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I. Introduction

R���� and informed trajectory design strategies within multi-body systems often benefit from the use of Poincaré

maps. Specifically, Poincaré mapping enables visualization of a large set of trajectories, generated in a given

dynamical system, via their intersections with a hyperplane [1]. When constructed appropriately, Poincaré maps

simplify the representation and analysis of fundamental motions in a chaotic dynamical system. For instance, consider a

two-dimensional map that uniquely represents a state along a planar trajectory at a single value of a constant of motion

in an autonomous system. Patterns that emerge on this map may reveal the characteristics of the solution space and the

existence of fundamental dynamical structures [2–6]. Furthermore, a trajectory designer is often interested in assessing

the fundamental geometries exhibited by solutions captured on the map along with their regions of existence. Such

insight supports selecting individual arcs to construct an initial guess for an end-to-end trajectory [3, 7–10].

The absence of analytical expressions to extract the fundamental geometries exhibited by solutions in a complex

flow regime may impede the human-in-the-loop data analysis tasks required for many trajectory design strategies that

leverage Poincaré maps; yet, this problem is not unique to the astrodynamics. In fact, these issues are encountered in a

variety of disciplines, from astronomy to medicine to air tra�c management. These disciplines regularly produce and

process large and complex data sets through, for example, stellar observations or clinical studies of human subjects.

There are often challenges in manually grouping the members of such complex data sets when: there are no general

analytical expressions for separating the data; the underlying structure of the data set and associated groupings of

members are not known a priori; or labelling a su�ciently representative subset of the data would be too challenging

or time-consuming [11]. These disciplines have leveraged clustering, a form of unsupervised learning algorithms, to

enable the discovery of groupings within large and complex data sets to inform scientific analyses [12–14].

In astrodynamics and applied mathematics, there have been several recent contributions to applying clustering

techniques to chaotic dynamical models, including the Circular Restricted Three-Body Problem (CR3BP). For instance,

Nakhjiri and Villac use k-means clustering to separate stable motion from chaos on a Fast Lyapunov Indicator (FLI) map

in the planar CR3BP, with a focus on the region near distant retrograde orbits [15]. They also leverage this approach to

govern automated map generation in this specific region. In addition, Hadjighasem, Karrasch, Teramoto and Haller
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apply spectral clustering to Lagrangian vortex detection in several generalized flow problems [16]. They demonstrate

that this spectral clustering approach e�ectively groups trajectories based on their geometry, with similarity between

two trajectories defined using a weighted sum of the distances between two particles sampled at regular times along the

solutions. Another example of the use of clustering in astrodynamics includes the work of Villac, Anderson and Pini

[17]. These authors leverage k-means clustering to organize periodic orbits, computed in the vicinity of an irregular

body, into sets that are analogous to orbit families. In each of these examples, unsupervised clustering approaches

successfully enable further analysis of a complex solution space that cannot be described or partitioned analytically.

This paper presents a strategy that leverages hierarchical and density-based clustering to enable analysis of the

information contained on a Poincaré map that captures planar trajectories within the autonomous CR3BP. Specifically,

hierarchical and density-based clustering is used to group the crossings on a Poincaré map according to the geometry of

the associated trajectories. The first step involves parameterizing the trajectories associated with the map crossings via a

summarized description that balances the fidelity level of the geometrical representation with the dimensionality [18].

To achieve this goal, each trajectory is described via normalized time and state information at each apse for up to several

revolutions around a primary. Then, two distance metrics are used to measure the similarity between trajectories: the

Euclidean distance, supporting an isochronous comparison between two solutions; and a modified Hausdor� distance,

enabling a global comparison of the geometry of two trajectories, independent of the initial condition [19]. With these

distance metrics and the selected trajectory summarization strategy, clustering is implemented via the Hierarchical

Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm [20]. This algorithm is well-suited

to the data associated with a general Poincaré map due to its ability to accommodate: a number of clusters that is not

known a priori; clusters of various shapes; clusters of various densities; and an unknown or nonconstant value of the

maximum separation between data within a single cluster in a higher-dimensional space [21]. Each cluster of map

crossings, identified via HDBSCAN, is then summarized by a single trajectory or map crossing selected using the

medoid of the cluster; the result is a representative reduced data set that enables cluster verification and further analysis

of the solution space. As an initial proof of concept, this approach is demonstrated within the context of a periapsis map

that captures planar solutions in the Sun-Earth CR3BP at a single energy level.

The motivation behind the procedure presented in this paper is to use this data-driven approach to enable a trajectory

designer to rapidly assess the solution space and simultaneously gain insight into the region of existence of arcs

with a specific geometry. In fact, crossings on the map associated with an arc of interest may be identified from the

representative reduced data set via a global view and then used to isolate the corresponding individual cluster of

trajectories for further examination. Note that this paper focuses on a proof of concept of this clustering-based approach

through the application to a two-dimensional Poincaré map constructed for planar solutions in an autonomous dynamical

model. However, the capability to group the crossings on a map by their associated trajectories in an unsupervised manner

may also be beneficial for more complex solution sets or dynamical models, e.g., spatial trajectories in an autonomous
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system or in nonautonomous dynamical models. Furthermore, a clustering-based approach to analysis and visualization

of the solution space within a multi-body system has the potential to reduce the burden on a human-in-the-loop and

the time required for trajectory design activities that leverage Poincaré maps; for instance, during mission concept

development, planning extensions or in time-critical scenarios necessitating redesign.

II. Dynamical Model
The CR3BP is leveraged to construct a Poincaré map that captures a su�ciently complex set of trajectories with a

wide variety of geometries. This dynamical model describes the motion of an assumed massless particle, P3, under

the point mass gravitational interactions of two massive primaries, P1 and P2 [22]. Each of these two primaries,

with a mass Mi , where i = 1,2, is assumed to follow circular orbits around their mutual barycenter. In addition, a

nondimensionalization scheme is introduced to enable a comparison between systems with similar relative masses and

to reduce the potential for ill-conditioning. Length quantities are normalized by the constant distance between the two

primaries, while mass parameters are nondimensionalized by the total mass of the system. Then, µ is defined as the

ratio of the mass of the smaller primary, P2, to the total mass of system. Finally, time quantities are normalized to

set the mean motion of the primary system equal to unity. Following nondimensionalization, a rotating frame, x̂ ŷ ẑ, is

introduced to reduce the complexity of visualization and to enable the definition of an autonomous dynamical system.

