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Reinforcement learning (RL) is used to design impulsive station-keeping maneuvers for a

spacecraft operating near an !2 quasi-halo trajectory in a Sun-Earth-Moon point mass ephemeris

model with solar radiation pressure. This scenario is translated into an RL problem that

reflects the desired station-keeping goals, variables, and dynamical model. An algorithm from

proximal policy optimization is used to train a policy that generates station-keeping maneuvers

while transfer learning is used to reduce the computational time required for training. The

trained policy successfully generates station-keeping maneuvers that result in boundedness to

the vicinity of the selected reference trajectory with low total maneuver requirements, producing

comparable results to a traditionally-formulated constrained optimization scheme.

I. Introduction
Autonomous maneuver planning in multi-body systems is a key capability that could enable and enhance future space

missions. One type of maneuver that may occur throughout the lifetime of a mission is a station-keeping maneuver that

maintains bounded motion near a desired path. Existing strategies for planning station-keeping maneuvers for spacecraft

in a multi-body environment often leverage a combination of dynamical systems theory, optimization, and support

from a human [1–3]. These strategies successfully recover e�cient maneuvers at the expense of significant workload

and computational resources. Developing approaches to autonomously plan these station-keeping maneuvers may be

invaluable for reducing the operational cost and complexity of large observatories, formations, and small satellites as

well as in scenarios that require either a rapid response or experience a communications delay.

Reinforcement learning (RL) algorithms have emerged as a tool for autonomously designing a control policy in

complex dynamical environments. A general RL problem is formulated using an observation vector that represents the

information the agent perceives from the environment. Then, a policy produces the action to apply given an observation,
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and an environment governs the transition between two specific observation-action pairs. RL problems also require a

mathematical reward function that encodes the immediate reward for selecting an optimal action at a given observation.

Using these definitions, the goal is to uncover a policy that maximizes the long-term reward, i.e., the discounted

cumulative reward of successive observation-action pairs, also labeled as the value [4].

The use of RL to train policies in a wide variety of environments has inspired recent applications to astrodynamics

[5–7]. In transfer design, Das-Stuart et al. use RL, graph searches, and optimization for low-thrust trajectory design [8],

Miller and Linares train an RL agent for low-thrust enabled transfers between two distant retrograde orbits [9], Sullivan

and Bosanac use multi-reward RL to explore a segment of a low-thrust trajectory design space [10], LaFarge et al. use

RL to design continuous-thrust transfers between libration point orbits in the Earth-Moon system [11], Scorsoglio

et al. apply RL to relative motion around periodic orbits [12], and Boone et al. explore incorporating uncertainties

into training an RL agent for transfer design in the Sun-Earth system [13]. In the context of maneuver design within

low-fidelity dynamical models, Bonasera et al. and Bosanac et al. apply RL to station-keeping and reconfiguration

maneuver design near Sun-Earth !2 halo orbits [14, 15], Guzzetti studies the performance of a tabular Monte Carlo

implementation of RL for planar orbit maintenance [16], Molnar uses RL with dynamical systems theory to analyze and

design station-keeping maneuvers near a spatial orbit [17], and LaFarge et al. use an o�-policy RL framework to generate

station-keeping maneuvers in the Earth-Moon system [18]. These applications motivate continued exploration of the use

of RL in astrodynamics activities that currently rely heavily on large optimization problems and a human-in-the-loop.

In this paper, RL is used to generate impulsive station-keeping maneuvers for a spacecraft operating near a Sun-Earth

!2 quasi-halo trajectory. This scenario is modeled after a previous design of the Nancy Grace Roman Telescope [1].

During the multi-year mission, uncertainties and regular momentum unloads perturb the spacecraft to deviate from

a desired reference path. Accordingly, regular station-keeping maneuvers must be designed to adjust the path of the

spacecraft to maintain boundedness within the vicinity of a reference path while limiting control e�ort. RL is used in

this paper to design station-keeping maneuvers because: 1) the underlying problem is a Markov decision process where

a long-term objective function is optimized; 2) the exploration and exploitation tradeo� inherent to RL enables e�cient

exploration of the continuous state and action spaces; and 3) the trained policy produces a complex mapping between a

broad range of values of the problem variables and the associated maneuvers that may be rapidly evaluated without an

initial guess, albeit at the expense of higher initial computational e�ort during training [4]. First, an RL problem and

training process are formulated in this paper to recover a policy that generates impulsive station-keeping maneuvers in

the selected scenario. A policy that solves this problem is then trained using an algorithm from the proximal policy

optimization (PPO) family implemented using PyTorch in Python [19]; PPO is employed due to previously successful

applications to spacecraft trajectory design in a multi-body gravitational system [9–11]. Bayesian optimization is used

to guide the selection of suitable hyperparameters and neural network structures that govern the policy and training

process. Finally, transfer learning is used to progressively train the policy in dynamical models of increasing fidelity to
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reduce the computational burden associated with training [20].

The trained policy is evaluated to generate impulsive station-keeping maneuvers for a spacecraft near a Sun-Earth !2

quasi-halo trajectory in a Sun-Earth-Moon point mass ephemeris model with solar radiation pressure (SRP). First, the

evolution of the policy during training is examined to both verify a successful training process and examine the utility of

transfer learning. Then, the station-keeping maneuvers, generated by the trained policy, are compared to the results of

a constrained optimization problem that minimizes control e�ort while directly constraining the position deviation

from the reference at each maneuver location. The trained policy produces maneuvers with slightly lower magnitudes

relative to the nearby locally optimal solutions that solve the constrained optimization problem. Minor di�erences in

position deviation along the resulting trajectories exist due to distinct but comparable problem formulations for the two

methods. Finally, the trained policy is evaluated for a single trajectory in the presence of regular momentum unloads.

In this application, the trained policy results in a total maneuver magnitude of 2.285 m/s to bound the spacecraft to

predominantly lie within 100 km and 0.05 m/s of the reference path over 10.33 years; comparable to the results produced

by Bosanac et al. by solving a similar station-keeping maneuver design problem using constrained optimization [1].

This paper o�ers several contributions to the application of RL to maneuver design in multi-body gravitational

systems. These contributions include: 1) demonstrating the use of RL to train policies for station-keeping in an

ephemeris model; 2) formulating an RL problem that does not require a priori knowledge of the dynamical environment;

3) using Bayesian optimization to guide hyperparameter selection; and 4) demonstrating the use of transfer learning

to significantly reduce the time to train the policy without introducing instability into the policy updates. Together,

these contributions o�er a foundation for continued exploration of the use of RL in autonomous maneuver planning for

spacecraft in multi-body gravitational environments and, eventually, in more complex maneuver design scenarios.

II. Background: Dynamical Models
In this paper, a spacecraft station-keeping near a reference trajectory in the Sun-Earth system is governed by two

dynamical models of increasing fidelity: the CR3BP and an ephemeris model. The configuration and equations of

motion for each of these models are presented in this section. A periodic orbit that exists in the Sun-Earth CR3BP is then

used in a multiple-shooting method to recover a nearby, continuous trajectory in an ephemeris model; this procedure is

briefly summarized in this section. The periodic orbit that exists in the CR3BP and the nearby continuous trajectory that

exists in an ephemeris model serve as reference paths during station-keeping maneuver design in each dynamical model.

