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DATA-DRIVEN SUMMARY OF NATURAL SPACECRAFT
TRAJECTORIES IN THE EARTH-MOON SYSTEM

Natasha Bosanac*

Trajectory designers and ground operators may encounter situations where di-
gestible summaries of a wide array of possible spacecraft motions within cislu-
nar space could be valuable for decision-making. However, the diversity of tra-
jectories within this chaotic gravitational environment renders manual analysis a
time-consuming and overwhelming task. To address this challenge, this paper
uses a clustering-based framework to summarize the distinct geometries exhibited
by a large set of spacecraft trajectories with short to medium flight times in the
Earth-Moon system. This approach is applied to trajectories generated in both the
circular restricted three-body problem and an ephemeris model of cislunar space.

INTRODUCTION

In the near future, an increasing number of spacecraft are expected to operate in cislunar space.
Accordingly, trajectory designers will need to design mission orbits and transfers to achieve a wide
variety of objectives. Simultaneously, analysts will need to regularly predict the possible future
motions of space objects for space domain awareness and collision avoidance. Both of these as-
trodynamics tasks require an initial understanding of the wide array of spacecraft motions that are
possible within the complex and chaotic dynamical environment of cislunar space.

In the Earth-Moon system, a low-fidelity dynamical model such as the circular restricted three-
body problem (CR3BP) is often used to gain preliminary insight into the solution space. This model
is autonomous when formulated in an Earth-Moon rotating frame and admits fundamental solutions
governing the flow throughout the system.! Some fundamental solutions and comparable finite-time
solutions may also exist in other approximate dynamical models such as the elliptic restricted three-
body problem and the bicircular restricted four-body problem. It is in these lower-fidelity models
that designers and analysts use dynamical systems techniques to rapidly gain valuable insights into
a wide array of bounded motions and natural transport mechanisms.”> However, in higher fidelity
models such as an ephemeris model, these fundamental solutions and/or comparable finite-time
solutions no longer exist and only some may be approximately retained. Directly visualizing and
extracting meaningful insight from a wide array of epoch-dependent motions that are generated
in an ephemeris model may be time-consuming and overwhelming, even when using dynamical
systems techniques such as Poincaré mapping.
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A wide variety of technical disciplines encounter a similar problem: large amounts of high-
dimensional information may be generated through simulations or experiments and may be difficult
or time-consuming for a human to analyze or extract meaningful insights. In these ‘big data’ prob-
lems, data mining techniques have proven valuable. For instance, clustering algorithms construct
an unsupervised grouping of similar data in a finite-dimensional feature space while also separating
dissimilar data.’> Clustering has also been used to group trajectories that are either sampled to pro-
duce a time sequence description or characterized by a model.’?> Dimension reduction algorithms
may be used to further reduce the dimension of the description.”. When a clustering algorithm is
applied to a set of data, the resulting clusters may supply a digestible summary that supports further
analysis or decision-making. Classification schemes, a form of supervised learning, may then be
used to associate new or unlabeled data with an existing cluster.’ These data mining techniques
have been used for analysis and knowledge discovery in various technical disciplines such as as-
tronomy, medicine, studying driving routes, and air traffic management.®~'!:32 In astrodynamics,
these techniques have been used to detect regions of bounded motions near distant retrograde orbits
on a Poincaré map, group periodic orbits with similar characteristics, and extract motion primitive
sets that summarize families of periodic orbits and their hyperbolic invariant manifolds.!>"

Bosanac as well as Bonasera and Bosanac have previously developed a clustering framework
for extracting a summary of spacecraft trajectories in the Sun-Earth CR3BP.!6-!3 First, a large set
of trajectories were generated from initial perigees at a single energy level for a few revolutions
around the Earth. In a curve-based discretization scheme, each trajectory was then sampled at sev-
eral apses to construct a finite-dimensional feature vector.'® To accommodate a large dataset, these
trajectories were separated into partitions. Each partition was then independently clustered using
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm
to extract groups of trajectories with a similar geometry.'® The clustering results from each partition
were sampled and aggregated in a binary tree structure that employs both clustering and dimension
reduction via manifold learning.!” The result was a global cluster summary that supplied a di-
gestible and data-driven summary of the geometries of a wide array of trajectories that exist at a
specific energy level in the Sun-Earth CR3BP while also supporting association to natural transport
mechanisms.!” This paper leverages and builds upon this prior work.

To gain insight into some of the possible motions of a spacecraft operating in cislunar space,
this paper uses a clustering framework to extract a summary of natural spacecraft trajectories at a
single energy level. Specifically, a wide variety of trajectories are generated from prograde per-
ilunes to span flight times of up to 21 days in each of the Earth-Moon CR3BP and an ephemeris
model of cislunar space. To capture the shape of nonlinear trajectories that visit various regions
of the Earth-Moon system, the concept of curvature from differential geometry is employed to in-
troduce an updated approach to sampling and describing each trajectory using a finite-dimensional
feature vector. Then, HDBSCAN is used along with the cluster aggregation procedure presented
by Bonasera and Bosanac to group these feature vectors and, therefore, construct clusters of ge-
ometrically similar trajectories.!” This framework is used to extract a digestible summary of the
trajectories generated at an energy level where both the L; and Lo gateways open and, therefore,
the solution space is diverse. These summaries are constructed in each of the two models of the
Earth-Moon system. Accordingly, this paper offers the following original contributions: introduc-
ing a new trajectory sampling and description scheme, applying this framework to the Earth-Moon
system, and constructing a data-driven summary of spatial trajectories in an ephemeris model.
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DYNAMICAL MODELS
Circular Restricted Three-Body Problem

The circular restricted three-body problem (CR3BP) is used to approximate the motion of a space-
craft in cislunar space. In this model, the Earth and Moon are modeled as spherically symmetric
masses following circular orbits around their barycenter. In addition, the spacecraft is assumed to
possess a comparatively negligible mass.!