This rotating frame is defined with the x̂-axis directed from P1 to P2, ẑ is parallel to the orbital angular momentum

vector of the primaries, and ŷ completes the right-handed triad. With these definitions, the state of P3 is written in

nondimensional coordinates relative to the system barycenter and in the rotating frame as x = [x, y, z, €x, €y, €z]T . Then,

the nondimensional equations of motion for P3 in the CR3BP, expressed in the rotating frame, are written as:

‹x � 2 €y = @U
@x
, ‹y + 2 €x = @U

@y
, ‹z = @U

@z
(1)

where U = (1/2)(x2 + y2) + (1 � µ)/d + µ/r is a pseudo-potential function, while the distances between P3 and

the primaries, P1 and P2, are, respectively, d =
p
(x + µ)2 + y2 + z2 and r =

p
(x � 1 + µ)2 + y2 + z2 [22]. This

autonomous dynamical model admits a constant of motion, commonly labeled the Jacobi constant and equal to

CJ = 2U � €x2 � €y2 � €z2 [22]. At a single value of the Jacobi constant, the solution space is composed of trajectories

that exhibit a large variety of characteristics. However, simultaneous visualization and analysis of a large set of these

solutions in configuration or phase space may be challenging and time-consuming for the human-in-the-loop performing

data analysis.
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III. Poincaré Mapping
Poincaré mapping techniques enable a discrete-time representation of a continuous-time flow, reducing the complexity

and dimensionality of visualizing solutions within a chaotic dynamical system. To construct these maps, a hyperplane or

surface of section is first defined transverse to the solutions of interest [23]. There are numerous options for defining a

useful hyperplane in the CR3BP including, but not limited to: a physically interpretable plane expressed in configuration

space variables; a stroboscopic map that captures the flow at constant time intervals; or a known event that occurs along

a trajectory, such as the locally minimum distance from a reference location (e.g., periapsis) [1, 24, 25]. Given an

appropriately selected hyperplane, initial conditions are seeded within a desired region of the phase space. Each initial

condition is propagated forward or backward in time until its i-th intersection with the hyperplane in a desired direction.

This process is repeated for a desired number of successive intersections with the hyperplane in a specified direction.

Each crossing is then captured and represented on a lower-dimensional, one-sided map. Patterns formed in this map – or

even the lack thereof – enable the detection of various types of fundamental motions and distinguish order from chaos

within the flow [4].

To demonstrate the map construction process, consider planar motion near the Earth vicinity in the Sun-Earth

CR3BP. At a single value of the Jacobi constant, trajectories may potentially exhibit a large variety of geometries with

behaviors including: captured motion near the Earth vicinity; impacting the Earth; or passing through either the L1 or

L2 gateways, over various timescales, to visit other regions of the Sun-Earth system [3, 6, 8]. This diverse solution

space in a chaotic flow regime benefits from the use of Poincaré maps for visualization and analysis. For this example,

consider a map capturing perigees that occur along planar solutions at a single value of the Jacobi constant in the Earth

vicinity. First, a hyperplane is defined such that:

(x � 1 + µ) €x + y €y + z €z = 0 and (x � 1 + µ) ‹x + y ‹y + z ‹z + €x2 + €y2 + €z2 > 0 (2)

thereby capturing the perigees occurring along a trajectory [26, 27]. At a single value of the Jacobi constant, feasible

initial conditions are seeded directly from this hyperplane, using states of the form xC = [x, y,0, €x, €y,0]T for Nx equally-

spaced values of the x-coordinate between Sun-Earth L1 and L2 and Ny equally-spaced values of the y-coordinate in the

range y = [ymin, ymax]. At a perigee location along a planar trajectory, the velocity and position vectors, relative to

the Earth, are perpendicular. Thus, a unit vector aligned with the in-plane velocity vector is identified directly from

this orthogonality condition [27]. A consistent direction of motion, defined in the rotating frame, is selected for the

initial conditions: either (1) prograde, with P3 instantaneously possessing an angular momentum vector relative to

the Earth that is aligned with the orbital angular momentum of the primaries; or (2) retrograde, with P3 traveling in

a clockwise direction around the Earth at that instant of time. This direction of motion is used to select the correct

direction of the velocity unit vector for each initial condition. Then, the Jacobi constant relationship is rearranged to
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provide the following expression for the velocity magnitude, v, as a function of the pseudo-potential, which depends

only on the position coordinates and CJ ,d , the desired Jacobi constant: v =
p

2U � CJ ,d . If this speed corresponds to a

real number at a given position relative to the Earth, the value of v is used to scale the in-plane velocity unit vector

and directly recover the velocity components, €x and €y. This process is implemented for each apse location and only

states that simultaneously correspond to the desired Jacobi constant and satisfy the periapsis constraint in Eq. (2) are

retained as initial conditions. Each of these initial conditions is then propagated forward in time until the associated

trajectory either: completes Nret positive intersections of the map, i.e., subsequent perigees; passes within a distance of

10�6 nondimensional units to the Earth, located below the Earth’s surface; or escapes from the vicinity of the Earth

as defined by the trajectories passing through the L1 or L2 gateways. The collection of crossings of the hyperplane

that occur along each trajectory are then displayed on a two-dimensional plot reflecting the x- and y-coordinates in the

rotating frame to visualize the behavior of solutions in the Earth vicinity.

Following the outlined procedure for implementation, a periapsis map is constructed for planar motion in the

Sun-Earth system, described by a mass ratio of µ = 3.00348 ⇥ 10�6, at a Jacobi constant of CJ = 3.00088. At this

value of the Jacobi constant, both the L1 and L2 gateways are open. Thus, the solution space is composed of trajectories

that exhibit a wide variety of geometries, o�ering a su�ciently complex data set for testing the presented clustering

approach. For this map, prograde initial conditions are seeded as perigees at 200 equally-spaced x-coordinates between

L1 and L2 and 200 equally-spaced y-coordinates in the range y = [�0.01,0.01]. Only a subset of these initial conditions

produce viable state vectors that satisfy the perigee condition and correspond to a real-valued velocity magnitude; these

feasible initial conditions are propagated either forward or backward in time in the CR3BP with up to 20 returns to the

map recorded. The resulting maps in each case are depicted in Fig. 1 with each map crossing displayed via a black point

for: a) trajectories integrated forward in time and b) trajectories integrated backward in time. In these figures, the x- and

y-coordinates of the state at each perigee along each trajectory are represented on the horizontal and vertical axes of the

figure, respectively. Each of the L1 and L2 equilibrium points is located by a red diamond while the Earth is identified,

not to scale, at the center of the figure via a purple circle. In addition, the gray shaded regions represent ‘forbidden

regions’ bound by the well-known zero velocity curves [28]. Since each map in Fig. 1 captures periapses along planar

solutions at a single value of the Jacobi constant, each crossing of the map uniquely defines the entire state at perigee;

yet, these maps reveal a complex solution space that is still challenging to analyze.

