```
University of Colorado Boulder
```


Natasha Bosanac, Colorado Center for Astrodynamics Research, CU Boulder

Motivation and Overview

- Planetary exploration necessitates design of robust, feasible trajectories for individual spacecraft and/or secondary payloads
- Outer planetary systems consist of multiple bodies, significantly influencing the motion of a spacecraft
- Chaotic gravitational dynamics in multi-body systems are efficiently studied using dynamical systems theory
- Trajectory design strategies can be leveraged to:
 - Enhance scientific return through mission orbit selection, reduced propellant requirements, lifetime extension
 - Identify feasible low-cost transfers subject to constraints or hardware limitations, or analyze natural satellite transit
 - Support concept development and design space exploration
 - Enable secondary payloads to enhance mission objectives
- Consider Neptune-Triton-spacecraft three-body problem

Circular Restricted Three-Body Problem

Employ approximate dynamical model to identify dominant motions for rapid, informed trajectory design

Assume Neptune, Triton are point masses on circular orbits, other moons do not significantly influence spacecraft motion

Fundamental Dynamical Structures

Dynamical systems techniques support computation of structures that guide the flow in multi-body systems

Enabling and Enhancing Planetary Exploration via Trajectory Design

$$\frac{\partial U}{\partial y} \quad \ddot{z} = \frac{\partial U}{\partial z}$$
$$\frac{-\mu}{r} + \frac{\mu}{d}$$

Libration Point Orbits

