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CLUSTERING APPROACH TO IDENTIFYING LOW LUNAR
FROZEN ORBITS IN A HIGH-FIDELITY MODEL

Giuliana E. Miceli*, Natasha Bosanac†, Michael A. Mesarch‡, David C. Folta§,
and Rebecca L. Mesarch ¶

Low lunar frozen orbits are of continued interest in the astrodynamics community
for trajectory design and space domain awareness. This paper presents a data-
driven approach to analyzing a wide variety of numerically-generated lunar trajec-
tories in a 100× 100 lunar gravity model with the point mass gravity of the Earth
and Sun. First, clustering is used to extract a summary of these trajectories: within
each cluster, trajectories possess a geometrically similar evolution of perilune but
varying drift and lifetimes. Within some clusters, trajectories with a bounded per-
ilune evolution are also identified to produce candidates for lunar frozen orbits of
distinct geometries.

INTRODUCTION

Since the early 1960s, astrodynamicists have studied frozen orbits: trajectories that exhibit small
variations in the orbital elements relative to a selected celestial body over long time intervals.1

Near the Moon, frozen orbits–or even quasi-frozen orbits with a bounded variation in the orbital
elements–have been of significant interest for designing mission orbits that require little mainte-
nance over long time intervals. These trajectories can support scientific missions, placement of
critical infrastructure, and extended imaging of the lunar surface. In fact, previous missions have
already leveraged frozen and quasi-frozen lunar orbits identified in high-fidelity gravity models to
limit station-keeping maneuver requirements, including Lunar Prospector (1997-1999) and the Lu-
nar Reconnaissance Orbiter (2009 - present).2, 3 Furthermore, frozen and quasi-frozen lunar orbits
may be useful for space domain awareness when locating objects or debris that may remain in a
lunar orbit for long time intervals.

A common existing approach to identifying and characterizing lunar frozen orbits is to use ana-
lytical approximations in truncated dynamical models. As an example, Ely examined the evolution
of the orbital elements in a point mass lunar gravity model with a third-body perturbation from the
Earth to identify elliptical and inclined lunar frozen orbits.4 Folta and Quinn use a similar approach
to identify lunar frozen orbits that are then numerically simulated in a higher fidelity ephemeris
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model and also leveraged for maneuver design.5 Additionally, Elipe and Lara used corrections and
continuation algorithms to compute frozen orbits in a lunar gravity model that captures the first 7
zonal harmonic terms, identifying three distinct families of lunar frozen orbits across various ec-
centricities and inclinations.6 Lara, Ferrer, and De Saedeleer then used an averaged Hamiltonian
formulation of a lunar gravity model with the first 50 zonal harmonics and the point mass gravity
of the Earth to examine the long-term behavior of low lunar polar orbits.7 A wide variety of re-
searchers have used similar approaches to identify frozen orbits in low-order spherical harmonic
gravity models of the Moon that are augmented by the gravitational influence of the Earth.8–10

Alternatively, low lunar frozen orbits may be identified numerically in a high-fidelity dynami-
cal model. As an example, Russell and Lara identified families of multi-revolution periodic orbits
near the Moon via numerical integration and differential corrections in an Earth-Moon restricted
three-body model that is augmented with a 50× 50 lunar gravity model.11 Further generalizing the
numerical identification of low lunar frozen orbits, a large number of trajectories can be numerically
integrated over a specified time interval from a wide array of initial conditions and then examined.
However, with this approach, a significant challenge emerges: extracting long-term bounded mo-
tions that may correspond to frozen or quasi-frozen orbits from a diverse array of trajectories.

Reframing trajectory analysis as a data analysis problem reveals a challenge shared across many
technical disciplines: extracting meaningful insight from large datasets without overburdening a hu-
man analyst or requiring a priori knowledge. Clustering techniques have proven useful in addressing
these challenges by automatically grouping similar data into a cluster and separating dissimilar data
into distinct clusters.12 The resulting clusters supply a digestible, data-driven summary of the dataset
that may simplify analysis and drive knowledge discovery. This approach has proven valuable in a
variety of disciplines: in medicine, clustering has been used to detect clinically meaningful shape
clusters in medical image data, and in astronomy clustering has been used to identify distinct types
of galaxies.13, 14 In astrodynamics, clustering has been used to detect bounded motions near distant
retrograde orbits, group periodic orbits that are independently computed, extract motion primitive
sets that summarize families of trajectories, and summarize a wide variety of trajectories in the
Sun-Earth circular restricted three-body problem at a single energy level.15–20

This paper presents a clustering-based approach to summarizing a wide variety of trajectories that
are numerically generated in a high-fidelity lunar gravity model. This summary is used to extract
insight into the solution space and locate motions with a bounded evolution of perilune that may
supply candidates for low lunar frozen and quasi-frozen orbits. First, we define initial conditions
as perilunes with distinct combinations of orbital elements. To support a proof of concept, these
perilunes possess a fixed semi-major axis of 1838 km and an initial epoch on January 1, 2025. Tra-
jectories are generated for up to 180 days from these initial conditions in a 100× 100 lunar gravity
model with the point mass gravity of the Earth and Sun. This model fidelity is selected to balance
prediction accuracy against computational time. Consistent with previous analyses of frozen orbits,
we then characterize each trajectory by the time evolution of the eccentricity and argument of peri-
apsis at each perilune in a Moon-fixed frame defined using principal axes. The evolution of perilune
over 180 days is then summarized to produce a finite-dimensional feature vector that encodes its size
and shape. Next, Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-
SCAN) is used to cluster these feature vectors in a two-step process.21 Each cluster corresponds
to trajectories with a geometrically similar evolution of perilune. The result is a clustering-based
summary of the geometries exhibited by trajectories near the Moon that is also used to identify
candidates for low lunar frozen or quasi-frozen orbits.
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GENERATING LUNAR TRAJECTORIES