A. Circular Restricted Three-Body Problem

The CR3BP describes the motion of a spacecraft of negligible mass subject to the point mass gravitational attraction

of two significantly larger primaries that follow circular orbits about their mutual barycenter [21]. The equations of

motion for the CR3BP are usually formulated in a reference frame with the origin at the system barycenter and axes
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(x̂, ŷ, ẑ) that rotate with the two primaries, %1 and %2: the x̂-axis is directed from %1 to %2, the ẑ-axis is parallel to

the orbital angular momentum vector of the system, and the ŷ-axis completes the orthogonal right-handed triad. In

addition, normalization is often employed: the characteristic length is set equal to the distance between %1 and %2, the

characteristic mass equals the sum of the masses of the primaries, and the characteristic time produces a nondimensional

period of the primary system that is equal to 2c. Following normalization, ` represents the mass ratio, equal to

` ⇡ 3.00348064 ⇥ 10�6 in the Sun-Earth CR3BP. Then, the nondimensional state vector for the spacecraft relative

to the %1-%2 barycenter is defined in the rotating frame as x = [G, H, I, §G, §H, §I]) 2 R6. Using these definitions, the

nondimensional equations of motion for the spacecraft in the CR3BP and in the rotating frame are written as

•G � 2 §H = m*
⇤

mG

, •H + 2 §G = m*
⇤

mH

, •I = m*
⇤

mI

(1)

where *⇤ = (G2 + H2)/2 + (1 � `)/31 + `/32, 31 =
p
(G + `)2 + H2 + I2, and 32 =

p
(G � 1 + `)2 + H2 + I2. When

formulated in the rotating frame, this dynamical model is autonomous and admits an energy-like integral of motion,

the Jacobi constant, equal to ⇠� = 2*⇤ � §G2 � §H2 � §I2. The CR3BP also admits a variety of solutions, including: five

equilibrium points !8 for integers 8 2 [1, 5], periodic and quasi-periodic trajectories, as well as chaotic motion [21].

B. Point Mass Ephemeris Model with Solar Radiation Pressure

In this paper, an ephemeris model is formulated to include the point mass gravitational influences of the Sun,

Earth, and Moon following their actual paths, as well as SRP. The mass of the spacecraft is assumed to be negligible

compared to the masses of the celestial bodies. Length, time and mass quantities are also normalized consistent with

the CR3BP. The nondimensional position vector of body % 9 relative to an inertially-fixed origin, $, is defined as

X 9 = - 9 ˆ̂ + . 9_̂ + / 9 ˆ̀ , where ( ˆ̂ , _̂ , ˆ̀ ) are the axes of the Geocentric Celestial Reference Frame (GCRF). Then, the

nondimensional position vector of %8 relative to % 9 is denoted as X 9 ,8 = X8 � X 9 . Using these definitions, the vector

di�erential equation governing the motion of the spacecraft in the ephemeris model is written in the GCRF as

•X⇢ ,B/2 = � ⌧"⇢

'
3
⇢ ,B/2

X⇢ ,B/2 + ⌧
’
8=!,(

"8

 
XB/2,8

'
3
B/2,8

� X⇢ ,8

'
3
⇢ ,8

!
+ :�(0

2"B/2

'
2
0

'
3
(,B/2

X(,B/2 (2)

where ⌧ is the nondimensional universal gravitational constant; the subscripts ⇢ , (, !, and B/2 correspond to the

Earth, Sun, Moon, and spacecraft, respectively; and the nondimensional mass of body 8 is "8 . The final term is the

nondimensional acceleration due to SRP, reflecting the force exerted by photons impacting the surface of an assumed

spherical spacecraft [1]. In this term, : is the reflectivity coe�cient, � is the spacecraft cross-sectional area, (0 is the

solar flux at the nominal Sun-Earth distance '0, and 2 is the speed of light [1]; these quantities are nondimensionalized

using the characteristic quantities of the Sun-Earth CR3BP. The position vectors of the celestial bodies in the GCRF are
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accessed using the Jet Propulsion Laboratory DE421 ephemerides, via the SPICE toolkit [22, 23].

C. Recovering a Continuous Trajectory in an Ephemeris Model

Multiple shooting is used to recover a continuous trajectory that exists in an ephemeris model and retains the

geometry of a nearby periodic solution from the CR3BP. The multiple shooting scheme is formulated following the

procedure outlined by Bosanac et al. and briefly summarized here [1]. First, an initial guess is constructed for a desired

initial epoch using multiple revolutions of a periodic orbit that exists in the CR3BP. The initial guess is formed by

discretizing this path into multiple arcs: the description of each arc includes the initial state that is expressed in the

GCRF following a coordinate transformation, the initial epoch, and the integration time along the arc. This information

is combined into a free variable vector. A constraint vector is then formed to reflect state and time continuity between

each pair of neighboring arcs. The free variable vector is then iteratively updated via Newton’s method until the norm of

the constraint vector equals zero to within a small tolerance. This approach produces the continuous trajectory, for a

specific initial epoch, that serves as a reference path for a spacecraft operating in an ephemeris model in this paper.

III. Background: Reinforcement Learning via Proximal Policy Optimization
The goal of RL is to train a policy that maps a set of states to the actions that maximize the long-term reward for an

agent interacting with its environment. Specifically, the observation vector at a time C is denoted as oC and reflects the

information the agent perceives from the environment. In this paper, the state space is assumed to be fully observable.

At time C, the agent takes an action uC determined by a policy function denoted c. (uC |oC ). When propagated forward in

the environment across a single time step from C to C + 1, this observation-action pair produces a subsequent observation

oC+1. Successive observation-action pairs are generated across an episode, defined in this work to be composed of up to

g time steps [4]. Across each time step, the reward function AC (oC , uC , oC+1) is evaluated using the observation-action

pair at time C and the associated observation at time C + 1 [4]. This reward is used to calculate the output from the value

function for an observation at time C in the environment and is defined as

+
c (oC ) = E

 g’
C=0

W
C
AC (oC , uC , oC+1)

�
(3)

where W = [0, 1) denotes the discount factor which decreases the influence of future rewards compared to more

immediate rewards and the superscript (·) c indicates that each action is selected using the policy c(uC |oC ).

RL algorithms often leverage neural networks, which act as universal function approximators, to learn an optimal

policy that maximizes the value function [5, 24]. A neural network is composed of nodes arranged in consecutive

and connected layers, enabling outputs from a preceding layer to be fed into the following layer. Feed-forward neural

networks, specifically, use an input layer, one or more hidden layers, and a final layer; weights and biases are assigned to
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the connections between these layers. To incorporate nonlinearity into the network, each of the hidden nodes is assigned

a nonlinear activation function, such as the hyperbolic tangent function [25]. The training parameters, comprising the

weights and biases for each connection in this feed-forward neural network, are iteratively adjusted using a stochastic

gradient descent optimization algorithm based on backpropagation. This approach captures, via the chain rule of

derivatives, the influence of each training parameter on the gradient of a defined loss function [26, 27].

