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Natural transitions between bounded motions near mean-motion resonances occur through-

out our solar system and are valuable in trajectory design. Such phenomena have been examined

for natural transitions between periodic orbits near resonances within multi-body systems.

However, families of quasi-periodic trajectories, tracing the surface of invariant 2-tori, signifi-

cantly expand the solution space of bounded motions near resonances. Yet, identifying natural

transitions between spatial 2-tori has previously been cumbersome due to the high dimensionality

of the associated solution space. This paper approaches the challenge in constructing these

natural transfers by using a combination of Poincaré mapping, a well-known technique from

dynamical systems theory, and manifold learning, a technique for dimension reduction. The

presented approach involves projecting a higher-dimensional dataset of intersections recorded

from the hyperbolic invariant manifolds of two 2-tori onto a lower-dimensional embedding,

enabling rapid identification of initial guesses for natural transfers. These initial guesses are

then corrected and input to a continuation scheme to recover families of geometrically similar

transfers connecting families of invariant 2-tori. This approach is demonstrated by constructing

families of natural transitions between tori near distinct resonances in the Earth-Moon circular

restricted three-body problem.

I. Introduction
Natural transitions between orbits near mean-motion resonances existing in multi-body gravitational environments

are of much interest in mission design and celestial mechanics. Recent missions such as the Interstellar Boundary

Explorer (IBEX) and the Transiting Exoplanet Survey Satellite (TESS) missions leveraged orbits near the 3:1 and

2:1 resonances, respectively, in the Earth-Moon system [2, 3]. In these scenarios, natural motions approaching or

departing a specific resonance support designing low-cost transfers or even an explanation for distinct changes in a
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natural trajectory during long-term analyses [4–6]. In celestial mechanics, the natural transitions between orbits near

mean-motion resonances offer fundamental insights into the dynamical mechanisms governing small bodies throughout

the solar system; examples include the transit of comet Oterma in the Sun-Jupiter system [7–9] and the resonant sticking

phenomenon of Kuiper Belt Objects (KBOs) [10].

Low-fidelity models, in combination with dynamical systems theory, provide an approximate, yet representative,

framework to analyze the mechanisms governing resonance transitions in multi-body systems. For instance, the circular

restricted three-body problem (CR3BP) admits a variety of dynamical structures that are approximately retained in

many higher-fidelity models of multi-body systems. In the CR3BP, the set of bounded trajectories that exist near a

resonance includes both periodic orbits and quasi-periodic trajectories that foliate the surface of invariant tori. Then, the

intersections between stable and unstable manifolds emanating from two different periodic orbits or tori indicate the

existence of natural connections, also labeled heteroclinic connections, in the CR3BP. Previous analyses of transitions

between resonances in the CR3BP have tended to focus on trajectories connecting periodic orbits. For instance, Koon et

al. employed Poincaré maps to investigate the transit of comet Oterma in the Sun-Jupiter system via a comparison to

the planar hyperbolic invariant manifolds of orbits near resonance [7]. Haapala and Howell extended this analysis by

studying three-dimensional natural motion between these resonances [11]. Building upon these works by computing and

analyzing natural connections between tori near resonances is valuable for gaining a more comprehensive understanding

of the wider solution space in the CR3BP. However, the stable and unstable manifolds of tori are significantly more

complex than those associated with periodic orbits, producing a more challenging problem to solve from both a

computation and visualization perspective.

Recent works have examined the transitions between two tori in low-fidelity models. For instance, Calleja et

al. formulated a boundary value problem and numerical continuation process that enabled computation of various

heteroclinic connections between periodic and quasi-periodic trajectories near !1 and !2 in the Earth-Moon CR3BP

[12]. Another approach developed by Jorba, Gómez and Mondelo, and Olikara and Scheeres enables efficient numerical

computation of invariant tori and their invariant hyperbolic manifolds [13–15]. With these tools, Olikara has used two

approaches to construct natural transfers between two invariant tori near libration points in the CR3BP. In the first

approach, connections were computed from a fixed departure torus to an a posteriori defined arrival torus using arcs that

remain bounded within a specified neighborhood of the smaller primary; in the second approach, Olikara recovered a

connection between two spatial quasi-periodic trajectories via continuation from a natural transfer between two nearby

planar orbits [16]. Using these tools as a foundation, McCarthy also computed natural and maneuver-enabled transfers

between quasi-periodic trajectories near !1 and !2 in both the Earth-Moon CR3BP and an ephemeris model [17].

In addition, Kumar et al. have used Graphical Processing Units to identify the intersections of stable and unstable

manifolds of tori near resonances in periodically perturbed systems to recover heteroclinic connections [18].

To study the natural transitions between spatial invariant tori near resonances, this paper leverages a combination
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of traditional dynamical systems and unsupervised learning techniques. A primary challenge in constructing spatial

transfers between periodic solutions in the CR3BP is that a Poincaré map capturing the arcs used to construct an initial

guess is high-dimensional. Computing natural transfers between spatial invariant tori increases the inherent challenge of

the problem, due to the larger dimensionality of the solution space. To visualize the hyperbolic invariant manifolds

associated with invariant tori via Poincaré mapping, a technique from manifold learning is employed in this paper.

Manifold learning is a nonlinear dimension reduction method that focuses on discovering a lower-dimensional manifold

that a higher-dimensional dataset is assumed to lie on, thereby reducing the complexity of visualizing and analyzing the

dataset [19]. In our paper, the high-dimensional state information encoded in each map crossing is projected onto a

lower-dimensional embedding that is calculated via Uniform Manifold Approximation and Projection (UMAP) [20].

This state-of-the-art technique minimizes the topological distance between the high- and low-dimensional spaces [20].

Due to this theoretical foundation, UMAP has been used to analyze a wide variety of complex datasets and, therefore,

investigate phenomena in the associated nonlinear systems including complex proteins in single cell biology [21], genetic

structures in cohorts [22], and the origin of solar wind [23]. UMAP is used in this paper to aid in the visualization

of the high-dimensional crossings on a Poincaré map, aiding the trajectory designer in identifying initial guesses for

natural transfers between distinct 2-tori.