To describe the state, time, and mass parameters of this system, a normalization scheme is often
employed.!-? Length quantities are normalized by the assumed constant distance between the Earth
and Moon whereas mass quantities are normalized by the total mass of the system. Time quantities,
however, are normalized to produce a mean motion of the Earth and Moon that is equal to unity.

To formulate an autonomous dynamical system and facilitate visualization, the equations of mo-
tion are specified in a rotating frame. In the Earth-Moon rotating frame, the origin is located at the
barycenter of the system and the three axes z¢Z are defined as follows: Z is directed from the Earth
to Moon, 2 is aligned with the orbital angular momentum vector of the Earth-Moon system, and ¢
completes the orthogonal, right-handed triad. In this rotating frame, the nondimensional state of the
spacecraft is specified as T = [z, ¥, 2, &, 7, 2|7 where () indicates a time derivative with respect to
an observer in the rotating frame. The nondimensional equations of motion governing the spacecraft
are then written in this rotating frame as

U~ ou* . our

0

ox dy M

where (4 is the mass ratio comparing the Moon’s mass to the total mass of the system, r; =
Vi(e+p)2+y2+ 2% = /(x — 1+ p)? + y? + 22, and the pseudo-potential function is U* =
(22 +142)/24 (1 — p)/r1 + p/r2." These equations of motion produce one integral of motion, the
Jacobi constant, that is equal to C'; = 2U* — &2 — 5% — 2. At a single value of C;, zero velocity
surfaces capture the set of position vectors that correspond to a zero velocity vector and bound the
allowable motions of a spacecraft in the CR3BP.> Within these zero velocity surfaces, the chaotic
solution space can be composed of a diverse array of trajectories.

Ephemeris Model

An ephemeris model supplies a higher-fidelity representation of the dynamical environment in
cislunar space. In this paper, this ephemeris model is constructed to include only the point mass
gravitational influences of the Earth, Moon, and Sun on the spacecraft. This level of fidelity captures
the effects of the most dominant gravitational bodies traveling on their true, non-circular paths while
avoiding the significant increases in computational time associated with higher-order gravity models
or parameter dependencies in solar radiation pressure models, for example.

In the ephemeris model, the state of the spacecraft is described using two reference frames. The
Moon-centered inertial frame is defined using the center of the Moon as the origin and the axes
XY Z of the International Celestial Reference Frame (ICRF).2"22 This frame is used to formulate
the equations of motion and numerically integrate the path of the spacecraft. In addition, the pul-
sating Earth-Moon rotating frame is defined using the same origin and mathematical definition of
the axes £¢2 as the rotating frame used in the CR3BP. However, this frame is labeled as ‘pulsating’
because the scale is defined using the instantaneous distance between the Earth and Moon to ensure

both celestial bodies possess fixed locations along the Z-axis.
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The equations of motion for the spacecraft are written in nondimensional form in the Moon in-
ertial frame. Consistent with the CR3BP, the spacecraft is assumed to possess a negligible mass
compared to the three celestial bodies. Length, mass, and time quantities are also normalized us-
ing the same scheme as the CR3BP. However, the values for the characteristic quantities used in
normalization are time-dependent.”> The state of the spacecraft is then expressed in the Moon-

centered inertial frame as X = [X,Y, Z, X,Y, Z]" = [RY L.ses VI JT. Using these definitions, the
nondimensional equations of motion for the spacecraft are written as
. R R Rp;
Rpse=—GMp | 25 | +G > M | 52 — 5 )
RL,sc i=E,S Rsc i RL,i

where subscripts L, F, S, and sc indicate the Moon, Earth, Sun, and spacecraft; M; is the mass
of body i; Ri,j locates body j relative to body i in the inertial frame; and, in this expression, ()
indicates a derivative with respect to time for an observer in the inertial frame.?® To evaluate the
position vectors of the celestial bodies, the DE440 lunar and planetary ephemerides, provided by
NASA’s Navigation and Ancilliary Information Facility, are used along with the SPICE toolkit.>*

Although the state of the spacecraft is integrated in the inertial frame, a frame transformation is
employed to describe and visualize each trajectory in the pulsating Earth-Moon rotating frame. At
an epoch ¢, the transformation from a position vector R L,sc(t) in the Moon-centered inertial frame
to a position vector 7 ,.(t) in the pulsating rotating frame is calculated as

7;B,sc(t) = [Rc(t)l} RL,sc(t) + fB,L (3)

where 7; ; locates body j relative to body 7 in the rotating frame and the subscript B corresponds to
the Earth-Moon barycenter.?!-2* In this expression, the rotation matrix [C(t)’] is equal to

27 (t)
'] = |57 (@) )
21(t)

where I, 7, Z are column vectors of the axes of the Earth-Moon rotating frame expressed in the
Moon inertial frame.?!»>* These unit vectors are calculated as

i(t) = Rpr(t) Rp,1(t) X Ve L(t)
1R, I1Re,L(t) x Ve L(t)
where R 1(t) and Vg 1,(t) are the position and velocity vectors of the Moon relative to the Earth

in the Moon-inertial frame at the associated epoch.?!>* This transformation may be inverted to
transform a position vector from the rotating frame to the inertial frame.