The patterns that form on the Poincaré maps in Fig. 1 are governed by the stable and unstable manifolds associated

with L1 and L2 Lyapunov orbits [8, 27]. First, the periapsis maps in Fig. 1 admit regions with distinctly di�erent

densities in the map crossings; the boundaries of these regions tend to correspond to the first few revolutions of the

manifolds associated with the L1 and L2 Lyapunov orbits at the same Jacobi constant of CJ = 3.00088. In Fig. 1a),

where the trajectories are integrated forward in time, the low-density regions are governed by the unstable manifolds,

while the stable manifolds bound the low-density regions in the map in Fig. 1b), where solutions are propagated
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Fig. 1 Periapsis map in the Sun-Earth system for CJ = 3.00088, constructed by integrating trajectories a)
forward in time and b) backward in time.

backward in time. To visualize this correlation, up to ten intersections of the unstable and stable manifold structures with

the perigee surface of section are displayed in blue in Figs. 2a) and b), respectively, with the first three intersections for

each manifold labeled [27]. In Fig. 2a), the i-th intersection of the unstable manifold associated with the Lj Lyapunov

orbit, for j = 1,2, is labeled using the notation Uj ,i; similarly, in Fig. 2b), the associated crossing of the stable manifold

is labeled as Sj ,i . To possess periapses within a low-density region at this energy level, trajectories originally pass

through the L1 or L2 gateways prior to encircling the Earth in forward or backward time; thus, low-density regions

correspond to solutions that have completed fewer revolutions around the Earth before or after passage through either

gateway. Such insight reveals the history and fate of the trajectories associated with the map crossings. Furthermore,

the stable and unstable manifolds o�er a high-level verification of the results of the presented clustering approach

to grouping the crossings on a Poincaré map. However, the trajectories within each manifold crossing may exhibit

additional di�erences in geometry.

U2,2

U2,3

U2,1

U1,2

U1,1

U1,3

S1,2

S1,3

S1,1

S2,2

S2,1

S2,3

a) b)

Fig. 2 Periapsis map capturing a) unstable and b) stable manifolds associated with the L1 and L2 Lyapunov
orbits at CJ = 3.00088 in the Sun-Earth CR3BP.
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IV. Trajectory Summarization
In the context of this analysis, the objective of trajectory summarization is to construct a compressed description,

T i , of the trajectory associated with the i-th map crossing. Each crossing on a discrete-time map is associated with a

continuous, nonlinear trajectory. In the absence of a closed form solution to a chaotic dynamical system, a trajectory

could be represented to a high fidelity via discretization into a large time sequence of state vectors. Such an approach

would certainly capture the geometry of the solution; however, the resulting data set would require prohibitively large

data storage resources when applied to a large number of trajectories. Alternatively, reducing the dimension of the

description reduces the storage requirements for the entire data set, while also mitigating the influence of the well-known

curse of dimensionality in clustering [11]. The challenge, then, is to ensure that the trajectory summary is of a su�cient

fidelity to enable di�erentiation between solutions of distinct geometries. Thus, a suitable trajectory summarization

strategy must balance these goals to describe each trajectory by a vector of reasonable dimension that also reflects the

solution geometry; this problem is encountered in moving object database applications and several solutions exist [29].

To construct a low-dimensional, yet representative, description of a trajectory in the CR3BP, a curve-based

representation is employed. In particular, a trajectory is sampled at each apse relative to the Earth when propagated for a

finite number of subsequent crossings of the map. As a preliminary approximation of the entire nonlinear trajectory,

reduction to a sequence of apses or turning points o�ers a low-dimensional summarization that captures the general

shape of the solution. In contrast to a line-based approximation, this curve-based approach enables straightforward

construction of a compressed description that is equal in length for solutions of similar geometry, without the definition

of specific tolerances or parameters governing the approximation [29]. Given the geometry of the solutions in the

CR3BP, subsampling a continuous trajectory for a finite time interval at its apses will produce only a small number of

states in a small computational time; for Nperi subsequent returns to the periapsis map, a total of up to 2Nperi + 1 apses

occur. Of course, increasing the number of returns to the map will reveal further di�erences between trajectories and

increase the number of distinct geometries exhibited by the solutions associated with the map crossings. However, for

this preliminary proof of concept, Nperi is selected as a small integer that su�ciently di�erentiates the geometry of the

solutions in the planar CR3BP at a single value of the Jacobi constant.

A compressed description vector, T i , for the i-th trajectory is formed using information about the initial condition

and up to 2Nperi subsequent apses. Recall that, in this analysis, each trajectory is integrated until meeting one of

the following termination conditions: completing up to a finite number of subsequent returns to the hyperplane (i.e.,

perigee), passage through the L1 or L2 gateways, or passing within a distance of 10�6 nondimensional units to the Earth.

The complete compressed description vector for the i-th trajectory is then formed as T i =
⇥
Ri,1, ...,Ri,2Nper i+1

⇤
where

Ri, j is a row vector that reflects the time, state and direction information associated with the j-th apse along the i-th

trajectory, if it occurs. Specifically, the following quantities are included in the definition of Ri, j for a planar trajectory

and scaled as follows:
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1) ⌧i, j : the time at the j-th apse along the i-th trajectory is measured from zero at the initial condition and normalized

by the total integration time along the solution.

2) (x̃i, j, ỹi, j): the position coordinates of an apse, defined in the rotating frame of the CR3BP and measured relative

to the Earth, are normalized by the maximum magnitudes of the x- and y-coordinates across the initial conditions.

3) ṽi, j : the speed, defined in the rotating frame of the CR3BP, is normalized by the maximum value of the speed

across the set of initial conditions.

4) sign(ĥi, j · ẑ): the sign of the z-component of the orbital angular momentum unit vector, calculated in the rotating

frame relative to the Earth; this quantity equals either 1 or -1 for apses occurring along a trajectory.

Using these parameters, the five-dimensional vector Ri, j is defined as:

Ri, j =


⌧i, j, x̃i, j, ỹi, j, ṽi, j, sign(ĥi, j · ẑ)

�
(3)

and the components tend to have a maximum order of magnitude of 100. If, however, the solution passes through either

of the L1 or L2 gateways or passes within a small distance to the center of the Earth after the k-th apse, Ri, j is assigned

a placeholder value, Ri, j = [0,±10,0,0,0], for j > k. Here, a positive sign is used if the trajectory has terminated prior

to reaching apoapsis while a negative sign indicates that the trajectory has terminated before reaching periapsis. The

selected placeholder vector for Ri, j is designed to introduce a significantly large separation between members of the

data set that reflect trajectories completing a distinctly di�erent number of apses prior to termination. Furthermore,

the sign of the nonzero element of Ri, j introduces further separation between trajectories of distinct geometries, i.e.,

those that terminate either before periapsis or apoapsis. Although these placeholder values increase the amount of data

that is stored, they also produce compressed descriptions with a consistent length across all trajectories. In fact, the

compressed description vector, T i , possesses a length of (10Nperi + 5). The vectors, T i , are then combined to form the

data set, [S], that is input to the clustering algorithm.