In this paper, two reference frames are used to describe the state of a spacecraft relative to the
center of the Moon. First, a Moon-centered inertial frame is defined using the center of the Moon
as the origin and the axes X̂, Ŷ , Ẑ of the International Celestial Reference Frame (ICRF).22 In
addition, a Moon-fixed frame is defined using lunar principal axes.23 These principal axes are
accessed using the moon 080317 kernel file that is provided by NASA’s Navigation and Ancillary
Information Facility (NAIF) and compatible with the DE421 lunar and planetary ephemerides.24, 25

Trajectories are generated in a high-fidelity lunar gravity model augmented by the point mass
gravity of the Earth and Sun. In the Moon-centered inertial frame, the state vector for the spacecraft
relative to the Moon is defined as X̄ = [X,Y, Z, Ẋ, Ẏ , Ż]T = [R̄L,sc, V̄L,sc]

T . The equations
of motion governing the spacecraft, assumed to possess a comparatively negligible mass, are then
written as
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where the subscripts L, E, S, and sc indicate the Moon, Earth, Sun, and spacecraft, Mi is the mass
of body i, G is the universal gravitational constant, ˙(.) indicates a time derivative with respect to
an observer in the inertial frame, R̄i,j indicates the position vector measured from body i to body
j, and āL captures the acceleration due to higher-order lunar gravity terms. The DE421 lunar and
planetary ephemerides, maintained by NASA’s NAIF, are used to locate each celestial body at each
epoch during numerical integration.26 Additional perturbing accelerations are not included in this
proof of concept.

The lunar gravity field is represented by a 100×100 degree and order spherical harmonics model.
In the Moon-fixed frame, defined using principal axes, the potential function for the deviation of the
gravity field from a point mass equals
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GML
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Pl,m (sin(ϕ)) (Cl,m cos(mλ) + Sl,m sin(mλ))

]
(2)

where RL is the reference radius of the Moon, Pl,m is the associated Legendre polynomial for
degree l and order m, ϕ and λ are the selenocentric latitude and longitude, and Cl,m and Sl,m are
the coefficients of the spherical harmonic expansion.27 In this work, the coefficients of expansion
and model parameters are accessed using the 900 × 900 gravity model (GRGM900C) which is
compatible with the DE421 ephemerides.28 Then, a frame transformation is applied to the vector
derivative of the potential function to calculate the acceleration āL in the Moon-inertial frame.
Although higher degree and order gravity coefficients are available in this and other models, they are
not included in this paper due to their significant influence on the computational time. Furthermore,
the Lunar Prospector mission’s successful use of a quasi-frozen lunar orbit that was identified in a
100×100 degree and order gravity model indicates that this level of truncation may supply sufficient
prediction accuracy.29

CLUSTERING

Clustering is a method for grouping members of a dataset based on a specified set of features
without requiring a human-in-the-loop. Clustering algorithms are often categorized as hierarchical-
based, partitioning-based, density-based, grid-based, and/or model-based.30 Furthermore, hard
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clustering uniquely assigns each member of a dataset to a single cluster, whereas fuzzy clustering
assigns probabilities of cluster membership.

This paper uses the Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) algorithm developed by Campello, Moulavi, and Sander to group trajectories.31 HDB-
SCAN is a hard clustering algorithm that discovers clusters of arbitrary shape and density that are
separated by an unknown or nonconstant distance. Furthermore, HDBSCAN does not require a pri-
ori knowledge of the number of clusters and labels data in insufficiently sampled regions as noise.
Because of these characteristics, HDBSCAN has successfully been used in a variety of fields from
medicine to computer vision.32, 33 This clustering algorithm has also previously been demonstrated
by Bosanac as well as Bonasera and Bosanac to successfully cluster spacecraft trajectories by their
geometry in a chaotic dynamical model.19, 20

HDBSCAN uses a hierarchical and density-based approach to group the N members of a dataset,
each described by m-dimensional feature vectors that capture user-specified characteristics of in-
terest. This process is summarized here; for a more detailed explanation, see Campello, Moulavi,
and Sander 2013.31 First, the core distance dcore, is computed for each member. For the i-th
member, this quantity is defined as the distance of the feature vector v̄i from its (nsample − 1)-th
nearest neighbor, assessed using a specified distance measure. The core distance is used to cal-
culate the mutual reachability distance (MRD) between each pair of feature vectors v̄i and v̄j as
dmreach = max(dcore(v̄i), dcore(v̄j), d(v̄i, v̄j)), where d(v̄i, v̄j) is the distance between v̄i and v̄j .
Using this information, a mutual reachability graph is constructed with N nodes defined as the
feature vectors and the edges between each pair of nodes weighted by the MRD of the associated
feature vectors. This graph is summarized using a minimum spanning tree (MST) that is augmented
by adding self-loops to each node that are weighted by the core distance of its feature vector. HDB-
SCAN then constructs a dendrogram from this augmented MST to produce a clustering hierarchy.
Clusters are identified from this hierarchy as groups of members that are sufficiently stable as a
function of density and possess a size that is above a minimum value, denoted nsize. In a modifi-
cation to the HDBSCAN algorithm, presented by Malzer and Baum, clusters with a distance below
a threshold ϵ are merged.34 Finally, if the local neighborhood of a member of the dataset does not
encompass at least (nsample − 1) neighbors, that member is labeled as a noise point. The output of
this process is a set of labels assigning each of the N members of the dataset to either a cluster or a
noise group. In this paper, HDBSCAN is accessed via the hdbscan clustering library in Python.35