This paper focuses on constructing families of natural transfers between invariant 2-tori in the Earth-Moon CR3BP,

using techniques from dynamical systems theory and manifold learning. This procedure is demonstrated in the

context of natural transitions from tori near the 3:2 resonance to tori near the 1:2 resonance, but may be used to

compute natural transfers between various other unstable 2-tori. First, families of spatial quasi-periodic trajectories

near two selected resonances are computed. Then, the hyperbolic invariant manifolds associated with two members

of these families of invariant tori are calculated and represented by their intersections with a surface of section. The

resulting higher-dimensional crossings of the Poincaré map are projected and visualized onto a two-dimensional

embedding that is constructed via UMAP. Then, two crossings from each manifold structure, that are located nearby

in the lower-dimensional space, are used to seed an initial guess for the natural transfer. Because UMAP generates a

low-dimensional embedding with a topological structure that balances approximating the global and local characteristics

of the original higher-dimensional space, the selected two crossings in the low-dimensional representation are likely to be

located nearby in the original higher-dimensional phase space. Thus, the reduced representation of a higher-dimensional

Poincaré map via UMAP offers a useful visualization that supports rapid identification of candidate arcs that resemble

natural connections. Then, the selected discontinuous arcs are refined numerically to produce a continuous solution.

Finally, continuation is used to compute a family of geometrically similar natural transfers between other members

of the same families of invariant tori. These natural transfer sets supply preliminary insights into the existence and

geometric properties of natural transitions between invariant tori near the two selected resonances in multi-body systems.

Transfers are also constructed from tori near the 1:3 to tori near the 3:1 resonances and from tori near the 2:3 to tori near
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the 1:5 resonance to demonstrate the applicability of the presented approach to other types of natural transitions.

II. Dynamical Model
This paper uses the CR3BP to approximate the motion of an object due to the gravitational influence of two primary

bodies. In the CR3BP, two point mass primaries, %1 and %2, are assumed to follow circular orbits about their mutual

barycenter. The third body, %3, representing a spacecraft or a small body, is assumed to possess a negligible mass with

respect to %1 and %2 [24]. Then, mass, length and time parameters are nondimensionalized. Consequently, a mass

parameter ` represents the ratio between the mass of the smallest primary and the total mass of the system: in the

Earth-Moon system, ` ⇡ 0.01215. In addition, a rotating orthogonal reference frame is defined with an origin at the

system barycenter and the axes (x̂, ŷ, ẑ): x̂ is directed from %1 to %2, ẑ is parallel to the orbital angular momentum vector

of the primaries, while ŷ completes the right-handed triad. The nondimensional state of %3 is defined in the rotating

frame as s = [G, H, I, §G, §H, §I]
) . Then, the nondimensional equations of motion in the CR3BP for %3 are written as:

•G � 2 §H = *G , •H + 2 §G = *H •I = *I (1)

where the pseudo-potential function is * (s) = (G
2
+ H

2
)/2 + (1 � `)/A1 + `/A2 and *G , *H and *I denote the

partial derivatives of * with respect to G, H and I, respectively. The distances of %3 from the two primaries are

A1 =
p
(G + `)2 + H

2 + I
2 and A2 =

p
(G � 1 + `)2 + H

2 + I
2. In this system, the Jacobi constant, an integral of motion, is

defined as ⇠� (s) = 2* (s) � §G
2
� §H

2
� §I

2 [24]. At a fixed value of ⇠� , a wide variety of fundamental solutions exist,

including: five Lagrange points, labeled !8 for 8 = {1, . . . , 5}; periodic orbits; and quasi-periodic trajectories.

III. Periodic Orbits near Mean-Motion Resonances
The definition of a mean-motion orbital resonance is inherited from Keplerian dynamics, where two assumed

massless particles, B and C, are subject to the gravitational influence of a single point-mass central body, A. Particle B

is in resonant motion with C if B completes exactly ? orbits about A in the same time C revolves @ times around A, with

?, @, 2 N+ [25, 26]. The ? : @ resonance is classified as interior when ? > @ or exterior when ? < @ [26]. When this

definition is transitioned to the CR3BP, the body B is the assumed massless %3 whereas body A is %1 and body C is

%2, e.g. the Earth and the Moon, respectively. In this paper, an initial guess for a planar ? : @ resonant periodic orbit

is constructed in the two-body problem, following the procedure presented by Vaquero and Anderson [25, 26]. The

initial guess is then transformed into the rotating coordinate system. Next, differential correction is used to recover a

nearby periodic orbit in the CR3BP. Using this single periodic orbit, pseudo arc-length continuation is used to generate

additional members of the same family. Although typically labeled a ? : @ resonant orbit family, only a finite number

of members may possess a period that is exactly resonant with the primary system; additional orbits along the family
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possess a period that evolves away from the resonance [25–27].

The stability characteristics of a periodic orbit are used to gain insight into the nearby flow. A periodic orbit is

uniquely defined in the CR3BP by a state s(C) 2 R6 and orbital period ) . Then, the state transition matrix (STM)

�(C, C0) supplies a linear mapping between a deviation from the initial state Xs(C0), to a deviation from a subsequent

state Xs(C) = �(C, C0)s(C0). The monodromy matrix is then defined as the STM evaluated over an orbital period, i.e.,

S = �(C0 +) , C0). Spectral decomposition of the monodromy matrix produces six eigenvalues in reciprocal or complex

conjugate pairs and associated eigenvectors [28]. For planar periodic orbits, two nontrivial eigenvalue pairs reflect

the characteristics of nearby in-plane and out-of-plane motion: an eigenvalue with a magnitude larger than unity is

associated with an unstable mode; an eigenvalue with magnitude lower than unity identifies a stable mode; and a

complex conjugate pair of eigenvalues with unitary magnitude is associated with nearby oscillatory motion [24].

Two fundamental motions emerge when a periodic orbit is perturbed along one of the nontrivial eigenvalues. When a

single state along the orbit is perturbed along the locally stable (unstable) mode, the perturbed state produces a trajectory

that naturally approaches the periodic orbit as C ! +1 (C ! �1). The collection of all the trajectories exhibiting this

characteristic is labeled the stable (unstable) invariant manifold. Heteroclinic transfers between two distinct periodic

orbits exist when their stable and unstable invariant manifolds intersect: these arcs correspond to a natural transfer

between two periodic orbits in infinite time. Quasi-periodic trajectories, however, lie within the center manifold of a

periodic orbit with oscillatory modes [29].

IV. Quasi-Periodic Trajectories and Invariant 2-Tori
A quasi-periodic trajectory is a bounded path that traces out the surface of an invariant torus; this paper focuses

specifically on spatial 2-tori governed by two fundamental frequencies. A state on the surface of a 2-torus may be

described by two angular quantities [\1 (C), \2 (C)], associated with the longitudinal and transverse directions, respectively.

