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Abstract Rapid trajectory design in multi-body systems often leverages individ-
ual arcs along natural dynamical structures that exist in an approximate dynamical
model. To reduce the complexity of this analysis in a chaotic gravitational envi-
ronment, a motion primitive set is constructed to represent the finite geometric,
stability, and/or energetic characteristics exhibited by a set of trajectories and,
therefore, support the construction of initial guesses for complex trajectories. In
the absence of generalizable analytical criteria for extracting these representative
solutions, a data-driven procedure is presented. Specifically, k-means and agglom-
erative clustering are used in conjunction with weighted evidence accumulation
clustering, a form of consensus clustering, to construct sets of motion primitives
in an unsupervised manner. This data-driven procedure is used to construct mo-
tion primitive sets that summarize a variety of periodic orbit families and natural
trajectories along hyperbolic invariant manifolds in the Earth-Moon circular re-
stricted three-body problem.

Keywords Multi-body systems · Clustering · Motion primitives · Dynamical
systems theory

1 Introduction

Human exploration of the lunar surface through a cislunar waypoint, robotic ex-
ploration of asteroids and planetary systems, and the use of advanced space tele-
scopes all require the operation of spacecraft in chaotic, multi-body gravitational
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environments (Bosanac et al. 2019; Restrepo et al. 2018; Whitley et al. 2018).
These types of missions necessitate a rapid and intuitive trajectory design process
that enables the design of complex trajectories during concept development and,
potentially, post-launch. In multi-body systems, one current approach to rapid
trajectory design begins with generating a large database of solutions discretized
along families of fundamental solutions such as periodic and quasi-periodic orbits
(Folta et al. 2015; Parker et al. 2010). Similarly, analysis of the natural transport of
celestial bodies throughout a multi-body system leverages the generation of stable
and unstable manifolds of periodic and quasi-periodic orbits (Koon et al. 2011).
Specialized design tools then support the exploration and analysis of these families
of solutions to identify arcs that are assembled to form an initial guess for a tra-
jectory (Guzzetti et al. 2016). However, searching over a large and complex design
space may impede analysis because it requires significant time and resources from
a human-in-the-loop. Accordingly, strategies for simplifying the analysis of the
design space support effectively exploring and leveraging natural motion for in-
creasingly complex mission concepts, mission extensions, and real-time operations
as well as the study of natural transport in a multi-body system.

To support continued advancement in trajectory design, the concept of a mo-
tion primitive is used in this paper to summarize sets of trajectories in a multi-body
system. A motion primitive may be described as an average representation of a
range of similar solutions. This concept has been explored extensively in robotic
motion planning, transportation applications, and human body gesture analysis
(Frazzoli 2001; Jenkins and Mataric 2002; Paranjape et al. 2015; Reng et al. 2005;
Wang et al. 2018). In each of these fields, motion primitives are used to decompose
complex actions or paths into a finite set of representative components, either via
analytical or data-driven techniques. This paper focuses on applying this concept
to the analysis of multi-body systems by constructing a motion primitive set that
summarizes the characteristics of a set of trajectories seeded from a family of fun-
damental solutions; this definition is motivated by the eventual goal of reducing
the complexity of analysis for a human analyst or in autonomous path planning.

In this paper, motion primitives are used to summarize trajectories within a
multi-body system and in a manner that does not place a significant burden on a
human analyst. Often used in preliminary trajectory design or the analysis of nat-
ural transport within multi-body systems, the circular restricted three-body prob-
lem (CR3BP) admits a solution space that exhibits distinctly different sensitivities
in various regions and energy levels (Szebehely 1967). However, families of fun-
damental solutions supply a useful representation of the solution space (Guzzetti
et al. 2016; Haapala et al. 2015; Koon et al. 2011). Thus, as a proof of concept,
motion primitives are constructed to summarize families of periodic orbits and hy-
perbolic invariant manifolds in the CR3BP. In contrast to traditional applications
in robotics, solutions with the same characteristics as a motion primitive in a spe-
cific system modeled by the CR3BP only exist within a limited region of the phase
space; yet, the terminology motion primitive still applies as the associated repre-
sentative trajectory summarizes similar solutions and may support initial guess
construction during the trajectory design process. One challenge, however, in ex-
tracting a set of motion primitives in the CR3BP is that generalizable and exact
analytical criteria for grouping solutions along a family according to both quali-
tative and quantitative characteristics do not currently exist. Thus, clustering, an
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unsupervised learning process, is employed to group similar solutions. From each
cluster, a single representative member serves as the associated motion primitive.