V. Data Analysis via Clustering
Clustering is a valuable tool for performing an unsupervised grouping of data with similar properties – and separation

of dissimilar data [30]. Building upon prior demonstrations of a clustering approach to scientific data analysis in a variety

of disciplines, this paper focuses on applying clustering to the data associated with a two-dimensional Poincaré map,

with the goal of enabling analysis during the trajectory design process. There are a large variety of clustering algorithms

that have been developed, including: partitioning methods, e.g., k-means, k-medoids; hierarchical methods, e.g.,

Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH), Clustering Using REpresentatives (CURE);

and density-based methods, e.g., Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering

Points To Identify the Clustering Structure (OPTICS) [30]. Furthermore, hard clustering algorithms assume that each
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member of a data set either belongs to a cluster or it does not, while soft clustering assesses the likelihood of each

member belonging to a given cluster [11]. From the wide variety of available clustering techniques, the approach and

algorithm used in a specific data analysis application must be selected based on the properties of the data set and the

availability of information about the data or desired groupings prior to clustering.

The HDBSCAN algorithm, developed by Campello, Moulavi and Sander, is employed in this analysis [20]. This

algorithm leverages a hierarchical and density-based approach to constructing clusters, each corresponding to data

points that are densely located within the same neighborhood of a higher-dimensional space. These clusters are assigned

hierarchically to capture the most significant clusters that consist of a su�cient number of data points; data that are not

assigned to clusters are considered noise. HDBSCAN is specifically leveraged in this paper due to its capability to

accommodate the properties of the data generated in the CR3BP, including: a number of clusters that is not necessarily

known a priori; clusters that may exhibit a variety of shapes and densities across the data set; and an unknown or

nonconstant value of the maximum separation between data points within a single cluster in a higher-dimensional space

[21]. To provide a high-level background on this clustering technique, this section o�ers a brief conceptual overview of

the HDBSCAN algorithm as outlined by Campello, Moulavi and Sander and Campello, Moulavi, Zimek and Sander

[20, 21]. Then, a density-based definition of cluster validity developed by Moulavi, Jaskowiak, Campello, Zimek and

Sander is summarized [31]. Next, two useful distance metrics – the Euclidean distance and a modified Hausdor�

distance – are discussed as a means for defining a similarity measure during the clustering process. The concept of a

medoid is then presented to enable extraction of a cluster representative from clusters of potentially irregular shapes.

A. Overview of the HDBSCAN Algorithm

To assess similarity between the members of a data set and locate regions of higher density, HDBSCAN relies on

a quantity labeled the mutual reachability distance. To define this quantity, consider a data set, [S], consisting of N

vectors. Each component, si , of this data set is an M-dimensional vector that reflects the properties of the associated

data. Then, the core distance of the i-th data point is defined as the distance between the point itself and its Nmin,core-th

nearest neighbor in the M-dimensional space. The quantity Nmin,core is a tunable parameter that defines the number of

points required for a data point to be considered a core point, i.e., there is a su�cient number of points in its vicinity.

Furthermore, the distance is calculated via a selected distance metric, e.g., a Euclidean distance, infinity-norm, l1-norm,

Hausdor� distance, etc. Then, a mutual reachability distance between the i-th data point and the j-th data point is

defined as the maximum value of: (1) the core distance of the i-th data point; (2) the core distance of the j-th data point;

and (3) the distance between the i-th and j-th data points. The mutual reachability distance for each of the N data points

is then used to construct a mutual reachability graph with each of the N data points serving as vertices and the edges

weighted by the calculated mutual reachability distance [20, 21]. This graph reflects the similarity between neighboring

data points to support cluster identification within the M-dimensional space.
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Using the mutual reachability distance as a foundation, HDBSCAN produces a hierarchy of all possible clusters that

is simplified to remove noise. First, a minimum spanning tree is constructed for the mutual reachability graph, retaining

only the edges that produce the minimum total weight as defined by the mutual reachability distance and introducing

self edges weighted by the core distance of each data point. This minimum spanning tree is condensed to produce a

dendrogram that reflects all possible clusters. Then, the dendrogram is traversed to locate true splits that correspond to

new groupings of data with a number of data points that is above the threshold Nmin,cluster . Specifically, HDBSCAN

identifies stable or significant clusters as groups of data that persist over a large range of minimum threshold values in

the mutual reachability distance; points that are not assigned to a cluster are labeled as noise points.

Following the general procedure for the HDBSCAN algorithm, several input and output parameters exist. Input

parameters that are provided by the user are the data set, [S], the specific distance metric used to assess similarity,

as well as the quantities Nmin,core and Nmin,cluster . The data set possesses a dimension of N ⇥ M: the value of N

must be selected to su�ciently capture the information represented by the data set while reducing the computational

time, complexity and data storage requirements during data generation and clustering; the M components of each data

point must be defined to su�ciently capture the properties of the data while avoiding deterioration in the significance

of each component due to the curse of dimensionality [11]. While, Campello, Moulavi and Sander suggest initially

selecting Nmin,core = Nmin,cluster to reduce the number of parameters governing the performance of HDBSCAN, these

quantities are selected individually in this analysis. The outputs from HDBSCAN that are of most interest in this

clustering procedure are typically the number of clusters, Ncluster , and the labels, li , identifying the cluster that the i-th

member of the data set is assigned to: 0  li < Ncluster if the data point belongs to a cluster or li = �1 for a noise point.

The HDBSCAN algorithm is accessed in this investigation via the hdbscan Clustering Library developed by McInnes,

Healy and Astels in Python to o�er a fast and e�cient implementation [32]. As discussed by Campello, Moulavi and

Sander, the computational complexity of the HDBSCAN algorithm is ⇠ O(MN
2) in time and ⇠ O(MN) in memory

storage when the algorithm is provided an N ⇥ M dimensional data set [21]. However, depending on the user-defined

properties and methods used at each step of the clustering algorithm, the computational complexity may be reduced even

further. For the Python implementation used in this paper, the computational time complexity approaches ⇠ O(NlogN)

under certain circumstances; the details of the algorithmic implementation are described in McInnes and Healy [33].