The Density-Based Clustering Validation (DBCV) index introduced by Moulavi et al. is used
to assess the quality of a clustering result generated by HDBSCAN.36 The DBCV index measures
the ratio of the inter-cluster separation to the intra-cluster density with values between -1 and 1; a
high value of the DBCV index indicates a better clustering result with clusters that are more tightly
packed and well-separated. Mathematically, the DBCV index is defined for a dataset that has been
grouped into nclust clusters as

DBCV =

nclust∑
i=1

Ci

T
VC(Ci) (3)

where T is the total number of points and VC(Ci) is the validity index of cluster Ci, defined as

VC(Ci) =
min1≤j≤l,j ̸=i(DSPC(Ci, Cj))−DSC(Ci)

max(min1≤j≤l,j ̸=i(DSPC(Ci, Cj)), DSC(Ci))
(4)

where DSPC is the density separation of a pair of clusters, defined as the minimum reachability
distance between the internal nodes of the MST of clusters Ci and Cj ; and DSC is the density
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sparseness of a cluster defined as the maximum edge weight of the internal edges in MST of the
cluster Ci. This validity index compares the internal density compactness of a cluster and the density
separation between two clusters with a positive value of VC(Ci) indicating a better cluster that is
compact and well separated from other clusters.

TECHNICAL APPROACH

This paper presents a clustering-based framework for summarizing lunar trajectories and extract-
ing bounded orbits that may supply candidates for frozen and quasi-frozen orbits. This framework
consists of the following steps:

1. Numerically generating a set of trajectories in a selected dynamical model
2. Describing each trajectory using a finite-dimensional feature vector
3. Clustering the dataset to produce groups of spatiotemporally similar trajectories
4. Summarizing each cluster using a representative member
5. Merging clusters with geometrically similar representatives

Step 1: Generating a set of lunar trajectories

To generate a set of lunar trajectories, a wide range of initial conditions are defined using Keple-
rian orbital elements at a fixed epoch and semi-major axis. Although epoch and semi-major axis are
both variables that impact the characteristics of the associated trajectories, they are constrained in
this paper to reduce the size of the dataset and support a proof of concept. The ranges and step sizes
of each orbital element are listed in Table 1. All the possible combinations of these orbital elements
result in 58,608 initial conditions that lie above the lunar radius, assumed to equal 1738 km in this
paper. Each initial condition is propagated for up to 180 days or until reaching the lunar radius. This
numerical propagation is performed in the high-fidelity dynamical model presented earlier. To limit
data storage requirements, only the perilune states are recorded along each trajectory.

Table 1. Ranges of orbital elements used to define initial conditions.

Orbital Element Value/s Step
Epoch, T0 January 1, 2025 00:00.000 UTC -

Semi-major axis, a 1838 km -
Eccentricity, e [10−4, 0.1] 0.005

Inclination, i (in Moon-fixed frame) [0.001◦, 179.999◦] 5◦

Right ascension of the ascending node (RAAN),
Ω (in Moon-fixed frame)

[0◦, 360◦] 30◦

Argument of periapsis (AOP),
ω (in Moon-fixed frame)

[0◦, 360◦] 30◦

Step 2: Describing each trajectory via a feature vector

Consistent with traditional analyses of frozen orbits, each lunar trajectory is represented in this
paper by the evolution of perilune over time. Researchers have commonly searched for frozen orbits
as trajectories with a bounded variation in the eccentricity and argument of periapsis;5, 37, 38 some
researchers also use alternative orbital element sets.6, 39 In this paper, each perilune is partially
described using the variables p = e cos(ω) and q = e sin(ω) because they possess equivalent
value ranges but visualized in an e − ω polar plot for clarity. To demonstrate the value of this
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Figure 1. a) A 4-day segment of a lunar trajectory in the Moon-fixed frame generated
from a perilune with e = 0.025, i = 85◦, ω = 0◦, Ω = 210◦. b) Associated evolution
of perilune over 180 days in an e − ω polar plot; red and blue markers indicate the
initial and final perilunes.

low-dimensional representation, Figure 1a) displays a 4-day segment of a lunar trajectory in the
Moon-fixed frame that is generated from an initial perilune with the following orbital elements:
e = 0.025, i = 85◦, ω = 0◦, Ω = 210◦. The associated evolution of each perilune over 180 days
in the Moon-fixed frame is then plotted in black in Figure 1b) on an e − ω polar plot with the first
and last perilune located by red and blue markers, respectively. Using this figure as an example,
trajectories that are generated for at least 27.3 days tend to possess an evolution of perilune that
exhibits multiple revolutions in the pq-plane and e − ω polar plot, with each revolution occurring
over one lunar rotational period, i.e., 27.3 days.40 This geometric property is exploited in later steps
of the clustering framework.