The utility of clustering algorithms in grouping solutions to nonlinear dynami-
cal systems has been demonstrated by a variety of researchers. For instance, spec-
tral clustering has been employed by Hadjighasem, Karrasch, Teramoto, and Haller
to identify coherent Lagrangian vortices within a dynamical system (Hadjighasem
et al. 2016). In astrodynamics, the partition-based clustering algorithm, k-means,
has been used by Nakhjiri and Villac to identify bounded motions in a specific
region of a Poincaré map and by Villac, Anderson, and Pini to group periodic or-
bit solutions based on the locations of apses and orbital period in the augmented
Hill three-body problem (Nakhjiri and Villac 2015; Villac et al. 2016). In addition,
Bosanac and Bonasera and Bosanac have applied hierarchical density-based clus-
tering methods to Poincaré maps in the CR3BP to group trajectories with similar
geometries to facilitate analysis in the trajectory design process (Bonasera and
Bosanac 2021; Bosanac 2020). These applications of clustering all demonstrate
the value of a data-driven approach to grouping members of a family or set of
trajectories in a chaotic dynamical system based on a defined set of features.

The focus of this paper is to present and demonstrate a systematic motion
primitive construction process to summarize dynamical structures in the CR3BP.
Generating a set of motion primitives to summarize families of periodic orbits and
hyperbolic invariant manifolds supports analysis of the natural transport mecha-
nisms that are often used in trajectory design and govern the natural motion of
small celestial bodies (Davis et al. 2010; Gómez et al. 2004; Lo 2002). This paper
presents an automated approach for motion primitive construction that limits the
burden on a human analyst and may be applied to a variety of periodic and non-
periodic trajectories in the CR3BP. Specifically, the motion primitive construction
process leverages k-means (a partition-based method), agglomerative clustering (a
hierarchical method), and Weighted Evidence Accumulation Clustering (WEAC)
(a consensus method) to extract motion primitives from a set of trajectories based
on common trajectory design parameters such as geometry, stability, and energy.
The procedure is outlined and demonstrated in detail by constructing motion
primitives for the distant prograde orbit (DPO) family, the northern L1 halo orbit
family, and trajectories along the unstable manifold associated with an L1 Lya-
punov orbit in the Earth-Moon CR3BP. Then, this procedure is extended to a
wide variety of planar and spatial periodic orbit families throughout the Earth-
Moon CR3BP. Based on these results, this paper offers two contributions: i) a
data-driven procedure for constructing a set of motion primitives that summarizes
a family or set of trajectories in an unsupervised manner, and ii) a demonstration
of this procedure in the context of a variety of natural motions throughout the
Earth-Moon CR3BP. These contributions may, potentially, contribute to summa-
rizing and reducing the complexity of exploring the solution space admitted by a
multi-body system, reducing the analytical workload of a trajectory designer, and
facilitating further advancement in rapid and informed trajectory design proce-
dures; demonstrating the use of the constructed motion primitives in the initial
guess construction process is the focus of ongoing work.
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2 Background: Dynamical Model and Fundamental Solutions

