsection, the same point mass ephemeris model including the Moon,

Earth, and Sun is used. Furthermore, the reference epoch is specified as January 1, 2023, at

00:00:00.000 UTC and the exact same process used in the Lyapunov case is leveraged for recovering

transfers between the selected northern halo orbits in a Moon-Earth-Sun point mass ephemeris

model.

The transition procedure is applied to Transfers 2 and 8 displayed in Figure 8.21 for the L1

to L2 northern halo orbit transfer design scenario. Figures 8.26a and 8.26b display Transfer 2 com-
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Figure 8.25: Evolution of the geometry and TOF across transfers in the local vicinity of Transfer
2 from Figure 8.21, computed using the continuation procedure that varies the weights of the
multi-objective optimization problem.

puted in the Earth-Moon CR3BP (dashed black) with respect to the resulting solutions computed in

a Moon-Earth-Sun point mass ephemeris model (blue) using wopt = [0.5, 0.5] and wopt = [0.1, 0.9],

respectively. The initial epochs of the ephemeris solutions displayed in Figures 8.26a and 8.26b are

December 30, 2022, at 19:53:32.074 UTC and December 30, 2022, at 11:16:57.730 UTC, respec-

tively. Furthermore, the flight time is approximately 30.69 days and the total ∆v is 323.14 m/s for

the ephemeris solution displayed in Figure 8.26a; on the other hand, the flight time is approximately

30.40 days and the total ∆v is 268.48 m/s for the ephemeris solution displayed in Figure 8.26b.

Both ephemeris solutions resemble the transfer constructed in the CR3BP; however, the solution
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computed using wopt = [0.5, 0.5] more closely retains the geometry of the transfer as expected.

The solution computed using wopt = [0.1, 0.9] achieves a significant reduction in total ∆v but only

loosely captures the geometry of the initial L1 northern halo orbit. Finally, Figure 8.27 displays

Transfer 8 computed in the Earth-Moon CR3BP (dashed black) with respect to the resulting tra-

jectory in the ephemeris model (blue). The initial epoch of the trajectory is December 30, 2022, at

20:15:52.791 UTC, the flight time is approximately 41.21 days, and the total ∆v is 41.44 m/s. For

this case, the transfer time increased by 0.75 days and the total ∆v decreased by 2.62 m/s compared

to the associated solution in the CR3BP. These transfers demonstrate the ability to recover spatial

transfers in a point mass ephemeris model from initial guesses constructed in the CR3BP.

(a) 30.69 day transfer with an initial epoch of De-
cember 30, 2022, at 19:53:32.074 UTC, computed
using wopt = [0.5, 0.5].

(b) 30.40 day transfer with an initial epoch of De-
cember 30, 2022, at 11:16:57.730 UTC, computed
using wopt = [0.1, 0.9].

Figure 8.26: Continuous transfers from an L1 northern halo orbit to an L2 northern halo orbit in a
Moon-Earth-Sun point mass ephemeris model, computed from Transfer 2 displayed in Figure 8.21.
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Figure 8.27: Continuous 41.21 day transfer from an L1 northern halo orbit to an L2 northern halo
orbit in a Moon-Earth-Sun point mass ephemeris model with an initial epoch of December 30, 2022,
at 20:15:52.791 UTC, computed from Transfer 8 displayed in Figure 8.21 using wopt = [0.1, 0.9].

8.3 Transfers from an L2 Southern NRHO to DROs in the Earth-Moon

System

8.3.1 Transfer Scenario Overview

Gateway is an orbital outpost that is planned to operate in an L2 southern NRHO within

cislunar space and expected to support NASA’s Artemis program [114, 64]. The currently selected

NRHO is in an approximate 9:2 synodic resonance with the orbit of the Moon around the Earth, i.e.,

9 revolutions in the NRHO correspond to 2 revolutions of the Moon around the Earth. Therefore,

the period of the L2 southern NRHO selected for Gateway is approximately 6.56 days. The L2

NRHOs in the Earth-Moon system are nearly stable and require low station-keeping costs over long

time intervals; furthermore, these orbits exhibit favorable geometries for Earth communications

and eclipse avoidance [64, 77, 19]. In addition, L2 southern NRHOs provide long communication

windows with regions located at the south pole of the Moon, which is desirable because regions

at the south pole of the Moon are places of high interest for future science-driven lunar surface

operations [34, 113]. Finally, the selection of an L2 southern NRHO for Gateway provides a suitable
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staging orbit for lunar surface access, explorations of cislunar space, and interplanetary transfers

[114, 64, 115]. An Earth-Moon DRO is one potential target destination in cislunar space for

demonstrating the transit capability of Gateway [71]. This future use of an L2 southern NRHO

as a staging orbit near the Moon motivates the application of the primitive-based initial guess

construction framework to an L2 southern NRHO to DRO transfer scenario in the Earth-Moon

system.

Transfers are constructed from an L2 southern NRHO to two different DROs in the Earth-

Moon CR3BP with impulsive maneuvers. To select the initial orbit as well as the target orbits,

motion primitives are first generated to summarize the L2 southern halo orbit family and the DRO

family in the Earth-Moon CR3BP using the motion primitive construction process presented in

Section 6.2. A total of 9 and 8 primitives are generated to summarize the L2 southern halo orbit

family and the DRO family, respectively. One of the primitives extracted from the L2 southern halo

orbit family corresponds to an L2 southern NRHO that is near the 9:2 resonant NRHO selected

for Gateway; therefore, this primitive is selected as the initial orbit in the transfer design scenario.

Furthermore, two DRO primitives of significantly different sizes and energies are arbitrarily selected

as the candidate target orbits. The properties of the selected orbits are listed in Tables 8.5 and 8.6.

Figures 8.28 and 8.29 display the initial L2 southern NRHO and the target DROs, respectively, with

respect to the other primitives constructed along each periodic orbit family. The selected primitives

are denoted in bold and the region of the configuration space spanned by the associated small set

of representative trajectories for each primitive is depicted as a transparent surface. Finally, Figure

8.30 displays the configuration of the initial L2 southern NRHO and the target DROs in R.

This scenario presents a challenging transfer design problem for a few different reasons. As

indicated in Tables 8.5 and 8.6, there is a large CJ difference between the initial orbit and each

target orbit, the L2 southern NRHO is nearly stable and therefore motion along its associated

unstable manifold is slow to depart the orbit, and the target DROs do not possess stable and

unstable manifolds. Furthermore, as evident in Figure 8.30, a large plane change is required to

transfer from the L2 southern NRHO to either planar DRO. As a result, this challenging scenario



199

Table 8.5: Properties of the initial L2 southern NRHO selected for the NRHO to DRO transfer
design scenario in the Earth-Moon CR3BP.

Initial Orbit

Orbit Type L2 southern NRHO

CJ 3.044579150514986

TPO 1.537096058488171 (≈ 6.67 days)

s1 -2.751814321511511

s2 1.324781749745638

Min. Perilune
3560.42 km

Distance

Table 8.6: Properties of the target DROs selected for the NRHO to DRO transfer design scenario
in the Earth-Moon CR3BP.