Actor-critic methods form the foundation of many state-of-the-art RL algorithms by combining the benefits of

value-based and policy-based learning methods without significant penalties [28]. One common approach involves

modeling each of the actor and critic via a feed-forward neural network. The actor neural network approximates

the policy function c. (uC |oC ) and is parameterized by the weights and biases .. The actor network is represented

as a probability density function at each time C, conditioned by the observation oC , that samples the action uC in the

environment [4]. Concurrently, the critic approximates the value function, corresponding to the expected discounted

cumulative reward obtained by starting from the observation oC and continuing until the end of the episode while

following the policy c. (uC |oC ) [4]. The explicit dependence of the critic neural network on the parameters / is expressed

as + c
/ . Together, the training parameters for both neural networks are summarized as ) = [., /].

In this work, the actor and critic neural networks are trained using an algorithm from the family of Proximal

Policy Optimization that uses ratio clipping [29]; this specific algorithm is referred to as PPO throughout this paper.

PPO is used in this paper due to its robust convergence towards optimal policies in chaotic environments and, as

a result, successful application to trajectory design in multi-body systems [9–11, 29–31]. This algorithm uses a

specified number of observation-action-reward experiences, collected from the environment, to form an update to

the parameters of the neural networks. First, an advantage function is defined to determine the observation-action

pairs in the environment that return the highest value. The advantages of each observation-action pair are estimated

using Generalized Advantage Estimation (GAE) as �̂c
C (oC , uC ) =

Õ1
✓=0 (W_)✓XC+✓ where XC is the temporal di�erence,

defined as XC = AC (oC , uC , oC+1) �+ c (oC ) + W+ c (oC+1). The temporal di�erence represents the estimated advantage of

the action uC and _ is the GAE factor, which influences the bias-variance trade-o� in the estimated advantages [32].

Then, PPO incorporates a trust region constraint inspired by another RL algorithm, Trust Region Policy Optimization,

into the objective function to prevent large changes from destabilizing the neural networks [33]. In this paper, the

change in the neural networks for an update 9 is measured using the di�erence between the probabilities of the old

and new policies to generate uC upon receiving oC , calculated as 'C (.) = c., 9 (uC |oC ) � c., 9�1 (uC |oC ) where values

near zero correspond to smaller updates to the neural networks [10, 34, 35]. Then, a loss function is necessary to

compute updates to the parameters of the neural networks using the stochastic gradient descent algorithm and is defined

as !CLIP ()) = ÊC [min('C (.) �̂C , clip('C (.),�Y, Y) �̂C )] where the clipping function clip(·) constrains the probability

di�erence to possess a magnitude less than or equal to the clipping parameter, Y [29]. The expected value ÊC [·]

represents an approximation of the true expectation E[·], used to compute a loss over the sampled experiences. The
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sampled loss is used to update ) during the stochastic gradient descent step. Two additional terms are appended to

the loss function to guide the networks to uncover the value function for the environment and to incentivize continued

exploration in the environment [29]. The resulting modified objective function used in PPO is written as

!
CLIP+VF+S
C ()) = ÊC [!CLIP

C ()) � 21!
VF
C (/) + 22([c., 9 ] (oC )] (4)

where ([c., 9 ] (oC ) is an entropy term influencing the amount of exploration within the environment, !VF
C (/) =

(+ c
/ (oC ) � + true

C )2 is a squared-error loss term encouraging learning the true value function, 21 is the squared-error

loss coe�cient, and 22 is the entropy coe�cient [29]. This objective function is used in a stochastic gradient descent

optimization algorithm to train the neural networks using experiences within the environment; this paper employs the

AdamW optimization algorithm, which has been demonstrated to e�ciently and robustly converge in RL [29, 31, 36].

During training, PPO’s performance is influenced by several hyperparameters [30, 31]. In this paper, hyperparameters

of interest include the clipping parameter, the squared-error value loss coe�cient, the entropy coe�cient, the GAE

factor, the discount factor, and the learning rate that governs how quickly the policy is updated by the AdamW optimizer.

Two additional hyperparameters include the number of epochs, specifying how many times each observation-action pair

is used to update the parameters, and the number of batches, defining the number of groups the observation-action pairs

are divided into at each epoch [10]. Note that throughout this paper the definition of epoch depends on the context: in

an RL framework, an epoch corresponds to one forward pass over the training experiences whereas in trajectory design,

an epoch reflects an instant of time. The hyperparameters are typically selected to achieve an e�cient training process

that balances exploration and exploitation to converge on a policy that maximizes the expected discounted cumulative

reward within a reasonable number of updates. Various strategies for selecting these quantities exist, including manual

tuning, random search, grid search, Bayesian optimization, and reinforcement learning [37, 38].

IV. Approach to Station-Keeping Maneuver Design
An RL-based maneuver planner is formulated for a spacecraft station-keeping near a southern !2 halo orbit in the

Sun-Earth system. An overview of this scenario, modeled after the upcoming Nancy Grace Roman Space Telescope, is

presented. Then, station-keeping maneuver design is translated into an RL problem. In addition, the use of transfer

learning for e�cient training is outlined. Next, the use of Bayesian optimization to guide selecting the hyperparameters

governing PPO and the neural network structures is presented. Finally, a comparable constrained optimization problem

is formulated to verify the maneuvers generated by the trained policy.
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A. Scenario Overview

The reference path for the spacecraft is modeled after an early conceptual design of the Nancy Grace Roman Space

Telescope [1]. Specifically, a maneuvering spacecraft is assumed to operate near a bounded and natural reference

trajectory that resembles a Sun-Earth !2 southern halo orbit. When modeling the dynamics via the Sun-Earth CR3BP, a

periodic !2 southern halo orbit with a period of )A ⇡ 180 days and a Jacobi constant of ⇠� = 3.00078 is employed

as a reference trajectory; this path is displayed in Figure 1(a) in the Sun-Earth rotating frame using dimensionless

coordinates measured relative to the Earth. The correction scheme summarized in Section II.C is used to recover a

nearby continuous trajectory that exists in the defined ephemeris model; the spacecraft is assumed to possess a dry mass

of 6877 kg, a cross-sectional area of 49.6 m2 and a coe�cient of reflectivity equal to : = 2 [1]. Following corrections, a

nearby continuous reference trajectory is generated from an initial epoch of 24 June 2021 19:22:22 UTC until a final

epoch of 30 June 2042 14:02:41 UTC; this trajectory is displayed in Figure 1(b) in a pulsating Sun-Earth rotating frame

using dimensionless coordinates measured from the Earth.