The CR3BP is used to approximate the motion of a spacecraft (or small celestial
body) under the point mass gravitational influences of the Earth and Moon, each
assumed to travel along circular orbits. The spacecraft is assumed to possess a
negligible mass compared to the larger primary, the Earth, with constant mass
M1 and the smaller primary, the Moon, with constant mass M2 (Szebehely 1967).
Following application of these assumptions, a rotating reference frame is defined
using the system barycenter as the origin and axes x̂ŷẑ: x̂ is directed from the
Earth to the Moon, ẑ is aligned with the orbital angular momentum of the primary
system, and ŷ completes the right-handed triad (Szebehely 1967). Then, length,
mass, and time quantities are nondimensionalized using the characteristic param-
eters l∗, m∗, and t∗, respectively (Szebehely 1967). Typically, l∗ is set equal to the
distance between the Earth and Moon, m∗ corresponds to the total mass of the
system, and t∗ is defined such that the nondimensional period of the primary sys-
tem is equal to 2π (Koon et al. 2011). The state of the spacecraft is then written in
the rotating frame as a nondimensional vector x = [x, y, z, ẋ, ẏ, ż]T relative to the
barycenter of the system. Accordingly, the nondimensional equations of motion
for the spacecraft in the CR3BP are written in the rotating frame as

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32

z̈ = − (1− µ)z

r31
− µz

r32

(1)

where µ = M2/(M1 +M2) is the mass ratio, while r1 =
√

(x+ µ)2 + y2 + z2 and

r2 =
√

(x− 1 + µ)2 + y2 + z2 are the distances between the spacecraft and the
Earth and Moon, respectively. In this dynamical system, an integral of motion,
labeled the Jacobi constant, exists and is equal to

CJ = (x2 + y2) +
2(1− µ)

r1
+

2µ

r2
− ẋ2 − ẏ2 − ż2 (2)

At a single Jacobi constant, a variety of fundamental solutions exist throughout the
phase space, including equilibrium points, periodic orbits, quasi-periodic orbits,
and hyperbolic invariant manifolds (Koon et al. 2011; Szebehely 1967).

In the CR3BP, periodic orbits exist within continuous families and contribute
to an underlying dynamical structure that influences natural transport within a
multi-body system (Koon et al. 2011; Szebehely 1967). Periodic orbits correspond
to trajectories that precisely repeat in the rotating frame, with the minimal time
interval for repetition labeled the orbit period. Families of periodic orbits exist
throughout the phase space and are often labeled using the location of some mem-
bers relative to primaries and/or libration points, bifurcations that occur along the
family, orbital resonance admitted by selected members, or direction of motion.
The direction of motion is typically described in the rotating frame: a state that
is labeled as prograde (or retrograde) with respect to a selected reference location
produces an instantaneous orbital angular momentum vector of the spacecraft with
respect to the reference that possesses a positive (or negative) z component.
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Each family of periodic orbits used in this paper is computed numerically us-
ing multiple-shooting in conjunction with pseudo-arclength continuation. To com-
pute a single periodic orbit, an initial guess is constructed using either a stability
analysis of a libration point, Poincaré mapping, resonance analysis in the two-
body problem, or bifurcation analysis of another periodic orbit family (Bosanac
2016; Hadjidemetriou 1993; Koon et al. 2011; Szebehely 1967). The initial guess
is then discretized into multiple arcs with equal integration times. The states at
the beginning of all arcs along with the common integration time along all arcs
are considered free variables. These free variables are adjusted iteratively using
Newton’s method to ensure continuity between all neighboring arcs and, there-
fore, periodicity to within a specified tolerance of 10−12 (Bosanac 2016; Koon
et al. 2011). Then, pseudo-arclength continuation is used to compute additional
members along the periodic orbit family until one of several termination criteria
are satisfied: a maximum number of members has been calculated, members pass
within a specified minimum threshold on the distance from a primary, the entire
family is computed, or the numerical corrections process fails to compute addi-
tional members (Bosanac 2016; Keller 1977). Upon completion of the corrections
and continuation process, the computed segment of a family of periodic orbits is
characterized and analyzed.

