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RAPID TRAJECTORY DESIGN IN MULTI-BODY SYSTEMS USING
SAMPLING-BASED KINODYNAMIC PLANNING

Kristen L. Bruchko*, and Natasha Bosanac†

In this paper, sampling-based kinodynamic planning is used to construct a roadmap
that discretely summarizes a segment of the solution space in the Earth-Moon cir-
cular restricted three-body problem. The roadmap is a directed, weighted graph
composed of nodes and edges that are constructed by randomly sampling config-
urations and trajectory segments that adhere to specified path constraints. Using
graph search algorithms, the roadmap is searched to generate initial guesses that
are corrected using collocation. This approach is demonstrated by constructing
constrained transfers between planar and spatial periodic orbits near the Moon.

INTRODUCTION

Due to the chaotic nature of a multi-body gravitational environment, designing a trajectory that
delivers a spacecraft to a specific target location subject to hardware, path, and operational con-
straints can be a challenging task. Current state-of-the-art approaches often rely on using dynamical
systems theory for preliminary analysis of motions in a low-fidelity model such as the circular
restricted three-body problem (CR3BP). In this model, a designer may select segments along fun-
damental solutions such as periodic orbits and their associated invariant manifolds to assemble a
discontinuous initial guess with desired characteristics that is then corrected to produce a continu-
ous trajectory. However, designing a preliminary spacecraft trajectory relies on a human-in-the-loop
with expert knowledge of the environment. Furthermore, exploring the design space of potential tra-
jectories that adhere to constraints can become intractable, especially if spacecraft requirements or
parameters change frequently during the initial stages of mission development.

Similar challenges in rapidly constructing constrained trajectories and exploring the solution
space exist in many other fields such as robotics, artificial intelligence, and control theory.1 In
these fields, path planning focuses on efficiently constructing collision-free paths from a source to
a destination through the free space of the environment.2 Foundational path planning techniques
were originally used to solve problems for simple robots in static environments. However, recent
path planning techniques are now capable of exploring complex environments where kinematic and
dynamic constraints must also be satisfied; these are known as kinodynamic planning problems.3

Sampling-based path planning, such as probabilistic roadmap generation, relies on sampling to
construct a graph, called the roadmap, that sufficiently summarizes the environment. The roadmap
contains two key components: nodes, which are valid configurations an object may possess within
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the environment, and edges, which are directed paths between nodes that can be weighted to reflect
the difficulty of using the local path.3 Once the roadmap is completed, the graph may be repeat-
edly searched to identify various paths connecting a specified pair of start and goal nodes that have
been projected onto the roadmap. Sampling-based planners, such as probabilistic roadmap genera-
tion and rapidly-exploring random trees, have been demonstrated to rapidly solve high-dimensional
problems in complex spaces with probabilistic completeness, i.e., the probability of finding a solu-
tion if one exists approaches unity as the number of nodes increases.3

Path planning methods have successfully been previously demonstrated in trajectory design prob-
lems by constructing graphs using known dynamical structures to represent a precomputed database
of possible trajectories.4, 5 Dijkstra’s search algorithm has then been demonstrated to search the
graph for initial guesses for trajectories that adhere to required spacecraft parameters by Das-Stuart,
Howell, and Folta as well as Trumbauer and Villac.4, 5 Starek et. al. have demonstrated that
sampling-based kinodynamic planning can be used to automate guidance for real-time, propellant-
optimized autonomous spacecraft.6 Our ongoing work has built upon the foundation supplied by
these contributions by using sampling-based kinodynamic planning to construct initial guesses for
natural and maneuver-enabled transfers between Lyapunov and halo orbits using information from
their stable and unstable manifolds or randomized motion.7–9 This paper also builds upon our prior
work by 1) constructing a generalized roadmap that sufficiently covers and connects the solution
space near the Moon, 2) generating multiple paths that satisfy path constraints, and 3) applying this
approach to explore spatial transfer design scenarios.

In this paper, sampling-based kinodynamic planning is used to generate transfers between libra-
tion point orbits in the Earth-Moon CR3BP. First, a generalized graph is constructed by randomly
sampling nodes, which represent spacecraft states, and edges, which represent either impulsive ma-
neuvers or natural trajectory arcs between nodes. The concept of a 1-neighborhood is used to guide
the construction of these nodes and edges to improve the coverage and connectivity of the roadmap,
both within and between neighborhoods. In the literature, neighborhoods that contain bundles of
nodes and edges have been demonstrated to improve roadmap connectivity for motion planning
queries by incorporating small locally intra-connected graphs that are later inter-connected,1, 10

similar to how local streets (edges) connect houses (nodes) within a neighborhood and highways
connect neighborhoods. The goal of the resulting roadmap is to serve as a strongly connected graph
that is a summarized, discrete representation of the continuous solution space.

The roadmap is augmented with application-specific information, and searched to generate sets
of nodes and edges that supply initial guesses for trajectories. States along an initial and final orbit
are projected onto the graph as new nodes and connected via edges. Additionally, if either orbit
possesses stable or unstable manifolds, states and arcs along these manifold trajectories are added
to the roadmap as nodes and natural edges, respectively, to improve the natural flow of the graph.
Then, using the states along the initial and final orbit as the set of start and goal nodes for the search
query, the roadmap is searched using Dijkstra’s search algorithm to identify the optimal path with
respect to a chosen heuristic. Additional unique paths are rapidly generated using Yen’s algorithm, a
k-best search algorithm that repeatedly searches various subgraphs of the roadmap.11 For each path,
the largest edge weights guide maneuver placement. These initial guesses and maneuver locations
are then input to a collocation scheme to recover a set of continuous, maneuver-enabled trajectories
with distinct maneuver costs and geometries.
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BACKGROUND

Dynamical Model

In this paper, the circular restricted three body problem (CR3BP) is used to sufficiently capture the
complexity of the dynamical environment in cislunar space while lowering the computational time
for roadmap construction. This low-fidelity, autonomous dynamical model approximates the motion
of a spacecraft under the gravitational influence of two primary bodies, i.e., the Earth and the Moon.
The spacecraft is assumed to possess a comparatively negligible mass and the two larger primary
bodies, P1 and P2, are assumed to have constant mass. These two primaries are also assumed
to travel on circular orbits about their barycenter. A rotating reference frame is defined with the
origin at the system’s barycenter and axes x̂, ŷ, ẑ: x̂ is directed from P1 to P2, ẑ is aligned with the
system’s orbital angular momentum vector, and ŷ completes the right-handed orthogonal triad.12