g(t) = 2(t) x 2(t)  2(t) = ®)

To transform the spacecraft velocity and acceleration vectors from the Moon inertial frame to the
pulsating Earth-Moon rotating frame, the time derivatives of the axes of the rotating frame are used.
Specifically, the transformation for the velocity vector is written as

0p5elt) = [FCW| Brelt) + OO Vi selt) ©)

assuming that the Moon’s location is instantaneously fixed along the % axis. The transformation for
the acceleration vector from Ay, . in the inertial frame to ap 4.(t) in the rotating frame is equal to

aBselt) = [FCO"| Ruselt) +2 [FCW| Viselt) + [FCO] Apse )
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To calculate the first and second time derivatives of the rotation matrix, the associated derivatives of
the @74 axes are also calculated. The first derivatives are equal to>!-2*

_ ‘:/L,sc(t) . .’f}jj '_VL,sc(t)
RLsc@I  [[Rrse(t)]

The second derivatives of the axes of the rotating frame are equal to

10 ) ~0 gt)=2xi (8)

i‘(t) o AL,SC VL,SC(VL,SC : j) SE(VL,SC : i) A (AL,SC -z VL,sc -z (VL,sc(t) : 53)2>

B HRL,SCH HRLSCHQ HRLSCH HRL,SCH HRL,SCH HRL,SC(t)HQ
. ) ©)
gt) =2 x i (10)
() ~ 0 (11)

The assumption that é(t) ~ 0 is also employed in NASA Goddard Space Flight Center’s General
Mission Analysis Tool.?3

CLUSTERING

Clustering algorithms perform an unsupervised grouping of members of a dataset based on their
similarity in a specified feature space. These algorithms are often categorized as partition-based,
grid-based, density-based, hierarchical, and/or model-based.?’” Furthermore, hard clustering algo-
rithms uniquely assign each member to a group whereas soft or fuzzy clustering algorithms as-
sign each member a probability of membership in each group.?’” The type of clustering algorithm
employed for exploratory data analysis in a specific application may depend on the type of data,
available computational resources, and a priori knowledge of the structure of the dataset.

Hierarchical Density-Based Spatial Clustering of Applications with Noise

To cluster a diverse dataset describing nonlinear trajectories, this paper employs the Hierarchi-
cal Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm that was
developed by Campello, Moulavi, and Sander.! HDBSCAN is used in this paper because it does
not require a prior knowledge of the number of clusters; can discover clusters of various shapes,
densities, and distances; and can label members of a dataset that lie in insufficiently dense regions
as noise points. Bosanac as well as Bonasera and Bosanac have demonstrated that this algorithm
can extract the distinct geometries of trajectories near the Earth in the Sun-Earth CR3BP.!617

HDBSCAN is a hierarchical and density-based clustering algorithm that labels the /N members
of a dataset, each described by an M-dimensional feature vector f; for i = [1, N], as belonging
to a specific cluster or as a noise point.!” First, HDBSCAN calculates the core distance of each
member, defined as the distance to its (mpts — 1)-th nearest neighbor in the M -dimensional feature
space. Then, HDBSCAN calculates the mutual reachability distance between each pair of members
of the dataset. When calculated between the ¢-th and j-th member, this mutual reachability distance
is defined as dyeqen(fis fj) = max(deore(fi), deore(f5), d(fis fj)) Where d(fi, f;) is the distance
between the feature vectors of the two members, assessed using a specified distance measure. The
mutual reachability distance between all pairs of members of the dataset is used to form a weighted
graph: the nodes are the members of the dataset and the edge weights are the associated mutual
reachability distances. This graph is summarized by a minimum spanning tree (MST), with a self-
loop added to each node. From this extended MST, a hierarchical representation of possible clusters
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is extracted. Using this cluster hierarchy, groupings that are sufficiently stable as a function of
distance and possess at least m;.,,;, members are selected as clusters; members that do not satisfy
this criteria are labeled as noise points. A modification presented by Malzer and Baum merges
clusters that are separated by a distance that falls below a specified threshold, emerge-zg In this
paper, HDBSCAN is accessed in Python using the hdbscan library developed by Mclnnes, Healy,
and Astels.?® For a more detailed discussion of the mathematical foundations of HDBSCAN, see
Campello, Moulavi, and Sander 2013.19

Distributed Clustering

Distributed clustering enables the problem of grouping the members of a large dataset to be
solved in a computationally tractable manner. Common approaches to distributed clustering tend to
follow four general steps.?’ First, the dataset is partitioned into multiple, smaller datasets that are
independently clustered to produce local clustering results. Then, these local clustering results are
subsampled. The summarized representations of each local clustering result are aggregated to form
a global cluster summary, composed of a subset of representative members from the original, large
dataset. The resulting summary can be returned to each local clustering result to either improve the
original clusters or label any data that does not appear in the global cluster summary.

Trajectory Clustering

Trajectory clustering is a form of time-series clustering that is applied to the evolution of continu-
ous or discrete variables describing the movement of an object over time.>® Common approaches to
describing these trajectories involve 1) constructing a lower dimensional model of each trajectory or
2) summarizing each trajectory using a sequence of relevant variables that evolve over time. Models
of trajectories may describe its shape via a bounding object, construct a function approximation, or
perform a frequency transformation. Alternatively, describing each trajectory by a sequence of co-
ordinates or other relevant variables involves selecting the resolution and sampling scheme to ensure
the time sequences sufficiently represents the trajectory without excess storage requirements.>> If
the trajectory is discretized into a time sequence, there are two common approaches to clustering
this higher-dimensional dataset. One approach discretizes the trajectory into subsegments, clus-
ters those subsegments, and identifies each trajectory by its sequence of subsegments; this is the
approach used by the well-known TRACLUS algorithm.?! Another approach simply clusters the
higher-dimensional description of the trajectory using a desired distance measure.