The stability of a periodic orbit offers preliminary insights into the solution
space in its local neighborhood and the existence of associated dynamical struc-
tures. First, a monodromy matrix is calculated by propagating the state transition
matrix from a selected point along the periodic orbit for precisely one orbital pe-
riod (Koon et al. 2011). Then, the monodromy matrix is decomposed into a set
of six eigenvalues and associated eigenvectors. In the CR3BP, the eigenvalues ex-
ist in reciprocal or complex conjugate pairs: one trivial pair corresponds to unity
eigenvalues, while the two nontrivial pairs of eigenvalues are used to assess the sta-
bility of the periodic orbit. This stability information is often summarized using
the stability indices, s1 and s2 (Howell 1984). Each of these indices is computed
in this paper as the following sum of a pair of nontrivial eigenvalues, λj and λk,
of the monodromy matrix associated with the periodic orbit:

si = λj + λk (3)

for i = 1, 2. A value of the stability index between -2 and 2 indicates the existence
of an oscillatory mode and, therefore, a center eigenspace that includes nearby
quasi-periodic orbits. An index possessing a magnitude greater than 2, however,
indicates the existence of stable and unstable eigenspaces that govern natural
motion into and away from the orbit, respectively (Koon et al. 2011). When the
order of magnitude of the stability index associated with stable and unstable modes
is low, nearby trajectories exciting these modes are relatively slow to arrive into
or depart from the orbit.

Global stable and unstable invariant manifolds govern the natural flow of tra-
jectories that asymptotically approach and depart an unstable periodic orbit, re-
spectively (Koon et al. 2011). In the CR3BP, global stable and unstable manifolds
are computed numerically (Koon et al. 2011). First, the unstable periodic orbit
is discretized into NPO points, equally spaced in time. Then, a single point is
perturbed by a small step along the eigenvector associated with either the stable
or unstable mode to produce an approximation of a state that lies in the stable
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or unstable eigenspace, respectively. This state is then used to produce a trajec-
tory that lies in the global stable or unstable manifold by integrating backward
or forward in time, respectively, until any termination criteria are satisfied. These
termination criteria may include a maximum integration time, maximum number
of apses, crossing a specified boundary in the configuration space, or impacting a
primary body. This procedure is repeated for all NPO points to produce a set of
trajectories that span the computed segment of the stable or unstable manifold
associated with the unstable periodic orbit.

3 Background: Extracting Motion Primitives via Clustering

Motion primitives have been used in various disciplines to construct a reduced
basis set of path segments, actions, configurations, or behaviors that reflects the
characteristics of a solution space; however, the exact definition of a motion prim-
itive depends on the field of application (Frazzoli 2001; Jenkins and Mataric 2002;
Paranjape et al. 2015; Reng et al. 2005; Wang et al. 2018). In robotic motion plan-
ning, motion primitives may be defined as sets of control inputs that result in a
common desired behavior, such as a circular path or an aggressive turn (Paranjape
et al. 2015). Similarly, in transportation applications, motion primitives may be
defined as steering and velocity profiles that result in different basic driving tasks
such as a lane change or lane keeping (Wang et al. 2018). A set of Euler angles may
be used in human body gesture analysis to define motion primitives as fundamen-
tal limb configurations (Reng et al. 2005). Frazzoli defines trajectory primitives in
the context of autonomous vehicle motion planning as a set of path segments that
capture the characteristics of the solution space, support complex path construc-
tion, and support extraction of key state description parameters (Frazzoli 2001).
Based on these examples, a motion primitive set is defined in this paper as a set
of arcs that capture the characteristics of a larger set of trajectories and support
assembly of an initial guess for a more complex path in a multi-body system.

Although motion primitives may be extracted analytically or by a human ana-
lyst in simple environments, their extraction is significantly more challenging and
time-consuming in complex and higher-dimensional dynamical systems (Jenkins
and Mataric 2002; Jiang et al. 2016; Wang et al. 2018). In complex dynamical
environments, data is often sampled or observed from the environment and then
data mining techniques such as feature selection, dimensionality reduction, and
clustering are employed to uncover the fundamental primitives in the system. Due
to the complexity of the solution space in a multi-body system, this paper lever-
ages clustering to group solutions that possess a similar set of characteristics; these
characteristics of interest are defined using domain knowledge. A representative
member from each cluster is then designated as the motion primitive (Bosanac
2020; Han et al. 2012; Jiang et al. 2016). Together, the reduced set of trajectories
that form a motion primitive set summarize a larger set of arcs of trajectories that
exist in a multi-body system.

