Motivation and Overview

- Planetary exploration necessitates design of robust, feasible trajectories for individual spacecraft and/or secondary payloads.
- Outer planetary systems consist of multiple bodies, significantly influencing the motion of a spacecraft.
- Chaotic gravitational dynamics in multi-body systems are efficiently studied using dynamical systems theory.
- Trajectory design strategies can be leveraged to:
 - Enhance scientific return through mission orbit selection, reduced propellant requirements, lifetime extension.
 - Identify feasible low-cost transfers subject to constraints or hardware limitations, or analyze natural satellite transit.
 - Support concept development and design space exploration.
 - Enable secondary payloads to enhance mission objectives.
- Consider Neptune-Triton-spacecraft three-body problem.

Circular Restricted Three-Body Problem

Employ approximate dynamical model to identify dominant motions for rapid, informed trajectory design.

Assume Neptune, Triton are point masses on circular orbits, other moons do not significantly influence spacecraft motion.

\[
\begin{align*}
\ddot{x} - 2\dot{y} &= \frac{\partial U}{\partial x}, & \ddot{y} + 2\dot{x} &= \frac{\partial U}{\partial y}, & \ddot{z} &= \frac{\partial U}{\partial z},\\
U &= \frac{1}{2} (x^2 + y^2) + \frac{1 - \mu}{r} + \frac{\mu}{d}, & C_f &= 2U - v^2.
\end{align*}
\]

Fundamental Dynamical Structures

Dynamical systems techniques support computation of structures that guide the flow in multi-body systems.

Orbits in Neptune-Triton System

- Bounded motions support identification of mission orbits to achieve scientific objectives subject to mission constraints, design system tours and identify robust low-cost transfers.
- Approximately retained in higher-fidelity models.

Triton-Centered Orbits

Support extended observations, measurements of Triton.

Libration Point Orbits

Fixed relative configuration in system, useful stability properties, can offer view of Triton’s poles.

Resonant Orbits

Enable tours and measurements within system.

Valuable Insights During Trajectory Design

Dynamical systems approach supplies useful insight during concept development and mission planning.

Itinerary Planning

Constant of motion and zero velocity curves in autonomous approximation provides preliminary assessment of regions of accessibility, minimal maneuver requirements.

Transit Pathways

Manifolds of unstable orbits guide transit within system, support robust and low-cost transfer design.

Orbit Maintenance and Accessibility

Orbit stability enables prediction of station-keeping needs and guides preliminary assessment of reachability of regions in support of achieving various scientific objectives.

Persistence in Higher-Fidelity Models

Analysis in autonomous dynamical model provides rapid and useful insight into trajectories that are approximately retained in higher-fidelity models, capturing point-mass ephemeris gravity of various bodies, oblateness, higher-order gravitational models etc.