Curse of Dimensionality

When the members of a dataset are described in a high-dimensional feature space, the clustering
process can suffer from the well-known ‘curse of dimensionality’.?” The most relevant conse-
quences to the implementation in this paper include 1) the decreased relative importance of subse-
quent dimensions when calculating the distance between two objects using a Euclidean distance, 2)
selecting the most important features to describe a dataset to limit the total number of dimensions,
and 3) discovering sufficiently dense regions in a high-dimensional space when using density-based
clustering algorithms. Unfortunately, there are no generalizable solutions to the ‘curse of dimen-
sionality’. One common approach, dimension reduction, constructs an embedding of a dataset onto
a lower-dimensional space. However, this approach can also alter the groupings discovered by a
clustering algorithm and must be used with caution.’® In this paper, dimension reduction is not
employed due to its tendency to require parameter tuning to avoid extracting either a small number

6
DISTRIBUTION A: Approved for public release; distribution is unlimited. Public Affairs release
approval #AFRL-2023-3637.



of excessively large clusters or an excessive number of small clusters. Accordingly, the clustering
of a dataset in a high-dimensional feature space via HDBSCAN may produce some noise points in
regions of insufficient density or near the boundaries of some clusters.

TECHNICAL APPROACH

To generate a data-driven summary of trajectories that begin near the Moon in the Earth-Moon
system, this paper uses a framework that builds upon prior work by Bosanac as well as Bonasera
and Bosanac.!®!7 This framework leverages distributed clustering to group trajectories by their
geometry in an unsupervised manner. However, to accommodate trajectories that may depart the
Moon vicinity, a new trajectory summarization and description approach is presented. An overview
of the entire framework is presented in this section with brief examples.

Step 1: Generate and Partition Trajectory Dataset

Trajectories are generated from initial conditions that are defined using apses relative to the Moon
and partitioned into smaller subsets. In this paper, the focus is on prograde initial conditions that
begin between the L; and Lo gateways and lie within the zero velocity surfaces that are defined in
the CR3BP at a specified Jacobi constant, Cj 4. Although there are a variety of options for initial
condition definition, apses offer an intuitive interpretation as well as a straightforward calculation
approach across a larger dataset. To support a distributed clustering approach that reduces time and
computational expense, these apses are generated in smaller partitions. Within the i-th partition,
a grid of initial conditions is defined at fixed values of the z-coordinate z; and out-of-plane angle
of the velocity vector 6;. The definition of these initial conditions follows the approach presented
by Bonasera and Bosanac.!” Then, trajectories are generated from each initial condition over a
specified time horizon by numerical integration in either the CR3BP or the ephemeris model.

Within the ¢-th partition, a grid of initial conditions is defined in the Earth-Moon rotating frame.
This grid specifies combinations of N, and N, nondimensional x and y coordinates in the Earth-
Moon rotating frame that are evenly spaced within the following ranges: = € [Zmin, Tmaz], ¥ €
[Ymins Ymaz |- For the j-th combination of these two position variables along with the specified value
of z;, the position vector 7; ; is defined. At the specified value of C'; 4, the Jacobi constant expres-
sion is rearranged to calculate the speed as v; ; = \/ 2U *(fm-) — Cjq. If v;j is real-valued, the
spacecraft lies within the zero velocity surfaces associated with C'; 4 in the CR3BP at that location
and the position vector is used to compute an initial condition.

For each viable position vector 7; ; within the i-th partition, the velocity vector v; ; is calculated
to produce a prograde apse relative to the Moon with a Jacobi constant of C; 4. This velocity vector
must satisfy the following mathematical expression in the rotating frame:

(i — 1+ Wi + Yij%ij + 2525 =0 (12)

However, the solution to this expression lies in a two-dimensional nullspace. Accordingly, the out-
of-plane angle of the velocity vector 6; serves as an additional constraint. This angle is defined using
two basis vectors for the nullspace of Equation 12: @ ; ; lies in the xy-plane and produces a specific
angular momentum unit vector with a positive z-component whereas s ; ; is perpendicular to 1 ; ;
with a positive z-component. Thus, for a specified value of 6;, the velocity vector is calculated as:

o COS(Hi)'&l,i,j + Sin(@i)fbgmj
" cos(0:)i 1,5 + sin(0) iz,

13)

Vij =
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Figure 1. Definition of velocity vector for an apse using out-of-plane velocity angle 6.
Moon image credit: nasa.gov, not shown to scale.

This definition is displayed graphically in Figure 1. If the resulting velocity vector produces a
specific angular momentum vector relative to the Moon with a positive z-component, the state
vector supplies a valid prograde apse in the ¢-th partition.