Impulsive station-keeping maneuvers are often used to mitigate the impact of uncertainties, momentum unloads, and

o�-nominal maneuvers on the path of a spacecraft. In this paper, regular momentum unloads are the only mechanism

for perturbing the path of the spacecraft, and are modeled as an instantaneous change in velocity, denoted �v"* ; full

state and model parameter knowledge are assumed with nominal maneuver implementation. Similar to the scenario

presented by Bosanac et al., based on an early iteration of the Nancy Grace Roman Space Telescope mission parameters,

momentum unloads are assumed to occur in a random direction with a magnitude of 8.7 mm/s every C"* = 130 hours

⇡ 5.417 days [1]. The station-keeping maneuvers and momentum unloads occur at evenly-spaced time intervals, forming

momentum unload cycles [1]. Each cycle begins with an impulsive station-keeping maneuver; in this paper, there is no

constraint on its magnitude or direction. This station-keeping maneuver is followed by a coast arc with a duration of

C"* . Three momentum unloads and three more coast arcs of duration C"* then occur in alternating order to form a

single momentum unload cycle. Following the scenario presented by Bosanac et al., the goal is to design station-keeping

to Earth

L2 L2

(a) (b)

Fig. 1 Reference paths near Sun-Earth !2: (a) southern halo orbit in the CR3BP and (b) 21-year trajectory in
the ephemeris model with initial epoch of 29390.308 MJD.
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maneuvers that, in the presence of regular momentum unloads, produce a spacecraft path that remains su�ciently

bounded within the vicinity of the reference trajectory while requiring less than 5 m/s per year for at least 10 years [1].

B. Translating Station-Keeping Maneuver Design into an RL Problem

Each episode is defined to consist of up to g 2 N time steps and, therefore, encompass g station-keeping maneuvers

and coast arcs. The g arcs along the controlled path of the spacecraft appear as blue arcs in the conceptual representation

of the station-keeping problem in Fig. 2 whereas the reference path is depicted in black. At the beginning of each time

step, an observation-action pair is used to form a six-dimensional state vector x for the spacecraft, depicted as a gray

circle in Fig. 2. The impulsive station-keeping maneuver at the beginning of the time step is labeled �v and depicted

with red arrows in Fig. 2. This maneuver is followed by a coast arc with a duration of �C, equal to the duration of a

momentum unload cycle, i.e., �C = 21.67 days. Each arc is generated via numerical integration in the selected dynamical

model without any perturbations during training. However, during evaluation of the trained policy, momentum unloads

are also applied to regularly perturb the path of the spacecraft. Using these definitions, an RL implementation of the

station-keeping maneuver design problem is specified in this subsection through the definition of an observation vector,

action vector, and reward function; during this discussion, the remaining annotations in Fig. 2 are also defined.

Using a finite length episode is consistent with both applications of RL and station-keeping maneuver design.

In RL, this approach prevents the generation of episodes of infinite length that may reduce the performance of the

trained policy at the moment of deployment. In astrodynamics, one common station-keeping maneuver design strategy

involves targeting a specific goal over a finite time horizon [1, 39, 40]. Selecting this finite time horizon as a limited

number of revolutions near the reference trajectory reflects limitations in predicting the future path of the spacecraft

due to momentum unloads, o�-nominal maneuvers, modeling uncertainty, orbit determination errors, and numerical

propagation errors. Furthermore, missions that involve placing spacecraft near the same reference trajectory may possess

a variety of finite durations that may also evolve post-launch. In this paper, the finite length episode is selected to

encompass approximately one revolution of the reference trajectory. However, examining the impact of a longer episode

Reference path

Controlled path
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Fig. 2 Conceptual representation of station-keeping maneuver design problem variables and regions used to
define the reward function.
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on policy training and accuracy as well as the resulting maneuver magnitudes is an interesting avenue for future work.

The observation vector o is formulated to reflect the state of the spacecraft and relevant problem variables. To

represent the state of the spacecraft in the dynamical environment, the following quantities are employed: xref , the

desired state vector along the reference trajectory; �x, a relative state vector that is measured isochronously from a state

along the reference trajectory to the associated spacecraft state along the controlled trajectory; and C⇢ , the epoch that lies

within the range [40, 4 5 ] and is expressed numerically as a modified Julian date (MJD). Both xref and �x are specified

in a pulsating Sun-Earth rotating frame. Although these two state vectors do not provide a minimal description of the

spacecraft state, they do reflect both the nominal and perturbed states that describe the station-keeping problem. In

addition, the epoch C⇢ is used to fully specify the state of the spacecraft in the epoch-dependent ephemeris model and

support the use of transfer learning when training in the autonomous CR3BP. Finally, a quantity B is defined to reflect the

number of remaining maneuvers within the episode: B = 28/g � 1 for 8 2 {g, g � 1, . . . , 0}. This quantity is observed to

improve the training process by enabling the critic to distinguish between similar observation vectors and maneuvers that

occur at distinct time steps along an episode. This information is combined to form the following observation vector:

o = [x̃ref ,�x̃, C̃⇢ , B̃] 2 R14 (5)

where the tilde notation indicates that the components of this observation vector are scaled to generally remain within

the range [�1, 1] during training. This vector exists within a 14-dimensional continuous observation space.

The observation vector is used as an input to the policy to generate an action. The action, u, is formulated as a

3 ⇥ 1 vector that exists in a continuous action space. This action vector is scaled by U to produce the components of

the impulsive station-keeping maneuver, �v, in the Sun-Earth rotating frame, i.e., �v = Uu. To encourage generating

actions within the range [�1, 1], the scaling factor is empirically selected as U ⇡ 0.14 m/s. However, for relatively large

displacements, k�x̃k, the policy may generate actions outside of the range [�1, 1] if needed.

Initialization of each episode during training and evaluation depends on the specific dynamical model used. When

propagating the spacecraft state in the Sun-Earth CR3BP, an initial state along the reference orbit, i.e., xref , is randomly

selected and the initial epoch is randomly selected within the range [40, 4 5 ] MJD. When propagating in the ephemeris

model, an episode is initialized by randomly selecting the initial epoch C⇢ to produce the associated state vector xref

along the reference trajectory. Then, each component of the relative state vector is initialized by first randomly sampling

from a continuous uniform distribution in the range [�1, 1]. This quantity is multiplied by an order of magnitude

randomly selected from a triangular distribution between -5 and 0.2 and centered at 0, as well as a scaling factor of

300 km and 5.96 mm/s in each position and velocity component. This sampling scheme ensures su�cient sampling

of the relative state across each order of magnitude. The trained policy gains su�cient knowledge in solving the RL

problem close to the reference path where the spacecraft would ideally be located when successfully station-keeping.
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Similarly, the policy gains su�cient experience with initial states with a large deviation from the reference such as when

the spacecraft is significantly impacted by perturbations. Finally, by definition, B̃ = 1 at the beginning of an episode.

The reward function is formulated to reflect two goals of the spacecraft station-keeping near a Sun-Earth !2 southern

quasi-halo trajectory over a long time interval: minimizing the control e�ort and maintaining su�cient boundedness in

the vicinity of the reference path, assessed isochronously. These objectives are written mathematically to ensure that

achieving these goals corresponds to maximization of the long-term reward. However, in practical applications of RL,

defining a suitable, non-sparse reward function that encourages e�cient learning is a well-known challenge with no

unique solution [41, 42]. In this paper, the reward is defined as a piecewise function that is formulated as follows:

1) When the relative position vector Xr (�C) at the end of an arc possesses a magnitude greater than X2, the spacecraft

is no longer located within the vicinity of the reference; in Fig. 2, the spacecraft would be located beyond the red

shaded region. Accordingly, a heavy penalty is applied via a constant, large negative reward and the episode is

terminated. In this paper, X2 ⇡ 1.67 ⇥ 10�5 = 2499 km is selected for this position error threshold.