The evolution of the perilunes along each trajectory is summarized using a feature vector that
can be input to a clustering algorithm. In general, the feature vector v̄i is a finite-dimensional
representation of the characteristics of interest for the i-th member of a dataset V̄ . In this paper, this
feature vector is constructed to capture the spatiotemporal evolution of these perilunes. First, a fixed
number of m perilunes are evenly sampled from the perilunes along each trajectory. Using a fixed
number of samples for all trajectories enables the definition of a feature vector with a fixed length
along the entire dataset and, therefore, the use of fast distance measures during clustering. In this
paper, m = 90 is selected empirically: for the trajectories in our dataset, 15 perilunes along each
lunar rotational period can sufficiently describe the perilune evolution shape. Then, s̄i,k is defined
as a unit vector directed from the k-th perilune to the k + 1-th perilune along the i-th trajectory in
the p− q plane. Mathematically, this unit vector is defined as

s̄i,k =
[pi,k+1 − pi,k, qi,k+1 − qi,k]

∥[pi,k+1 − pi,k, qi,k+1 − qi,k]∥
(5)

At the k-th perilune along the i-th trajectory generated over an integration time of tmax, a normalized
elapsed time is also defined as

t̃i,k =
ti,k
tmax

(6)

Using these two quantities, the feature vector for the i-th trajectory is defined as

v̄i = [s̄i,1, s̄i,2, ..., s̄i,m−1, t̃i,1, t̃i,2, ...t̃i,m] (7)

producing a (3m − 2)-dimensional description. This feature vector approximates the shape of the
discrete path formed by the perilunes along a trajectory in the pq-plane as well as its phasing.
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Step 3: Clustering the trajectories by geometry and phasing

To cluster the feature vectors generated in Step 2 using HDBSCAN, multiple governing parame-
ters must be selected. First, the Euclidean distance is used to assess the difference between feature
vectors v̄i and v̄j , labeled as de(v̄i, v̄j). Although the Euclidean distance only compares two time-
ordered sequences as opposed to two geometric paths, this distance metric is used because it enables
fast and computationally-tractable clustering for a large dataset. Then, a grid search is used along
with cluster validation techniques to select suitable values of nsample and nsize. This grid search
is performed by generating clustering results for various combinations of nsample = [2, 26] with a
step size of 4 and nsize = [30, 100] with a step size of 10. After clustering the generated set of tra-
jectories using HDBSCAN for all possible combinations of these parameters, nsample and nsize are
selected to balance producing a high DBCV index with identifying a reasonable number of clusters
and noise points. With these goals, nsample = 2, nsize = 50 and ϵ = 0.0 are selected to produce
DBCV = 0.1745, nnoise = 30% of the dataset, and nclust = 402 clusters; this set of clusters
is labeled Cg,p to reflect that the trajectories are grouped according to both geometry and phasing.
This proportion of trajectories designated as noise is relatively high; reducing this percentage is an
avenue of ongoing work.

Across the 402 clusters in Cg,p, trajectories with perilunes evolution that exhibit similar geometry
and phasing are grouped together. As an example, Figure 2 displays the perilune evolution of a
subset of the trajectories in four clusters in the e− ω polar plot; each path is uniquely colored. The
black curve highlights the perilune evolution of a single trajectory to facilitate comparison whereas
red and blue markers locate the first and last perilunes, respectively. Within each subfigure, the
evolution of the perilunes along each trajectory is geometrically similar with a similar phasing.
However, the location and secular drift in the e− ω polar plot varies across the cluster. In addition,
Figures 2a) and b) display two clusters capturing perilunes evolution with a similar geometry but
distinct phasing. Alternatively, Figures 2c) and d) display two clusters that, when compared, contain
geometrically distinct paths traced out by the perilunes in the e − ω polar plot. Accordingly, these
four clusters demonstrate the capability of the clustering framework to group the generated lunar
trajectories based on the geometry and phasing of their evolution of perilune.

Step 4: Extracting a cluster representative

To summarize each cluster, a cluster representative is extracted as the trajectory with the most
bounded evolution of perilune in the pq-plane. This trajectory is identified as the sequence of per-
ilunes that possesses the smallest cumulative distance, dseq, between revolutions in the pq-plane.

Figure 2. Perilune evolution of selected members of four clusters: sample member in
black with red and blue points indicating the initial and final perilunes, respectively.
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Figure 3. Calculating the distance between perilunes along neighboring revolutions
in the pq-plane to identify a representative member of a cluster.

Recall that each revolution traced out by the perilunes in the pq-plane occurs over one lunar rota-
tional period. Accordingly, a perilune path completes w = P/Pl revolutions in the pq-plane where
P is the integration time along the trajectory and Pl is the lunar rotational period. As a result, there
are approximately τ = ⌊m/w⌋ perilunes sampled along each revolution. Using this approximation,
the distance is calculated between the i-th sampled perilune that lies along the j-th revolution and
the i + τ -th sampled perilune in the pq-plane. This distance is displayed conceptually in Figure
3 as d([p, q]i, [p, q]i+τ ). Along the j-th revolution, the Euclidean distances between each sampled
perilune and the associated perilunes along the j+1-th revolution are averaged. These distances are
computed between all subsequent revolutions and summed to produce the cumulative distance dseq.
The member of a cluster with the smallest value of dseq is selected as the representative trajectory.