The associated fundamental frequencies, l1 and l2, of a bounded quasi-periodic trajectory are incommensurate. This

paper uses the approach developed by Jorba, Gómez and Mondelo, and Olikara and Scheeres to compute a torus traced

out by a quasi-periodic trajectory in the CR3BP [13–15]. In this approach, a torus is computed by recovering an

invariant curve that is defined as follows: a state s(\1, \2) that begins on the invariant curve returns to the curve when

propagated forward in time for a stroboscopic mapping time ) = 2c/l1 and undergoes a rotation on the curve by an

angle d = 2cl2/l1 . This invariant curve satisfies the following invariance condition:

'�di) (s(\1, \2)) � s(\1, \2) = 0 (2)

where '�d is a rotational operator and i) (s(\1, \2)) corresponds to the first return to a stroboscopic map with time )

for the state s(\1, \2). To reduce computational complexity, the invariant curve is approximated via a truncated Fourier
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series calculated using an odd number of #& states, equally spaced in \2. As a result, the operator '�d is transformed

into a combined sequence of matrices, X(�d). By aggregating the points sampled along the invariant curve into a

matrix as [ 2 R#&⇥6, a numerical approximation of the invariance condition is:

Y = vec(X(�d)i) ([(\1, \2)) �[(\1, \2)) = 0 2 R6#& (3)

where the condition is vectorized by the vec(·) operator. To compute a torus that lies close to a periodic orbit with

oscillatory modes, a state s0 along the periodic orbit is defined, corresponding to a longitudinal angle \1 = 0. The

eigenvector v⇠ , associated with the complex unitary eigenvalue _⇠ of S is used to compute #& states along an initial

guess for an invariant curve as:

s(\1, \2,8) = s0 + n (Re[v⇠ ] cos \2,8 + Im[v⇠ ] sin \2,8) (4)

where an odd number of equally spaced values of the transverse toroidal angle \2 are used and n is a small scalar value.

To construct the initial guess, the period of the underlying periodic orbit is used as an approximation for the stroboscopic

mapping time ) , while the rotation angle is approximated as d = Re[�8 ln_⇠ ].

The constructed initial guess is corrected via multiple shooting [30]. First, the #& states that have been sampled

along an initial guess for an invariant curve are each propagated forward in time and their trajectories sampled to

produce an initial guess for "& subsequent invariant curves that are located at equally-spaced time intervals along

the torus in the longitudinal direction. These #& ("& + 1) states, as well as ) are d, are simultaneously corrected

until the following constraints are satisfied to within a specified tolerance: 1) when the first "& invariant curves are

propagated forward in time for )/("& + 1), they satisfy full state continuity with the subsequent invariant curves; and

2) the invariance condition is satisfied by the states generated by propagating the final invariant curve forward in time for

)/("& + 1). Additional constraints are often applied to the Jacobi constant and other parameters [16]. In this paper, a

one-parameter family of invariant tori is computed at a single energy level by constraining the average Jacobi constant

for the states along the initial invariant curve. Once a single torus has been computed, pseudo-arclength continuation is

employed to recover additional members of the family of invariant 2-tori. Consistent with other numerical procedures

that are commonly used to compute fundamental solutions in the CR3BP, each torus within this family is not exactly

recovered by this approach due to the approximation introduced by the discrete Fourier transform, the use of numerical

integration, and the nonzero tolerance used to assess whether the constraint vector is satisfied. However, the resulting

numerical solutions tend to lie sufficiently close to tori that exist at a single value of the Jacobi constant [31].

Once an invariant torus has been computed, the nearby linearized dynamical flow supplies useful information on the

associated stability. Specifically, the stability of a torus is evaluated by inspecting the eigenstructure of the differential of
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the invariance condition, labeled JY. Following the work of Jorba, the eigenvalues of JY correspond to concentric

circles about the origin in the Gauss plane [13]. Each of these circles is associated with a radius ' in the complex plane.

Analogous to the stability of periodic orbits, if non-unitary radii exist, the torus possesses stable and unstable modes

[13, 17]. After perturbing the approximated invariant curve along the locally stable (unstable) mode, the perturbed

states naturally approach the torus for C ! +1 (C ! �1) [16]. The collection of all the states naturally approaching

(departing) the underlying torus in forward time lies on the stable (unstable) invariant manifold of the torus. This paper

focuses on computing natural connections between invariant 2-tori near resonant orbit families and using the associated

stable and unstable manifolds to construct an initial guess.

V. Using Dimension Reduction to Visualize Higher-Dimensional Poincaré Maps

A. Poincaré Maps

In dynamical systems theory, Poincaré maps reduce the complexity of visualizing a large set of trajectories by

transforming a continuous solution into a sequence of discrete states. The first step in constructing a Poincaré map is

defining a surface of section that is transverse to the flow of interest [29]. There are a variety of useful definitions of a

surface of section to capture the flow in the CR3BP: events such as the minimum or maximum distance from a central

body (i.e., apses); functions of state coordinates; and stroboscopic maps that capture the flow at specific constant times

[29]. Once a surface of section has been defined, trajectories are propagated, either forward or backward in time, from a

specified set of initial conditions. The intersections of these generated arcs with the surface of section are recorded and

visualized in a lower-dimensional space via a Poincaré map [32].

Poincaré maps have been used extensively to construct initial guesses for heteroclinic connections between planar

periodic orbits. Following a similar methodology to Koon et al., consider two planar periodic orbits near the resonances

of interest in this paper, as displayed in Fig. 1a). This figure displays periodic orbits in the interior 3:2 (magenta) and

exterior 1:2 (blue) resonant orbit families in the Earth-Moon CR3BP at the same Jacobi constant of ⇠� = 2.73. The

Earth and Moon are indicated using gray circles, while the equilibrium points are indicated by red diamonds. A stability

analysis reveals that these two periodic orbits each admit stable and unstable manifolds. To visualize these manifolds, a

surface of section is defined at H = 0. Trajectories along the unstable manifold associated with the 3:2 resonant orbit and

the stable manifold associated with the 1:2 resonance are propagated, with up to 10 intersections with the surface of

section recorded when §H > 0. Figure 1b) displays these intersections of the unstable manifold of the 3:2 orbit (magenta)

and the stable manifold for the 1:2 resonant orbit (blue) on a one-sided Poincaré map where each crossing is visualized

in the (G, §G) plane. Each map crossing in this example is uniquely represented in this two-dimensional plot. Thus,

intersections between the curves formed by each of the blue and magenta colored crossings indicates the existence of a

natural transfer from the 3:2 orbit to the 1:2 resonant orbit. This natural transfer is computed by first locating two nearby
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Fig. 1 Periodic orbits at ⇠� = 2.73 near the a) 1:2 (blue) and 3:2 (magenta) resonances, with Lagrange points
(red), and b) associated hyperbolic manifold crossings.

crossings of the map – one from each hyperbolic invariant manifold – and using them to construct an initial guess. This

initial guess is then corrected to produce a continuous trajectory. The resulting trajectories are interchangeably referred

to as heteroclinic connections, natural transfers, and natural transitions throughout this paper. Of course, this type of

trajectory is an approximation to a nearby heteroclinic connection between the two periodic orbits due to the use of

numerical methods.