Within the ¢-th partition, trajectories are propagated in a desired dynamical model from each
valid initial condition. In this paper, trajectories are generated until one of the following termina-
tion conditions is satisfied: a maximum integration time of 21 days, selected as a time interval of
interest when studying observed objects in cislunar space domain awareness; or passing within the
equatorial radius of the Earth or Moon. Note that these termination conditions enable the examined
trajectories to extend beyond the Moon vicinity and potentially visit various regions of the Earth-
Moon system. For trajectories generated in the CR3BP, numerical integration is performed directly
from the state vector for the j-th trajectory, labeled z; ; = [F; ;, 6i7j]T, using Equation 1. However,
for trajectories generated in the ephemeris model, the equations of motion are specified in an inertial
frame. Thus, the initial state vector 7; ; is dimensionalized using the instantaneous characteristic
quantities at a fixed initial epoch ?y, transformed into the Moon-centered inertial frame at ¢(, and
then nondimensionalized using the same constant characteristic quantities as in the CR3BP. The
resulting nondimensional and inertial state vector X;, j= [R;f':j, VZT]]T is then numerically integrated
forward in time from ¢y using Equation 2 until the termination conditions are met.

Step 2: Summarize each Trajectory

To effectively describe the shape of a continuous trajectory by a sequence of discrete states,
a trajectory sampling scheme is defined using concepts from differential geometry. A continuous,
curved trajectory 7(t) = (x(t), y(t), 2(t)) that is generated over a time interval ¢ € [t(, 7] possesses
an arclength s that is calculated as**

tr tr
5= / ds = / Va2 + 92+ 22dt (14)
to to

After parameterizing the trajectory by its arclength, i.e., 7(s), the tangent T, normal N, and binor-
mal B vectors may be defined at any location along the curve. Both 7" and N lie in the osculating
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plane, defined as the plane that passes through three sequential points as the arclength between them
approaches an infinitesimally small value.> Within this plane, the T vector is tangent to the path
whereas the N vector is pointed towards the center of curvature and along the derivative of T with
respect to the arclength.3* Then, the B vector completes the orthogonal, right-handed triad.

Using an arclength parameterization and the TN B basis vectors, two parameters describe how a
trajectory curves in three-dimensional space: the curvature x(t), which captures the deviation from
a straight line in the osculating plane, and the torsion 7(t), reflecting the change in orientation of
the osculating plane. For a position vector 7(¢) with velocity vector 7 and acceleration vector 7, the
curvature x(t) is mathematically calculated as

17 < 7]

K(t) = TFE (15)

The curvature is also equal to the rate of change of the angle swept out by the tangent vector
with respect to arclength.> Integrating «(t) along a curved trajectory produces the total absolute
curvature, equal to®

ty ty
Ktot(to, tf) = / k(s)ds = / k(8)\V @2 + 92 + 22dt (16)
to to

essentially capturing the cumulative angle traced out within the osculating plane as the path revolves
around a moving center of curvature.

In the field of computer graphics, curves and surfaces have been discretized to capture their shape
by sampling points using the total absolute curvature; this approach lies within a broader class of
shape interrogation methods.>® In regions of high curvature, where the path significantly deviates
from a straight line, this quantity increases more rapidly. However, unlike the curvature x(t) that
may possess a wide range of values along a single trajectory, the total absolute curvature increases
monotically and increases by approximately 27 with each revolution. Accordingly, the value of the
total curvature along a curve offers insight meaningful locations that capture its shape.

In this paper, each trajectory is discretized into a fixed number of states Ny that are equally
distributed in the total absolute curvature, calculated in the rotating frame. As an example, consider
two planar trajectories generated in the Earth-Moon CR3BP at C;4 = 3.165 and displayed in
black in Figure 2. In this figure, the Moon is located by a gray circle, not to scale, and the L
and L equilibrium points are located by red diamonds. The blue circles indicate Ny = 30 states
that are equally-distributed along each trajectory as a function of its total absolute curve whereas
the purple circle locates the initial condition. In Figure 2a), the trajectory performs over three
revolutions around the Moon. The total curvature along this trajectory is equal to approximately
3.37(27) with regions of high curvature located near apolune and perilune as well as the curve
near L. Accordingly, the total curvature changes rapidly in these regions and some of the sampled
states tend to be concentrated in their vicinity. Along the trajectory plotted in Figure 2b), however,
each revolution around the Moon possesses a much smaller difference between the perilune and
apolune distances. Consistent with this geometry, the total curvature does not change rapidly and
the sampled states appear more evenly distributed along the arclength of the trajectory.

For a sufficiently large value of N, states can be well-sampled along the entire trajectory but
concentrated near regions of high curvature, e.g., near apses. This approach supplies a fixed-length
and curve-based representation of a trajectory that both supports the use of a simple Euclidean dis-
tance metric and minimizes the loss of information about the shape of the continuous trajectory due
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Figure 2. Examples of N, = 30 states evenly distributed along two planar trajec-
tories, generated in the CR3BP at C'; = 3.165, as a function of the total absolute
curvature in the Earth-Moon rotating frame.

to discretization. Unlike an apse-based discretization, this approach also does not rely on determin-
ing one or more meaningful reference point/s for calculating the apse as a trajectory visits multiple
regions of a system. Furthermore, this approach has been observed to adequately represent a curved
trajectory with lower values of N, than equally distributing the states along a trajectory in time.
Note that the torsion is not currently incorporated into the discretization scheme used in this paper
due to its dependency on the third time derivative of the position vector in the rotating frame, which
is more mathematically intensive to calculate along a trajectory that is generated in the ephemeris
model; this extension is an avenue of ongoing work.