Then, mass, length, and time quantities are nondimensionalized by the characteristic quantities m∗,
l∗, and t∗. Specifically, m∗ is equal to the total mass of the system, t∗ is defined such that the
nondimensional mean motion of the primaries is unity, and l∗ equals the assumed constant distance
between the primaries. In the rotating frame, the nondimensional spacecraft state is then defined as
x = [x, y, z, ẋ, ẏ, ż]T . Using these assumptions and definitions, the equations of motion governing
the spacecraft are written in the rotating frame as13

ẍ = 2ẏ +
∂U

∂x
, ÿ = −2ẋ+

∂U

∂y
, z̈ =

∂U

∂z
(1)

where the mass ratio of the system, µ, represents the ratio of the mass of the smaller primary to the
total mass of the system; U = 1

2(x
2 + y2) + (1− µ)/r1 + µ/r2; and the distances of the spacecraft

from P1 and P2 are r1 =
√
(x+ µ)2 + y2 + z2 and r2 =

√
(x− 1 + µ)2 + y2 + z2, respectively.

Additionally, this dynamical model admits an integral of motion in the rotating frame, commonly
referred to as the Jacobi constant and equal to13

CJ = 2U − ẋ2 − ẏ2 − ż2 (2)

This energy-like quantity supplies insight into the accessible regions of the system.

Fundamental Solutions

In the CR3BP, a variety of fundamental solutions exist, including five equilibrium points, contin-
uous families of periodic and quasi-periodic orbits, and their associated hyperbolic invariant man-
ifolds.12 These natural transport mechanisms are often used as the basis for constructing initial
guesses for complex trajectories. The roadmap generated in this paper to support trajectory design
is also augmented by information from these fundamental solutions, where applicable.

Periodic orbits are paths that repeat in the rotating frame and exist in continuous families through-
out the system. Periodic orbits generated in the CR3BP are often used in trajectory design because,
in many cases, they indicate the existence of similar bounded motions in the rotating frame in higher-
fidelity models. Additionally, a stability analysis of a periodic orbit reveals the behavior of nearby
motion. Specifically, the monodromy matrix, i.e., the state transition matrix propagated for exactly
one orbital period, is decomposed into reciprocal pairs of eigenvalues. A pair of real, reciprocal
eigenvalues indicates the existence of stable and unstable hyperbolic invariant manifolds.12

A state along a stable or unstable manifold naturally approaches or departs the periodic orbit,
respectively, as time tends to infinity.12 These stable and unstable invariant manifolds govern natural
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transport throughout the system and are, therefore, often used to design free or low-cost transfers
between their associated periodic orbits. Stable and unstable manifolds are generated numerically.
First, a periodic orbit is discretized into a sequence of states and a small perturbation is applied in the
direction of the stable or unstable eigenspace. Each perturbed state is then numerically integrated
backward or forward in time, respectively, to produce a trajectory along the manifold. This process
is repeated for each discretized state along the periodic orbit and perturbations in each direction
within the eigenspace, producing a numerical approximation of the stable or unstable manifold.

Numerically Correcting Trajectories

A two-point boundary value problem is solved to recover a continuous trajectory using a free
variable and constraint vector formulation of collocation. Collocation is a numerical corrections
technique for implicitly integrating differential equations of a dynamical system to recover a con-
tinuous trajectory.14 The collocation approach with an additional mesh refinement process presented
in this paper follows the procedure presented by Grebow and Pavlak as well as Pritchett.14, 15

An initial guess, comprised of s discontinuous trajectory segments, is discretized into a mesh by
dividing each segment into p arcs. This mesh includes s + 1 boundary nodes between consecutive
arcs and collocation nodes placed along each arc using an nth order polynomial and Legendre-
Gauss-Lobatto (LGL) node spacing. An LGL node spacing strategy is employed in this paper due
to its higher order of accuracy and simplified design problem due to placing collocation nodes at
the boundary nodes of each segment. A 7th order polynomial has previously been demonstrated by
Pritchett as well as Grebow and Pavlak to enable high accuracy trajectory generation in multi-body
systems.14, 15 With a 7th order LGL node spacing, 7 collocation nodes are placed along each arc at
the roots of the derivative of the (n− 1)th polynomial. The time τ along the j-th arc along the i-th
segment is also normalized to [−1, 1] using the following transformation:

τ =
2

∆tji
(t− tj,ni )− 1 (3)

where the integration time along the arc is ∆tji = tj,1i+1 − tj,ni .

Along each arc, the collocation nodes are categorized into free nodes, placed at the odd-numbered
nodes, and defect nodes, placed at the even-numbered nodes. The state components at the free
nodes, x, are used to construct the polynomial approximation of states the motion along an arc.
This polynomial representation is then evaluated at the defect nodes, p, and compared to the system
dynamics.

To construct a free variable vector, all unique states at the free nodes as well as the integration
time along each arc are designated as the design variables. The free variable vector along segment
i = [1, s] discretized into p arcs is defined as

Xi =
[
x1,1T

i . . . x1,n−2T

i ∆t1i . . . xp,1T

i . . . xp,nT

i ∆tpi

]T
(4)

All design variables along each segment are then reshaped into a single column vector, defined as

X =
[
X1 X2 . . . Xs

]T (5)

which is the total free variable vector for the collocation problem.
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A constraint vector is then composed of continuity constraints between trajectory segments and
defect constraints at each defect node. The continuity constraint between the end of the ith segment
and the start of the (i+ 1)th segment is defined as

Fci =

{
xpi,7
i − x1,1

i+1, if no maneuver
rpi,7i − r1,1i+1, if maneuver

(6)

where r = [x, y, z]T . Then, the constraint vector that enforces continuity between consecutive
segments along the entire trajectory is defined as

Fc =
[
F T
c1 F T

c2 . . . F T
cs−1

]
(7)

The defect constraints for the j-th arc along the i-th segment are defined as

F j
di

=
[
(ṗj,2T

i − ẋj,2T

i )w2, (ṗj,4T

i − ẋj,4T

i )w4, (ṗj,6T

i − ẋj,6T

i )w6

]
(8)

where wi are the quadrature LGL node weights and ṗ is the derivative of the polynomial state
with respect to normalized time. Then, the defect constraints for the i-th segment are written as
Fdi = [F 1

di
,F 2

di
, . . . ,F p

di
]T . Finally, the complete constraint vector is defined as

F (X) =
[
Fc Fd1 Fd2 . . . Fds

]T (9)

The discretized mesh is iteratively updated by applying Newton’s method to adjust the location of
the free nodes along each arc until the resulting polynomials satisfy the system dynamics at every
defect node and the continuity constraints are met within a specified tolerance of 10−12.