A representative trajectory is extracted from each cluster in Cg,p to support further analysis. Fig-
ure 4 displays an example of a cluster representative. In Figure 4a), the evolution of perilune is
displayed in the Moon-fixed frame with the red and blue markers indicating the first and last per-
ilunes, respectively. The evolution of perilune for this representative trajectory is also depicted in
Figure 4b) in the e − ω polar plot. In this particular case, the evolution of perilune associated with
this cluster representative exhibits only a small drift between subsequent revolutions both in the pq-
plane and in the Moon-fixed frame. For additional examples, the black highlighted paths in Figure
2 are the representatives of those four clusters.

Step 5: Merging clusters with geometrically similar representatives

Members of multiple clusters in Cg,p may exhibit a geometrically similar evolution of perilune but
are correctly separated due to distinct phasing of the initial and final perilunes. Accordingly, a sec-
ond clustering step is used to merge clusters with a similar geometry, independent of phasing. This
additional step is completed by using HDBSCAN to cluster only the representatives of each cluster
from Cg,p with a new geometric feature vector and distance measure; the resulting set of clusters of
representatives is labeled Cr. For each group of representatives in Cr, their associated clusters from
Cg,p are merged. By applying this second clustering step to the cluster representatives, the increased
computational expense associated with this new feature vector and distance measure does not be-
come burdensome. The result of this second step is a set of clusters, each containing trajectories
with a similar geometry regardless of the relative phasing of the initial and final perilunes.

A geometric feature vector is defined to describe the boundary of the path traced out by the
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Figure 4. Perilune path associated with a cluster representative in the a) Moon-fixed
frame and b) e− ω polar plot.

perilunes along each cluster representative in the pq-plane. This boundary is computed using shape-
related functions in MATLAB.41 First, the alphaShape function is applied to the ordered set of
perilunes along the cluster representative to construct a convex polygon shape in the pq coordinates.
Then, the pq coordinates of the perilunes that lie at the boundary of this polygon shape are extracted
using the boundaryFacets function. Linear interpolation is used to extract a fixed number of pq
coordinates that lie along each boundary to ensure that all cluster representatives are described by a
boundary with the same resolution; the number of points is selected as the largest number of bound-
ary perilunes calculated by the boundaryFacets function along the entire set of representatives.
Then, the geometric feature vector w̄i describing the i-th cluster representative is defined as

w̄i = [pB1 , qB1 , ..., pBk
, qBk

] (8)

using the interpolated set of k boundary points Bj for j = [1, k]. Examples of the boundaries
obtained from three sample perilune paths (black) in the pq-plane are displayed in Figure 5. In this
figure, the left and center cluster representatives with blue boundaries possess a similar geometry
and are, therefore, grouped together after clustering. The rightmost cluster representative with the
red boundary, however, possesses a distinct geometry from the other two representatives.

To cluster the geometric feature vectors describing the representatives of Cg,p via HDBSCAN,

Figure 5. Computed boundaries of the paths traced out by perilunes along three
trajectories in the e− ω plane.
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multiple governing parameters must be selected. First, the values of the hyperparameters governing
HDBSCAN are modified to nsample = 1, nsize = 2, and ϵ = 0.08 based on visual inspection of the
clusters to accommodate the smaller dataset. Next, the modified Hausdorff distance dmhd is used as
a distance measure during this second clustering step to capture geometric differences in each path,
independent of phasing. This distance measure is mathematically defined as:

dmhd(v̄i, v̄j) = dmhd,f (v̄i, v̄j) + dmhd,b(v̄i, v̄j) (9)

where
dmhd,f (v̄i, v̄j) = max

i=1,..m
( min
j=1,..m

∥v̄i − v̄j∥2) (10)

dmhd,b(v̄i, v̄j) = max
j=1,..m

( min
i=1,..m

∥v̄i − v̄j∥2) (11)

Due to the complexity of computing this distance measure, a higher computational time is required
when compared to the Euclidean distance. However, the size of the reduced dataset of cluster
representatives renders this computational time reasonable.

HDBSCAN is used to cluster the geometric feature vectors describing only the representatives of
the clusters in Cg,p. This second clustering step produces 41 clusters of representatives with similar
geometry and 55 noise points. Representatives that exist in the same cluster in Cr indicate that their
associated clusters from Cg,p should be merged. The cluster representatives labeled as noise points
in Cr, however, indicate that 55 of the original clusters from Cg,p should not be merged. Following
the cluster merging process, there are 96 clusters of trajectories, labeled as the global clustering
result Cg throughout the remainder of the paper to reflect that the trajectories are only grouped by
geometry. Polar plots of the representative trajectories of these 96 clusters appear in the Appendix.

Visual inspection reveals that the merging process successfully combines trajectories with a sim-
ilar geometry, regardless of phasing. An example of a merged cluster in Cg is displayed in Figure
6a), with each of 12 representatives from the original clusters in Cg,p uniquely colored. Each cluster
representative from Cg,p exhibits a similar geometry in the e − ω plane. Figure 6b), also includes
selected members of all 12 clusters from Cg,p, displayed with the same color as the representative
but a thin, transparent curve. The gray circle represents the value of eccentricity at impact with the
Moon’s surface when a = 1838 km. The region of the e−ω plane encompassed by members of this
larger merged cluster indicates the region of existence of lunar trajectories with a similar geometric
evolution in perilune but varying phasing, drift, and average eccentricities.