B. Cluster Validation

An important, yet challenging, step in applying clustering algorithms to data analysis tasks is validating the cluster

results. In data mining, there are three general approaches to cluster validation: (1) internal validation where validation

criteria are constructed to directly leverage the data set; (2) external validation to compare the clustering results to

a priori knowledge of the structure of the solution space; and (3) relative validation which requires a comparison

of multiple clustering results to determine the better solution [31]. Validation via external methods is particularly
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challenging when there is little to no a priori insight into the underlying structure of the data set. For the Poincaré

mapping data set of interest in this paper, a limited external validation is achieved via comparison to the stable and

unstable manifold structures. In addition, Moulavi, Jaskowiak, Campello, Zimek and Sander have developed an internal

cluster validity measure labeled the Density Based Clustering Validation (DBCV) index [31]. This scalar quantity is

designed to indicate the quality of a clustering result, with the capability to accommodate the potentially irregular-shaped

groupings recovered by density-based clustering methods. Specifically, this quantity leverages two definitions: the

density sparseness of the i-th cluster, DSCi , which reflects the lowest density region within the cluster; and the density

separation between the i-th and j-th clusters, DSPCi, j , which captures the minimum reachability distance between the

members of two distinct clusters. These two definitions are used to define a validity index, VC ,i , for the i-th cluster as:

VC ,i =
minj2{0,...,Ncluster�1},i,j(DSPCi, j) � DSCi

max
⇥
minj2{0,...,Ncluster�1},i,j(DSPCi, j),DSCi

⇤ (4)

VC ,i may produce either positive or negative scalar values, with a positive index indicating that the i-th cluster possesses

a higher density than its density separation from the members of other clusters [31]. Then, for a data set of N members,

the DBCV index is defined as the weighted average of this validity index across all Ncluster clusters:

DBCV =

Ncluster�1’
i=0


Ni

N
VC ,i

�
(5)

where Ni is the number of members of cluster i. The DBCV index corresponds to values between -1 and +1 with

higher values of the DBCV index indicating a better clustering result [31]. In this paper, these scalar quantities are used

in two instances: to support selection of the parameters governing the HDBSCAN algorithm [14] and to reduce the

computational complexity of employing similarity measures that are expensive to evaluate.

C. Measures of Similarity

Similarity between two trajectories, each defined via a sequence of apses, is assessed using either an isochronous or

a normal correspondence. An isochronous correspondence compares two trajectories via time-ordered sequences that

depend on the location of the initial state along a trajectory [34]. Alternatively, a normal correspondence leverages a

comparison between two solutions via their closest points along the entire trajectories [34]. When applying Poincaré

mapping to the analysis of a chaotic multi-body system for a variety of applications, either of these forms of comparison

between two solutions may supply valuable insight. If the trajectory design application of interest requires an analysis of

the fundamental geometries within the solution space, with a dependence on the initial condition, a distance metric

based on an isochronous correspondence may supply a suitable measure of similarity between two trajectories: for

instance, during initial guess construction of a trajectory with a constrained itinerary or initial state along a segment.
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However, in a scenario where the trajectory designer is simply partitioning the complex solution space into clusters to

identify fundamental motions, an isochronous correspondence between two trajectories may not be appropriate. In fact,

clustering based on the similarity between trajectories via a time-dependent comparison may distribute a single type of

fundamental motion (e.g., arcs that lie along a family of quasi-periodic orbits within a region of bounded motion) across

multiple clusters, each corresponding to the trajectory starting at di�erent locations along the solution. In this scenario,

a distance metric that is formulated using a normal correspondence would supply a more suitable measure of similarity.

Thus, two distance metrics are used in this paper to define the similarity between two solutions: the Euclidean distance,

for an isochronous comparison between two trajectories, and a modified Hausdor� distance, to compare two entire

solutions irrespective of the initial condition [19]. In this section, each of these distance metrics is defined and the

implications for the performance and output of the clustering process is discussed.

The Euclidean distance measures the l2 norm of the di�erence between two vectors, o�ering a straightforward and

time-dependent comparison between two solutions. In the context of the trajectory summarization approach leveraged

in this paper, the Euclidean distance, de, measured between trajectory i and trajectory j is calculated as:

de(T i,T j) =

vut2Nper i+1’
k=1

(Ri,k � R j ,k) · (Ri,k � R j ,k) (6)

where the k-th apse along trajectory i is directly compared to the k-th apse along trajectory j for k = [1,2Nperi + 1].

This distance quantity requires a relatively low computational e�ort to evaluate. Furthermore, the Python-based hdbscan

clustering library leveraged in this analysis relies on the use of the triangle inequality to accelerate the performance of

the HDBSCAN clustering algorithm [32]. Since the Euclidean distance satisfies this condition, this implementation of

the HDBSCAN clustering algorithm can rapidly identify clusters within a large data set.

A modified Hausdor� distance enables a time-independent comparison between two trajectories and is often used

in a variety of technical disciplines for shape matching [19]. Evaluation of this distance metric involves pairing each

member of set i to the closest member of set j. In this paper, a modified and undirected Hausdor� distance, dh, is

calculated as:

dh(T i,T j) = dh,d(T i,T j) + dh,d(T j,T i) (7)

where

dh,d(T i,T j) = max
k=[1,2Nper i+1]

min
l=[1,2Nper i+1]

kRi,k � R j ,l k (8)

While this distance metric enables a comparison that does not depend on the ordering of the apses along each trajectory,

it is computationally expensive to incorporate into the clustering of an N ⇥ M-dimensional data set when N is large.

To use the modified Hausdor� distance as a measure of similarity between two trajectories, a faster clustering

procedure is developed by first prepartitioning the data set and then leveraging the cluster validity index, evaluated using
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a modified Hausdor� distance, to merge similar clusters. Rapidly clustering the solution space using the Euclidean

distance as a similarity measure enables an initial partitioning of the solution space into groups of trajectories with a

similar geometry and similar initial conditions, with each cluster labeled Ei for i = [0, ...,Ncluster � 1]. Cluster Ei and

cluster E j are then examined to determine if they are composed of trajectories that complete the same number of apses

prior to satisfying any of the termination conditions. To straightforwardly perform this comparison, recall the definition

of the compressed description vector, T : if a trajectory completes less than 2Nperi + 1 apses prior to satisfying one of

the termination conditions, a placeholder value for Ri, j is used instead of a description of the state at an apse. This

placeholder value possesses only one nonzero element, ±10, that is generally an order of magnitude higher than the

components of Ri, j describing a true apse. Generally, if the Euclidean norm of the di�erence between the compressed

description vectors for a trajectory from each cluster is less than ten, the two trajectories complete the same number

of apses prior to satisfying any of the termination conditions. In this case, members of both clusters are compared to

determine whether the clusters should be merged.