Each discretized trajectory is then described by a finite-dimensional feature vector. This feature
vector serves as an input to a clustering algorithm and must, therefore, reflect characteristics of
the dataset that are of interest to the analyst. In this paper, the goal is to group trajectories by their
geometry. However, the geometry of a nonlinear trajectory in three-dimensional space cannot be an-
alytically defined. Furthermore, rapidly computing meaningful clusters using the distance between
two trajectories in the configuration space may be challenging when the trajectory encompasses
regions of distinct sensitivities or extends far from its initial condition. Accordingly, a shape-based
feature vector is defined using the tangent vector expressed in the rotating frame at each of the N
points that are equally distributed in the total absolute curvature along a trajectory. With this defini-
tion, the tangent vector captures the local shape using quantities that remain within the range [—1, 1].
Furthermore, the trajectory discretization scheme indirectly supplies global shape information to the
feature vector. Mathematically, the feature vector for the i-th trajectory is defined as

fi = Tl,TQ,...,Tstl,TNS (17)

to produce a (3Ns)-dimensional vector. However, it is important to note that there may be a wide
variety of alternative, meaningful descriptions of a trajectory that produce distinct groupings of
trajectories during clustering for various applications.

Step 3: Cluster Individual Partitions

The trajectories contained within each partition are independently clustered via HDBSCAN with
a fixed set of governing parameters. First, the Euclidean distance is selected as the distance metric
used to compare two trajectories via the difference between their feature vectors. This distance
metric supports fast clustering with a reasonable computational load; however, it does require the use
of feature vectors with a fixed length across the whole dataset, consistent with the definitions in Step
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2. In addition, HDBSCAN is governed by three parameters, selected to be fixed when clustering
each partition: the minimum cluster size m s, = 50; the number of neighbors used in distance
computations mp;s = 2; and the distance threshold for merging clusters €,,¢rge = 0.3. The values
of these three parameters are selected through observation of their impact on the resulting clusters
across multiple partitions, balancing reducing the number of trajectories assigned as noise points
by HDBSCAN, producing a reasonable number of clusters, avoiding the existence of many small
clusters in high density regions, and avoiding producing too few clusters that do not sufficiently
differentiate trajectories of distinct geometries. Using these governing parameters, HDBSCAN is
used to group trajectories in the i-th partition into a set of clusters C; and noise points N that
produce the i-th local cluster summary.

To demonstrate the process of individually clustering each partition to produce groups of geo-
metrically similar trajectories, consider a set of trajectories generated at Cj4 = 3.165 with = 0°
in the Earth-Moon CR3BP. Three partitions of trajectories are constructed at z; ~ —0.0017, 22 ~
—0.0257, and z3 ~ —0.0977 with N, = N, = 200 for € [0.836,1.156] and y € [—0.12,0.12].
Within this grid, only a subset of the position vectors produce valid initial perilunes at a Jacobi
constant of C' ;4. The feature vectors describing the trajectories within each partition are indepen-
dently clustered using HDBSCAN with the selected governing parameters. The resulting clusters
are displayed in Figure 3 for each partition. In this figure, the initial perilunes of each trajectory are
projected onto the xy-plane of the Earth-Moon rotating frame and uniquely colored according to
their cluster assignment using shades of red and blue. Note that some colors may be repeated across
both subfigures, but the clusters are, at this step, independent. In these figures, black points indicate
noise points. Each partition in Figure 3 is grouped into the following number of clusters and noise
points: a) Cy is composed of 44 clusters of 28,535 trajectories and N7 includes 2,149 noise points;
b) Cy is composed of 33 clusters of 25,753 trajectories and N3 includes 3,425 noise points; and ¢)
C3 is composed of 11 clusters of 4,571 trajectories and N3 includes 77 noise points. In each case,
the noise points tend to lie predominantly at either the cluster boundaries or sensitive regions, i.e.,
near the Moon. However, because the goal is to extract the fundamental geometries exhibited by
the generated trajectories, rather than precisely determine the regions of the phase space that similar
trajectories encompass, this level of noise is deemed acceptable. Nevertheless, reducing the number
of trajectories designated as noise across each partition is an avenue of ongoing work.

Within each partition, the clustering process successfully groups trajectories of similar geometry
and separates trajectories of distinct geometries. To demonstrate this observation, consider the
clustering result plotted in Figure 3 a) for a partition of trajectories corresponding to 21 ~ —0.0017,

b
) 0
0.05 ,
0.05f \1 =
0.1
09 1 L1 09 1 11
T X X

Figure 3. Examples of clustering results for three partitions at a) z; ~ —0.0017, b)
2o &~ —0.0257, and ¢) z3 ~ —0.0977.
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Figure 4. Examples of three clusters within a partition with z; ~ —0.0017, 6; = 0°,
and Cj 4 = 3.165.

1 = 0° and Cj4 = 3.165 and generated in the Earth-Moon CR3BP. Figure 4 displays a subset
of trajectories in 3 of the 44 clusters in C; generated for this partition and projected onto the zy-
plane of the Earth-Moon rotating frame. Within each subfigure, one trajectory is highlighted in
thick blue with a circle locating the initial condition. In these figures, the Moon is located by a
gray circle (not to scale) and two red diamonds locate L; and Lo. Several additional members,
sampled across each cluster, are colored in light blue. As demonstrated in these examples, each
group of trajectories possesses a similar geometry in the three-dimensional configuration space.
Furthermore, across these clusters, their geometry is distinct. Note that in some cases, trajectories
with a similar shape that begin and end in distinct regions of the solution space may be grouped in
the same cluster. This is not unexpected as the feature vector only captures the shape rather than the
location of each sampled state along the trajectory. Ongoing work includes performing a subsequent
cluster refinement step to further separate any subgroups of trajectory in distinct locations of the
configuration space.

Step 4: Aggregate Clusters Across Partitions

To ensure that clustering a large dataset is computationally feasible, a cluster aggregation proce-
dure is employed. This aggregation process is similar to the procedure presented by Bonasera and
Bosanac and is performed in the following two phases:!’