In addition to exhibiting a similar geometry in the e − ω polar plot, the 12 representatives that
are plotted in Figure 6a) also exhibit a similar evolution of the remaining orbital elements. Figure
7 displays the range of values of the altitude, argument of perilune, eccentricity, inclination, and
RAAN of perilunes along each cluster representative; each angle is calculated in the Moon-fixed
frame. The orbital elements of each representative are colored using the same color scheme as
Figure 6. The 12 representatives all begin with perilunes that exist at an inclination of i = 75◦

in the Moon-fixed frame and exhibit only a small variation in this angle over time. Across all 12
representatives, the perilune altitude also varies by approximately 30 km over 180 days.

RESULTS

Using the presented technical approach, this section presents a broader analysis of the clustering-
based summary of lunar trajectories generated in a high-fidelity model. First, several candidates for
lunar frozen or quasi-frozen orbits are identified across the entire clustering result. Note, the phrase
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Figure 6. a) 12 representatives of clusters in Cg,p that are grouped based on geometry
in the second clustering step. b) Selected members of the merged cluster in Cg .

Figure 7. Initial orbital elements (diamond) with angles in the Moon-fixed frame
associated with the 12 cluster representatives in Figure 6a) and their ranges of values
during propagation.

‘candidate for a frozen or quasi-frozen orbit’ is used in this paper because 1) trajectories are only
generated for 180 days and 2) the analysis is initially performed on the evolution of the eccentricity
and argument of perilune; subsequent analysis requires examining the evolution of all orbital ele-
ments over longer time intervals. In addition, the clusters of trajectories with a geometrically similar
evolution of perilune are used to identify local trends in the orbital elements that lead to changes in
the orbit lifetime.

Identifying candidates for frozen orbits

By analyzing the final clustering result Cg, trajectories with a tightly bounded evolution of per-
ilune in the pq-plane and a lifetime of 6 months are analyzed as candidates for frozen orbits. As
an example, consider the merged cluster of trajectories with a perilune evolution that is displayed
in Figure 6. Figure 8 displays the perilunes along these 12 representative trajectories in Cartesian
coordinates in the Moon-fixed frame using a different color scheme; each subfigure displays an
alternative three-dimensional view for clarity. This figure reveals that these 12 representative tra-
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Figure 8. Uniquely-colored paths traced out by perilunes of 12 grouped cluster rep-
resentatives in two different orientations in the Moon-fixed frame.

jectories exist in two groups. The perilune paths that are colored in shades of blue revolve around
the +Z-axis of the Moon-fixed frame, aligned with the third lunar principal axis, twice every lu-
nar rotational period. In the polar plot, the associated values of the argument of perilune in the
Moon-fixed frame lie predominantly in the range [0◦, 180◦]. Similarly, the perilune paths that are
colored in shades of red perform two revolutions around the −Z-axis of the Moon-fixed frame and
possess arguments of perilune that are predominantly in the range [180◦, 360◦]. The perilunes along
all 12 representative trajectories also predominantly pass over the +X hemisphere of the Moon,
corresponding to the first lunar principal axis and mean direction to the Earth.

The evolution of the perilune along grouped cluster representatives supports the visual identifi-
cation of one or more candidates for low lunar frozen or quasi-frozen orbits. To understand this
process, consider an analogy to a stable periodic orbit with nearby quasi-periodic orbits in the well-
known planar circular restricted three-body problem. In this dynamical model, Poincaré maps are
often used to examine the structure of the solution space. On a suitably constructed Poincaré map,
stable periodic orbits appear as a fixed point that is surrounded by concentric closed curves cor-
responding to quasi-periodic orbits. When generating these Poincaré maps, a stable periodic orbit
is rarely computed exactly. However, the presence of concentric curves and, therefore, a family
of quasi-periodic orbits indicates the existence of the associated stable periodic orbit and supports
locating its precise trajectory with the aid of differential corrections or other numerical methods.

Although the ephemeris model used in this paper is not autonomous and does not admit periodic
orbits, the presented analogy is still useful. In Figures 6 and 8, the representative trajectories exhibit
various levels of drift in the perilunes during each subsequent lunar rotational period. In this figure,
the lower the drift, the darker the shade of blue or red of the path traced out by the perilunes of the
associated trajectory. In this case, the perilune paths that are colored in the darkest shades of blue
and red correspond to two trajectories with a perilune evolution that exhibits a low drift in the ec-
centricity over 180 days: one trajectory with a perilune predominantly over the northern hemisphere
and the other over the southern hemisphere, supplying two suitable candidates for lunar frozen or
quasi-frozen orbits. Future work will include numerically generating the trajectories for longer time
intervals and/or using differential corrections to further reduce the drift in the eccentricity over time.
Furthermore, future work will also include automatically assessing whether a cluster may contain
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multiple trajectories that are viable candidates for lunar frozen or quasi-frozen orbits and examining
their evolution over various initial semi-major axes.

The manual identification of candidates for low lunar frozen and quasi-frozen orbits is repeated
across all clusters in Cg. For initial conditions that are constrained to possess a semi-major axis
of 1838 km at January 1, 2025 00:00.000 UTC with the discretization scheme outlined in Step 1,
a total of 15 candidates have been identified. These candidates possess various geometries in the
evolution of perilune in both the pq-plane and the Moon-fixed frame. The initial conditions used
to generate these 15 trajectories are displayed in the table contained within Figure 9, together with
the variation in the perilune altitude during the 6-month propagation time. Of course, these initial
conditions are not necessarily unique, but do supply insight into a combination of orbital elements
that lead to each type of motion. Figure 10a)-d) also displays the paths traced out by the perilunes
along these candidates in the e−ω polar plot. Each path is plotted with a unique color that matches
the color in the first column of the table in Figure 9. For clarity, these 15 paths are separated across
multiple plots based on their inclination.