Target Orbit #1 Target Orbit #2

Orbit Type DRO DRO

CJ 2.910973011179179 2.765366500505031

TPO 3.764504057199413 (≈ 16.35 days) 5.796982607490156 (≈ 25.17 days)

s1 -1.520428870861199 -0.251101993988295

s2 0.454523709953394 1.899399734056896

Min. Perilune
81453.39 km 164326.42 km

Distance

further demonstrates the utility of the presented motion primitive framework for complex trajectory

design in a multi-body system.

The high-level itinerary graph constructed for the NRHO to DRO transfer design scenario

possesses a larger variety of dynamical structures than the Lyapunov and northern halo orbit

transfer design scenarios explored in Sections 8.1 and 8.2. The high-level itinerary graph design is

displayed in Figure 8.31. Table 8.7 summarizes the sets of motion primitives constructed in the

motion primitive library for the design scenario; the p : q nomenclature for referring to resonant

orbits indicates that p revolutions of the resonant orbit are completed around the Earth in the

approximate time it takes for the Moon to complete q revolutions around the Earth [43, 108]. In

Figure 8.31, the periodic orbit primitive sets are displayed next to their corresponding subgraph

icons while the general structure of the hyperbolic invariant manifolds are depicted next to their

corresponding subgraph icons. The entire set of motion primitives generated to summarize arcs
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Figure 8.28: Motion primitives constructed for the L2 southern halo orbit family in the Earth-Moon
CR3BP with the initial L2 southern NRHO selected for the NRHO to DRO transfer design scenario
denoted in bold.

along each stable and unstable manifold included in the motion primitive graph is provided in

Appendix A.

A diverse set of potential avenues for connecting the selected initial and target orbits are

available given the high-level itinerary graph design displayed in Figure 8.31. This graph design

exhibits a more complex structure than the graphs constructed for the Lyapunov and northern

halo orbit transfer design scenarios. The initial L2 southern NRHO is contained within the “L2

SHalos” subgraph and the target DROs are contained within the “DROs” subgraph. Both of these

subgraphs are internally connected and therefore allow multiple periodic orbits from each family to

be chained together within a sequence. Paths between the initial orbit and the target orbits may

also leverage primitives generated along an unstable manifold of the initial L2 southern NRHO;

an unstable manifold of an L2 southern halo orbit that traverses the exterior region of the system

away from the Earth and Moon; a stable manifold of an L2 southern halo orbit near L2; a stable
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Figure 8.29: Motion primitives constructed for the DRO family in the Earth-Moon CR3BP with
the target DROs selected for the NRHO to DRO transfer design scenario denoted in bold.

Figure 8.30: Configuration of the initial L2 southern NRHO and the target DROs in R for the
NRHO to DRO transfer design scenario in the Earth-Moon CR3BP.
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Table 8.7: Motion primitives in the library for the NRHO to DRO transfer design scenario in the
Earth-Moon CR3BP.

Fundamental Solution Number of Primitives Approx. CJ

L2 southern halo orbits
9 [3.0152,3.1521]

(L2 SHalos)

1:2 resonant orbits (1:2) 10 [1.2692,2.8995]

1:3 resonant orbits (1:3) 12 [1.1338,2.8404]

3:4 resonant orbits (3:4) 10 [2.1410,2.9537]

4:3 resonant orbits (4:3) 12 [2.2422,3.0127]

Distant retrograde orbits (DROs) 8 [1.9138,3.0374]

L2 southern NRHO unstable manifold
55

3.0446
(L2 SNRHO UMani)

L2 southern halo orbit unstable manifold
11

3.0188
(L2 SHalo UMani - Ext.)

L2 southern halo orbit stable manifold
41

3.1250
(L2 SHalo SMani - Near L2)

L1 northern halo orbit stable manifold
118

3.1224
(L1 NHalo SMani - Near L1)

manifold of an L1 northern halo orbit near L1; and a variety of resonant orbits (1:2, 1:3, 3:4, and

4:3) that all exhibit retrograde motion in the lunar vicinity with respect to the Moon.

Despite the absence of hyperbolic invariant manifolds associated with the target DROs, the

selected manifold structures and periodic orbit families guide motion towards the plane of the pri-

maries and exhibit retrograde motion in the lunar vicinity with respect to the Moon. Furthermore,

as indicated in Table 8.7, the sets of motion primitives included in the high-level itinerary graph

provide a large range of CJ values relative to the CJ values of the desired initial and target orbits.

Finally, in this section, the motion primitive graph is only searched for motion primitive sequences

between the initial L2 southern NRHO and the target DROs displayed in Figure 8.30; however,

this graph structure provides a discrete representation of the solution space that could be leveraged

to design a larger variety of transfers or it could be further expanded with additional dynamical

structures across various energy levels. For example, transfers may be constructed between distinct

L2 southern halo orbits, from an L2 southern halo orbit to intermediate resonant orbits, from a

variety of L2 southern halo orbits to a variety of DROs, and so forth. This demonstrates the value
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Figure 8.31: High-level itinerary graph developed for a NRHO to DRO transfer design scenario in
the Earth-Moon CR3BP.

and versatility of leveraging a motion primitive graph to explore the transfer design space in a

multi-body system.

A motion primitive graph is constructed based on the high-level itinerary graph design dis-

played in Figure 8.31. The following configuration parameters are specified to construct the motion

primitive graph: knn = 8, αpos = 10, and αvel = 1. As specified in the previous design scenarios,

each periodic orbit primitive included in the motion primitive graph is discretized into 50 states

equally spaced in arclength while each manifold arc primitive is discretized into apses with respect

to the Moon as well as its boundary states. However, there is one exception due to the larger

variety of dynamical structures included in this scenario. Each manifold arc primitive in the “L2

SHalo UMani - Ext.” subgraph is discretized into apses with respect to the Earth as well as its
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boundary states because these arcs leave the vicinity of the Moon and traverse exterior regions of

the system. The default measure types specified in Section 7.3 are then used to construct each

subgraph as well as the connections between each subgraph. As a reminder, Measure 1 is used to

construct the internal edges within a subgraph, Measure 2 is used to construct the external edges

between two subgraphs when the source primitive is a periodic orbit and the target primitive is

a manifold arc, and Measure 3 is used to construct the external edges between two subgraphs in

all other cases. The only design change made in this transfer design scenario is to use Measure 3

instead of Measure 1 when constructing the internal edges for each subgraph comprised of periodic

orbits. Finally, the set of representative trajectories associated with each motion primitive is in-

corporated into the edge weight computations and the average edge weight is used to evaluate the

quality of each primitive sequence. The computation time for constructing the motion primitive

graph in this scenario is on the order of 100 minutes using an iMac with a 3GHz 6-Core Intel Core

i5 processor. Using the resulting motion primitive graph, initial guesses are generated to construct

transfers between the desired initial L2 southern NRHO and the target DROs.