Clustering is an unsupervised learning method for separating the members of a
dataset into a finite number of groups based on a defined set of features (Han et al.
2012). Data in the same cluster possess similar properties while data in different
clusters possess dissimilar properties in a prescribed feature space. Each of the n
members of a dataset is described by an m-dimensional feature vector f . A clus-
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tering algorithm is then applied to the (n×m)−dimensional dataset to construct
groupings of the members within the set. Note that sufficiently sampling the data
source and constructing an appropriate feature space to produce a useful set of
clustering results is determined by the human analyst. For the selected dataset,
the resulting clusters are influenced by various factors including: the dataset sup-
plied to the clustering algorithm, the type of clustering method and associated
algorithm, the input parameters governing the algorithm, and the selected feature
space description (Aggarwal and Reddy 2014). In addition, it is often challenging
to select an appropriate algorithm and input parameters for a desired application
because the structure of the dataset is typically not known a priori.

To facilitate parameter and algorithm selection in the clustering process, con-
sensus clustering is employed: using an ensemble of individual clustering results to
form a single clustering solution (Aggarwal and Reddy 2014; Fred and Jain 2005).
This paper leverages the WEAC algorithm to perform consensus clustering due
to its capacity to produce clusters of arbitrary shapes, sizes, and densities (Fred
and Jain 2005; Huang et al. 2015). As an input to the WEAC algorithm, individ-
ual clustering results are constructed using k-means, a partition-based method,
and agglomerative clustering, a hierarchical method, each governed by a variety
of input parameters. The k-means algorithm is used due to its iterative nature
and computational efficiency, while agglomerative clustering is used due to its de-
terministic nature and the useful insights gained from the resulting dendrogram.
Furthermore, both of these clustering algorithms have been successfully used in
shape-based time-series clustering applications (Aggarwal and Reddy 2014). This
section supplies an overview of these clustering algorithms.

3.1 K-Means

The k-means algorithm is a partition-based clustering method that groups mem-
bers of a dataset according to their distance from k centroids. The centroid of a
cluster is defined using the mean feature vector of the members assigned to the
cluster (Han et al. 2012). The algorithm requires the number of clusters, k, as an
input; then, the centroids are initialized by randomly selecting k members of the
dataset (Han et al. 2012). Clusters are then formed by associating each member
to the closest centroid using the l2-norm as a distance metric. After assigning each
member to a cluster, the centroid of each cluster is recomputed and the members
are reassigned to their new closest centroids to form new clusters. This process is
repeated iteratively with the goal of minimizing the sum of the squared Euclidean
distances between the centroid of each cluster and the associated members. The al-
gorithm terminates either when the clusters remain unchanged from one iteration
to the next or a maximum number of iterations is exceeded. If k-means clustering
converges on a clustering result prior to reaching the specified maximum number
of iterations, the algorithm recovers a local minimum that depends on the selection
of the initial centroids (Pedregosa et al. 2011). Furthermore, the primary limita-
tion of k-means is selecting the desired number of clusters when the structure of
the dataset is not known or understood a priori. However, using k-means within
the consensus clustering process offers one approach to selecting an appropriate
value of k without a priori knowledge of the dataset or significant reliance on a
human-in-the-loop when applied to a variety of distinct datasets.
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To increase the stability and robustness of using k-means clustering, the algo-
rithm is often applied multiple times to the same dataset but with different initial
centroids (Han et al. 2012; Pedregosa et al. 2011). Then, the clustering result with
the lowest inertia, E, is selected; minimizing the inertia indicates the computa-
tion of more compact clusters that minimize the sum of the squared Euclidean
distances between the centroid of each cluster and the associated members. The
inertia is a metric that is defined as

E =
k∑
i=1

∑
f∈Ci

||f − ci||2 (4)

where Ci is the i-th cluster, f is the feature vector of a member in the i-th cluster,
and ci is the centroid of the i-th cluster (Han et al. 2012; Pedregosa et al. 2011)
By selecting the clustering result with the lowest inertia, the algorithm becomes
more stable and less dependent on the selection of the initial centroids.