When the trajectories of interest are spatial, the associated Poincaré map may appear as a dense set of higher-

dimensional crossings that are challenging to analyze via a two- or three-dimensional projection. Researchers in the

astrodynamics community have introduced strategies to address some of these challenges. For instance, Gomez et

al. constructed an initial guess for a spatial heteroclinic connection between two orbits in the CR3BP by locating the

intersections of their stable and unstable manifolds on a four-dimensional Poincaré map. To achieve this goal, they

applied additional constraints to the map crossings to examine a smaller subset of the data via a bĳective, two-dimensional

map [33]. Alternatively, Haapala and Howell constructed heteroclinic connections between spatial libration point orbits

to examine the dynamical mechanisms that govern cometary transits in the Sun-Jupiter systems. To construct initial

guesses for these transfers using stable and unstable manifolds of periodic and quasi-periodic trajectories, they used

glyphs, a graphical object that produces a visual representation of multivariate data. Through this approach, they

constructed initial guesses for natural transfers from arcs with nearby map crossings that possess similar glyphs. In

these examples, these approaches to Poincaré map visualization have created a valuable foundation for examining

natural transport mechanisms and trajectory design in multi-body systems [11]. In this paper, however, an alternative

approach to visualization of higher-dimensional Poincaré maps is presented to accommodate increasingly complex

scenarios, while avoiding data obscuration, over-constraining the solution space, and a high workload for the human

analyst. Specifically, a manifold learning technique is used to project higher-dimensional data associated with Poincaré
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map crossings onto a lower-dimensional embedding, reducing the complexity of analysis.

B. Manifold learning

Manifold learning techniques, such as the Uniform Manifold Approximation and Projection (UMAP), are a form of

dimension reduction algorithms. Dimension reduction is founded in the premise that the descriptions used to form

high-dimensional dataset may contain redundant information but may be adequately described by only a key set of latent

features [20, 34]. UMAP approaches this problem by constructing a low-dimensional representation of a nonlinear

dataset to minimize the topological distance between the manifolds associated with the high- and low-dimensional

descriptions. To implement this process, concepts from algebraic and fuzzy topology are leveraged. First, the algorithm

assumes that the high-dimensional dataset is uniformly distributed on a manifold; UMAP seeks to infer the Riemannian

metric on the manifold that would result in such a distribution. Under the assumption of a locally connected manifold,

UMAP leverages fuzzy simplicial sets to construct these local metrics and define a weighted graph that captures the

fuzzy topological structure of the high-dimensional dataset. Then, the algorithm leverages optimization to minimize

the difference between the topological representations of the low-dimensional description and the high-dimensional

dataset. UMAP initializes the lower-dimensional projection with spectral embedding techniques and then refines it

by minimizing the cross entropy between the 1-simplices of the high- and low-dimensional representations. This

optimization step leverages stochastic gradient descent for computational efficiency. However, to support reproducibility

of the results, the random state may be fixed at the expense of a minor increase in computational time. This algorithm is

accessed in this paper via the umap-learn library available in Python [20, 34].

To apply UMAP to a particular dataset, several input parameters must be selected; the exact combination of selected

parameters impacts the characteristics of the dataset projected onto the constructed lower-dimensional embedding. The

three most significant input parameters include ==, <38BC and =2: == 2 N+ influences the number of neighbors used

when constructing the local fuzzy simplicial sets that form the basis for the graph representation of the high-dimensional

dataset, thereby balancing capturing the local versus global structure in the dataset with low values producing an

embedding that prioritizes the local manifold structure; <38BC 2 [0, 1] is the minimum separation between two nearby

points in the lower-dimensional space, thereby balancing the density level of the embeddings, ranging from low

values and highly dense solutions to large values and sparse embeddings; and =2 2 N+ defines the dimension of the

lower-dimensional Euclidean representation [20]. In this paper, large values of == and low values for <38BC are selected

manually via an iterative approach: this parameterization prioritizes a compact visualization of the overall global

structure, while also minimizing the effects of data obscuration. Moreover, the obtained datasets are projected into a

two-dimensional Euclidean space with =2 = 2 selected to simplify visualization. The overall computational complexity

of UMAP when applied to a dataset composed of # members is driven by the graph, empirically approximated as

⇠ O(#
1.14

), and the stochastic gradient descent step, ⇠ O(==#) [20].
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VI. Computing Natural Transitions Between Spatial Invariant 2-Tori
This paper uses Poincaré mapping, manifold learning, and constrained optimization to construct natural transitions

between invariant 2-tori near distinct resonances. The approach consists of two fundamental phases. The first phase

focuses on constructing a discontinuous initial guess for a natural connection between two spatial invariant tori. This

phase begins by computing two families of tori near distinct resonances and at a constrained value of the Jacobi

constant. The crossings of the hyperbolic manifolds associated with two selected members of these families with a

common surface of section are used to generate a higher-dimensional Poincaré map. Then, UMAP is used to project the

higher-dimensional crossings onto a lower-dimensional representation. Using this alternative representation mitigates

the impact of data obscuration often encountered when visualizing high-dimensional Poincaré maps and enables a

rapid identification of initial guesses for a heteroclinic connection from nearby projected map crossings of the two

manifold structures without imposing further constraints on the solution space. In the second phase, the initial guess is

numerically corrected to produce a continuous natural transfer between the two selected invariant tori. Continuation is

then used to compute similar natural transitions between other members of each family of spatial 2-tori near resonances.

A. Initial Guess Generation

Poincaré mapping and manifold learning are leveraged, in combination, to construct an initial guess for a natural

transition between spatial invariant tori near distinct resonances. The process is summarized as follows:

1) Compute each family of invariant 2-tori: Two planar orbits near distinct resonances at the same value of Jacobi

constant ⇠� are selected. The selected orbits possess both hyperbolic and center manifolds to ensure that a nearby

family of invariant 2-tori exists and, through inheriting the stability of the periodic orbit, admit trajectories that

naturally depart and approach the torus. The numerical approach presented by Jorba, Gómez and Mondelo,

and Olikara and Scheeres is used to calculate these two families of tori, enforcing a fixed value of the average

Jacobi constant for the initial invariant curve [13–15]. This step produces two families of unstable tori that are

all described by the same average value of the Jacobi constant, evaluated using the states along each of the

computed invariant curves. To generate each trajectory, a Runge-Kutta Prince-Dormand (8, 9) integration scheme

is implemented in C++ using the GNU Scientific Library with an absolute tolerance of 10�15 and relative tolerance

of 10�14 [35].