Figure 9. Initial orbital elements used to generate the 15 candidates for low lunar
frozen orbits at a = 1838 km on January 1, 2025 00:00.000 UTC in a 100x100 gravity
field. Colors in the first column match the color scheme in Figure 10

Figure 10. Evolution of perilune in the e− ω polar plot for the 15 candidates for low
lunar frozen orbits at a = 1838 km at January 1, 2025 00:00.000 UTC in a 100x100
gravity field, grouped by initial inclination: a) from i = 0.001◦ to i = 50◦, b) from
i = 70◦ to i = 85◦, c) from i = 95◦ to i = 130◦, and d) from i = 135◦ to i = 179.999◦.
For each perilune, the red and blue dots indicate the initial and final states.
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Some of the candidates for low lunar frozen orbits in Figure 10a)-d) have been identified by previ-
ous authors, offering verification of the results presented in this paper. For example, the candidates
that exist at 75◦ ≤ i < 105◦ match the frozen orbits presented in 2007 by Russell and Lara.11 Lara
also studied a frozen orbit at i = 88◦ with a similar perilune evolution to the candidate frozen orbit
at i = 85◦.42 Furthermore, Park and Junkins use the Lagrange planetary equations in a low-fidelity
gravity model to derive combinations of the average eccentricity and inclination of frozen orbits at
a = 1838 km when ω = 90◦ or ω = 270◦.39 Some of the frozen orbits identified in this paper
possess average values of i and ω that are similar to their findings; differences in eccentricity may
be due to the use of single mean values and a lower-fidelity model. Lara, Ferrer, and De Saedeleer
also identify low lunar frozen orbits with eccentricities between ∼ 0 to 0.035 and initial arguments
of perilune that place the initial perilune close to an axis of inertia, consistent with the properties of
several candidates in Figure 10.7 This result is also consistent with the conditions derived by Folta
and Quinn using Lagrange’s planetary equation, such that for 39.23◦ < i < 140.77◦, ω = 90◦ or
ω = 270◦ corresponds to a value of eccentricity that drives ω̇ and ė to zero.5

To further analyze the extracted candidates for lunar frozen orbits, their evolution of perilune
is examined in the Moon-fixed frame. Specifically, Figure 11 displays a selection of the most
bounded members of several clusters. Each subfigure displays a group of representatives that are
clustered together in Cr during Step 5 of the presented framework. Trajectories with perilunes that
predominantly exist in the northern hemisphere of the Moon are plotted in shades of blue whereas
those with perilunes mostly in the southern hemisphere are plotted in shades of red. In the right
inset of each subfigure, the path traced out by the most bounded trajectory in the e − ω polar plot
appears along with the initial inclination labeled for reference.

The evolution of perilune along the candidates for frozen orbits is compared in the Moon-fixed
frame. Figure 12 displays the perilune location along each trajectory in the Moon-fixed frame using
unique colors; these colors do not match previous figures. Figure 12a) plots the perilune evolution
for trajectories with a low inclination, as listed in the legend. Across this plot, the perilunes evolve
with small variations in the latitude. Notably, trajectories with initial inclinations of i = 1× 10−3◦

and i = 179.999◦ produce perilunes that are tightly bounded to a region that is slightly offset from
the −X- and +X-axis, respectively. Figure 12b) displays the perilune evolution of trajectories with
a higher inclination. In this case, the perilunes evolve over a larger range of latitudes, with some
completing two revolutions in the Moon-fixed frame every lunar rotational period.

Figures 11 and 12 reveal near anti-symmetric properties in the candidates for frozen orbits as a
function of inclination around i = 90◦. For instance, the trajectories with the most bounded evo-
lution of perilune at i = 20◦ and i = 160◦ possess a similar geometry with perilunes occurring
at near constant latitudes over the northern hemisphere of the Moon, except for one region where
a ripple occurs. This ripple nearly anti-symmetrically occurs over the +X and −X hemispheres
of the Moon, respectively. A similar observation holds for the trajectories with i = 0.001◦ and
i = 179.99◦. The trajectories at high inclinations exhibit a slightly different geometry of the per-
ilune evolution in the Moon-fixed frame: each path performs two revolutions near the +/−Z-axis.
However, for i = 85◦, for example, this path spans the +X-hemisphere in the Moon-fixed frame
whereas for i = 95◦, the perilunes exist predominantly over the −X-hemisphere. Aggregating
these observations, the candidate lunar frozen orbits that are prograde and nonplanar produce per-
ilunes that evolve most significantly over the +X-hemisphere whereas orbits that are retrograde
and nonplanar possess perilunes that evolve most significantly in the −X hemisphere. Although the
X-axis is aligned with the mean direction to the Earth, a more extensive analysis of the dynamical
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Figure 11. Perilune evolution in the Moon-fixed frame for selected representatives
that are grouped together in Cr during Step 5 of the clustering-based framework.
Perilunes that exist predominantly above the northern (or southern) hemisphere are
colored blue (or red). Different orientations of the axes are used to best display the
perilune geometries.

Figure 12. Evolution of perilune in the Moon-fixed frame for candidates for low
lunar frozen orbits: a) low inclination trajectories and b) high inclination trajectories.
These paths are colored in blue if the perilune lies predominantly over the northern
hemisphere and red for the southern hemisphere.
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contribution governing the characteristics of the perilune evolution in the Moon-fixed frame is an
avenue of ongoing work.