8.3.2 Constructing Transfers from an L2 Southern NRHO to a DRO at CJ ≈

2.9110

The motion primitive graph constructed for the NRHO to DRO transfer design scenario is

searched to produce unique sequences of four, five, and six primitives that each form an initial

guess for a transfer from the initial L2 southern NRHO described in Table 8.5 to the first target

DRO described in Table 8.6. There are a total of 568, 17,073, and 373,315 primitive sequences from

the selected initial node to the selected target node in the graph consisting of four, five, and six

primitives, respectively. However, using the filtering process presented in Section 7.4, the Q = 15

top-ranked sequences that begin with a unique primitive are examined for each path length. As in

the previous design scenarios, the sets of representative trajectories associated with the initial orbit

and the target orbit are not included in the refinement process presented in Section 7.5 because

the exact orbits are desired. This approach produces 45 unique primitive sequences that are each
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refined to produce an initial guess.

Each initial guess is corrected with several unconstrained impulsive maneuvers distributed

along the transfers using the same maneuver placement scheme as described for the Lyapunov

and northern halo orbit transfer design scenarios. Due to the longer flight times associated with

the initial guesses for this scenario, the bounds on each ∆tij variable are adjusted to [10−5, 5.0].

In addition, it is observed that correcting an initial guess using Newton’s method first and then

optimizing the solution using IPOPT may facilitate more robust convergence in some cases [87].

This behavior is primarily observed for transfers that depart the lunar vicinity and are comprised of

trajectory segments that span large regions of the configuration space, which may present numerical

challenges in the geometric term of the objective function. Further investigation into this behavior

is warranted; however, Newton’s method may be used to compute an initial continuous solution

from a primitive-based initial guess which is then used to compute a locally optimal solution

with wopt = [0.9, 0.1] in the optimization procedure. Using the corrections procedure, 43 of the

45 primitive-based initial guesses are successfully generated with wopt = [0.9, 0.1] to produce

continuous transfers from the desired initial L2 southern NRHO to the target DRO at CJ ≈ 2.9110.

However, one of the corrected transfers impacts a spherical approximation of the Moon. The natural

parameter continuation procedure is then used to gradually vary the weights of the multi-objective

optimization problem described in Section 7.6 from w1 = [0.9, 0.1] to w2 = [0.1, 0.9]. Following

this process, only 40 of these transfers are successfully corrected using wopt = w2.

An initial summary of the transfers that solve the multi-objective optimization problem with

each value of wopt is presented. In Figure 8.32a, the total ∆v of each of the 43 transfers corrected

using wopt = w1 is displayed with respect to the normalized average potential for sequential

composability, ∆q̌avg, of its initial guess; this figure uses the same configuration as Figures 8.3 and

8.19. In Figure 8.32b, however, this information is presented for the transfers that are corrected

using wopt = w2 to prioritize minimizing maneuver requirements. The required total ∆v ranges

from 488.47 m/s to 2164.01 m/s for the transfers computed using wopt = w1 and from 291.90

m/s to 736.12 m/s for the transfers computed using wopt = w2, excluding the transfers that did



206

not converge. As observed in the previous design scenarios, there is a gradual increase in total ∆v

requirements with increasing values of ∆q̌avg for the solutions computed using wopt = w1; however,

the transfers computed using wopt = w2 no longer exhibit a clear direct correlation between total

∆v requirements and ∆q̌avg. Finally, significant reductions in total ∆v requirements are observed

for each computed transfer throughout the continuation procedure.

The 40 corrected transfers that prioritize minimizing maneuver requirements are grouped

based on geometry to extract the distinct types of transfers that connect the initial L2 southern

NRHO and the target DRO in the Earth-Moon CR3BP. When applying the k-NN graph approach

described in Section 7.7, knn = 4 and l∆TOF = 6.5 days are selected empirically and produce 25

groups of geometrically distinct transfers. The value of l∆TOF is selected to distinguish between

transfers that share similar transfer geometries yet exhibit a distinct number of revolutions near

the initial NRHO, which has a period of approximately 6.67 days. The resulting properties of each

(a) wopt = [0.9, 0.1] (b) wopt = [0.1, 0.9]

Figure 8.32: Total ∆v of transfers computed from an L2 southern NRHO to a DRO in the Earth-
Moon CR3BP as a function of ∆q̌avg.
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transfer are plotted in Figure 8.33 using the same configuration as Figures 8.4 and 8.20 where the

minimum ∆v solution in each group is circled and numbered. For visual clarity, Figures 8.33b and

8.33c provide zoomed in views of different regions of the TOF-∆v trade space. These transfers

require flight times ranging from 23.92 days to 235.75 days and total ∆v requirements ranging from

291.90 m/s to 736.12 m/s when placing more emphasis on recovering maneuver-efficient transfers.

Figure 8.33d displays the evolution of the flight time and total ∆v for each of the transfers circled in

Figure 8.33a as the weights of the multi-objective optimization problem are varied. The evolution

of these transfers exhibit significant reductions in total ∆v and relatively small variations in TOF.

Finally, there is a clear separation in the TOF-∆v trade space between transfers possessing flight

times less than 100 days and transfers possessing flight times greater than 100 days.

The minimum ∆v transfers for groups 1-16 are visualized in the configuration space of the

Earth-Moon CR3BP; specifically, Figures 8.34 and 8.35 display each transfer as a projection onto

the xy-plane ofR. In these figures, each corrected transfer loosely resembles its associated primitive-

based initial guess (dashed gray) but with significant deviations due to large velocity discontinuities

present in the original primitive-based initial guesses. A similar behavior is observed and discussed

for the Lyapunov and northern halo orbit transfer design scenarios during the natural parameter

continuation procedure. In addition, Table 8.8 lists the TOF and total ∆v for each minimum ∆v

transfer.

Overall, Transfers 1-16 provide a variety of distinct geometries with flight times less than 100

days that depart the initial L2 southern NRHO and arrive onto the target DRO. These transfers

are constructed from initial guesses that leverage a variety of primitives along the manifolds and

intermediate periodic orbits included in the motion primitive graph. Transfers 1-13 remain close to

the Moon, L1, and L2 while Transfers 14-16 traverse slightly away from this region. Despite these

differences, all of these transfers provide design options that remain relatively close to the Moon.

As displayed in Figure 8.34, Transfers 2 and 3 exhibit similar geometries that depart the vicinity

of the Moon towards the DRO; however, Transfer 3 possesses additional revolutions around the

Moon near the initial NRHO before transferring towards the DRO. This behavior is also evident in
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(a) Transfers computed using wopt = [0.1, 0.9]. (b) Transfer groups 1-16 computed using wopt =
[0.1, 0.9].

(c) Transfer groups 17-25 computed using wopt =
[0.1, 0.9].

(d) Minimum ∆v solutions transitioned from wopt =
[0.9, 0.1] to wopt = [0.1, 0.9].

Figure 8.33: Total ∆v and TOF of transfers computed from an L2 southern NRHO to a DRO in
the Earth-Moon CR3BP, where geometrically similar transfers are denoted in the same color and
the minimum ∆v solution for each transfer geometry is highlighted.

the TOF-∆v trade space, as displayed in Figure 8.33b for Transfers 2 and 3. A similar observation

holds for Transfers 5-8, Transfers 10-11, and Transfers 14-15: the identified transfers within each set

admit similar total ∆v requirements and overall transfer geometries but possess a distinct number
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Figure 8.34: Transfers 1-13 (from Figure 8.33) with distinct geometries computed from primitive-
based initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP,
displayed as a projection onto the xy-plane of R.

of revolutions near the initial NRHO. Trajectories along the unstable manifold associated with

the initial L2 southern NRHO are slow to depart from the orbit due to its stability properties.