2) Define the surface of section: A surface of section is first defined to capture the flow associated with the hyperbolic

invariant manifolds of the selected invariant tori. In this work, a surface of section with H = 0 is employed with no

additional constraints on the sign of the velocity components at each crossing, thereby producing a two-sided

Poincaré map.

3) Record crossings of the manifolds on the Poincaré map: One invariant torus is selected from each family to

possess similar maximum out-of-plane components; tori with this property are empirically observed to offer a
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good starting point for locating the first heteroclinic connection. The stable and unstable manifolds associated with

each of the selected tori are generated using a small displacement, equivalent to 100 km in the configuration space,

along the stable and unstable eigenvectors, respectively. Then, for the primary example presented in this paper, up

to 12 crossings with the surface of section are recorded. However, the hyperbolic invariant manifolds associated

with these two tori and generated with the specified step size tend to remain in their vicinity for approximately 6

revolutions. The associated first 6 crossings are generally not useful for locating intersections of the stable and

unstable manifolds of the investigated tori. Thus, only the 7th to 12th crossing of the manifolds with the surface of

section are analyzed.

4) Construct a lower-dimensional projection via UMAP: The map crossings associated with the hyperbolic invariant

manifolds form a five-dimensional dataset: each map crossing is described by the phase space variables

[G, I, §G, §H, §I]. The dimension of the dataset is not reduced any further because distinct invariant curves are

computed using the procedure outlined in Sec. IV to possess only the same average value of the Jacobi constant

over #& states. Thus, the map crossings of the trajectories generated to approximate the stable and unstable

manifolds of the tori may exhibit small deviations in the Jacobi constant across the dataset. UMAP is then used to

project the five-dimensional data onto a two-dimensional Euclidean space: the dimension of the embedding is

selected to prevent data obscuration in representations with more than two dimensions, and is consistent with the

dimension of states along the surface of a torus, identified by two angular quantities, [\1 (C), \2 (C)]. The input

parameters governing UMAP are also selected as == = 100 and <38BC = 0.0 to supply a compact representation

that focuses on retaining the global structure of the map crossings.

5) Construct an initial guess: An intersection between a stable and unstable manifold arc in the five-dimensional

phase space indicates the existence of a natural transition between the two tori. Because UMAP seeks to minimize

the difference between the topological representations of the low-dimensional description and the high-dimensional

dataset, areas where the projected map crossings possess low relative distances on the two-dimensional embedding

are investigated as candidate regions for locating connections between the stable and unstable manifolds in the full

phase space. In these areas, two crossings (one from each of the stable and unstable manifolds) that lie nearby in

the lower-dimensional representation are selected to produces arcs that form an initial guess for a heteroclinic

connection between two tori. Next, the selected map crossings are propagated backward and forward in time to

generate the associated unstable and stable manifold arcs, respectively. Three revolutions of the associated tori are

concatenated to the beginning and end of the transfer to form a suitable initial guess.

The presented procedure, used for initial guess generation, is demonstrated in this paper by constructing a transfer

between spatial invariant tori near distinct resonances in the Earth-Moon CR3BP. However, the presented technique may

be applied to identify existing natural connections between other pairs of unstable invariant tori.
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B. Trajectory correction and continuation

The constructed initial guess is used to recover a family of continuous and natural transfers between spatial invariant

tori near two distinct resonances. The correction scheme is designed to both enforce continuity between each hyperbolic

invariant manifold arc and ensure the trajectory flows away from or into each of the selected tori. In this paper, a

multiple shooting algorithm is formulated as an optimization problem that is implemented using Matlab’s fmincon

function [36]. The objective function is designed to minimize the discontinuity between each torus and the initial

and final states along the transfer; along with equality constraints that enforce continuity, solutions that minimize this

objective below a specified threshold are deemed to sufficiently reflect a nearby natural connection. Of course, this

procedure is conceptually equivalent to implementing a multiple shooting algorithm using only equality constraints.

However, formulating this problem as an optimization problem was observed to produce a less numerically sensitive

process. Mitigation of the sensitivities observed in a traditional equality constraint formulation is an ongoing effort to be

addressed in future work. Nevertheless, the presented approach supplies solutions that correspond to natural transitions

between two tori, to within a selected numerical tolerance.

To define the optimization problem for implementing corrections, free variable and constraint vectors are defined,

along with the objective function. First, the initial guess is discretized into "-1 arcs. To completely describe these arcs,

the free variable vector is defined as:

\ =
⇥
s1, s2, . . . , s" , C1, 2, C2, 3, . . . , C"�1, "

⇤
)

2 R7"�1 (5)

with s8 for 8 2 [1,"] representing the states at the beginning of each arc and end of the last arc and C 9 , 9+1 denoting the

propagation time from the beginning of arc 9 to the end of the arc. Each trajectory, described by \, must be continuous.

Full state continuity is enforced using the following constraint vector:

L(\) =
⇥
s1 (C1, 2) � s2, s2 (C2, 3) � s3, . . . , s"�1 (C"�1, " ) � s"

⇤
)

2 R6("�1) (6)

where s8 (C8, 8+1) is the state at the end of the 8th arc. Then, the optimization problem is stated as:

\ = arg min
\

5 (\) subject to L(\) = 0 (7)

for a scalar objective function 5 (\). In this paper, the objective function is designed to ensure minimization of

the discontinuity between the initial and terminal states along the transfer and the associated tori; conceptually, this

corresponds to the requirement that the beginning of the transfer naturally flows away from the initial torus and the end
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of the transfer naturally flows into the final torus. Mathematically, this objective function is written as:

5 (\) = ks1 � s)1k
2
+ ks" � s)2k

2 (8)

where s)1 and s)2 are the closest states along each torus to the initial and final states s1 and s" along the transfer.

The states s)1 and s)2 are computed at each iteration of the optimization scheme from the set of approximate

invariant curves along the departure and arrival tori. To compute s)1 and evaluate the first term of the cost function,

the closest invariant curve [(\1, \2) on the departure torus to s1 at the beginning of the transfer is located. A single

shooting approach is used to obtain the closest point on the torus to s1, i.e. s)1. Specifically, the invariant curve

[(\1, \2) is rotated in the longitudinal direction by an angle g1 to produce the invariant curve [(\1 + g1, \2): this

rotation corresponds to forward propagation of the states sampled from [(\1, \2). Then, the curve [(\1 + g1, \2) is

rotated in the transverse direction by an angle g2, using the rotation operator X(·). Therefore, this scheme uses a free

variable vector _ = [g1, g2] 2 R2. Then, the first state along this invariant curve is iteratively adjusted to approach s1.