Last, a control with explicit propagation (CEP) mesh refinement method is used in this paper to
update the number of arcs in the mesh to further increase the accuracy of the polynomials along the
final solution trajectory, following the approach presented by Pritchett.14 After the collocation prob-
lem is solved, given the pre-specified mesh, the dynamics at each defect node may be sufficiently
satisfied by the polynomials. However, the trajectory may not be accurately approximated at other
locations. First, subsequent arcs are tested to be combined into one arc. The initial boundary node
on the ith arc is propagated for time t = ∆tji + ∆tj+1

i . If the difference between the state at the
end of this propagation time and the final boundary node on the subsequent arc is below a specified
tolerance, set to 10−12, the arcs are combined into one arc and the location of the collocation nodes
are recomputed. The collocation problem is iteratively solved until the number of arcs does not
change. Next, arcs are added by splitting arcs that do not meet the accuracy of the solution within
the tolerance specified. The initial boundary node of each arc is propagated for the integration time
associated with that arc. If the difference between the state at the end of this propagation time and
the final boundary node on the arc is above a specified tolerance, set to 10−12, the arc is split into
two arcs of each integration time. Again, the collocation problem is then iteratively solved until
the number of arcs does not change. Using the CEP mesh refinement method results in a higher
accuracy along the trajectory that is not dependent on an initial user-defined mesh.14

Sampling-Based Kinodynamic Planning

In the fields of robotics, artificial intelligence, and control theory, path planning techniques have
been used to construct a collision-free path between two configurations.1 Path planning, also re-
ferred to as motion planning, algorithms that were originally designed for simple linear environ-
ments have since evolved to handle more challenging problems, such as planning paths with un-
certainty, adhering to physical laws, and geometric constraints. Kinodynamic planning attempts to
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solve a motion planning problem subject to kinematic and dynamic constraints, e.g., finding a path
from a given start position and velocity to a goal position and velocity while avoiding obstacles and
respecting constraints on velocity and acceleration.16 Common path planning algorithms typically
fall into three categories: potential functions, cell decompositions, or sampling-based algorithms.3

Sampling-based planning algorithms aim to solve the planning problem by generating samples
which are collision-free, valid configurations in the environment, and by connecting the samples
with collision-free, valid paths.3 Two popular algorithms are probabilistic roadmap (PRM) gener-
ation and rapidly-exploring random tree (RRT). The PRM planner focuses on generating a graph,
called the roadmap, that sufficiently summarizes the environment and can be used for multiple
search queries. A RRT explores the environment randomly by generating a space-filling tree from a
given start configuration until the tree reaches a desired goal configuration. As such, it is most often
used for single query problems. These planners are popular for solving higher-dimensional prob-
lems while being probabilistically complete, meaning the planner will eventually return a solution
if one exists and the number of samples drawn increases. While the main focus of this paper will
rely heavily on traditional PRM methods, some steps, such as the construction of neighborhoods
that will be defined in the next section, will be inspired by tree-based methods such as RRT.

Probabilistic Roadmap Generation
Path-planning with probabilistic roadmap generation is performed in two key phases: the learn-

ing phase and the query phase. During the learning phase, a directed, weighted graph, called the
roadmap, containing nodes and edges is constructed. Nodes represent valid configurations in the
environment and edges represent valid paths, or motion, between neighboring nodes. Valid config-
urations and paths must adhere to all system dynamics without intersecting any known obstacles.
Nodes added to the graph are determined by the selected sampling scheme, such as uniform, ran-
dom, or informed sampling, or a combination of techniques.3 Nodes are added to the graph until
either a desired number of valid nodes are contained within the graph or until a graph metric, such
as environment coverage or density of nodes, is satisfied.1, 17

After the desired number of nodes are added to the graph, edges are constructed between neigh-
boring nodes. Neighbors may be identified using methods such as radius-based measures or the
k-nearest neighbors.3 These edges can either be directed, meaning the path can only be traversed in
one direction, or undirected. Edges can also be weighted with a non negative edge weight to reflect
either a desired characteristic of the environment or the likelihood of a specific edge being traversed.

Graph-based metrics may also be used to dictate the number of edges in the graph, such as
constructing edges until the graph is either weakly or strongly connected. A weakly connected
graph contains all nodes in the same component and there exists a path to every node starting from
any other node, assuming each edge can be traversed in any direction. A strongly connected graph
contains all nodes in the same connected component, but there exists a path between all nodes while
still considering the direction of edges. Once the desired number of nodes and edges are added to
the graph, or other graph-based metrics are satisfied, the graph is considered complete.

Next, the query phase occurs where the roadmap is searched for paths between user-specified
start and goal configurations. To search the roadmap, the graph is queried using a graph search
method, such as a depth-first or breadth-first search algorithm, for various paths between given start
node(s) and goal node(s). A conceptual example of the PRM algorithm appears in Figure 1, where
nodes are indicated by circles, obstacles are indicated by squares, and directed, weighted edges are
indicated with a dashed arrow and the weight indicated with a non-negative number. During the
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query, a search algorithm, Dijkstra’s algorithm in this example, is used to compute the lowest cost
path from the start node, indicated by the blue circle, to the goal node, indicated by the red circle. A
completed roadmap may be queried as many times as needed to produce a variety of unique paths
between the same start and goal node(s).

Figure 1. Example of probabilistic roadmap generation: a) sample valid nodes,
b) connect nodes to create directed, weighted edges, and c) search the completed
roadmap for an optimal solution path with respect to the sum of edge weights. Image
reproduced from Bruchko and Bosanac 2022.8

Graph Search Methods
Dijkstra’s algorithm is a graph search method to identify the shortest, or lowest cost path if a

heuristic is selected, between two nodes, or two sets of nodes, in a weighted, directed graph. The
algorithm searches the graph starting from the start node(s) by creating two lists: the priority list
and the closed list. The priority list contains the nodes currently being explored at a single iteration
and the closed list contains all nodes previously explored, ensuring an efficient algorithm that does
not explore any node more than once. To start the priority list, all neighboring nodes from the start
node(s) are added to the list, meaning any directed edge away from the start node(s) is explored
first, and the start node(s) is added to the closed list. Additionally, the total cost, or weight, of
each path from the start node(s) to the current neighboring node being searched is retained within
the priority list. The total cost of all potential paths is then used to sort the priority list and find
the neighbor with the lowest cost path away from a start node(s), indicating the next best node to
explore. The next best node is then removed from the priority list and added to the closed list, while
all of its neighboring nodes and their associated total weights from the start node are added to the
priority list. The priority list is then sorted again to find the next best node to explore. This process
is repeated until the goal node is contained within the priority list, indicating a solution has been
found, or until all nodes have been explored. The result of this procedure is the optimal path based
on the heuristic selected for the edge weights.