Therefore, a variety of similar transfer geometries are identified in this design space exploration

that only differ based on completed number of revolutions around the Moon in the vicinity of the

initial NRHO. This result is valuable in the trajectory design process because it provides a human

analyst with insight into the flexibility of the departure conditions from the initial orbit relative to

the resulting transfer geometry.

Transfer 11 displayed in Figure 8.34 is examined in more detail because it requires the lowest

total ∆v among all of the transfers computed for this design scenario. Figures 8.36-8.38 display



210

Figure 8.35: Transfers 14-16 (from Figure 8.33) with distinct geometries computed from primitive-
based initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP,
displayed as a projection onto the xy-plane of R.

Table 8.8: Total ∆v and TOF of Transfers 1-16 (from Figure 8.33) computed from primitive-based
initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP.

Transfer Index TOF [days] Total ∆v [m/s]

1 23.92 408.73

2 29.62 379.00

3 42.32 361.69

4 30.22 434.17

5 48.65 408.90

6 58.67 399.80

7 68.73 400.37

8 75.39 400.30

9 48.80 461.71

10 49.07 307.20

11 41.85 291.90

12 37.10 359.09

13 32.05 546.31

14 60.84 407.01

15 74.30 405.83

16 59.97 395.67

the evolution of Transfer 11 throughout the natural parameter continuation process using the

same format as the northern halo orbit transfer design analysis. The solution computed using

wopt = [0.9, 0.1] is displayed in Figure 8.36 and closely resembles the primitive-based initial guess.
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The primitive-based initial guess used to construct this transfer only leverages primitives along the

unstable manifold associated with the initial L2 southern NRHO as evident in the evolution of CJ

along the corrected transfer. As displayed in Figure 8.36, the primary change in CJ is achieved

through the final maneuver used to insert onto the DRO and the total ∆v requirement is 488.47

m/s. The solution computed using wopt = [0.1, 0.9] is then displayed in Figure 8.37 after applying

the continuation procedure and requires a total ∆v of 291.90 m/s. As observed in previous results,

the geometry of the transfer evolves throughout the continuation process and the final computed

solution observes a smoother insertion onto the target DRO. This smoother insertion is evident

Figure 8.36: Continuous 38.85 day spatial transfer from an L2 southern NRHO to a DRO in the
Earth-Moon CR3BP, computed from a primitive-based initial guess using wopt = [0.9, 0.1].
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Figure 8.37: Continuous 41.85 day spatial transfer from an L2 southern NRHO to a DRO in the
Earth-Moon CR3BP, computed at wopt = [0.1, 0.9] using the continuation procedure that varies
the weights of the multi-objective optimization problem starting from the transfer displayed in
Figure 8.36.

in the evolution of CJ along the corrected transfer displayed in Figure 8.37 because it exhibits an

intermediate step in CJ between the initial and target values of CJ . However, the transfer displayed

in Figure 8.37 varies more significantly from the geometry of the primitive-based initial guess as

expected. The evolution of the transfers during the continuation process are displayed in Figure 8.38

and exhibit a relatively smooth evolution in geometry towards a more maneuver-efficient solution.

The remaining minimum ∆v transfers associated with groups 17-25 are visualized in the

configuration space of the Earth-Moon CR3BP; specifically, Figure 8.39 displays each transfer as
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Figure 8.38: Evolution of the geometry and TOF across transfers in the local vicinity of Transfer
11 from Figure 8.34, computed using the continuation procedure that varies the weights of the
multi-objective optimization problem.

a projection onto the xy-plane of R and Figure 8.40 provides a zoomed in view of each transfer

in the vicinity of the Moon. In these figures, each corrected transfer geometrically resembles its

associated primitive-based initial guess (dashed gray) with less significant deviations than Transfers

1-16. In addition, Table 8.9 lists the TOF and total ∆v for each minimum ∆v transfer. Each of

these transfers has a flight time greater than 100 days and presents a geometry that departs the

vicinity of the Moon and circumnavigates the system before returning to the lunar vicinity and

inserting onto the target DRO.

Transfers 17-24 each leverage trajectory segments along a 3:4 resonant orbit primitive while



214

Transfer 25 leverages a trajectory segment along a 1:3 resonant orbit primitive. During the transfer

grouping process, Transfers 17 and 19 are originally grouped together due to their global similarities

in geometry and similar flight times. However, as displayed in Figure 8.40, Transfers 17 and 19

exhibit significantly different departure geometries from the initial NRHO and arrival geometries

onto the target DRO. To visualize Transfer 17 in more detail, Figures 8.41-8.43 display the evolution

of Transfer 17 throughout the natural parameter continuation process using the same format as

Transfer 11 earlier in this subsection. Consequently, Transfers 17 and 19 are manually separated

and placed into separate transfer geometry groups. This result demonstrates a drawback of the

transfer geometry grouping procedure presented in Section 7.7. The global similarities between

Transfers 17 and 19 dominate the modified Hausdorff distance computation and do not effectively

capture their geometric differences near the Moon. Furthermore, the l∆TOF parameter is ineffective

in this case because both transfers possess similar flight times. Despite this need for Transfers 17

and 19 to be manually separated, Transfers 17-25 provide a variety of distinct geometries that

leverage primitives generated from the unstable manifolds, southern halo orbits, resonant orbits,

and DROs included in the motion primitive graph for the transfer design scenario.

Previous research investigations have also explored the transfer design space between an L2

southern NRHO and a DRO in the Earth-Moon CR3BP using different design methods. Some

investigations have focused on the construction of impulsive transfers while others have focused on

Table 8.9: Total ∆v and TOF of Transfers 17-25 (from Figure 8.33) computed from primitive-based
initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP.

Transfer Index TOF [days] Total ∆v [m/s]

17 125.58 348.96

18 116.06 406.68

19 124.45 458.10

20 116.72 345.46

21 128.16 404.17

22 138.69 388.17

23 128.53 443.48

24 235.75 469.48

25 132.70 736.12
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Figure 8.39: Transfers 17-25 (from Figure 8.33) with distinct geometries computed from primitive-
based initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP,
displayed as a projection onto the xy-plane of R.

the construction of low-thrust transfers [73, 121, 70, 87]. The low-thrust transfers often leverage

similar fundamental dynamical structures as the impulsive solutions but exhibit more gradual

approaches into the target DRO with a large number of revolutions around the Moon [70, 87].

Furthermore, transfers for this design scenario are often classified as either interior or exterior

transfers where the exterior transfers often leverage arcs resembling resonant periodic orbits as

presented in this subsection. As a comparison with a previous result, Muralidharan and Howell
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[73] computed a set of 6 transfers between an L2 southern NRHO and a DRO with total ∆v

values ranging from 142.88 m/s to 372.23 m/s and total flight times ranging from 51.39 days to

167.15 days. Similar ranges of total ∆v and total flight time are recovered in this investigation;

however, the geometry of the transfers recovered in this investigation are distinctly different than

the transfers recovered by Muralidharan and Howell [73]. In their investigation, initial guesses are

constructed from sets of trajectories generated by applying impulses to depart from the initial orbit

and arrive onto the target orbit based on computed maximum stretching directions. Therefore, the

resulting departure and arrival trajectories exhibit fundamentally different types of motion than the

Figure 8.40: Zoomed in view of Transfers 17-25 (from Figure 8.33) in the vicinity of the Moon,
displayed as a projection onto the xy-plane of R.
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manifold structures and resonant orbits leveraged in this investigation. It is also important to note

that Muralidharan and Howell computed transfers that locally minimize total ∆v and therefore

utilized a different objective function than the objective function used in this investigation [73].