2) If the relative position vector Xr (�C) at the end of an arc possesses a magnitude between X2 and X1, with X1 < X2,

the spacecraft is located in the vicinity of the reference path but not within the desired threshold, i.e., the red

shaded region in Fig. 2. The goal is to further reduce the distance of the spacecraft from the reference path while

also minimizing control e�ort. Thus, the position deviation is included in the reward function within a natural

logarithm term, also labeled a logarithmic barrier, and the action vector appears within a linear term.

3) When the spacecraft relative position vector Xr (�C) at the end of an arc possesses a magnitude below X1, the

spacecraft lies within the desired threshold for station-keeping; in Fig. 2, the spacecraft would be located within

the gray shaded region. In this paper, X1 ⇡ 6.68 ⇥ 10�7 = 100 km, consistent with the threshold used by Bosanac

et al. [1]. The goal is then to reduce the required control e�ort while maintaining a relative position vector with

a magnitude that is less than X1. Thus, the deviation in the position vector, used within a natural logarithm

term, is clipped to equal X1. In addition, a discontinuity in the reward function is introduced by scaling the

clipped position deviation term using the constant coe�cient ⌫ = ln (X1/2)/ln (X1) ⇡ 1.05. Incorporating this

constant term, ⌫ ln(X1), produces a discontinuity in the piecewise reward function. Selecting ⌫ > 1 produces

an increase in the reward because the value of the unscaled position deviation term at the boundary | |Xr | | = X1

equals � ln (X1) = 14.219. This approach is empirically observed to encourage the policy to produce maneuvers

that drive the position of the spacecraft to within the desired threshold of the reference trajectory. Increasing the

value of ⌫ is observed to generally decrease the time steps required for the controlled trajectory to reach the

desired region near the reference at the expense of increased control e�ort.
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Based on these goals, the reward at a single time step is summarized mathematically as follows:

A =

8>>>>>>>><
>>>>>>>>:

�⌫ ln (X1) +  (1 � kuk) if kXr (�C)k  X1

� ln (kXr (�C)k) +  (1 � kuk) if kXr (�C)k  X2 ^ kXr (�C)k > X1

�100 otherwise

(6)

In this paper,  = 15 is empirically selected to balance maintaining su�cient boundedness with minimizing control

e�ort. Alternative values of  would result in a distinct relative weighting between these two goals and, therefore, lead

to the generation of distinct policies.

To train a policy to solve the defined RL problem while limiting the required computational e�ort, transfer learning

is employed: a policy trained in a simpler problem or model initializes a policy trained in a more complex problem or

model [20]. In this paper, training occurs in a two-step process: a policy is trained in the CR3BP, where numerical

integration for generating state transitions is fast, to form an initial guess for a policy that is trained in the ephemeris

model, where numerical integration is more time-consuming. To facilitate a smooth transition during transfer learning,

the observation vector, action vector, and reward function formulations are defined equivalently when training in each

distinct dynamical model; the reference trajectories, however, that exist in each model slightly di�er.

C. Selecting Hyperparameters and Neural Network Structures

Bayesian optimization is used to guide hyperparameter selection due to its tendency to exhibit sample e�ciency for

problems with expensive cost function evaluation, such as those that require numerical integration [37, 43]. Bayesian

optimization describes a user-specified cost function via a surrogate model. The goal of the optimizer is then to identify

the inputs, e.g., selected parameters governing the training process and policy, that maximize the cost function. An

acquisition function uses the surrogate model to select the input set for the next cost function evaluation by balancing

the exploration of areas with large uncertainty with the exploitation of regions where the expected mean cost function is

large. This process continues until a specified termination condition is satisfied. This approach is implemented using the

python toolbox BayesianOptimization, with the Matérn kernel and the upper confidence bound acquisition function [44].

Bayesian optimization is used to guide the selection of parameters governing both the training process and neural

networks. The following hyperparameters that govern PPO are used as inputs to Bayesian optimization: discount factor,

clipping rate, number of epochs and batches, value and entropy coe�cients, and GAE factor. To aid the training process

in identifying a local optimum, the learning rate evolves across one order of magnitude over updates using a sequence of

step functions as ;A ( 9) = ;A ,0 +
⌅
( 9=BC4?B)/(=D?3)

⇧
(;A , 5 � ;A ,0)/(=BC4?B) where =D?3 is the total number of updates to

be performed during training, 9 is an integer reflecting the current update, ;A ,0 and ;A , 5 are the initial and final learning

rates, and =BC4?B is the total number of steps for the learning rate during training [15]. Thus, the initial learning rate and
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number of steps also serve as hyperparameters that are input to Bayesian optimization. In addition, the depth and width

of each of the actor and critic neural networks are also identified via Bayesian optimization; both neural networks use

the hyperbolic tangent activation functions between consecutive layers and orthogonal initializers [10, 31].

To reduce the required computational e�ort, Bayesian optimization is implemented in the Sun-Earth CR3BP. The

cost function used in Bayesian optimization to select these hyperparameters and neural network structures is defined as

the sum of the following two terms: 1) the average discounted cumulative reward of the last update batch set and 2) the

mean derivative of the value over the last 10 updates, approximated via forward finite di�erences. This cost function

favors the hyperparameters and neural networks producing policies that are both e�ective in the final update and have

exhibited improvements within at least the final several updates. A total of 130 iterations or, equivalently, runs of the

training process are employed during optimization: the first 50 iterations correspond to evaluating random combinations

of input parameters, whereas the subsequent 80 iterations are governed by the acquisition function. Training a policy

for each combination of input parameters during Bayesian optimization terminates after a total of 2⇥106 time steps

are generated. This total number of steps is selected at a lower value than used in later sections of this paper to limit

the significant computational e�ort required for Bayesian optimization. Of course, convergence may not occur within

that number of updates across all policies. Thus, the parameters identified by Bayesian optimization to maximize the

cost function may not precisely predict the hyperparameters and neural network structure that produce the highest

average discounted cumulative reward after convergence. However, the results of Bayesian optimization do o�er a useful

guide for further manual fine-tuning. Furthermore, this step uses the CR3BP for training because it o�ers a su�cient

approximation of the dynamical environment near Sun-Earth !2 in an ephemeris model, while significantly reducing

the computational time required to train a large number of policies. It is assumed that the selected hyperparameters and

neural network structures also result in a su�ciently e�ective training process in the ephemeris model.

The results of Bayesian optimization are used to guide manual tuning in the scenario outlined in Section IV.B and in

the Sun-Earth CR3BP. Hyperparameters and neural network structures are selected using three criteria to:

1) Produce a high value of the cost function used in Bayesian optimization, corresponding to policies with a large

average reward at the final update and potential for continued improvement with extended training

2) Lie in a region of the hyperparameter space that is well-explored during the last 80 iterations of optimization as

the acquisition function exploits regions with reduced uncertainty near optimal values of the quantities of interest

3) Follow recommendations from authors applying PPO to various complex dynamical models [10, 29–32]

Guided by these three criteria, the selected hyperparameters and neural network structures are summarized in Table 1;

the column labeled “B.O. Ranges" lists the allowable ranges of values for each quantity during Bayesian optimization.
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Table 1 Selected hyperparameters and neural network (NN) parameters.