Additional sub-optimal paths may also be generated from a single roadmap. One approach in-
volves searching subgraphs, defined as graphs containing a subset of the nodes and edges of a
completed graph, repeatedly until the desired number of paths is returned or until all paths have
been explored. This is commonly referred to as the k-shortest paths problem, where the paths be-
come slightly longer or more expensive as the number of paths found increases.18 Most algorithms
created for searching for the k-shortest simple paths given a completed graph build upon Yen’s al-
gorithm; one of the first algorithms to search a directed, weighted graph for k loopless paths using
a simple graph search algorithm, such as Dijkstra’s algorithm, on multiple subgraphs.11 Yen’s algo-
rithm searches the graph by creating two lists, A and B. List A contains the k-shortest paths while
list B contains potential candidate paths to be added to list A. For example, Dijkstra’s algorithm is
used to search a completed graph for the optimal path, A1, that contains three edges. Next, three
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distinct subgraphs are created by removing one edge, selected from path A1, from the completed
graph. Then, each subgraph is searched using Dijkstra’s algorithm to find paths B1, B2, and B3;
each of these paths are candidates for the next best path. The three candidate paths are then sorted
and the lowest cost path becomes path A2 and list B is emptied. After paths A1 and A2 are iden-
tified, additional candidate paths for k > 3 are also checked to determine if the path already exists
in list A. This additional check ensures the top two paths are not repeated as the k > 2 shortest
paths. This process of searching various subgraphs using Dijkstra’s algorithm is then repeated until
k paths, or all possible paths, are found.

In some cases, subsequent best paths that are composed of slightly different sequences of nodes
and edges may closely resemble previous best paths. Searching for the k-shortest but sufficiently
different paths may be useful in this scenario to support solution space exploration; in this paper,
these paths are labeled as the k-shortest unique paths. One approach to calculating these unique
paths uses a similarity measure that compares the number of shared edges to the number of unique
edges for each new path to limit the number of shared edges between paths:18 paths that share no
edges have a similarity of 0, while paths that share every edge have a similarity of 1. To incorporate
this uniqueness measure into Yen’s algorithm, a third list C is created to contain all unique paths.18

The first optimal path A1 is also added to list C and labeled C1. Next, as additional paths are
found and saved within A, the similarity measure for each subsequent path in A is computed, e.g.
Sim(A2, C1). If the similarity between path A2 and C1 is below a specified threshold, path A2 is
saved as path C2. Otherwise, path A3 is the found and compared to C1. This process is repeated until
the last path added to list A is unique enough compared to the last path in list C. Once complete, this
approach returns only the subset of paths generated via Yen’s algorithm that are deemed sufficiently
different according to a specified measure and threshold.

TECHNICAL APPROACH

In this paper, sampling-based kinodynamic planning is used to construct transfers between peri-
odic orbits in the Earth-Moon CR3BP with minimal input from a trajectory designer. The technical
approach for this paper is divided into three key phases:

1. Learning phase: a generalized roadmap is constructed using randomized nodes and edges.
2. Application phase: desired start and goal nodes, as well as any specific dynamical structures

information, are added to the roadmap.
3. Query phase: the roadmap is searched to produce a variety of initial guesses for trajectories.

A conceptual overview of this approach is depicted in Figure 2 and each phase is described in more
detail throughout the remainder of this section.

Phase 1: The Learning Phase

The learning phase constructs an efficient graph that supplies a discrete summary of a region
of the continuous solution space in the CR3BP. In this roadmap, nodes are defined as nondimen-
sional states in the rotating frame where a spacecraft could potentially be located at discrete time
intervals. Edges represent two distinct types of motion in the CR3BP. Edges either 1) connect neigh-
boring nodes with the same position vector but distinct velocities with one impulsive maneuver or
2) connect neighboring nodes with distinct states with a natural trajectory segment. Edges are also
weighted to reflect the cost associated of traversing each edge, equal to the total norm of any im-
pulsive maneuvers along an edge. This results in edges that either have an impulsive maneuver to
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Figure 2. An overview of the key phases in roadmap generation used to construct
initial guesses for transfers between two periodic orbits in the CR3BP.

change the velocity at a single location, resulting in a nonzero edge weight, or edges with a zero
edge weight, that correspond to a natural arc. In this paper, these nodes and edges are added itera-
tively to limit the dependency on a human-in-the-loop: nodes are added until the solution space is
sufficiently covered whereas edges are added until the graph is strongly connected. These terms and
the process used to add these components to the roadmap are described within this section.

To construct the roadmap, the concept of a 1-neighborhood is employed. In this paper, a neighbor-
hood is considered a strongly connected local graph that covers a specific region of the configuration
space. A strongly connected graph guarantees that every node can reach every other node within the
graph using the directed edges.19 Accordingly, a spacecraft that possesses a state vector associated
with a single node can reach any other node within its local neighborhood. Each neighborhood
is constructed similar to a RRT: a centroid is selected and then subsequent nodes and edges are
constructed forwards in time to explore the local solution space.

To define the centroid of a neighborhood, a valid position vector is randomly sampled within the
desired region of the solution space. The configuration is only valid if the position vector does not
intersect with any known obstacles in the configuration space. For this paper, valid configurations
must lie within the allowable regions of motion at a given Jacobi constant, i.e., the zero velocity
surfaces, and satisfy a 500km altitude constraint around the Moon.

At each centroid, k nodes are defined with the same position vector but k distinct velocity vectors.
The value of k is selected to be proportional to the speed, corresponding to adding more nodes in
sensitive regions. In this paper, k = 10v is selected empirically but may adjusted as a tuning
parameter of the roadmap generation process. Each of these k nodes is then defined to possess a
state with a desired Jacobi constant and, therefore, the same speed, calculated using Eq. 2. Next,
the velocity vector of a single node at the centroid of a neighborhood is defined using a randomly
sampled unit vector. The velocity vectors of the remaining k − 1 nodes are then distributed nearly
uniformly along a unit sphere (or circle for planar motion) to ensure the centroid is evenly connected
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to the rest of its neighborhood. However, these velocity directions can only be evenly distributed
within a unit sphere if the number of directions selected is also the number of vertices of a platonic
solid, i.e., 4, 6, 8, 12, 20. Thus, in order to distribute any number of velocity directions as uniformly
as possible, the Fibonacci sphere is used.