Despite these differences, the transfers constructed in this work possess similar magnitudes of total

∆v and TOF.

Figure 8.41: Continuous 125.66 day spatial transfer from an L2 southern NRHO to a DRO in the
Earth-Moon CR3BP, computed from a primitive-based initial guess using wopt = [0.9, 0.1].
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Figure 8.42: Continuous 125.58 day spatial transfer from an L2 southern NRHO to a DRO in the
Earth-Moon CR3BP, computed at wopt = [0.1, 0.9] using the continuation procedure that varies
the weights of the multi-objective optimization problem starting from the transfer displayed in
Figure 8.41.
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Figure 8.43: Evolution of the geometry and TOF across transfers in the local vicinity of Transfer
17 from Figure 8.39, computed using the continuation procedure that varies the weights of the
multi-objective optimization problem.
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8.3.3 Constructing Transfers from an L2 Southern NRHO to a DRO at CJ ≈

2.7654

To demonstrate the capability to construct motion primitive sequences between any two

selected nodes in a motion primitive graph, the motion primitive graph constructed for the NRHO

to DRO transfer design scenario is searched to produce unique sequences of six primitives that

each form an initial guess for a transfer from the initial L2 southern NRHO to the second target

DRO described in Table 8.6. There are a total of 373,315 primitive sequences from the selected

initial node to the newly selected target node in the graph consisting of six primitives. Using the

filtering process presented in Section 7.4, the Q = 15 top-ranked sequences that begin with a unique

primitive are examined and corrected using the exact same process described in Section 8.3.2.

Following the corrections process, all 15 transfers are successfully corrected using wopt =

[0.9, 0.1] and then transitioned to wopt = [0.1, 0.9]. The 15 corrected transfers computed using

wopt = [0.1, 0.9] are grouped based on geometry to extract the distinct types of transfers that

connect the initial L2 southern NRHO and the target DRO at CJ ≈ 2.7654 in the Earth-Moon

CR3BP. When applying the k-NN graph approach described in Section 7.7, knn = 2 and l∆TOF =

6.5 days are selected empirically and produce 11 groups of geometrically distinct transfers. The

resulting properties of each transfer are plotted in Figure 8.44 using the same configuration as Figure

8.33 where the minimum ∆v solution in each group is circled and numbered. These transfers require

flight times ranging from 45.24 days to 127.66 days and total ∆v requirements ranging from 365.54

m/s to 625.57 m/s when placing more emphasis on recovering maneuver-efficient transfers.

The minimum ∆v transfer in each group is visualized in the configuration space of the Earth-

Moon CR3BP; specifically, Figures 8.45 and 8.46 display each transfer as a projection onto the xy-

plane of R. In addition, Figure 8.47 provides a zoomed in view of Transfers 7-11 in the vicinity of

the Moon. Similar to the transfers constructed in Section 8.3.2 for the first target DRO, some of the

computed transfers remain in the lunar vicinity while other transfers circumnavigate the system.

The transfers displayed in Figure 8.45 remain in the lunar vicinity and most of these transfers
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(a) Transfers computed using wopt = [0.1, 0.9]. (b) Minimum ∆v solutions transitioned from wopt =
[0.9, 0.1] to wopt = [0.1, 0.9].

Figure 8.44: Total ∆v and TOF of transfers computed from an L2 southern NRHO to a DRO in
the Earth-Moon CR3BP, where geometrically similar transfers are denoted in the same color and
the minimum ∆v solution for each transfer geometry is highlighted.

leverage intermediate DROs. Similar to the transfer properties observed in Section 8.3.2, Transfers

3 and 4 each exhibit similar geometries but possess a different number of revolutions around the

Moon in the vicinity of the initial NRHO; a similar observation holds for Transfers 5 and 6. To

visualize one of these transfers in more detail, Figures 8.48-8.50 display the evolution of Transfer

4 throughout the natural parameter continuation process using the same format as in the previous

subsection. Finally, Transfers 7-11 each leverage trajectory segments along either a 3:4 resonant

orbit primitive or a 1:3 resonant orbit primitive. These transfer possess significantly longer flight

times than Transfers 1-6. A fewer number of transfers are constructed from the initial L2 southern

NRHO to the second target DRO in this subsection compared to Section 8.3.2; however, even this

smaller set of results further demonstrates the versatility of rapidly exploring a design space in a

multi-body system via a systematic primitive-based initial guess construction framework.
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Figure 8.45: Transfers 1-6 (from Figure 8.44) with distinct geometries computed from primitive-
based initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP,
displayed as a projection onto the xy-plane of R.
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Figure 8.46: Transfers 7-11 (from Figure 8.44) with distinct geometries computed from primitive-
based initial guesses between an L2 southern NRHO and a DRO in the Earth-Moon CR3BP,
displayed as a projection onto the xy-plane of R.
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Figure 8.47: Zoomed in view of Transfers 7-11 (from Figure 8.44) in the vicinity of the Moon,
displayed as a projection onto the xy-plane of R.
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Figure 8.48: Continuous 79.25 day spatial transfer from an L2 southern NRHO to a DRO in the
Earth-Moon CR3BP, computed from a primitive-based initial guess using wopt = [0.9, 0.1].
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Figure 8.49: Continuous 77.24 day spatial transfer from an L2 southern NRHO to a DRO in the
Earth-Moon CR3BP, computed at wopt = [0.1, 0.9] using the continuation procedure that varies
the weights of the multi-objective optimization problem starting from the transfer displayed in
Figure 8.48.
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Figure 8.50: Evolution of the geometry and TOF across transfers in the local vicinity of Transfer
4 from Figure 8.45, computed using the continuation procedure that varies the weights of the
multi-objective optimization problem.



Chapter 9

Conclusions and Recommendations

9.1 Concluding Remarks

In this investigation, the concept of a motion primitive is used to summarize fundamental

dynamical structures in a multi-body system with the goal of reducing the complexity of analysis

required for trajectory design. Across a variety of disciplines, a motion primitive is a fundamental

building block of complex motion in a dynamical environment that represents a range of similar

solutions. In this work, a motion primitive set is defined as a set of arcs that capture the charac-

teristics of a larger set of trajectories and support assembly of an initial guess for a more complex

path in a multi-body system. A data-driven procedure is presented for extracting primitives from

a set of trajectories without the need for significant human intervention or analytical separation

criteria. A set of trajectories is first encoded in a feature space description that captures common

design parameters of interest such as geometry, stability, and energy. Then, an ensemble of clus-

tering results is computed for the dataset using k-means and agglomerative clustering evaluated

for a variety of input parameters. WEAC, a consensus clustering method, is leveraged to generate

the final clustering result from the ensemble. A set of motion primitives is then extracted as the

medoids of the clusters. Using a consensus clustering algorithm in conjunction with traditional

clustering approaches produces results without requiring significant intervention from a human;

rather, this approach learns from an ensemble of accumulated evidence to numerically uncover the

natural groupings within a set of trajectories.