3.2 Agglomerative Clustering

Agglomerative clustering uses a bottom-up approach to hierarchically represent a
dataset as a tree with each node corresponding to a cluster. For a dataset com-
posed of nmembers, the tree has n leaves, each initially corresponding to a separate
cluster (Han et al. 2012). At each step of the algorithm, the distances between all
of the current clusters are computed and the pair of clusters with the smallest
inter-cluster distance is combined. This process continues until all members are
grouped into a single cluster. The resulting tree of clusters is often summarized
by a dendrogram that reflects the structure of the dataset at various inter-cluster
distances (Han et al. 2012). The dendrogram also captures the lifetime of a spec-
ified number of clusters, defined as the range of inter-cluster distances at which
those clusters are present and constant (Fred and Jain 2005); long lifetimes in
the dendrogram often indicate natural groupings of the dataset. To generate the
final clustering result, the dendrogram is cut at a specified inter-cluster distance
and the corresponding clusters in the hierarchy are obtained. A suitable value of
the inter-cluster distance may be selected either: manually, automatically as the
midpoint of the inter-cluster distance range with the longest lifetime, or automati-
cally as the midpoint of the inter-cluster distance range corresponding to a desired
number of clusters.

The method used to compute the inter-cluster distance, known as the linkage
type, fundamentally influences the underlying tree structure produced by agglom-
erative clustering. Common linkage types include single, complete, average, and
Ward linkage (Aggarwal and Reddy 2014; Han et al. 2012). Single linkage mea-
sures the inter-cluster distance as the distance between the closest two members in
the two clusters whereas complete linkage uses the farthest two members. Average
linkage measures the inter-cluster distance as the average of the distances between
all of the members of the two clusters. Ward linkage, however, captures the in-
crease in the sum of squared distances between each member of two clusters and
its associated centroid due to merging the clusters. Mathematically, Ward linkage
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defines the inter-cluster distance between clusters Ci and Cj as

d(Ci, Cj) =

√
2|Ci||Cj |
|Ci|+ |Cj |

||ci − cj || (5)

where |Ci| and |Cj | are the number of members in the i-th and j-th clusters,
respectively; and ci and cj are the centroids of the i-th and j-th clusters, respec-
tively (Kaufman and Rousseeuw 2005). By minimizing the increase in the sum
of squared distances of the merged clusters at each step of the algorithm, Ward
linkage tends to produce compact and well-separated clusters while considering
the overall structure of each cluster. Average linkage is also useful for considering
the overall structure of clusters throughout the merging process. However, sin-
gle and complete linkage only focus on the local and global structure of clusters,
respectively, during the merging process and are more sensitive to noise and out-
liers in a dataset (Aggarwal and Reddy 2014). Distinctly different tree structures
and, subsequently, clustering results may be produced using different definitions
of inter-cluster distance.

3.3 Weighted Evidence Accumulation Clustering

WEAC generates a consensus clustering result from an ensemble of base clustering
results. A significant benefit of using consensus clustering is the capacity to produce
better quality and more robust results than a single clustering solution for a variety
of datasets, while also supporting automated input parameter selection (Aggarwal
and Reddy 2014; Fred and Jain 2005; Huang et al. 2015). The WEAC algorithm
requires an ensemble of NC base clustering results as an input, defined as the set P.
Each base clustering result, Pi for i = [1, NC ], is the set of cluster labels assigned
to the members of a dataset. These base clustering results may be generated in any
manner. For example, the ensemble may be generated by a single algorithm with
varying input parameters and/or a variety of clustering algorithms (Fred and Jain
2005; Huang et al. 2015). In this paper, both k-means and agglomerative clustering
with Ward linkage are used to generate an ensemble of clustering solutions, each for
several distinct values of k within a specified range. Each base clustering solution
is considered a piece of independent evidence for the natural groupings within
the dataset that is used in generating a consensus result from the ensemble of
accumulated evidence.