The Fibonacci sphere supports generating a near-uniform sampling on a sphere by maximizing
the smallest neighboring distances among the desired number of points.20 This approach has been
used in many applications such as numerical simulations and computer graphics due to its compu-
tationally efficiency and ease of implementation. The Fibonacci sphere is fundamentally related to
the Fibonacci sequence and the golden ratio, Φ = (1 +

√
5)/2. To construct the Fibonacci sphere

for a total of k2 points, the 2D representation of the Fibonacci spiral is first computed. To construct
the Fibonacci spiral, two angles, θi and ϕi, are computed for each integer number i = {1, k2} as

θi = 2π
i

Φ
, ϕi = cos−1

(
1− 2(i+ 0.5)

N

)
(10)

These angles are mapped to a unit sphere using spherical coordinates to produce the i-th unit vector,
expressed in the rotating frame as

v̂i = {cos(θi) sin(ϕi), sin(θi) sin(ϕi), cos(ϕi)} (11)

This unit vector is multiplied by the speed calculated at the centroid to produce the velocity vector
at a specified Jacobi constant to complete the state definition for each of the k nodes with the same
centroid position vector. Finally, to ensure each center node is connected, a maneuver-enabled edge
is constructed between each node with the same position vector to represent a spacecraft being able
to instantaneously change velocity with an impulsive maneuver.

Once all k nodes at the center of a neighborhood are defined, they are propagated forward in
time to create a natural edge in a unique direction. The propagation time tf for each natural edge
is selected to be proportional to the speed to ensure that nodes with a larger speed (and more likely
to be more sensitive) explore a larger number of directions within solution space away from the
center position vector; in this paper, tf = v is selected empirically but may be adjusted as a tunable
parameter of the roadmap generation process. The final state along each of these natural edges is
saved as an additional node, if it is valid. Each of these center nodes is connected to their additional
nodes by a directed edge that possesses an edge weight of zero, corresponding to the natural flow
of motion between these configurations. A neighborhood’s radius is then equal to the minimum
distance to all of the natural neighboring child nodes, i.e., the states associated with the nodes at the
end of each of the k natural edges. The center k nodes with the same configuration, as well as their
associated k neighboring child nodes connected by a natural edge, are labeled as the neighborhood’s
core nodes for the remainder of this paper.

The center k nodes as well as the child k nodes, i.e. all core nodes, are constructed first in
each neighborhood. This process is conceptually demonstrated in Figure 3a), where the horizontal
axis represents position and the vertical axis represents velocity. In this figure, nodes with the
same position and distinct velocities are vertically stacked. The first centroid that is defined with
a randomly sampled configuration and randomly selected velocity direction is depicted as a blue
circle in the center of the figure. Then, 2 states with distinct velocity directions, depicted as red
circles, are computed to create k = 3 nodes with the same position but distinct velocities. These 3
center nodes are then connected using a maneuver-enabled edge to change velocity, depicted as a
red arrow. Finally, each of the center nodes are propagated to create a natural edge, depicted as a
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blue arrow, where the final state along each edge is additionally saved as a new node, depicted as
additional blue circles.

Figure 3. A conceptual diagram depicting the three steps in constructing a strongly
connected neighborhood: a) core center and child nodes are constructed, b) core child
nodes are connected back to their center core nodes, and c) core child nodes are con-
nected to each other.

To ensure each neighborhood is a strongly connected local graph, all nodes within the neighbor-
hood are connected through additional edges to every other node in the neighborhood. Each core
child node is connected back to its associated center node using three edges. Before adding these
edges, a single shooting corrections algorithm is used to compute a new arc that allows the velocities
at the child node and the center node as well as the integration time to vary. Accordingly, impul-
sive maneuvers are placed at the beginning and end of the arc to match the velocity vector at each
node. To construct an initial guess for the single-shooting scheme, the selected node is propagated
naturally forward or backward in time. The elapsed time at the state along this arc that is closest in
position space to the neighboring node seeds the integration time for the initial guess. If a maneuver-
enabled edge is successfully computed via single-shooting, the impulsive maneuver magnitude is
further reduced via local optimization implemented using sequential quadratic programming within
the fmincon tool in MATLAB®.21

This trajectory segment is used to construct three new edges in the neighborhood: two single
impulse edges to change the velocity at each node and one natural edge. The first maneuver-enabled
edge is used to change the velocity from the child node to the initial state along the new trajectory
segment. The second edge is a natural trajectory segment that is equal to the solution of the single
shooting corrections algorithm, resulting in a free edge. The third edge is another maneuver-enabled
edge that is used to change the velocity from the final state along the new trajectory segment to the
velocity of the associated center node. This process is then repeated for each core child node in
the neighborhood and conceptually demonstrated in Figure 3b) using the same color scheme as
previously described, resulting in one additional node at each child node’s position and k additional
nodes at the center node’s position. The new nodes and edges in this step are depicted in a darker
blue and darker red color.

Last, to ensure there is a path between every pair of core nodes in a neighborhood, each core
child node is connected to every other core child node in the neighborhood using the same process
as described for connecting the child nodes to the center nodes. This final connection step is con-
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ceptually depicted in Figure 3c) using the same color scheme as previously described, resulting in
k additional nodes with the same position at each child node. Through this definition of a strongly
connected neighborhood, a spacecraft located at any position vector associated with a node can
reach any other node within the neighborhood by traversing the edges.

Neighborhoods are iteratively added to the roadmap until the desired region of the solution space
is sufficiently covered. In this paper, coverage is defined by the number of neighborhoods that
overlap with any other neighborhood in the graph. Accordingly, neighborhoods are iteratively con-
structed until all neighborhoods intersect with at least one other neighborhood to increase the like-
lihood of nodes associated with one neighborhood connecting to nodes within one other neighbor-
hood; this number is selected empirically but may be adjusted as a tunable parameter of the roadmap
generation process. By constructing neighborhoods and evaluating the coverage iteratively, the re-
sulting graph is well-covered with minimal, redundant, information. Furthermore, this approach
facilitates adaptive selection of the total number of nodes and edges within the graph.