Using the presented data-driven procedure, motion primitives are constructed to summarize
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families of periodic orbits and hyperbolic invariant manifolds in the Earth-Moon CR3BP as well as

the Sun-Earth CR3BP. A set of motion primitives is constructed for the planar family of distant

prograde orbits in the Earth-Moon CR3BP, the spatial family of L1 northern halo orbits in the

Earth-Moon CR3BP, and a variety of other periodic orbit families; in each case, the motion primitive

sets capture the complex variations in geometry, stability, and energy along each family. A similar

clustering approach is also employed to summarize a set of trajectories along an unstable half-

manifold of an L1 Lyapunov orbit in the Earth-Moon CR3BP. Each trajectory along the manifold

is discretized into a series of smaller arcs to identify the fundamental variations in geometry of arcs

along the manifold. This approach effectively summarizes the departure geometries from the L1

Lyapunov orbit toward the Moon, motion around the Moon, and trajectories that either directly

impact the Moon or leave the lunar vicinity. For both the periodic orbit families and the manifold

trajectories, the outputs of the developed approach include: (1) a set of fundamental trajectories

that summarize larger sets of natural motions in a multi-body system, and (2) information about

the regions in which the motion primitives exist within the solution space. These outputs serve as

a key, fundamental step towards leveraging motion primitives for rapidly generating initial guesses

for complex trajectories within multi-body systems.

Using the motion primitive construction process, a modular primitive-based trajectory design

framework is developed to enable rapid generation of trajectories with distinct geometries and

efficient design space exploration in multi-body systems. First, a library of motion primitives is

constructed using clustering to summarize periodic orbit families and arcs along stable/unstable

manifolds for a transfer design scenario. Then, a graph is constructed to capture the potential

for sequential composability of motion primitives in this library and, therefore, offer a discrete

representation of part of the solution space. Searching this graph produces sequences of motion

primitives that support coarsely constructing initial guesses for transfers with distinct geometries.

Finally, each primitive sequence is refined and corrected using direct collocation and multi-objective

optimization to produce transfers that balance geometrically resembling the primitive-based initial

guess with reducing maneuver requirements.
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The primitive-based initial guess construction framework is demonstrated by computing a

variety of transfers in the Earth-Moon CR3BP between an L1 and L2 Lyapunov orbit, an L1 and

L2 northern halo orbit, and an L2 southern NRHO and DRO. Each of these transfer design scenarios

showcases different capabilities of the presented framework: the Lyapunov and northern halo orbit

scenarios demonstrate the ability to design both planar and spatial transfers, respectively; whereas,

the L2 southern NRHO to DRO transfer scenario demonstrates the ability to design transfers

between mission orbits with large energy and orbit plane differences. In each scenario, unique

primitive sequences and numerical continuation lead to the recovery of a set of transfers with a

variety of distinct geometries, flight times, and maneuver requirements. To demonstrate the utility

of using the CR3BP for preliminary trajectory design, some of the constructed transfers are also

transitioned into a point mass ephemeris model that incorporates the gravitational influence of the

Sun, Earth, and Moon. These examples demonstrate that motion primitives can support initial

guess construction for spacecraft trajectories in a multi-body system as well as rapid exploration

of the associated design space.

The primary contributions of this investigation to the astrodynamics community are (1) the

development of a motion primitive construction process for summarizing periodic orbit families and

trajectories along hyperbolic invariant manifolds associated with periodic orbits in the CR3BP; (2)

the development of a modular primitive-based initial guess construction framework that enables

rapid generation of trajectories with distinct geometries and efficient design space exploration in

the CR3BP; and (3) the formulation of a robust corrections procedure that leverages colloca-

tion and multi-objective optimization to encourage the recovery of trajectories that geometrically

resemble a primitive-based initial guess. Current trajectory design techniques in a multi-body sys-

tem often leverage natural fundamental solutions for initial guess construction; however, current

methodologies require manual exploration of a complex multi-dimensional solution space that is

nontrivial, mission specific, and time-consuming for a human analyst. Therefore, the motion prim-

itive construction process presented in this work may support summarizing the complex solution

space admitted by a multi-body system and simplifying the analysis process. Furthermore, the
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primitive-based initial guess construction framework contributes to addressing the challenges in

current design techniques when attempting to identify different geometric solutions for a design

scenario, particularly in the case of spatial design scenarios at high energy levels. Finally, the cor-

rections process provides a human analyst with the ability to recover continuous maneuver-enabled

trajectories that balance retaining a desired geometry with reducing impulsive maneuver require-

ments. These contributions built around the concept of a motion primitive may potentially support

rapid mission concept development and enhance current trajectory design strategies by reducing

the analytical workload of a trajectory designer.

9.2 Recommendations for Future Work

Building upon the proof of concept in this dissertation, the developed primitive-based ini-

tial guess construction framework warrants improvement as well as application to more complex

trajectory design scenarios. A list of recommendations for future work related to this research

include:

• The current motion primitive construction process leverages clustering results produced by

k-means and agglomerative clustering within WEAC. However, using additional clustering

algorithms may supply more information and diversity in the ensemble of clustering results

used within WEAC to generate the final set of clusters for a dataset. Investigating the use of

additional clustering algorithms within WEAC may improve clustering results and reduce

the need for cluster refinement in some cases, particularly because k-means assumes globular

cluster structures and agglomerative clustering is sensitive to the selected linkage type.

However, the computational cost of leveraging a larger ensemble must also be considered.

• Investigate potential improvements or alternative methods for cluster refinement. The

cluster refinement approach is used to improve clustering results produced by WEAC when

applicable. However, as formulated in this work, it requires the selection of three input

parameters and relies on the human analyst to develop an intuition for selecting these
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parameters. Furthermore, the presented approach may sometimes lead to excessive frag-

mentation of the original clusters. Therefore, investigating improvements to the procedure

or alternative methods may lead to a more robust process that reduces the number of input

parameters and further reduces the burden on a human analyst when additional cluster

refinement is deemed appropriate.

• Additional and/or alternative information may be incorporated into the feature vector def-

initions for periodic orbits and trajectories along a hyperbolic invariant manifold. The

definitions used in this work focus on describing geometry, stability, and/or energy; how-

ever, alternative features may be used to describe these properties as well as additional

parameters of interest for trajectory design. Furthermore, the current use of apses for de-

scribing the geometry of a trajectory requires the selection of a reference point. Selecting

an appropriate reference point for computing the apses may be difficult depending on the

trajectory and therefore alternative methods may be investigated that do not require this

selection.

• Investigate analytical or numerical methods to describe the volumes of the phase space

spanned by a cluster of similar trajectories in order to construct a more complete and

accurate approximation of the region of existence associated with a motion primitive.