The cluster validity index, calculated using a subset of members from each clusters, is used in the merging step.

While assessment of this cluster validity index requires evaluation of the modified Hausdor� distance, Nmin,core and

Nmin,cluster do not need to be reselected. If either cluster Ei or cluster E j possesses fewer than Ncuto f f members,

then all members of the corresponding cluster are used in this step. If, however, either cluster possesses more than

Ncuto f f members, then the associated cluster is subsampled to reduce the computational time: every Nstep,k member of

the k-th cluster is used in this cluster comparison step, where Nstep,k = floor(Nk/Ncuto f f ). In this subsampling step,

the order of each member of the k-th cluster is consistent with their relative order in the original dataset. The value

of Ncuto f f used to define the subsampling process is selected to be larger than the value of Nmin,cluster and may be

adjusted iteratively.

If the selected subset of the solutions in the two clusters are considered similar, as defined by the modified Hausdor�

distance, the two clusters are merged. Specifically, clusters Ei and E j are merged if the values VC ,i and VC , j are both

negative when evaluated using the modified Hausdor� distance, i.e., trajectories across both clusters are geometrically

similar. This approach is verified to achieve a similar result in merging related clusters as reapplying the HDBSCAN

algorithm to each pair of clusters – but with a lower computational complexity and without reselecting Nmin,core and

Nmin,cluster . This process is repeated for all unique pairs of clusters identified from the clustering of the original data

set via the Euclidean distance as a similarity measure to produce a new set of clusters for the entire data set. The

presented approach leverages both the speed of clustering via the Euclidean distance to prepartition the solution space

and the cluster validity index to improve the e�ciency of implementing a comparison scheme that employs the modified

Hausdor� distance. As a result, this approach mitigates the challenges of using a similarity measure that is otherwise

computationally expensive to directly apply to large data sets.
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D. Extracting a Cluster Representative

To improve visualization and analysis of the clustering results, it is useful to identify a cluster representative, i.e., a

solution that reflects the members associated with each cluster. Although there are a variety of possible definitions, the

medoid of the cluster is leveraged in this paper as a representative solution. A medoid, also sometimes labeled a clustroid,

is defined as the member of a cluster that is most similar to the other members of the cluster [35]. Mathematically, the

trajectory associated with the medoid of the i-th cluster of Ni members is summarized as Tm,i and is computed using a

distance metric, d, as:

Tm,i = argminTk ,i 2{T1,i ,...,TNi ,i }

⇢ Ni’
j=1

d(Tj ,i,Tk ,i)
�

(9)

Analysis of this expression reveals that the medoid of the cluster is sampled directly from the members of the cluster.

Thus, the medoid is particularly useful for extracting a representative solution that corresponds to an actual trajectory in

the dynamical model of interest; this result is especially significant when the cluster possesses an irregular or convex

shape within a higher-dimensional space.

VI. Procedure for Clustering Map Data
Clustering the crossings on a Poincaré map via the geometry of their trajectories involves generating, processing and

clustering the data and then examining the output. The general procedure used in this paper is summarized as follows:

1) Define the map parameters including the CR3BP system, desired value of CJ to constrain trajectories, and

direction of motion for initial conditions.

2) Seed initial conditions as perigees occurring along planar trajectories between L1 and L2 at the desired value of

the Jacobi constant and in the desired direction, while also possessing a distance of at least 10�6 nondimensional

units from the smaller primary.

3) Generate and summarize trajectories to produce the data to input to the clustering procedure. For each initial

condition, integrate forward in time until either: completing Nperi subsequent periapses, passing within a radius

of 10�6 nondimensional units from the primary, or passing through either the L1 or L2 gateways. Summarize

the i-th trajectory by constructing the Ri, j vectors for the j-th apse occurring prior to any of the termination

conditions. Combine the Ri, j vectors to produce the compressed description vector, T i , for the i-th trajectory.

Repeat this summarization procedure for all initial conditions and combine to form the data set, [S].

4) Define the parameters governing the clustering algorithm, including the: distance metric used to assess similarity,

Nmin,core, and Nmin,cluster . The latter two parameters are selected via analysis of the DBCV index, the resulting

number of clusters and the fraction of noise points.

5) Run the clustering procedure. The HDBSCAN algorithm is applied to the data set, [S]. If the similarity measure

is defined using the Euclidean distance metric, this clustering is performed in a single step using the selected
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values of Nmin,core, and Nmin,cluster . If, however, the similarity measure is defined using the modified Hausdor�

distance, then the clustering is performed in two steps. First, the complete data set is partitioned using clustering

performed with the Euclidean distance as a similarity measure. Then, a subset of members from each pair of

clusters that are described by the same number of apses along the associated trajectories are compared using

the cluster validity index evaluated with the modified Hausdor� distance as a similarity measure. If the cluster

validity indices for both clusters are negative, then all members of the original pair of clusters are merged.

6) Examine the output of the clustering procedure. Any of the following output may be examined to assess the

validity of the clustering results: the number of clusters, number of noise points, visualization of the cluster

assignments, representative solutions from each cluster and dendrogram summarizing the clustering hierarchy.

7) Repeat Steps 4-6 if needed. Following analysis of the output from the HDBSCAN algorithm, the resulting

clusters must be assessed by a human-in-the-loop. If needed, the parameters governing the algorithm may be

adjusted and the clustering procedure repeated.

While there may be several options for formulating a data-driven framework to analyzing a periapsis map in the

autonomous CR3BP, this approach is used as a proof of concept for planar solutions at a single value of CJ .

VII. Results and Analysis
The developed clustering approach is used to group Poincaré map crossings in the Sun-Earth CR3BP at a single value

of the Jacobi constant based on the geometry of their associated planar trajectories. First, the data set [S] is constructed

to consist of the map crossings associated with prograde perigees near the Earth at a Jacobi constant of CJ = 3.00088.

Up to 400 equally-spaced values of the x-coordinate between L1 and L2 as well as up to 400 equally-spaced values of the

y-coordinate between -0.01 and 0.01 nondimensional units are used to seed the set of initial perigees. From all possible

combinations of x and y within these ranges that produce feasible perigees at CJ = 3.00088 located beyond a distance

of 10�6 nondimensional units from the Earth, 31,367 initial perigees are identified. Then, the associated trajectories are

integrated for up to Nperi = 3 subsequent periapses to produce a data set of dimension 31,367⇥ 35 via the definitions in

Eq. (3); these trajectories are generated in 10.5 seconds using a C++ implementation within MATLAB® on a computer

with a 3.6 GHz Intel Core i7 processor. This data set is input to the HDBSCAN clustering algorithm, accessed via the

hdbscan library in Python [32].