Parameter Value B.O. Ranges

Initial learning rate, ;A ,0 5 ⇥ 10�3 [10�5
, 10�1.5]

Final learning rate, ;A , 5 5 ⇥ 10�4 -

Learning rate schedule 8 steps [2, 8] steps

Number of epochs, #4 5 [2, 10]

Number of batches, #1 6 [2, 10]

Value coe�cient, 21 1 ⇥ 10�3 [10�4
, 10�0.3]

Entropy coe�cient, 22 7 ⇥ 10�3 [10�6
, 10�1]

Clipping parameter, n 0.02 [10�5
, 10�2]

Discount factor, W 0.99 [0.9, 0.999]
GAE factor, _ 0.99 [0.8, 0.999]

Actor NN depth, ⇡02C 3 [1, 6]
Actor NN width,,02C 16 [2, 210]
Critic NN depth, ⇡2A8 1 [1, 6]
Critic NN width,,2A8 1024 [2, 210]

D. Translating Station-Keeping Maneuver Design into a Constrained Optimization Problem

The station-keeping maneuvers generated by the trained policy are compared to those generated by a well-known

existing approach: constrained optimization. A general constrained optimization problem is expressed as

min
^

5 (^) subject to L(^) = 0, M (^)  0 (7)

where ^ is the free variable vector, 5 (^) is the scalar objective function, L(^) is an equality constraint vector, and

M (^) is an inequality constraint vector. Although there are several useful formulations, this paper uses a constrained

optimization problem that implements the station-keeping maneuver design strategy as follows: for a fixed initial

spacecraft state that is perturbed from a reference trajectory, a multiple-shooting based approach is used to identify

a sequence of g maneuvers that minimize the cumulative control e�ort while directly constraining each maneuver

location to lie within X1 of the associated position vector along the reference trajectory. Of course, translating the goal

of maintaining boundedness in the vicinity of the reference into a direct constraint, as opposed to a term within the

objective function, produces a di�erence between the constrained optimization problem and the presented RL problem.

However, in a traditional station-keeping maneuver design approach, such a goal is often formulated as a direct constraint

[1, 23]. Given that RL and constrained optimization use slightly di�erent procedures and problem formulations in this

paper, the two approaches are not expected to produce equivalent maneuvers and controlled trajectories. However, if the

total maneuver magnitudes generated by the two methods are on the same order of magnitude and the relative position

deviation along the two controlled trajectories possess similar time histories, then the RL-trained policy may o�er an
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alternative approach to producing useful solutions to the station-keeping maneuver design problem.

A free variable vector ^ is defined to capture the spacecraft states and maneuvers at the beginning of all g arcs

along a maneuver sequence. Accordingly, the free variable vector is defined as

^ = [x2, . . . , xg , u1, u2, . . . , ug]) 2 R9g�6 (8)

where x8 is the spacecraft state at the beginning of the 8-th arc and immediately before a maneuver is applied. This state

is expressed non-dimensionally in the pulsating Sun-Earth rotating frame and is equivalent to x8 = xA4 5 ,8 + �x8 . The

initial spacecraft state, x1, and the epoch at each maneuver location are not included in the free variable vector to reflect

that the initial reference state, perturbation, and epoch as well as the time between maneuvers are fixed.

The equality and inequality constraint vectors, L(^) and M (^), respectively, are defined to ensure that the solution

to the constrained optimization problem corresponds to a continuous trajectory that lies within the desired region near

the reference trajectory. First, the equality constraint vector is formulated to reflect state continuity as:

L(^) = [xD,1 (�C) � x2, xD,2 (�C) � x3, . . . , xD,g�1 (�C) � xg]) 2 R6(g�1) (9)

where xD,8 (�C) is the spacecraft state at the end of the 8-th arc, generated by propagating in the ephemeris model for a

duration of �C from the state x8 that is modified by the maneuver Uu8 . Next, an inequality constraint vector is defined to

ensure that the end of each arc along the controlled path remains within a relative distance of X1 from the reference path,

measured isochronously. This nonlinear inequality constraint is defined mathematically as

M (^) = [kr2 � rref,2k � X1, kr3 � rref,3k � X1, . . . , krg � rref,g k � X1, krg+1 � rref,g+1k � X1]) 2 Rg (10)

where k · k represents the ;2-norm, r8 and rA4 5 ,8 are the nondimensional position vectors at the beginning of the 8-th arc

along the controlled and reference trajectories, respectively, in the pulsating Sun-Earth rotating frame, and rg+1 is equal

to the position vector at the end of the g-th arc along the controlled trajectory.

The objective function is formulated to minimize the magnitudes of the g maneuvers within a maneuver sequence or

episode. Thus, the objective function is specified as 5 (^) = Õg
8=1 u

)
8 u8 . Although distinct from the reward function,

the objective function uses the sum of the squared ;2 norms of the scaled maneuvers to provide a globally first-order

continuous function. In a multi-body system, there may be multiple solutions to this constrained optimization problem.

Thus, in a comparison to the results of the RL-based approach, the observation-action pairs that are generated by the

trained policy are used to form an initial guess for the free variable vector in constrained optimization; this approach

supports recovery of a nearby locally optimal solution to e�ectively compare the maneuver sequences and the generated

trajectories constructed by each of the two methods. Constrained local optimization is then performed via sequential
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quadratic programming in fmincon within MATLAB® using analytical derivatives [45]. An optimal solution must also

satisfy the constraints to within a tolerance of 5 ⇥ 10�14 in fewer than 100 iterations.

V. Results: Station-Keeping Maneuver Design in an Ephemeris Model via Reinforcement
Learning

A policy is trained using PPO to generate impulsive station-keeping maneuvers for a spacecraft operating near a

Sun-Earth !2 quasi-halo trajectory in an ephemeris model. In this application, an episode is modeled to encompass a

sequence of g = 8 maneuvers every 21.67 days, spanning approximately one revolution of the quasi-halo trajectory.

The policy is trained to design this sequence of station-keeping maneuvers for minimization of control e�ort while

maintaining su�cient boundedness to the vicinity of the reference trajectory displayed in Figure 1(b) by solving the RL

problem specified in Section 4. During training, regular perturbations due to momentum unloads are not modeled. This

section examines the evolution of this policy, initialized without any domain knowledge, throughout the training process

as well as the use of transfer learning. The policy trained via transfer learning is then compared to the results of the

constrained optimization problem. Once trained, impulsive station-keeping maneuvers are generated for a spacecraft

operating in the vicinity of the reference trajectory for approximately 10 years while subject to regular momentum

unloads. This application is used to demonstrate that the maneuvers generated by the trained policy successfully adjust

the path of the spacecraft to remain close to the reference trajectory with a low total maneuver magnitude.