• In this work, motion primitives are only generated to summarize periodic orbit families and

sets of trajectories along hyperbolic invariant manifolds associated with periodic orbits at a

single energy level. However, the motion primitive construction process may be adapted to

generate motion primitives for a larger variety of trajectory sets. Incorporating primitives

generated from additional dynamical structures within a motion primitive library may ex-

pand the potential design space for a transfer scenario. For example, motion primitives

could be generated to summarize trajectories along hyperbolic invariant manifolds asso-

ciated with periodic orbits across multiple energy levels, quasi-periodic orbits, hyperbolic

invariant manifolds associated with quasi-periodic orbits, sets of trajectories departing an
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orbit using an impulsive maneuver, and low-thrust enabled trajectories. Extending the

presented approach to a larger variety of trajectory sets will require new feature vector

definitions to effectively describe the corresponding trajectories.

• Investigate methods to improve the motion primitive graph construction process. Currently,

a single value of knn is used to generate the edges within a motion primitive graph. However,

an adaptive value of knn based on the size of each subgraph or alternative edge generation

processes may be more appropriate. Furthermore, position and velocity difference limits

may be incorporated to remove edges in the graph that violate desired thresholds. Finally,

the current edge weight computations are based only on state discontinuities; however,

additional parameters of interest may be incorporated into the edge weight computations

to consider a larger array of criteria related to a transfer scenario.

• Investigate methods to improve the search process for identifying motion primitive se-

quences with distinct geometries from a motion primitive graph. Currently, a brute force

search algorithm is used to enumerate all potential paths between an initial node and a tar-

get node with a desired path length. The filtering process presented in this approach helps

facilitate an efficient human-driven evaluation of the resulting sequences. Furthermore, the

waypoint search process helps mitigate some of the challenges associated with finding longer

sequences of motion primitives. However, more powerful and efficient search techniques are

needed to effectively search more complex motion primitive graphs for increasingly com-

plex design scenarios. Improved search techniques may also be used to address a similar

challenge in the morphing process when refining a long sequence of primitives to generate

an initial guess for a transfer.

• Investigate methods to improve the current k-NN graph approach for grouping transfers

with similar geometries during the design space exploration for a transfer scenario. As dis-

cussed in this investigation, there is a case where two transfers must be manually separated

into distinct groups due to limitations of the current grouping procedure. Therefore, alter-
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native definitions for evaluating the difference in geometry between two transfers described

by a distinct number of nodes may be explored.

• Apply the primitive-based initial guess construction framework to more complex trajectory

design scenarios. The framework presented in this work is modular and may be leveraged for

a large variety of design applications. Suggestions include transfers to/from low orbits near

a primary body, low-thrust transfers, transfers in other multi-body systems, and transfers

that incorporate primitives from different multi-body systems. The final listed suggestion

may involve patching CR3BP trajectories together from different systems or leveraging

primitives constructed in higher-fidelity models.
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[53] M. C. E. Huber and O. von der Lühe. Coronal Observations with SOHO. Advances in Space
Research, 11(1):339–348, 1991. DOI: https://doi.org/10.1016/0273-1177(91)90130-C.



239

[54] O. C. Jenkins and M. J. Mataric. Deriving Action and Behavior Primitives from Human
Motion Data. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
Lausanne, Switzerland, 10 2002. DOI: https://doi.org/10.1109/IRDS.2002.1041654.

[55] Z. Jiang, M. Evans, D. Oliver, and S. Shekhar. Identifying K Primary Corridors from Urban
Bicycle GPS Trajectories on a Road Network. Information Systems Journal, 57:142–159,
2016. DOI: https://doi.org/10.1016/j.is.2015.10.009.

[56] G. Karypis, E. H. Han, and V. Kumar. Multilevel Refinement for Hierarchical Clustering.
Technical Report TR-99-020, Department of Computer Science, University of Minnesota,
Minneapolis, MN, 1999.

[57] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, Hoboken, NJ, 2005.

[58] H. B. Keller. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In P. H.
Rabinowitz, editor, Applications of Bifurcation Theory, pages 359–384. Academic Press, New
York, 1977.

[59] M. Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collo-
cation. SIAM Review, 59(4):849–904, 2017. DOI: https://doi.org/10.1137/16M1062569.

[60] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross. Heteroclinic Connections Between
Periodic Orbits and Resonance Transitions in Celestial Mechanics. Chaos, 10(2):427–469,
2000. DOI: https://doi.org/10.1063/1.166509.

[61] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross.
Dynamical Systems, The Three-Body Problem, and Space Mission Design. Springer,
New York, USA, 2011.

[62] M. Lara and R. P. Russell. On the Family “g” of the Restricted Three-Body Problem.
Monograf́ıas de la Real Academia de Ciencias de Zaragoza, 30:51–66, 2006.

[63] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006. DOI:
https://doi.org/10.1017/CBO9780511546877.

[64] D. E. Lee. White Paper: Gateway Destination Orbit Model: A Continuous 15 Year NRHO
Reference Trajectory. Technical Report TP-20190030294, NASA, 2019.
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Appendix A

Motion Primitives Constructed along Hyperbolic Invariant Manifolds in the

Earth-Moon CR3BP

In this work, motion primitives are constructed along hyperbolic invariant manifolds in the

Earth-Moon CR3BP which are then leveraged in the primitive-based initial guess construction

framework. This appendix presents the set of motion primitives constructed to summarize each

half-manifold in the Earth-Moon CR3BP that is utilized in this work. Table A.1 lists the identifying

properties for each half-manifold. Furthermore, Table A.2 lists the parameters used to generate a

set of trajectories along each half-manifold and Table A.3 lists the parameters used to generate sets

of motion primitives from these trajectories. Finally, Figures A.1-A.12 display the set of motion

primitives generated to summarize each manifold structure. In each of these figures, the motion

primitives are depicted in blue and the initial position of each primitive is denoted with a filled

black circle; the associated sets of representative trajectories for the primitives are depicted in gray

and the initial position of each representative trajectory is denoted with an empty black circle;

the Earth and/or Moon is plotted to scale as a gray sphere; and the libration points are marked

with red diamonds. Additional relevant plotting specifications are denoted in the caption for each

figure. These figures provide a visual representation of the motion primitives utilized to construct

the large variety of transfers presented in this work.
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Table A.1: Hyperbolic invariant manifolds in the Earth-Moon CR3BP that are utilized in this
work. Note: Direction is abbreviated as “Dir.”.

Index Source Orbit Source Orbit CJ Type Initial
Stability Index x Dir.

1 L1 Lyapunov s1 = 2206.969701740854 3.167002726384443 Unstable +

2 L1 Lyapunov s1 = 2206.969701740854 3.167002726384443 Stable +

3 L2 Lyapunov s1 = 1383.837551141560 3.166629662653735 Unstable -

4 L2 Lyapunov s1 = 1383.837551141560 3.166629662653735 Stable -

5 L1 northern halo s1 = 218.4295991405137 3.063534530378191 Unstable +

6 L1 northern halo s1 = 218.4295991405137 3.063534530378191 Stable +

7 L1 northern halo s1 = 889.3831605316448 3.122412735785743 Stable +

8 L2 northern halo s2 = 180.2782082683678 3.066884796159840 Unstable -

9 L2 northern halo s2 = 180.2782082683678 3.066884796159840 Stable -

10 L2 southern halo s1 = −2.751814321511511 3.044579150514986 Unstable +

11 L2 southern halo s2 = 12.678124806969251 3.018783209603037 Unstable +

12 L2 southern halo s2 = 734.8166117276289 3.124978276981083 Stable -
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Table A.2: Parameters used to generate trajectories along the hyperbolic invariant manifolds in the
Earth-Moon CR3BP that are utilized in this work. Note: The manifold index is obtained from Table
A.1, the nondimensional radius of a spherical approximation of the Moon is 0.004519771071800,
and the nondimensional radius of a spherical approximation of the Earth is 0.016592446930281.