1. The local cluster summaries of partitions with the same values of the out-of-plane angle of
the velocity vector are aggregated to produce an intermediate §-cluster summary
2. The 6-cluster summaries are aggregated to produce a global cluster summary, G

Within each phase, clusters are aggregating by subsampling previous clustering results and grouping
their reduced set of members via HDBSCAN. The cluster aggregation process in each phase follows
a binary tree structure as described in this subsection.

To reduce the computational load of cluster aggregation, each set of clusters and noise points that
are identified after each application of HDBSCAN is subsampled. Specifically, each cluster with
more than Ny i, = 200 members is subsampled to retain every Ny sqmp = 2 members in the
ordered list of cluster members. For the noise trajectories, every Ny noise = 2 trajectories in the
ordered list are retained in case they are later clustered with trajectories from other partitions.

Cluster aggregation in each phase follows a binary tree structure. This procedure is graphically
depicted in Figure 5. First, the local cluster summary of each partition is subsampled. Then, the
reduced set of members of each neighboring pair of partitions for a fixed value of € is input to
HDBSCAN to produce an intermediate cluster summary. At the next level of cluster aggregation,

12
DISTRIBUTION A: Approved for public release; distribution is unlimited. Public Affairs release
approval #AFRL-2023-3637.



Local clustering results

Ci Ca Cs Cy Cs Co || Cr Cs
RN NSNS ]
T T34 Zs6 Irs .
\ / \ / — z-aggregation
Ti_4 Is g .
I . T —J»- @ -aggregation
g Global cluster summary

Figure 5. Conceptual depiction of cluster aggregation process.

each neighboring pair of intermediate cluster summaries is subsampled and input to HDBSCAN to
produce a new intermediate cluster summary. When an odd number of cluster summaries exist in
any step of the cluster aggregation process, however, that summary proceeds to the next step without
subsampling. This process, labeled z-aggregation, continues until there is one #-cluster summary.
This z-aggregation process is performed independently for each value of 6. Next, the 8 cluster sum-
maries are aggregated using the same binary tree structure to produce one global cluster summary
G. At the final step of generating the global clustering result, €,,¢rqe is increased to 1 to avoid the
discovery of smaller, dense clusters that exist within a broader region of similar solutions. Over-
all, this approach enables geometrically similar trajectories across distinct partitions to be combined
into a single cluster, regions with more information to be split into multiple clusters when geometric
differences are discovered, and mitigation of the impact of a previous poor clustering result.

Step 5: Extract Representative Trajectories from Each Cluster

To facilitate visualization and analysis, each cluster is described by a single representative tra-
jectory, similar to the approach presented by Bosanac as well as Bonasera and Bosanac.!®!7 This
representative trajectory is extracted as the medoid, which is defined as the member of a cluster that
is most similar to the other members.3° Mathematically, the trajectory 7,,eq,% that is the medoid of
cluster C}, is calculated using the feature vectors of its P, members as

Py
Toed. = argmingce, | > d(fi, f;) (18)
J=L,i#j

where d(f;, fj) is the Euclidean distance between the feature vectors of the i-th and j-th trajectories
and 7; is the i-th trajectory. Examples of cluster representatives appear as thick blue curves for the
three clusters displayed earlier in Figure 4.

RESULTS
Summarizing Trajectories in the Earth-Moon CR3BP

The clustering based framework is used to generate a data-driven summary of natural space-
craft trajectories at C';4 = 3.165 in the Earth-Moon CR3BP. The initial conditions are gener-
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ated using the following grid of zy-coordinates: N, = N, = 200 for x € [0.836,1.156] and
y € [—0.12,0.12]. These initial conditions are generated in partitions with 64 values of z €
[—0.108,0.108] and 19 values of § = [—89°, —80°, ..., —10°,0°,10°, ...,80°,89°]. Within each
partition, there are between 36 and 30,684 trajectories for a total of 23,824,964 trajectories. Each
trajectory is discretized into Ny = 30 states that are equally distributed along the trajectory as a
function of the total absolute curvature. During the cluster aggregation process, the following gov-
erning parameters are supplied to HDBSCAN: mpin = 50, mpts = 2, €merge = 0.3. At the final
step of f-aggregation, €,,¢rqe is increased to a value of 1 to avoid the detection of many smaller
clusters of trajectories with a similar geometry.

Using the clustering framework to group the feature vectors associated with the generated tra-
jectories in a distributed manner produces a global clustering result with 218 clusters composed of
51,235 trajectories. The representative trajectories of these clusters are displayed in Figures 6- 8 in
the Earth-Moon rotating frame. In these figures, the L; and Ly equilibrium points are located by
red diamonds whereas the Moon and, where applicable, the Earth are displayed as gray circles that
are not to scale. The initial condition along each trajectory is located by a circle marker. Note that
some subfigures feature multiple representatives of similar geometry in distinct colors.

Analysis of Figures 6-8 reveals the extraction of a wide array of trajectories with distinct geome-
tries. First, note that in some cases, paths that are symmetric about the xy-plane in the Earth-Moon
rotating frame appear to be separated. Where possible these trajectories are located in the same
subfigure. Further analysis is required to identify the reason that these trajectories are separated
into distinct clusters, particularly those that are expected to encompass trajectories located in the
zy-plane with z = 0. In other cases, trajectories that have a similar geometry but distinct phasing
are also separated. In any case, the top two rows of Figure 6 display trajectories that depart the
Moon vicinity through the L; or Lo gateways after performing a distinct number of revolutions.
A majority of the remaining representative trajectories within this figure perform a few revolutions
around the Moon with a distinct geometry, apsidal rotation, and extension predominantly above or
below the zy-plane. Alternatively, the seventh and eighth rows of Figure 7 feature representatives
that impact the Moon after a high inclination and high eccentricity revolution around the Moon. The
final two rows of Figures 7 and 8 also include trajectories with a close pass to the Moon but tracing
out a tulip-shaped path with high inclination and high eccentricity revolutions.