Cluster validation techniques are employed to select the parameters Nmin,core and Nmin,cluster governing the

HDBSCAN clustering algorithm and given the properties of the defined data set. Specifically, each of these parameters

is varied within a suitable range of values: for Nmin,core, used to calculate the mutual reachability distance, values

between 1 and 200 with a step size of 2 are examined; for Nmin,cluster , which corresponds to the minimum feasible

cluster size and is dependent upon the sparseness of the data set, values between 10 and 200 with a step size of 5 are

employed. For all possible combinations of Nmin,core and Nmin,cluster selected from these values, the HDBSCAN
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a) b) c)

Fig. 3 Selecting Nmin,core and Nmin,cluster via the: a) DBCV index, b) recovered number of clusters and c)
percentage of the data set labeled as noise.

algorithm is applied to the constructed data set using the Euclidean distance as a similarity metric. For each clustering

result, the DBCV index, defined in Eq. (5), is evaluated along with the number of clusters identified by the HDBSCAN

algorithm and the percentage of the data set that is labeled noise. These three properties of the clusters, produced for

various values of Nmin,core and Nmin,cluster , are used simultaneously to select a single combination of the parameters

governing the HDBSCAN clustering algorithm; the results are plotted in Fig. 3. In each subfigure, the horizontal axis

displays potential values of Nmin,core, while the vertical axis corresponds to Nmin,cluster . In Fig. 3a), the magenta

colored region at Nmin,core = 3 and encompassing the range Nmin,cluster = [60,105], indicates a higher value of the

DBCV index and, therefore, a better clustering result: for these values of the governing parameters, similar trajectories

are better grouped, while dissimilar trajectories are better separated. Across this combination of values for Nmin,core

and Nmin,cluster , Fig. 3b) indicates the recovery of between 33 and 38 clusters, while Fig. 3c) indicates that 1.93-2.42%

of the data set is labeled as noise after clustering. Although any combination of Nmin,core and Nmin,cluster in the

identified range could produce a reasonable clustering result that is useful to the human analyst, the following values for

the governing parameters within the identified range are selected in this paper: Nmin,core = 3 and Nmin,cluster = 100.

This combination of parameters produces 34 clusters and tends to correspond to a group of representative solutions that

are distinct, while 2.2% of the data set is labeled as noise, which is close to the minimum value across the entire range

of values analyzed for Nmin,core and Nmin,cluster .

The procedure outlined in this paper is used to cluster the trajectories associated with the constructed prograde

periapsis map near the Earth vicinity in the Sun-Earth planar CR3BP using the selected parameters and the Euclidean

distance as a similarity metric. With the selected parameterization and trajectory summarization strategy, the outlined

clustering procedure uncovers 34 clusters with only 693 of the 31,367 data points labeled as noise in 3.25 seconds on a

computer with a 3.6 GHz Intel Core i7 processor. The result of this clustering procedure is displayed in Fig. 4 with the

initial conditions associated with each trajectory, integrated for up to three subsequent returns to the map, uniquely

colored by their cluster and labeled by their cluster identifier, E0 to E33, located near the cluster medoid. The prefix "E"

in the cluster labels indicates that the clustering is performed using the Euclidean distance as a similarity metric. In
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Fig. 4 Zoomed-in view of the periapsis map in the Sun-Earth system at CJ = 3.00088, partitioned into 34
clusters using the Euclidean distance as a similarity metric.

addition, noise points are not plotted on this figure. The Earth is depicted as a purple circle. Note that this view is

zoomed-in to the main region of the map crossings for visual clarity and does not capture the following four clusters of

crossings near the L1 and L2 gateways: E4, E17, E22, E23. Analysis of this figure, and comparison to Fig. 2 reveals that,

at a minimum, the clustering process can separate the regions bound by the first few crossings of the stable manifolds

of the L1 and L2 Lyapunov orbits – without a priori knowledge of these manifold structures. Furthermore, additional

di�erentiation between trajectories and their geometry appears: subdivisions occur within these regions as trajectories

exhibit distinct characteristics. Note, however, that approximately 693 trajectories are labeled by HDBSCAN as noise

and do not appear in Fig. 4. This designation is likely due to the location of these trajectories in sparse regions of the

35-dimensional space associated with the compressed description vector. Further investigation into whether the number

of noise points may be reduced further is warranted. Possible solutions may include: a nonuniform discretization of the

initial condition set, particularly near the Earth where the majority of the trajectories designated as noise originate;

modifications to the compressed description vector; or the use of soft clustering to probabilistically assign each member

of the noise set to an existing cluster.

For further insight into the capability of the outlined clustering approach to di�erentiate trajectories of distinct

geometries on the periapsis map, an analysis of the solutions associated with each cluster is useful. To aid visualization

and interpretation, one representative solution from each of the clusters plotted in Fig. 4 is extracted via the medoid of

the cluster. These solutions are plotted in Fig. 5 along with the associated cluster label and a blue circle indicating the

location of the initial condition. All representative solutions in this set initially revolve around the Earth in a prograde

manner since the initial conditions are defined as prograde; however, along some solutions, the direction of motion does
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E0 E1 E2 E3 E5 E6

E7 E8 E9 E10 E11 E12

E13 E14 E15 E16 E18 E19

E20 E21 E24 E25 E26 E27

E28 E29 E30 E31 E32 E33

Fig. 5 Representative trajectories from each cluster in Fig. 4 plotted in the rotating frame for up to three
revolutions around the Earth.

change temporarily. The L1 and L2 equilibrium points are plotted as red diamonds, the Earth is depicted by a small

green circle and the forbidden regions are shaded in gray. Analysis of Fig. 4 and Fig. 5 reveals that, in general, solutions

of various geometries are separated into distinctly di�erent clusters. For solutions with a similar geometry, such as those

in clusters E15 and E16, the clusters are considered separate and distinct based on the initial condition. Of course,

since the Euclidean distance is used to determine similarity between two trajectories, such a result is expected. As a

supplement to the reduced set of representative solutions in Fig. 5, each cluster is analyzed visually in this preliminary

analysis to verify that the solutions across a single cluster exhibit a similar geometry. For instance, consider cluster E15,

which is composed of trajectories that encircle the Earth in an entirely prograde manner. This cluster is isolated and the

map crossings are plotted in gray in Fig. 6a); selected map crossings are overlaid as uniquely-colored circles. Then,

the trajectory associated with each of the selected map crossings is propagated for three returns to the hyperplane and

plotted with the same color assignment in Fig. 6b). Analysis of this figure reveals that across cluster E15, the trajectories

all exhibit a similar geometry with only a small apsidal rotation between revolutions. In fact, similar solutions, as

defined using an isochronous correspondence, are generally grouped within the same cluster. Thus, the representative

reduced data set in Fig. 5 o�ers a straightforward summary of the distinct and finite number of geometries exhibited by

solutions that are captured by the Poincaré map depicted in Fig. 4. This insight, derived without the need for explicit

analytical expressions or parameterizations of solution geometry, enables a human analyst to rapidly assess and visualize

the solution space for use in the trajectory design process.
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a) b)
Earth

Earth L2L1

Fig. 6 Cluster E15: a) selected map crossings sampled across the cluster and b) associated trajectories plotted
in configuration space.