A. Examining the Training Process

The training process is analyzed to ensure that: 1) the policy is improving throughout training until converging to a

large value and 2) the use of transfer learning produces a similar or better policy than training solely in the ephemeris

model. In this subsection, two policies are trained to solve the same RL problem using two distinct approaches. The

first policy is trained solely in the ephemeris model without any a priori domain knowledge; training is governed by the

hyperparameters presented in Section IV.C and continues for up to 1 ⇥ 107 time steps. In this case, training requires

approximately 72.76 hours on an i7-2600K 3.40GHz processor using 6 logical cores. The second policy, however, uses

transfer learning to speed-up a computationally expensive training process. First, the policy is trained in the autonomous

Sun-Earth CR3BP for a maximum of 5 ⇥ 106 steps using the halo orbit in Figure 1(a) as a reference trajectory along

with the hyperparameters presented in Section IV.C. Then, the trained neural networks are used to initialize the actor

and critic networks for training in the ephemeris model using the Sun-Earth !2 quasi-halo trajectory in Figure 1(b) as a

reference path. To avoid abrupt modifications of the policy during the second phase of training, a constant learning rate

of ;A = 5 ⇥ 10�4, i.e., the final learning rate used during training in the CR3BP, is used throughout the 5 ⇥ 106 steps of

the second training step in the ephemeris model. All remaining hyperparameters are selected as listed in Section IV.C.

For this second policy, training requires approximately 37 minutes and 36.25 hours for the phases that use the CR3BP
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and point mass ephemeris model, respectively, on an i7-2600K 3.40GHz processor using 6 logical cores.

To verify the use of transfer learning, consider the value over each update for each policy during training. This

information is displayed in Fig. 3 for a) the policy trained in the ephemeris model and b) the policy trained using transfer

learning. In Fig. 3(a), the value of the policy trained solely in the ephemeris model gradually increases until converging

to a high average of 129.54 over the final 20 updates, without any destabilizing updates. Such behavior indicates that the

policy is successfully learning to achieve the goals encapsulated within the reward function. Figure 3(b) displays in red

and blue the value for the policy when trained in the Sun-Earth CR3BP and the ephemeris model, respectively. The

update at which the policy is transferred is captured in the zoomed-in view. The value for this second policy gradually

increases until converging towards an average of 129.69 over the last 20 updates; this quantity is similar to the average

value produced by training solely in the ephemeris model. Across the transfer, the value does not significantly change,

indicating the absence of destabilization due to the change in the dynamical model and reference trajectory.

To further examine the use of transfer learning during training, both policies are evaluated to produce a sequence of 8

impulsive station-keeping maneuvers using the same set of 100 initial conditions in the ephemeris model without regular

momentum unloads. During evaluation, the two policies produce two separate actions and, therefore, two separate

trajectories for each initial condition. After evaluation, the following quantities are evaluated for each policy: the average

of the total maneuver magnitude along each maneuver sequence; the average position and velocity deviations, assessed

by sampling the trajectory at 32 locations from the end of the first time step onward, thereby mitigating the influence of

the initial perturbation magnitude on this quantity; the average of the total reward, defined as the non-discounted sum of

the rewards at each time step along a trajectory; and the percentage of episodes that result in the controlled trajectory

remaining within X2 of the reference trajectory in the configuration space. These quantities are displayed in this order in

Table 2 for each of the policies across the 100 eight-maneuver sequences. These results reveal that the policy trained

with transfer learning generates station-keeping maneuvers with comparable but slightly higher average rewards as

Transfer

(a) (b)

Fig. 3 Discounted cumulative reward, i.e., the value, over updates for policies trained in (a) only the ephemeris
model and (b) using transfer learning.
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well as lower total maneuver magnitudes and average position and velocity deviations when compared to the policy

generated without transfer learning. Both policies generate station-keeping maneuvers that do not cause any of the

100 trajectories to deviate outside of the acceptable region of the reference trajectory defined by X2. Thus, a transfer

learning approach to training produces a policy that designs station-keeping maneuvers to achieve the desired goals with

comparable and slightly better performance in terms of the control e�ort and position deviation than the policy trained

without transfer learning. As a direct result of these observations and the benefit of reducing the computational time by

a factor of two, the policy trained via transfer learning is used throughout the remainder of this paper.

Table 2 Characteristics of 8-maneuver sequences and associated trajectories generated using policies trained
with and without transfer learning (TL) and evaluated using 100 common initial conditions.

Policy trained: Without TL With TL

Average total �E [m/s] 0.050 0.044

Average kXrk [km] 29.652 26.713

Average kXvk [m/s] 0.01245 0.01189

Average total reward 233.64 234.23

Success rate [%] 100 100

B. Comparison to Traditional Constrained Optimization

A detailed comparison is performed between the maneuver sequences and trajectories generated by each of the

trained policy and constrained optimization for a single initial condition and without momentum unloads. The trained

policy is first evaluated using a randomly-generated initial condition, possessing a deviation of 250.10 km and 0.0016

m/s from a state along the reference path on Nov 2, 2040 at 22:34:08.183 UTC, to produce an 8-maneuver sequence.

Then, the trajectory produced by evaluating the trained policy is used to construct an initial guess for constrained

optimization. The following properties of the two maneuver sequences and trajectories are plotted in Fig. 4 for each of

the RL (blue) and constrained optimization (red) methods: (a) the magnitude of the position vector along the controlled

trajectory measured isochronously from the reference path and (b) the magnitude of each station-keeping maneuver.

In Fig. 4(a), the circles indicate the position deviation at the beginning of each time step and the black dashed line

corresponds to the X1 = 100 km threshold that defines su�cient boundedness in the vicinity of the reference trajectory.

The maneuvers generated by the trained policy and constrained optimization possess similar magnitudes and produce

trajectories with similar position deviations. First, the two time histories of the position deviation possess similar

geometric characteristics. However, the trajectory generated via constrained optimization approach always achieves

a relative position vector with a magnitude below 100 km at the end of every time step. As a result, constrained

optimization produces slightly larger maneuvers than the trained policy for the first three time steps to more quickly

place the spacecraft within 100 km of the reference path and satisfy the constraints. Then, the remaining five maneuvers

generated via optimization are consistently lower than those generated by the trained policy as the spacecraft remains
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close to the reference. The trained policy, however, slightly exceeds this desired position deviation at the end of the

first and fourth time steps in a trade-o� with reducing the total maneuver magnitude. Across the entire episode, the

total maneuver magnitudes generated by the trained policy and constrained optimization are �EC>C ,'! = 0.118 m/s and

�EC>C ,⇠>=BC .$?C . = 0.142 m/s, respectively. Notably, the first three maneuvers contribute most significantly to the larger

total maneuver magnitudes for constrained optimization. However, these minor di�erences between the maneuvers and

relative trajectories are a direct consequence of the slight di�erences in problem formulation across the two methods.

Comparison between maneuver sequences generated via the trained RL policy and constrained optimization is

expanded from the previous analysis to encompass 500 randomly-generated initial conditions that lie near the reference

trajectory at various initial epochs. The following two metrics are evaluated across 500 maneuver sequences and

trajectories and then visualized using the histograms in Fig. 5: (a) the average magnitude of the position deviation from

the end of the first step to the end of the last step and (b) the sum of the maneuver magnitudes over each episode. The

histograms associated with the RL policy and constrained optimization appear as blue and red bars, respectively. The

same coloring scheme is used to locate the mean values of each quantity, displayed using dashed lines.