Specifically, _ is updated 10 times by taking steps in the Newton direction, calculated using the following vector:

M (_) = s1 � X(g2)[(\1 + g1, \2) |1 (9)

While M (_) cannot equal zero, because a state cannot simultaneously lie along a natural transfer and a torus, this

approach produces a free variable vector _ that results in a small magnitude for M (_), indicating the recovery of a

nearby state along the torus. This method is successful with a general initial guess _ = (0.01, 0.01) if the torus is

originally described by a sufficiently large number of invariant curves. A similar procedure is used to evaluate the

second term in the objective function using the arrival torus.

The formulated optimization problem is solved using interior point optimization in the MATLAB routine fmincon

[36]. Because both tori are constrained to possess the same average Jacobi constant, a transfer is considered a natural

connection if it corresponds to an objective 5 (\)  10�12 and a constraint vector magnitude kL(\)k2  10�12. The

threshold in the objective function corresponds to a cumulative approximate displacement of 400 m and 1 mm/s in the

Earth-Moon system from the departure and arrival torus. This value is reasonable given the nonzero difference between

the minimum and maximum Jacobi constants of states along each invariant curve, which is a direct consequence of using

a truncated Fourier series representation of the curve to numerically generate an approximation to an invariant torus.

Once the optimization strategy recovers a transfer between the two selected tori, a continuation scheme is used to

generate geometrically similar transfers between other members of the two families of invariant tori. This continuation

approach follows a grid-like structure: initially, the departure torus is fixed, while the arrival torus is gradually adjusted

to step along the family. At each step of this continuation process, the transfer connecting one combination of tori is
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used to seed the initial guess for the next combination of tori. This process terminates when there are either no more

members along the arrival torus family or a feasible transfer cannot be computed. Then, a similar procedure is repeated

for each new departure torus. This procedure enables computation of a natural connection, with a similar geometry to

the initial guess, between spatial tori along the two selected families. Note that the continuation scheme presented in

this paper only seeks the existence of one transfer between each combination of tori and within the neighborhood of

the initial guess. Similar solutions may also be generated by varying the departure and arrival locations along each

torus. Such an analysis may also, potentially, expand the combinations of arrival and departure tori that admit a natural

connection. Nevertheless, the implemented approach enables a preliminary analysis of natural transitions between

bounded motions near resonances.

VII. Natural Transitions Between Tori Near Distinct Resonances
Natural transfers between invariant 2-tori near the 3:2 and 1:2 resonances in the Earth-Moon CR3BP are constructed

and analyzed. First, point solutions are rapidly recovered using Poincaré mapping, manifold learning, and corrections.

Then, a specific region of the Poincaré map is analyzed in the lower-dimensional space constructed by UMAP to

construct multiple transfers and their geometries compared. Two natural transfers are then used in a continuation scheme

to recover geometrically similar arcs connecting other members of the two families of invariant tori.

A. Recovering Point Solutions for Natural Transfers

Families of invariant tori near the 3:2 and 1:2 resonances are generated in the Earth-Moon CR3BP. First, consider the

two planar periodic orbits, one from each family, that are depicted in the center of Fig. 2. In this figure, the Earth and the

Moon are displayed as gray circles, and the Lagrange points are denoted with magenta diamonds. These planar periodic

orbits exist at a Jacobi constant of ⇠� = 2.73 with approximate periods of 55.92 days and 50.54 days, respectively.

At this energy level, periodic orbits in both families admit planar hyperbolic invariant manifolds and a spatial center

manifold. Families of nearby invariant 2-tori are then generated at this same average Jacobi constant. To construct an

initial guess for a torus, a perturbation of n = 5 ⇥ 10�5 in Eq. 4 is used to step along an eigenvector associated with the

oscillatory mode. Then, each torus is computed using #& = 25 states along each of the "& + 1 = 4 invariant curves.

Using the torus computation method presented by Jorba, Gómez and Mondelo, and Olikara and Scheeres, 20 invariant

tori are computed along the family near each resonance [13–15]; note that the 20th torus lies at the boundary of the

range of tori that are computed with the selected invariant curve discretization, but additional tori may exist further

along the family. Invariant tori in each family that possess the largest out-of-plane displacement at apolune are displayed

at the boundaries of Fig. 2, with a color scheme that is consistent with the periodic orbits in the center of the figure.

Point solutions for natural transfers are constructed to flow away from the torus near the 3:2 resonance that is

displayed on the left of Fig. 2 and flow into the 1:2 resonance on the right of this figure. The unstable manifold of
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Fig. 2 Sample invariant tori and generating periodic orbits in the Earth-Moon CR3BP at ⇠� = 2.73 in the 1:2
(blue) and 3:2 (magenta) resonant orbit families.

the torus near the 3:2 resonance and the stable manifold of the torus near the 1:2 resonance are both generated using

invariant curves at 101 values of \1, i.e., in the longitudinal direction along each torus. These manifolds are propagated

for up to 12 returns to the H = 0 surface of section, in any direction; recall that the first 6 map crossings for each trajectory

are excluded from this analysis as they tend to remain close to the generating torus. The remaining intersections of the

manifolds with the surface of section produce a total of 15,114 and 14,925 crossings for the 3:2 and the 1:2 resonances,

respectively. Figure 3a) displays the intersections of the generated subset of the invariant manifolds with the H = 0

surface of section via a projection onto the (G, §G) plane. In this projection, the intersections associated with the tori

resemble the crossings of the stable and unstable manifolds associated with the planar periodic orbits in Fig. 1a).

However, the increased complexity of these five-dimensional map crossings becomes apparent in a three-dimensional

projection onto the (G, §G, I) space, as depicted in Fig. 3b): the crossings of these manifold arcs possess a significant

out-of-plane component. Both the two- and three-dimensional representations displayed in Fig. 3(a-b) do not completely

represent the higher-dimensional intersections of the invariant manifolds with the surface of section. Thus, two map

crossings that are located nearby in either of these two- or three-dimensional projections may not be close in the full

five-dimensional phase space. Including a fourth dimension or introducing further constraints in the problem could

mitigate this problem. However, including a fourth dimension would further complicate the visualization and analysis of

the Poincaré map, while the design space may significantly shrink with additional constraints.