Once all neighborhoods are added to the graph, additional nodes are added to the graph to min-
imize the dispersion. The dispersion of the graph is defined by the largest empty sphere in the
configuration space, which indicates areas that are unreachable by a spacecraft.22 Empty spheres,
or under-sampled regions, in the configuration space are identified using a Delaunay triangulation
constructed in the configuration space using the current unique position nodes in the graph. This
method is commonly used in path planning problems to identifying areas of a solution space that
are insufficiently approximated by a discrete set of nodes or edges.23, 24 A Delaunay triangulation is
constructed by creating a set of tetrahedron that do not contain any nodes within their circumcircle.
Once constructed, the centroid and volume of each tetrahedron is computed. The largest tetrahe-
dra are then used to identify regions within the configuration space that indicate the largest empty
regions within the graph. Starting with the largest tetrahedra, the centroid is a candidate for the
configuration of a new node. If the configuration is valid, the states at the associated node is defined
using the speed the produces the desired value of the Jacobi constant and the velocity direction is
randomly sampled. Then, the average of the minimum distances to every node’s nearest neighbor
in configuration space is computed. Additional nodes are added to the graph until the average of
all minimum distances stabilizes to within some tolerance, selected as 10−7 for this paper. Through
this approach, the resulting graph better covers the configuration space without the need to select
the number of additional nodes to add to the roadmap.

After all the neighborhoods are constructed and additional nodes are dispersed, additional edges
are constructed until the graph is globally strongly connected using the same process as constructed
new edges in neighborhoods. For every core node from all the neighborhoods in the graph, one
neighbor forward in time and one neighbor backward in time is identified to construct three new
edges leaving from and arriving to the current node, respectively. The selected core node is first
naturally propagated for tf = ±v using the same method used to create the natural edges within
each neighborhood. Then, neighbors are identified using a distance measure that captures both the
distance between two nodes in the configuration space as well as the angle between their velocity
vectors; the goal is to locate nearby nodes with motion that flows in similar directions. The distance
measured used to assess whether node j is a neighbor of node i is defined as

di,j = ∥di(tf )− dj(t0))∥+ θ (12)

where di(tf ) is the position vector produced by propagating node i for time t = ±v, dj(t0) is
the position vector of the j-th node, and θ is the angle between their velocity vectors. Additionally,
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because the maximum value of the angular difference between two velocity vectors is π, the distance
vector to all neighboring nodes for node i, Di = [d1,2, d1,3, ..., d1,j ] ∀j, is also normalized such that
the minimum and maximum bounds are [0, π].

To connect the core node with its identified neighbor, a single-shooting corrections algorithm
is used to connect the positions of the core node with its neighboring node using three edges; the
first edge will change the velocity at the current node, the second edge will change the state, and
the third edge will change the velocity back to the neighboring node. This process is identical
to connecting a child node within a neighborhood to another node within the same neighborhood
described previously. Additionally, similar to the nodes, each edge is also subject to a 500km
altitude constraint around the Moon. If any state lies below this altitude, the edge is not saved and
a new neighbor is identified. Once again, if a maneuver-enabled edge is successfully computed
via single-shooting, the impulsive maneuver magnitude is further reduced via local optimization
implemented using sequential quadratic programming within the fmincon tool in MATLAB®.21

Using the optimized solution, the maneuver magnitude serves as the edge weight for every edge
that changes distinct velocities between identical positions.

After every node gains one new neighbor forward and backward in time, the connectivity of the
graph is checked. If the graph is not strongly connected, each core node will again gain one neighbor
forward and backward in time. This process is repeated until the graph is strongly connected,
facilitating an adaptive number of edges and a strongly connected, yet efficient graph.

Phase 2: The Application Phase

Next, specific mission information relevant to the search query is projected onto the generalized
roadmap. If the desired initial or final orbit possesses stable or unstable manifolds, states and small
trajectory segments that lie on these manifolds may be added to the roadmap as nodes and natural
edges, respectively, to improve the natural flow of the graph. These additional nodes and natural
edges are then connected to the generalized roadmap’s core nodes using the same distance measure
to identify neighboring core nodes. First, a random state along a manifold trajectory is selected to
add to the roadmap. If the node is valid, the state is propagated forward in time to create a natural
edge. Then, if the final state along the trajectory segment is valid, it is also saved as a node to the
graph and the edge is saved between the two nodes. Last, the initial node and final node along
this new segment are connected to its k nearest backward and forward neighbors, respectively.
Each of these nodes gains three edges per identified neighbor and uses the same equation k =
10v to determine the number of centroid’s in a neighborhood that determines how many neighbors
to identify. This process is repeated until the desired amount of information from the available
information about transport mechanisms is connected to the graph.

To complete the roadmap for a specific search query, states along the desired initial and final
orbits are projected onto the roadmap as new nodes that serve as the set of source and goal nodes
for the search queries, respectively. These new nodes are first connected to its nearest neighboring
node along the same orbit using a natural edge, such that the initial and final orbit are free to trans-
verse and the initial guess can connect to any location along the orbit. Next, each node is connected
to neighboring core nodes already contained within the generalized roadmap and any nodes added
from the associated fundamental solutions. Neighbors are identified using the same distance mea-
sure used in the generalized roadmap. Nodes added along the initial orbit are propagated forward in
time to identify neighbors while nodes added along the final orbit are propagated backward in time
to identify neighbors to ensure all initial guesses will depart along edges leaving the initial orbit and
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finish along edges arriving onto the final orbit.

Phase 3: The Query Phase

After the generalized roadmap is constructed and any additional relevant mission information is
connected to the roadmap, the query phase searches the graph for valid initial guesses for transfers
between the desired periodic orbits. Dijkstra’s search algorithm is used to find the lowest cost initial
guess, a sequence of nodes and edges, that minimize the cumulative sum of edge weights across the
path. The nodes along the initial orbit serve as the start nodes while nodes along the final orbit serve
as the goal nodes for the search algorithm. Typically in PRM, if no path exists between the selected
start and goal node(s), the search algorithm will terminate with no solution. However, since the
graph is constructed to be strongly connected, at least one path is guaranteed to exist since at least
one path exists between every pair of nodes in the graph.

Once the optimal path is found, additional unique paths between the same start and goal node
sets are identified by applying Yen’s algorithm. Specifically, Dijkstra’s search algorithm is used in
conjunction with the modified similarity measure to search multiple subgraphs of the roadmap. For
this application, additional unique paths are identified by modifying a common similarity measure
that is a ratio of the sum of the edge weights of the shared edges between two paths, Pi and Pj , and
the path with the maximum cumulative edge weight, defined in this paper as:

Sim(Pi, Pj) =
L(Pi ∩ Pj)

max{L(Pi), L(Pj)}+
∑d

n=1∥δr̄∥
(13)

where L(·) represents the cumulative weight of the total path and the summation term in the denom-
inator represents the position difference between the d unique nodes in each path.9 This summation
term is added to encourage geometric differences between two paths. Multiple unique paths that are
geometrically dissimilar may be identified by searching one completed graph repeatedly using this
similarity measure in conjunction with Yen’s algorithm.