Figure 5(a) reveals that the average position deviation from the reference path is reasonably low for both methods.

First, the histogram summarizing the results of constrained optimization possesses a compact distribution around a

mean of 69.97 km with extrema of 93.62 km and 26.22 km. Conversely, the average position deviations of the controlled

trajectories produced by the RL policy possess a mean of 77.13 km and span a wider range of values between 9.59 km

and 166.19 km; 21.2% of the 500 trajectories exceed the desired 100 km at least once. This di�erence in the histograms

is due to constrained optimization enforcing a 100 km constraint on the position deviation at the end of every time

step whereas RL incorporates minimizing the position deviation into the reward function. As a result, the trajectory

(a)

(b)
Fig. 4 Station-keeping maneuvers generated by the trained policy (blue) and constrained optimization (red) for
one initial condition via: (a) isochronous position deviation and (b) maneuver magnitudes
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generated by the trained policy often lies slightly outside of the desired 100 km region around the reference for one or

more time steps. However, these deviations tend to be reasonably small across the entire maneuver sequence.

Figure 5(b) reveals similar total maneuver magnitudes over each episode. These histograms possess similar means

of 0.117 m/s and 0.129 m/s for the trajectories generated with constrained optimization and the trained RL policy,

respectively, as well as similar distributions; these observations indicate a comparable total maneuver magnitude across

the 500 episodes. For a closer comparison, Fig. 6 summarizes the di�erence between the magnitudes of the (a) first and

(b) final maneuvers along each pair of trajectories generated from the same initial condition. The dashed red line locates

the mean of the distributions. The histogram in Fig. 6(a) possesses a mean of 9.12⇥10�3 m/s, indicating that, on average,

constrained optimization produces a slightly larger first maneuver along an episode than the trained policy. This result is

consistent with the position constraint enforced during optimization and the subsequent smaller dispersion of average

position deviations from the reference trajectories in Fig. 5(a). Conversely, the histogram in Fig. 6(b) summarizes

the di�erence in magnitude between the final maneuvers along each pair of trajectories. This histogram spans only

negative values with a mean of �5.5 ⇥ 10�3 m/s, indicating that constrained optimization consistently produces final

maneuvers with a lower magnitude than those generated by the trained policy. Thus, both methods generate maneuver

sequences with similar total maneuver magnitudes, but slightly di�erent distributions across the individual maneuvers

due to slight di�erences in problem formulation. These results have some potential implications for applying the trained

policy to station-keeping maneuver design: when regularly evaluating the policy by generating only the first maneuver

in the 8-maneuver sequence, the station-keeping maneuvers may possess comparable or smaller magnitudes to those

Fig. 5 Histograms describing 500 trajectories generated by the RL policy (blue) and constrained optimization
(red) by: (a) average position deviation and (b) total maneuver magnitude.
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Fig. 6 Histograms summarizing the magnitude of the di�erence between the (a) first and (b) final maneuvers
generated by the RL policy and constrained optimization.

generated by a traditional approach at the expense of slightly higher position deviations. Of course, constrained and safe

RL methods could be incorporated in future work to directly constrain the position deviation and enforce any other

requirements. Nevertheless, the trained policy appears to o�er alternative approach to producing useful and reasonable

solutions to the station-keeping maneuver design problem.

C. Applying the Trained Policy

The policy trained using transfer learning is evaluated to design station-keeping maneuvers for a spacecraft operating

near the selected !2 quasi-halo trajectory in the ephemeris model for 10.33 years. During evaluation, regular momentum

unloads are applied to perturb the path of the spacecraft, necessitating the use of station-keeping maneuvers. After

each momentum unload cycle, a maneuver is generated by evaluating the policy to produce the first maneuver from the

g-maneuver sequence, i.e., with B̃ = 1. This approach is inspired by station-keeping strategies that select individual

maneuvers according to the properties of the subsequent trajectories generated for one or more revolutions around the

reference path [46, 47]. However, evaluating the policy with B̃ = 1 corresponds to designing each individual maneuver

to produce a subsequent controlled trajectory, spanning the g-maneuver sequence, that would remain bounded within the

vicinity of reference and cumulatively minimize control e�ort if there were no momentum unloads or other perturbations.

In this application of the trained policy, a single initial state for the spacecraft is randomly generated by applying

a perturbation from the reference path at an epoch of June 24, 2021, 09:42:02 UTC. The station-keeping maneuvers

generated by evaluating the trained policy every 21.67 days for 10.33 years produce a controlled trajectory that is
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to Earth, Sun

(a) (b)

Fig. 7 Station-keeping maneuvers in the ephemeris model with regular momentum unloads over 10.33 years:
(a) single controlled trajectory and (b) associated maneuver magnitudes.

displayed in blue in Figure 7(a) in the pulsating Sun-Earth rotating frame with dimensionless coordinates relative to the

Earth. In this figure, the direction and relative magnitudes of the impulsive station-keeping maneuvers are reflected by

the red arrows. Figure 7(b) displays the associated maneuver magnitudes. The 175 impulsive station-keeping maneuvers

that occur over 10.33 years require a total maneuver magnitude of �EC>C = 2.285 m/s; this total maneuver magnitude is

comparable to the 2.22 m/s over approximately 10 years as calculated by Bosanac et. al for a similar spacecraft and

reference trajectory using constrained optimization [1]. In addition, Figure 8 displays the time history of the magnitudes

of the deviations in (a) position and (b) velocity between the reference and controlled trajectories. At the initial epoch,

the spacecraft is located outside of the desired 100 km boundary from the reference trajectory. However, the controlled

trajectory rarely exceeds the desired 100 km distance threshold or 0.05 m/s in velocity from the reference trajectory at

the end of each momentum unload cycle after the first 0.5 years. These results indicate that trained policy successfully

generates station-keeping maneuvers for a spacecraft to remain near the reference Sun-Earth !2 quasi-halo trajectory

in the ephemeris model with a low total maneuver magnitude, even as momentum unloads regularly perturb the path.

Fig. 8 Time history of magnitude of position (a) and velocity (b) deviations of the controlled trajectory in
Figure 7, measured relative to the reference quasi-halo trajectory.
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Although outside the scope of this paper, these results supply a foundation for investigating RL-based maneuver design in

more complex models of a mission scenario by incorporating safety and other constraints into the policy, incorporating

uncertainty during training, achieving more complex maneuvering goals, and using a wider variety of reference paths.

VI. Conclusions
A policy that is approximated by a feed-forward neural network can be trained using reinforcement learning to

design station-keeping maneuvers for a spacecraft operating near a Sun-Earth !2 southern quasi-halo trajectory in an

ephemeris model. Training via proximal policy optimization and guided parameter selection via Bayesian optimization

can result in a policy that produces a high value in a deterministic model. In addition, the use of transfer learning across

models of increasing fidelity can reduce the computational time for this training process in approximately half while

producing similar results to training the policy solely in the ephemeris model. The controlled trajectories generated by

the trained policy require low maneuver magnitudes and remain within close proximity of the reference quasi-halo

trajectory, with similar characteristics to the solutions generated via constrained optimization.
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