UMAP is employed to reduce the complexity of visualizing the large set of five-dimensional data via a projection

onto a two-dimensional Euclidean space. The map crossings associated with both the stable and unstable manifolds are

combined to form the complete dataset that is input to UMAP. Using the selected input parameters, UMAP produces the

projection onto a two-dimensional space that is displayed in the center of Fig. 4. In this figure, the blue markers indicate

map crossings of the stable manifold associated with the torus near the 1:2 resonance, while the magenta markers

correspond to the unstable manifold associated with the torus near the 3:2 resonance. The two axes, labeled U1 and U2,

correspond to two variables that define the two-dimensional space calculated by UMAP. The projection calculated by

UMAP minimizes the differences between the fuzzy topological structure of the original higher-dimensional data and

the lower-dimensional representation. As a result, two map crossings that are close in the full phase space are expected

to be located nearby in the two-dimensional projection. Analysis of this projection at the center of Fig. 4 reveals that
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Fig. 3 Projections of the intersections of the hyperbolic manifolds from tori near the 1:2 (blue) and 3:2 (magenta)
resonances with the H = 0 plane.

Fig. 4 Center: two-dimensional embedding of the map crossings in Fig. 3 from UMAP. Boundaries: zoomed-in
views of four regions of interest.

there are multiple regions of both blue and magenta markers where the stable and unstable manifolds may potentially

cross the H = 0 surface of section with similar state vectors: these regions are used to identify suitable map crossings to

generate an initial guess for a nearby continuous transfer between the two tori. Four interesting regions appear in the

zoomed-in plots at the boundaries of Fig. 4 and are used to generate four distinct transfers.

Identifying map crossings that are used to form initial guesses by analyzing this two-dimensional embedding reduces

the complexity of analysis and computation. For instance, a specific region of the embedding captures a subset of the

entire dataset of manifold crossings. These regions may be directly searched to locate nearby crossings from each set

that possess a low relative distance in the two-dimensional projection. This approach reduces the number of computed

pairwise distances in a brute-force search and the number of state components processed in each pairwise distance
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Fig. 5 Selected natural transfers from tori near the 3:2 to tori near the 1:2 resonances, labeled by the region in
Fig. 4.

computation. More importantly, this two-dimensional visualization is also straightforwardly examined by a human to

narrow down suitable regions where nearby map crossings may lie.

Each of the four regions of nearby map crossings on the two-dimensional projection calculated by UMAP is used to

generate point solutions for a natural transition between invariant tori associated with the 3:2 and 1:2 resonances in the

Earth-Moon CR3BP. Within each of the zoomed-in regions displayed at the boundaries of Fig. 4, map crossings that

exist nearby on the projected space are selected from each of the unstable manifold associated with the invariant torus

near the 3:2 resonance and the stable manifold associated with the invariant torus near the 1:2 resonance. The process

described in the previous section produces four discontinuous initial guesses that are then used to recover the natural

transfers that are displayed in Fig. 5 and labeled as T1-T4, consistent with the zoomed-in view in Fig. 4. Each of the

depicted transfers is recovered in a computational time of approximately 15 seconds per trajectory on a computer with

an i7-2600K 3.40GHz processor while remaining close to the initial guess. In Fig. 5, the selected transfers begin near
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the magenta circle marker on the torus associated with the 3:2 resonant orbit family and terminate near the blue circle

marker on the torus associated with the 1:2 resonant orbit family. Segments of each continuous trajectory are colored in

magenta (or blue) according to the portion of the initial guess that was selected from the unstable (or stable) manifold.

These four natural transfers between the selected invariant tori exhibit distinct geometries due to the specific manifold

arcs used to construct the initial guess.

The intersections of the computed trajectories with the surface of section at H = 0 are highlighted in the traditional

Poincaré map projections onto the (G, §G) plane, and the (G, §G, I) space in Fig. 6(a-b), respectively. The general set of

intersections of the 3:2 unstable manifold (magenta) and the 1:2 stable manifold (blue) with the surface of section, as

depicted previously in Fig. 3, are displayed with semi-transparent markers, while the intersections of the T1 to T4

transfers with the surface of section appear as gray circles. The map crossings of the T1 to T4 transfers appear to be

located near potential intersections of the projections of the stable and unstable manifold map crossings onto a subset of

the phase space. However, locating these intersections in the full five-dimensional dataset may have been particularly

challenging using existing techniques.

Fig. 6 Locating intersections of the corrected transfers with H = 0 on a map capturing the manifold crossings
for tori near the 1:2 (blue) and 3:2 (magenta) resonances.

Additional natural transfers may possess map crossings that lie close to those of the computed transfers in the

two-dimensional projection constructed by UMAP. Consider, for example, further examination of the zoomed-in area

labeled as T2 in Fig. 4 and displayed with a higher resolution at the center of Fig. 7. Note that the complete embedding

constructed by UMAP is also displayed in the bottom-left corner of the central figure to indicate the location of the

selected region. Within the collection of projected map crossings in the center of Fig. 7, four pairs of map crossings

are highlighted with blue and magenta circles. These pairs are selected to possess a low relative pairwise distance

in the projected space. Each selected pair is then used to construct a discontinuous initial guess and corrected to

generate a continuous natural transfer between the selected tori in the 3:2 and 1:2 resonant orbit families. The generated
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transfers are displayed in the configuration space at the boundaries of Fig. 7 with projections onto the GH-, GI-, and

HI-planes depicted in gray. Arrows are used to associate each transfer to the corresponding pair of map crossings in the

two-dimensional projection. The transfers on the left of Fig. 7 possess a similar geometry to each other, with only minor

differences in the apogee locations. The transfers on the right of this figure, however, possesses a similar geometry to

each other, but not to the transfers on the left. These results demonstrate both the vast solution space of the existing

natural transfers between the selected 2-tori as well as the potential for families of transfers with similar geometries

but distinct arrival and departure conditions to span regions of the two-dimensional projection. Further examining the

existence and geometry of the broader array of transfers that are rapidly identified using the projection constructed by

UMAP is an avenue of future work.

Fig. 7 Center: specific regions of the projected map crossings, labeled as T2 in Fig. 4. Boundaries: natural
transfers constructed using selected map crossings pairs.

B. Family continuation

Continuation is used to generate natural transfers with similar geometries to transfer T1, plotted in Fig. 5a), but

connecting additional members of the two families of invariant tori near the 3:2 and 1:2 resonances at ⇠� = 2.73.

Note, however, that continuation is not used to find similar transfers connecting the tori at various longitudinal and

transverse angles; rather, only a single transfer between two tori is sought. Fig. 8 displays a summary of the computed

natural transfers for this particular transfer geometry from tori near the 3:2 resonance to tori near the 1:2 resonance. In

the top-right plot of this figure, the horizontal and vertical axes depict the maximum out-of-plane component of the

position vector at apogee along the departure and arrival tori, respectively. Each black marker in this two-dimensional

representation indicates that a feasible natural transfer is computed to solve the optimization problem summarized in Eq.