Index Orbit Node Number of Step Size Termination Criteria

Spacing Type Trajectories (d̃)

1, 2 Equal time 500 40 km
15 apses wrt Moon, Lunar impact,
x = 0.820176824506134,
x = 1.155682164448510

3, 4 Equal time 500 40 km
15 apses wrt Moon, Lunar impact,
x = 0.836915127047076,
x = 1.178795807737480

5, 6, 8, 9 Equal time 500 40 km
15 apses wrt Moon, Lunar impact,
x = 0.80, x = 1.17,
y = −0.30, y = 0.30

7 Equal arclength 500 40 km

Max. propagation time = 14.73,
Lunar Impact,
x = 0.80, x = 1.20,
y = −0.30, y = 0.30

10 Equal arclength 1000 40 km
60 apses wrt Moon, Lunar impact,
x = 0.80, x = 1.75,
y = −0.50

11 Equal arclength 500 40 km
10 apses wrt Earth,
Earth or Lunar Impact,
x = 1.75, y = 0.20

12 Equal arclength 500 40 km
20 apses wrt Moon, Lunar impact,
x = 0.80, x = 1.20,
y = −0.30, y = 0.30
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Table A.3: Parameters used to generate motion primitives along the hyperbolic invariant manifolds
in the Earth-Moon CR3BP that are utilized in this work. Note: The last two columns provide the
number of shorter arcs generated along each half-manifold based on the parameter selections and
the resulting number of primitives constructed to summarize each half-manifold.

Index nwindow nshift refPt cenPt k dmin lcsize lsim knn # of # of
Arcs Prims

1 4 1 Moon (P2) [10,75] 0.4 5 0.90 2 1196 69

2 4 1 Moon (P2) [10,75] 0.4 5 0.90 2 1196 68

3 4 1 Moon (P2) [20,100] 0.4 5 0.90 3 1865 88

4 4 1 Moon (P2) [10,100] 0.4 5 0.90 3 1865 89

5 4 1 Moon (P2) [80,175] 0.4 5 0.99 2 2102 198

6 4 1 Moon (P2) [70,175] 0.4 5 0.99 2 2102 194

7 4 2 Moon (P2) [30,100] 0.4 10 0.90 2 1371 118

8 4 1 Moon (P2) [75,175] 0.4 5 0.99 2 2028 226

9 4 1 Moon (P2) [70,175] 0.4 5 0.99 2 2028 223

10 6 4 Moon (P2) [10,75] 0.4 25 0.75 10 8178 55

11 4 2 Earth (P1) [5,20] 0.4 5 0.75 5 1459 11

12 4 2 Moon (P2) [10,50] 0.4 5 0.90 2 813 41
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A.1 L1 Lyapunov Orbit Unstable Half-Manifold Primitives at CJ ≈ 3.1670

Figure A.1: Motion primitives and the associated sets of representative trajectories computed
from an L1 Lyapunov orbit unstable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.1670;
trajectories are displayed in the xy-plane of R and L1 (L2) is marked with a red diamond on the
left (right) in each subfigure.
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A.2 L1 Lyapunov Orbit Stable Half-Manifold Primitives at CJ ≈ 3.1670

Figure A.2: Motion primitives and the associated sets of representative trajectories computed from
an L1 Lyapunov orbit stable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.1670; trajectories
are displayed in the xy-plane of R and L1 (L2) is marked with a red diamond on the left (right) in
each subfigure.
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A.3 L2 Lyapunov Orbit Unstable Half-Manifold Primitives at CJ ≈ 3.1666

Figure A.3: Motion primitives and the associated sets of representative trajectories computed
from an L2 Lyapunov orbit unstable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.1666;
trajectories are displayed in the xy-plane of R and L1 (L2) is marked with a red diamond on the
left (right) in each subfigure.
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A.4 L2 Lyapunov Orbit Stable Half-Manifold Primitives at CJ ≈ 3.1666

Figure A.4: Motion primitives and the associated sets of representative trajectories computed from
an L2 Lyapunov orbit stable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.1666; trajectories
are displayed in the xy-plane of R and L1 (L2) is marked with a red diamond on the left (right) in
each subfigure.
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A.5 L1 Northern Halo Orbit Unstable Half-Manifold Primitives at CJ ≈

3.0635

Figure A.5: Motion primitives and the associated sets of representative trajectories computed from
an L1 northern halo orbit unstable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.0635;
trajectories are displayed as a projection onto the xz-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.6 L1 Northern Halo Orbit Stable Half-Manifold Primitives at CJ ≈ 3.0635

Figure A.6: Motion primitives and the associated sets of representative trajectories computed
from an L1 northern halo orbit stable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.0635;
trajectories are displayed as a projection onto the xz-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.7 L1 Northern Halo Orbit Stable Half-Manifold Primitives at CJ ≈ 3.1224

Figure A.7: Motion primitives and the associated sets of representative trajectories computed
from an L1 northern halo orbit stable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.1224;
trajectories are displayed as a projection onto the xz-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.8 L2 Northern Halo Orbit Unstable Half-Manifold Primitives at CJ ≈

3.0669

Figure A.8: Motion primitives and the associated sets of representative trajectories computed from
an L2 northern halo orbit unstable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.0669;
trajectories are displayed as a projection onto the xz-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.9 L2 Northern Halo Orbit Stable Half-Manifold Primitives at CJ ≈ 3.0669

Figure A.9: Motion primitives and the associated sets of representative trajectories computed
from an L2 northern halo orbit stable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.0669;
trajectories are displayed as a projection onto the xz-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.10 L2 Southern Halo Orbit Unstable Half-Manifold Primitives at CJ ≈

3.0446

Figure A.10: Motion primitives and the associated sets of representative trajectories computed
from an L2 southern halo orbit unstable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.0446;
trajectories are displayed as a projection onto the xy-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.11 L2 Southern Halo Orbit Unstable Half-Manifold Primitives at CJ ≈

3.0188

Figure A.11: Motion primitives and the associated sets of representative trajectories computed
from an L2 southern halo orbit unstable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.0188;
trajectories are displayed as a projection onto the xy-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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A.12 L2 Southern Halo Orbit Stable Half-Manifold Primitives at CJ ≈ 3.1250

Figure A.12: Motion primitives and the associated sets of representative trajectories computed
from an L2 southern halo orbit stable half-manifold in the Earth-Moon CR3BP at CJ ≈ 3.1250;
trajectories are displayed as a projection onto the xz-plane of R and L1 (L2) is marked with a red
diamond on the left (right) in each subfigure.
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