Given an ensemble of base clustering results, WEAC assumes two members of
a dataset naturally belong to the same cluster if they are consistently co-located in
the base clustering results. This characteristic is quantified by a weighted ensemble
co-association matrix. First, a co-association matrix, Si, is computed for each base
clustering result. Each matrix is a n× n similarity matrix in which Si(a, b) = 1 if
members a and b are grouped in the same cluster and Si(a, b) = 0 if members a
and b are grouped in different clusters within a single base clustering result. Then,
a weight, wi, is computed for each base clustering result using its normalized crowd
agreement index (NCAI) (Huang et al. 2015). To compute each weight, the crowd
agreement index (CAI) for each base clustering is defined as

CAI(Pi) =
1

NC − 1

NC∑
Pj∈P,i6=j

Sim(Pi,Pj) (6)
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where Sim(Pi,Pj) measures the similarity between two base clustering results as
the maximal normalized mutual information shared between the two solutions
as defined by Strehl and Ghosh (Strehl and Ghosh 2002). Therefore, CAI(Pi)
quantifies the average amount of information that Pi shares with the ensemble
and is normalized as

NCAI(Pi) =
CAI(Pi)

maxPj∈P CAI(Pj)
(7)

The NCAI of each base clustering result ranges from 0 to 1 and is used to calculate
the weight, wi, for the co-association matrix of each clustering result Pi as

wi =
INCAI(Pi)∑NC

j=1 INCAI(Pj)
(8)

where INCAI(Pi) = (NCAI(Pi))
β and β is selected to adjust the influence of the

NCAI weighting. Based on the parameter analysis conducted by Huang et al.
(2015) on a variety of datasets, a value of β = 2 is used in this paper. Finally, the
weighted ensemble co-association matrix, A, is computed as

A =

NC∑
i=1

wiSi (9)

Then, agglomerative clustering with average linkage is applied to the dataset using
A as a precomputed similarity matrix to generate a consensus clustering result;
average linkage is selected due to its capacity to support a general similarity metric
and capture the average characteristics of entire clusters. Each element of A is a
measure of the similarity between two members of the dataset and approximately
reflects the percentage of results in which the members are co-located in the same
cluster throughout the clustering ensemble. Consequently, the distance between
two members of the dataset, a and b, is equal to 1−A(a, b). The final number of
clusters is then selected by sampling the resulting dendrogram at the midpoint of
the inter-cluster distance range with the longest lifetime above a specified thresh-
old (Fred and Jain 2005; Huang et al. 2015). By introducing an alternative measure
of similarity between members of a dataset, WEAC leverages the evidence accu-
mulated by a large ensemble of clustering solutions to generate a single consensus
result. As a result, WEAC reduces the sensitivity to and complexity of parameter
and algorithm selection.

3.4 Motion Primitive Extraction

A motion primitive is extracted as the most representative member of a cluster
of similar trajectories. In the data-driven approach employed in this paper, the
medoid of a cluster is the member of the cluster that is most similar to all other
members in the cluster within the prescribed feature space; as a guaranteed mem-
ber of the cluster, this definition is particularly advantageous for arbitrarily-shaped
clusters (Han et al. 2012). Using the definition of a medoid, the motion primitive
associated with the i-th cluster is identified as

fMotionPrimi
= argmin

f∈Ci

|Ci|∑
j=1

||f − fj || (10)
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where fMotionPrimi
is the feature vector of the motion primitive of the i-th cluster,

Ci; |Ci| is the number of members of the i-th cluster; and fj is the feature vector
of the j-th member in the i-th cluster (Van der Laan et al. 2003).

4 Translating Trajectory Characteristics into a Feature Vector

The results of a clustering approach depend on the feature space encoding that
translates domain knowledge into a quantitative description of the dataset (Ag-
garwal and Reddy 2014). Selecting a feature vector is member-specific because
the available features depend on the type of members in the dataset, but it is
also application-specific because the features should be selected to recover a useful
summary of the dataset for the desired application. During the early stages of
trajectory design and the study of natural motion in complex gravitational en-
vironments, human analysts tend to examine the geometry, stability, and energy
of fundamental dynamical structures (Guzzetti et al. 2016; Haapala et al. 2015;
Koon et al. 2011). This section outlines the feature vectors formulated to reflect
one approach to encoding these characteristics for periodic orbits and nonperiodic
trajectories that lie along stable or unstable manifolds in the CR3BP to support
the motion primitive extraction process presented in this paper.