7 with 5 (\) < 10�12 and kL(\)k2 < 10�12. Four sample transfers, labeled as A1 to A4 and connecting the indicated
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tori, are also displayed at the boundaries of the figure. Within these subfigures, the Earth and the Moon appear as gray

circles, and the Earth-Moon Lagrange points are plotted as magenta diamonds.

Fig. 8 Existence of natural transfers with a similar geometry to T1 between tori in the 3:2 and 1:2 resonances;
sample transfers indicated in the boundaries.

Across the generated family of natural transfers from tori in the 3:2 resonant orbit family to tori in the 1:2 resonant

orbit family, the solutions admit a similar geometry. However, as observed in the gray lateral GI- and HI-projections at

the boundaries of Fig. 8, each transfer connects invariant tori with distinct out-of-plane displacements. For example,

transfer A1 connects the 20th computed members of the families of invariant tori near the 3:2 and 1:2 resonances, which

admit the largest out-of-plane displacement. Transfer A1 also exhibits the largest out-of-plane motion of the transfers

computed. Conversely, transfer A3 connects the second computed tori in each of these two families, and the transfer is

almost planar. Transfer A2 starts from an almost planar torus in the 3:2 resonant orbit family and approaches the 20th
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computed member of the arrival torus in the 1:2 resonant orbit family. Transfer A4 exhibits an initially relatively large

out-of-plane displacement, culminating with almost planar motion.

Analysis of Fig. 8 reveals useful insights into the existence of natural transitions between tori within each family.

Specifically, given a fixed initial torus near the 3:2 resonance, a transition only exists to selected quasi-periodic

trajectories near the 1:2 resonance and vice versa. The existence of these transitions, for this particular transfer geometry,

appears to be linked to the relative difference in the maximum out-of-plane component along each torus. For initial tori

near the 3:2 resonance with a small out-of-plane deviation, only tori near the 1:2 resonance with a small out-of-plane

component are naturally accessible in the CR3BP. As the tori evolve along each family, natural transitions occur at a

larger range of differences in the maximum out-of-plane components.

A similar continuation approach is used to generate natural transfers with similar geometries to transfer T4, plotted

in Fig. 5a), that connect additional members of the two families of invariant tori near the 3:2 and 1:2 resonances at

⇠� = 2.73. This point solution, T4, naturally connects the 20th computed members of each of the selected families of

invariant tori. However, there is an evident geometric difference between transfer T1 and T4: the transfer labeled as T4

exhibits a transient phase with multiple revolutions in the Earth vicinity prior to a final flyby with the Moon that directs

the spacecraft towards a natural approach into the torus near the 1:2 resonance; of the four transfers in 5a), T4 deviates

most significantly from the initial and final tori. The associated set of transfers computed via continuation from T4

are summarized in Fig. 9 using a configuration consistent with Fig. 8. Analysis of Fig. 9 reveals that this family of

transfers resembling T4 encompasses a wider array of combinations of initial and final tori in the two families than

transfers resembling T1. In fact, these natural transfers connect tori with relative large differences in the out-of-plane

displacement. Such a result is likely due to the multiple close flybys performed by transfer T4 but not by transfer T1, as

evident in Fig. 5a, d). Accordingly, the existence of natural transitions between spatial invariant tori in two distinct

resonant orbit families appears to be influenced by the transfer geometry.

C. Recovering Transfers between Invariant Tori near Additional Resonances

The approach used to compute natural transfers between two invariant tori in the Earth-Moon CR3BP also supports

constructing natural connections between tori near additional resonances. Consider, for example, designing a transfer

from a torus near an orbit in the 3:1 resonant orbit family to a torus in the 1:3 resonant orbit family; both tori exist at

⇠� = 3. These two tori are computed with #& = 25 and "& = 101. Then, the intersections of each of the unstable and

stable manifolds of the initial and final torus, respectively, with the H = 0 plane, are computed for up to 18 returns;

only the last 8 crossings deviate significantly from the initial and final tori and are, therefore, examined further. These

crossings of the unstable and stable manifolds of the initial and final torus are projected onto a two-dimensional space

that is computed by UMAP. This projection is displayed in Fig. 10a): the crossings of the unstable manifold of a

torus near the 3:1 resonant family appear in magenta whereas the crossings of the stable manifold arcs approaching
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Fig. 9 Existence of natural transfers with a similar geometry to T4 between tori in the 3:2 and 1:2 resonances;
sample transfers indicated in the boundaries.

a torus near the 1:3 resonance are displayed in blue. To construct an initial guess for a natural transfer departing the

torus near the 3:1 resonance and naturally approaching the torus near the 1:3 resonance, the framed region from the

UMAP projection in Fig. 10a) is investigated. In this region, a projected map crossing is selected from each of the

stable and unstable manifold sets to possess the smallest relative distance. The resulting discontinuous initial guess is

corrected and visualized in the configuration space in Fig. 10b), using a coloring scheme consistent with Fig. 5. Figure

11 displays similar information for transfers departing from a torus near the 2:3 resonance and approaching a torus near

the 1:5 resonance in the Earth-Moon CR3BP at ⇠� = 2.6. Of course, these transfers that are visualized in Figs. 10

and 11 are simply point solutions among a variety of natural transfers that may be identified through the presented

approach. In fact, additional transfers with distinct geometries may be generated by investigating other regions of the
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Fig. 10 a) Embedding of the map crossings of the hyperbolic manifolds of invariant tori near the 1:3 (blue) and
the 3:1 (magenta) resonances; b) constructed natural transfer.

Fig. 11 a) Embedding of the map crossings of the hyperbolic manifolds of invariant tori near the 1:5 (blue) and
the 2:3 (magenta) resonances; b) constructed natural transfer.

projected spaces in Figs. 10a) and 11a), as well as different combinations of map crossings in the same framed areas.

However, these two examples demonstrate the capability to use the presented approach to recover a wider variety of

natural transfers between tori near resonant orbit families in the Earth-Moon CR3BP.

VIII. Conclusions
Natural transitions between 2-tori near mean-motion resonances in the CR3BP can be computed numerically

from an initial guess that is constructed via a combination of dynamical systems theory and dimension reduction.
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Specifically, intersections of the stable and unstable manifolds of distinct 2-tori can be summarized by their crossings

with a surface of section. Although these crossings possess a higher-dimensional description, they can be visualized in

a lower-dimensional space that is computed using manifold learning, a form of nonlinear dimension reduction. This

lower-dimensional representation can guide the identification of candidate arcs along each hyperbolic invariant manifold

that form a useful initial guess for a natural connection between distinct 2-tori. This approach leads to the successful

computation of natural connections of various geometries between a variety of invariant 2-tori near the 3:1 and 1:3

resonances, and near the 1:5 and the 2:3 resonances, in the Earth-Moon CR3BP.
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