An alternative approach to grouping the crossings of a Poincaré map by the geometry of the associated trajectories is

to use the modified Hausdor� distance to assess similarity via a normal correspondence. Since the modified Hausdor�

distance is computationally expensive to evaluate, clustering is performed using prepartioning, as outlined in the

algorithmic overview in Section VI. First, rapid clustering is performed using the Euclidean distance as a similarity

metric, producing the results displayed in Figs. 4 and 5. Then, pairs of clusters are compared using the cluster validity

index evaluated across a subset of 100-300 solutions from both clusters using the Hausdor� distance; this evaluation

requires a computational time on the order of seconds for each pair of clusters. If the cluster validity indices are negative

for both clusters, then the two clusters are merged. Once this process has been repeated for all possible pairs of clusters

of trajectories completing a consistent number of apses prior to termination, the results are displayed in Fig. 7. In this

figure, the map crossings are uniquely colored by their cluster and labeled by their cluster identifier. The prefix "H" in the

Fig. 7 Zoomed-in view of the periapsis map constructed in the Sun-Earth system at CJ = 3.00088, partitioned
into 27 clusters using a modified Hausdor� distance as a similarity metric.
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cluster labels indicates that the modified Hausdor� distance is used as a similarity metric. The associated representative

trajectories for each of the 27 clusters are displayed in Fig. 8 using a configuration that is consistent with Fig. 5; the

clusters that are merged are listed in brackets in Fig. 8. Note that the following clusters and their representatives are not

displayed as they occur outside of the zoomed-in region and close to the L1 and L2 gateways: H4, H16, H17, and H18.

Analysis of these figures reveals that several clusters from Fig. 4 are merged to produce the results in Fig. 7. When

integrated for three returns to the hyperplane, the trajectories in clusters E15 and E16 tend to correspond to the same

prograde motions around the Earth, but with di�erent initial conditions. Clusters E18, E19, E20 and E21 tend to exhibit

a similar general geometry over this finite time interval but with a larger apsidal rotation. When integrated for more

than three revolutions around the Earth, trajectories in these clusters would eventually appear distinctly di�erent from

the solutions in E15 and E16. However, when propagated for only three returns to the periapsis hyperplane, these six

clusters – E15, E16, E18, E19, E20 and E21 – appear similar enough to be merged into a single group, H15, when using

the modified Hausdor� distance as a similarity metric. Similarly, clusters H19 and H20 are each formed by merging two

clusters from Fig. 4. These results of the clustering procedure using the modified Hausdor� distance as a similarity

metric, displayed in Fig. 7 and Fig. 8, may be useful to a trajectory designer analyzing the fundamental geometries

underlying the solution space or determining the specific accessibility of a solution geometry from various regions

within the Earth vicinity. Furthermore, these results suggest that a hierarchical and density-based clustering approach

successfully organizes map crossings into clusters based on the geometry of the associated trajectories – regardless of

whether the trajectory designer has defined geometry as dependent or independent of the initial condition.

H0 H1 H2 H3 H5 H6

H7 H8 H9 H10 H11 H12

H13 H14 H15
[E15,16,18,19,20,21]

H19
[E24, E25]

H20
[E26, E28]

H21
[E27]

H22
[E29]

H23
[E30]

H24
[E31]

H25
[E32]

H26
[E33]

Fig. 8 Representative trajectories from each cluster in Fig. 7 plotted in the rotating frame for up to three
revolutions around the Earth.
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VIII. Conclusion
A hierarchical and density-based clustering algorithm, HDBSCAN, is employed to implement an unsupervised

clustering of map crossings on a general Poincaré map based on the geometry of the associated trajectories. As opposed

to other clustering algorithms, this particular method is selected due its ability to accommodate the properties of the data

generated via Poincaré mapping: a number of clusters that is not known a priori; clusters of various shapes; clusters of

various densities; and an unknown or nonconstant value of the maximum separation between data points within a single

cluster in a higher-dimensional space. Furthermore, data is generated by associating each map crossing with its trajectory

integrated for multiple revolutions around the Earth and summarizing the solution via the location of each periapsis and

apoapsis, as well as the associated epoch and direction of motion. The parameters governing the HDBSCAN algorithm

are then selected using cluster validation techniques. Next, solutions are considered similar if the vectors describing

the finite set of apses are close, as calculated using either the Euclidean distance or a modified Hausdor� distance to

formulate a similarity measure. HDBSCAN, implemented in Python via the hdbscan library, is used to cluster the map

crossings based on the geometry of the solutions. This clustering algorithm requires a computational time on the order

of seconds when applied to the constructed Poincaré map data set and using the Euclidean distance as a similarity metric.

Since the modified Hausdor� distance requires a higher computational time to evaluate than the Euclidean distance,

clustering via the modified Hausdor� distance is accomplished by prepartitioning the data and then merging clusters

of similar solutions. Specifically, the clusters identified with the Euclidean distance as a similarity metric are used to

prepartition the data set into a finite number of groups. Then, pairs of these initial clusters, subsampled to produce a

su�ciently representative set of members, are compared and merged via a cluster validity index.

The presented approach is applied to a planar periapsis map constructed in the Sun-Earth CR3BP at a single value of

the Jacobi constant. The outputs of this clustering approach are: 1) maps with individual clusters indicated by distinct

colors and each cluster su�ciently capturing only solutions of similar geometry, either dependent or independent of the

initial condition based on the selected similarity measure; and 2) a reduced set of representative solutions summarizing

the distinct geometries associated with each cluster. Using a clustering algorithm to identify the fundamental geometries

of the associated planar solutions eliminates the need to define analytical expressions for separation or to perform

a manual grouping. In fact, this automated and unsupervised approach may enable a trajectory designer to rapidly

assess and visualize the underlying solution space for use in more complex tasks such as initial guess construction.

Furthermore, the presented approach o�ers both a proof of concept and a foundation for future applications of clustering

to maps with higher-dimensional data and for dynamical models of increased complexity.
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