Summarizing Trajectories in an Ephemeris Model

The clustering based framework is used to summarize a set of natural spacecraft trajectories in
the point mass ephemeris model of cislunar space. The initial conditions are generated using the
following grid of zy-coordinates: N, = N, = 100 for € [0.836,1.156] and y € [—0.12,0.12].
These initial conditions are generated with 16 values of z € [—0.108, —0.0.0035] and 19 values of
0 = [—89°, —80°, ... — 20°,—10°,0°,10°,20°, ...,80°,89°]. Note that this example uses a coarser
grid of initial conditions than in the previous example in the CR3BP as well as only half the possible
range of values of z due to the increased computational time associated with generating trajecto-
ries in an ephemeris model. Next, the velocity vector is defined to produce a Jacobi constant of
Cj4 = 3.165 in the CR3BP. Although the Jacobi constant is not constant in the ephemeris model,
this approach supports a proof of concept. Within each partition, there are between 10 and 7,630 tra-
jectories for a total of 1,455,172 trajectories. Each trajectory is discretized into Ny = 30 states that
are equally distributed along the trajectory as a function of the total absolute curvature, calculated
in the pulsating Earth-Moon rotating frame.

14
DISTRIBUTION A: Approved for public release; distribution is unlimited. Public Affairs release
approval #AFRL-2023-3637.



Figure 6. Representative, spatial trajectories of the 218 clusters in the global cluster
summary constructed at C'; o = 3.165 in the Earth-Moon CR3BP.
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Figure 7. Representative, spatial trajectories of the 218 clusters in the global cluster
summary constructed at C; ; = 3.165 in the Earth-Moon CR3BP.
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Figure 8. Representative, spatial trajectories of the 218 clusters in the global cluster
summary constructed at C'; ; = 3.165 in the Earth-Moon CR3BP.

The clustering framework is used to group the feature vectors associated with the large array
of trajectories in a distributed manner to produce a global clustering result. During the cluster
aggregation process, the following governing parameters are supplied to HDBSCAN: mjyin = 10,
Mpts = 2, €merge = 1. These parameters are updated due to the coarser grid used to define the initial
conditions in this example. At the final step of #-aggregation, €,,erqe 1S increased to a value of 2 to
avoid the detection of many smaller clusters.

Following cluster aggregation, the global clustering result is composed of 52 clusters of 13,325
trajectories. The representative trajectories of these clusters are displayed in Figure 9 in the pulsating
Earth-Moon rotating frame. In these figures, the L and L9 equilibrium points are located by red
diamonds whereas the Moon and, where applicable, the Earth are displayed as gray circles that are
not to scale. The initial condition along each trajectory is located by a circle marker. Note that some
subfigures feature multiple representatives of similar geometry in distinct colors.

Analysis of Figure 9 reveals the recovery of an array of trajectories with distinct geometries. The
top row features trajectories that depart through the L; or Lo gateways after a distinct number of
revolutions. Because the initial conditions in this case only encompass negative values of z, this
clustering result does not feature 2 clusters of geometrically similar trajectories that exist above or
below the xy plane. The second and third rows of Figure 9 feature cluster representatives of distinct
geometry that perform at least one revolution around the Moon before either 21 days has elapsed or
lunar impact. The fourth row includes cluster representatives that impact the Moon after completing
a high inclination and high eccentricity revolution. The final row features trajectories that trace out
a tulip shape via high inclination and high eccentricity revolutions with a maximum extension above
or below the xy-plane.

Conclusions

A clustering-based framework is used to extract a data-driven summary of a diverse set of tra-
jectories in the Earth-Moon system. First, these trajectories are generated from prograde apses at
a single energy level for up to 21 days. Then, these trajectories are discretized by evenly sampling
states as a function of the total absolute curvature. The tangent vector at each of these states is used
to form a feature vector that effectively captures the shape of the trajectory. These feature vectors,
computed for all trajectories, are grouped into partitions based on their initial z-coordinate and out-
of-plane velocity angle. Trajectories in each partition are clustered individually using HDBSCAN
and their clustering results are aggregated by subsampling and reapplying the clustering process in
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Figure 9. Representative, spatial trajectories of the 52 clusters in the global cluster
summary constructed at C'; ; = 3.165 in the point mass ephemeris model of the Earth-
Moon system.

a binary tree structure. The resulting global cluster summary is then analyzed using representative
trajectories of each cluster.

This data-driven framework is used to extract a summary of natural spacecraft trajectories that
begin from apses at a single energy level where the L; and Lo gateways are open in the Earth-Moon
system. This summary is constructed for trajectories that are generated in two models of distinct
fidelity: the Earth-Moon CR3BP and a point mass ephemeris model of the Earth, Moon, and Sun.
In each case, the global cluster summary captures trajectories with distinct geometries, performing
distinct revolutions around the Moon, and traveling through various regions of the system. Com-
paring these two global cluster summaries supports analysis of the impact of model fidelity on the
characteristics of trajectories generated from the same set of initial conditions.
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