All initial guesses identified are then corrected using collocation with the CEP mesh refinement
process. The state of each node and the integration time along the subsequent edge in the initial
guess form the segments used in the initial mesh, so the total time of flight may vary during cor-
rections. If impulsive maneuvers are applied along the transfer between segments, only position
constraints are included. The number of allowed maneuvers must be user-selected prior to cor-
rections, although higher edge weights are used to indicate locations where a maneuver may be
beneficial in recovering a nearby transfer.

RESULTS

Initial guesses for transfers between L1 and L2 periodic orbits in the Earth-Moon CR3BP are
constructed using the sampling-based kinodynamic planning approach presented in the previous
section. To demonstrate this approach, two roadmaps are constructed at a single energy level. First,
a roadmap is generated at CJ = 3.15 for planar motion and used to recover two transfers between
Lyapunov orbits. Next, a roadmap is generated at CJ = 3.15 for spatial motion. Maneuver-
enabled transfers are generated between two halo orbits because heteroclinic connections that do
not complete any revolutions around the Moon do not exist at this energy level.25 The results for
each of these examples are demonstrated in the remainder of this section.
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Planar Transfers Between an L1 and L2 Lyapunov Orbit at CJ = 3.15

To demonstrate the process presented in the previous section, a generalized roadmap is con-
structed for planar motion at CJ = 3.15. The roadmap constructed for this example lies within the
zero velocity curves at CJ = 3.15 and in the range of x = [0.8, 1.2]. All nodes and edges must fall
within this region of the solution space to be considered valid, as well as adhere to a 500km Moon
altitude constraint. Any constructed edge that exceeds either bound on the value of x is terminated
at the boundary.

To begin constructing the generalized roadmap, neighborhoods are constructed. First, 10 neigh-
borhoods are added to the graph at a time until the desired solution space is covered, meaning
all neighborhoods intersect with one other neighborhood. The selected number of neighborhoods
added at each iteration should balance minimizing the number of calls to the coverage check with
minimizing the number of redundant neighborhoods constructed. If a smaller number of neigh-
borhoods were added at a time, the coverage would need to be checked more frequently, while if
a larger number of neighborhoods were added at a time, redundant neighborhoods may be con-
structed that are unnecessary for the graph. For this example, 50 neighborhoods were constructed
before the specified region of the solution space is deemed to be covered. For each neighborhood,
the number of velocity directions per center node position computed ranged from k = 4− 12. Two
neighborhoods of the first iteration are shown in Figure 4; blue circles depict the unique positions
of all nodes of each neighborhoods, blue arcs represent natural trajectory edges between all nodes
within a neighborhood, and the red circle depict the area of the configuration space covered by each
neighborhood. Once all neighborhoods are constructed, the roadmap possesses 2424 nodes with
296 unique positions.

Figure 4. Two locally connected neighborhoods constructed at CJ = 3.15 that cover
distinct regions of the configuration space indicated by the red circles.

Next, once all neighborhoods are constructed, additional nodes are added by computing a Delau-
nay triangulation in the configuration space using the 296 unique positions of the nodes currently
within the graph. Nodes are added to the graph until the difference of the average distance of each
node’s closest neighbor between node addition is within 10−7. This procedure results in 442 addi-
tional nodes being added to the graph. The distribution of nodes after the neighborhood construction
procedure and after additional nodes were added via the Delaunay triangulation are depicted in Fig-
ure 5a) and 5b), respectively. Nodes constructed during the neighborhood construction process are
depicted by blue circles while nodes added to minimize dispersion are depicted by magenta circles.
There are still regions within the desired solution space that contain less nodes than other regions;
addressing this limitation is an area of ongoing work.
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Figure 5. a) Distribution of nodes after all neighborhoods are added to the graph b)
Distribution of nodes after additional nodes are added to minimize dispersion.

Last, to construct a strongly connected generalized roadmap, each core node gains one neighbor
both forward and backward in time iteratively until the graph is strongly connected. For this exam-
ple, each core node only requires one neighbor forward and backward in time until the connectivity
criteria was met. The completed roadmap for this example appears in Figure 6. While this roadmap
is constructed at CJ = 3.15, edges are not constrained to possess this energy level. Therefore, some
edges may cross the zero velocity curves computed at CJ = 3.15.

Figure 6. A completed roadmap generated to summarize the planar solution space in
the lunar vicinity at CJ = 3.15.

After the generalized roadmap is constructed, fundamental transport mechanisms along with
states along the initial and final orbit are added. 200 segments from the unstable and stable man-
ifolds computed from the initial and final orbits, respectively, are added to the roadmap. Each
segment consists of one node at the initial state of the trajectory arc, one node at the final state of the
trajectory arc, and one natural edge between the two nodes. The node at the initial state is connected
backward in time to its nearest k = 10v neighbors while the node at the final state is connected for-
ward in time to its nearest k = 10v neighbors, to aid motion onto and off this trajectory segment.
Then, 50 states along each the initial and final orbit, evenly discretized in time, are connected to
their k = 10v nearest neighbors forward and backward in time to guide the search algorithm to
depart the initial orbit and arrive to the final orbit.

Once the roadmap is completed, Yen’s algorithm that repeatedly calls Dijkstra’s search algorithm
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is used to search the graph for initial guesses that can depart the L1 Lyapunov orbit and arrive onto
the L2 Lyapunov orbit. The tolerance for the similarity measure is set to Sim(Pi, Pj) < 0.6 to
distinguish unique paths. These initial guesses correspond to paths that are a sequence of nodes
and edges that represent a sequence of instantaneous impulsive maneuvers and natural trajectory
arcs. The lowest cost initial guess (depicted in blue) and the second lowest cost unique initial guess
(depicted in green), constructed from the completed roadmap in Figure 6, are displayed in Figure
7a). The initial and final Lyapunov orbits are plotted with dashed and solid black lines, respectively.

Figure 7. a) The optimal (blue) and second best (green) initial guesses constructed
from the roadmap in Figure 6 and b) the corresponding two continuous transfers.