Evolution of orbit lifetime in each cluster

Clusters of trajectories also support the identification of trends in the orbital elements that lead
to changes in the orbit lifetime. Consider the 26 clusters that do not contain bounded motion and
compare the evolution of trajectories across clusters at the same inclination when the eccentricity
increases. The perilunes possess varying levels of drift and, as a result, orbit lifetimes. This drift
tends to increase as the maximum eccentricity along the path increases. As an example, consider the
time evolution of trajectories with an initial inclination of i = 5◦ in Figure 13. For each trajectory,
displayed on a single row, the following information is plotted from left to right: the evolution of
perilune in the pq-plane; the variation in altitude over time, normalized by 180 days; the variation
in inclination over time, normalized by 180 days; and the variation in eccentricity as a function of
RAAN. At this inclination, the initial value of e = 0.005 produces a candidate for a frozen orbit,
as displayed in the top row. However, as the initial eccentricity is increased to the values annotated
in red in the right column of this figure, an increased drift occurs between the revolutions in the pq-
plane over each lunar rotational period; simultaneously, the orbit lifetime decreases. At sufficiently
high values of the eccentricity, the trajectory impacts the lunar surface in less than 1 lunar rotational
period before completing a full revolution in the pq-plane.

Within Cg, some clusters of trajectories with a lifetime of 180 days do not lead to frozen orbit
candidates. Consider the representative trajectory of a cluster with i = 90◦, plotted in Figure 14 a)
in the e − ω polar plot along with the variation in its altitude, inclination, eccentricity, and RAAN.

Figure 13. Comparing the evolution of the orbital elements for three orbits in a cluster
at i = 5◦: (top) frozen orbit, (center) orbit with 1-6 month lifetime and (bottom) orbit
with < 1 month lifespan.
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The perilune along this trajectory traces out a curve on average in the e−ω polar plot. This perilune
evolution is similar to the evolution of paths that exist in the same cluster as a frozen orbit, e.g., in
Figures 2 and 6. However, the perilunes along the trajectory in Figure 14a) and its associated cluster
members intersect the lunar surface before completing a full revolution. Furthermore, the center of
these curves traced out by the drifting perilune paths does not exist at an eccentricity that lies below
the critical value corresponding to lunar impact at a = 1838 km. However, frozen orbits with a
geometrically similar perilune evolution to this trajectory have been observed by Folta and Quinn
to exist at i = 90◦ with a higher-semi-major axis of a = 1861 km.5

The remaining 26 clusters within Cg that do not produce candidates for lunar frozen orbits include
clusters of trajectories with a lifetime of less than 180 days. As an example, the evolution of perilune
for members of two clusters is plotted in the pq-plane in Figure 14b) with i = 120◦ and c) with i =
[160◦, 180◦]. In Figure 14b), the perilunes of trajectories with a 1-6 month lifetime secularly drift
towards the right in the pq-plane until impacting the lunar surface. Physically, this drift corresponds
to the argument of perilune approaching 0◦ and, therefore, the perilune approaching a region around
the mean direction to the Earth within the X̂Ŷ plane of the Moon-fixed frame. A similar secular
drift in the perilune location within the pq-plane occurs in Figure 14c) for a group of trajectories
with an orbit lifetime of less than 1 month.

Figure 14. Evolution of perilune in the e−ω polar plot for two clusters of trajectories:
a)with > 6 month lifetime but not bounded; b) with a 1-6 month orbit lifetime and c)
with a <1-month orbit lifetime.

CONCLUSIONS

This paper uses clustering to summarize a wide variety of lunar trajectories and identify candi-
dates for low-lunar frozen and quasi-frozen orbits. First, a large set of trajectories are numerically
propagated in a high-fidelity lunar gravity model with the point mass gravity of the Earth and Sun.
Then, the evolution of the eccentricity and argument of perilune at a subset of perilunes along these
trajectories is described using a finite-dimensional feature vector that captures its shape. These fea-
ture vectors are input to a hierarchical and density-based clustering algorithm, producing groups of
trajectories with a similar geometry and phasing the evolution of perilune. From each cluster, the
most tightly bounded evolution of perilune produces a trajectory that serves as the cluster represen-
tative. These representatives are then described by their boundary to produce a geometric feature
vector. The geometric feature vectors of only the cluster representatives are grouped again using a
second clustering step. This grouping is used to merge clusters of trajectories with representatives
that possess a similar geometry but distinct phasing. The result is a set of clusters of trajectories
with a similar geometric evolution of perilune.
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This paper applies the presented clustering-based framework to low lunar orbits generated from
a wide variety of initial conditions with a semi-major axis of 1838 km at an initial epoch of January
1, 2025, 00:00.000 UTC. The resulting clusters of trajectories support the manual identification of
15 candidates for low lunar frozen orbits, each with a distinct geometry in their perilune evolution.
Furthermore, the clusters support the identification of trends in the initial orbital elements that lead
to changes in the orbit lifetime across a group of trajectories with a geometrically similar perilune
evolution. Ongoing work focuses on extending this analysis to a larger set of trajectories across
various semi-major axes, further examining the candidates for frozen orbits, and comparing the
results across dynamical models of distinct fidelities.
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APPENDIX

Figure 15. Perilune evolution in the e − ω polar plot for representative members of
clusters in Cg: black representatives are isolated clusters that were not merged in Step
5 whereas colored representatives correspond to clusters that were merged.
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