To recover a continuous trajectory, each initial guess is modified to use four impulsive maneuvers:
one maneuver to depart from the L1 orbit, one maneuver to arrive onto the L2 orbit, and the last two
maneuvers are selected at nodes along the initial guess with the two largest maneuver magnitudes.
The corrected continuous transfers for the lowest cost and second lowest cost initial guesses are
displayed in Figure 7b) in blue and green, respectively, while both initial guesses are depicted in
grey. The optimal initial guess has a cumulative edge weight of 223.4m/s and the corrected solution
has a total maneuver magnitude of 5.1m/s. The second best initial guess has a cumulative edge
weight of 225.0m/s and the corrected solution has a total maneuver magnitude of 3.7m/s. While
the second best initial guess has a lower initial guess maneuver magnitude, it corrects to a solution
that is very close to the natural heteroclinic connection that exists at this energy level.26 While
the first two unique solutions identified by Yen’s algorithm are close in geometry, Yen’s algorithm
identified the initial guesses as unique due to the distinct configurations of a few of the nodes and
natural edges contained in the initial guesses. Improving the search algorithms for computational
efficiency to identify additional geometrically distinct transfers, such as transfers with revolutions
around the Moon, is an avenue of ongoing work.

Spatial Transfers Between an L1 and L2 Halo Orbit at CJ = 3.15

To demonstrate the roadmap construction process for spatial motion, a generalized roadmap is
constructed at CJ = 3.15 to generate transfers between two northern halo orbits around L1 and L2.
The region of interest and Moon altitude constraint for this roadmap is the same as the previous
example. First, 10 neighborhoods are added to the graph at a time until the desired solution space
is covered. For this spatial example, 130 neighborhoods are required until the graph is deemed
covered. For each neighborhood, the number of centroids computed lie in the range of k = [4 −
6]. While the number of neighborhoods required to construct this spatial roadmap is much larger
compared to the planar case, each neighborhood contains a smaller amount of core nodes. After all
neighborhoods are constructed, the roadmap contains 5240 nodes with 653 unique position vectors.

Next, additional nodes are added by constructing a Delaunay triangulation in the configuration
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space using the 653 unique position vectors of the nodes currently within the graph. Additional
nodes are added until the difference of the average distance of each node’s closest neighbor is within
10−7. Using this threshold, 252 additional unique nodes are added to the graph. Last, each core
node gains one neighbor both forward and backward in time until the graph is strongly connected.
Each core node requires two neighbors forward and backward in time for this graph to be strongly
connected. The completed roadmap is shown in Figure 8 using the same color scheme as Figure 6.

Figure 8. A completed roadmap generated to summarize the spatial solution space in
the lunar vicinity at CJ = 3.15.

After the generalized roadmap is constructed, application specific information required for the
search query is added in the same manner as the planar roadmap. First, 200 segments from the
unstable and stable manifolds computed from the initial and final orbits are projected to the roadmap
as new nodes and natural edges. Next, 50 states along each orbit are added as new nodes. Last, each
of these new nodes are connected to the generalized roadmap either forward or backward in time
depending on the original fundamental solution.

After the roadmap is improved with the application specific information, Yen’s algorithm and
Dijkstra’s search algorithm are used to generate transfers that depart any location along the initial
L1 halo orbit and arrive onto any location along the L2 halo orbit. The optimal initial guess (depicted
in blue) and the second lowest cost initial guess (depicted in green) are displayed in Figure 9a) and
the corrected continuous transfers are displayed in Figure 9b). The initial and final halo orbits
are plotted with dashed and solid black lines, respectively. Each initial guess in then input into a
collocation corrections algorithm to contains four maneuvers: one to depart the initial L1 orbit, one
to arrive onto the L2 orbit, and the last two maneuvers are selected at the nodes along the initial guess
with the two largest maneuver magnitudes. The initial guess for corrections is also appended to
contain 3 revolutions along each the initial and final orbit. The optimal initial guess has a cumulative
edge weight of 494.6m/s and the corrected solution has a total maneuver magnitude of 304.9m/s.
The second best initial guess has a cumulative edge weight of 545.2m/s and the corrected solution
has a total maneuver magnitude of 538.3m/s. While using the automatic maneuver placement of
only two maneuvers along each initial guess, each corrected solution closely resembles the geometry
of the initial guess. While the corrected transfers depart and arrive to different locations along each
orbit than the initial guesses, additional constraints may be added to the corrections algorithm to
constrain the corrected solution to depart and arrive specific locations along each orbit.
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Figure 9. a) The optimal (blue) and second best (green) initial guesses constructed
from the roadmap in Figure 8 and b) the corresponding two geometrically distinct
continuous transfers.

CONCLUSION

In this paper, sampling-based kinodynamic planning is used construct a graph, called the roadmap,
in the lunar vicinity in the Earth-Moon CR3BP in three key phases: the learning phase, the appli-
cation phase, and the query phase. The roadmap is a directed, weighted graph that contains nodes,
which represent valid spacecraft states, and edges, which represent valid trajectory motion or im-
pulsive maneuvers. First, strong locally connected graphs called neighborhoods are constructed and
iteratively added until the desired solution space is sufficiently covered. Then, maneuver-enabled
edges are added by connecting neighboring nodes in distinct neighborhoods. These edges represent
natural trajectory arcs between distinct positions associated with two nodes and single impulsive
maneuvers between nodes with the same position but distinct velocities. The magnitude of the im-
pulsive maneuver is saved as the associated edge weight, resulting in a zero edge weight for edges
that represent natural trajectory arcs. The core nodes of all neighborhoods gain one neighbor for-
ward and backward in time in distinct neighborhoods until the graph is strongly connected. Lastly,
states along the initial and final orbit and segments along the associated invariant manifolds are
connected to the graph.

Once the roadmap is completed, Yen’s algorithm using Dijkstra’s search algorithm is used to
search the graph for the two lowest cost initial guesses that minimizes the cumulative sum of the
total edge weights across the paths. All solution paths found represent initial guesses for transfers
between the desired periodic orbits that are then input to a collocation corrections method with a
CEP mesh refinement process to recover continuous solutions.

This approach was employed to recover geometrically distinct maneuver-enabled solutions be-
tween Lyapunov and halo orbits at CJ = 3.15 in the Earth-Moon CR3BP. The location of the
maneuvers for each transfer were selected based on the highest edge weight along the initial guess.
The results for this application motivate further exploration of sampling-based kinodynamic plan-
ning in the CR3BP to more efficiently summarize the solution space and decrease the computational
time required to identify additional feasible solutions.
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