4.1 Describing Trajectory Geometry

The geometry of a trajectory is quantitatively described by discretizing the solu-
tion into a sequence of states (Zheng 2015). Sampling a trajectory at equally spaced
times may capture small geometric variations along the path. However, selecting a
single time distribution or number of states that sufficiently represent a general set
of trajectories in a chaotic dynamical system is challenging. Rather, this work uses
a generalizable and curve-based approach to produce a lower-dimensional descrip-
tion: sampling a trajectory at apses relative to a specified reference point, such
as a primary body or equilibrium point (Bosanac 2020; Zheng 2015); each apsis
corresponds to either a local minimum or maximum distance from the reference
point along the trajectory.

The state information at each apsis along a trajectory is scaled to prevent
unintended feature biases during clustering (Han et al. 2012). Relative position
components of the state at each apsis are normalized between -1 and 1 by dividing
each position component by the global maximum distance of an apsis relative to
the specified reference point along all members of the selected family or set of
trajectories. Then, the velocity unit vector v̂ = ˙̃xx̂+ ˙̃yŷ + ˙̃zẑ reflects the direction
of motion at each apsis with components possessing values between -1 and 1; note
that the tilde notation indicates a normalized quantity. With these definitions, the
geometric component of a feature vector, fg, describing a trajectory in the CR3BP
is defined in this paper as

fg =
[
x̃1 ỹ1 z̃1 ˙̃x1 ˙̃y1 ˙̃z1 · · · x̃l ỹl z̃l ˙̃xl ˙̃yl ˙̃zl

]
(11)

where l is the number of apses that occur along the trajectory and all features
are in the range [−1, 1]. This geometric component of a feature vector possesses
a dimension of 1× 6lmax where lmax is the maximum number of apses that occur
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along any member of a set of trajectories. If the number of apses is not constant
across all members of a set of trajectories, placeholder vectors are included in
the remaining elements of fg (Bosanac 2020). When placeholders are employed,
they are set equal to the zero vector to ensure that they are distinct from the
vectors describing actual apses. Using these definitions, this component of the
feature vector supplies a straightforward geometric description of an orbit that
is computationally-efficient to construct, limits unintended feature bias, may be
generalized across various trajectories, and, when applied to the sets examined in
this paper, does not produce an excessively high-dimensional description.

4.2 Describing Orbital Stability

A function is defined to incorporate stability indices into the feature vector for a
periodic orbit. This function is designed to reduce unintended feature bias when
the maximum value along the family possesses a large order of magnitude, offer
a continuous stability description to avoid a loss of information, and mitigate ex-
cessive compression between the critical values of -2 and 2. To appropriately char-
acterize the stability properties along a periodic orbit family, it may be desirable
to capture complex variations of the stability indices within the oscillatory mode
regime, differentiate between a pair of oscillatory or stable and unstable modes,
and avoid an artificial separation between strictly oscillatory modes and the pairs
of eigenvalues that possess magnitudes that are close to unity. Furthermore, it may
not be essential to distinguish between stability indices with large magnitudes. To
achieve these goals in characterizing a periodic orbit in the CR3BP, the stability
component of a feature vector, fs, is defined using a hyperbolic tangent function,
which retains continuity and produces values between -1 and 1. Mathematically,
the stability component of the feature vector is written as

fs =
[
tanh

(s1
2

)
tanh

(s2
2

)]
(12)

For a planar periodic orbit, s1 and s2 are calculated using the in-plane and out-
of-plane modes, respectively. However, for a spatial periodic orbit, s1 and s2 each
reflect the evolution of a single pair of eigenvalues along the family, ensuring con-
tinuity in the stability indices. Through the definition in Eq. 12, stability indices
within the range [−2, 2] produce a feature vector component within the approx-
imate range [−0.7616, 0.7616] to maintain significant resolution in the stability
component of the feature vector. Due to continuity in the hyperbolic tangent
function, there is also no artificial separation between a stability index with a
magnitude that is strictly below 2 and one that is only slightly above. In addition,
the asymptotes of the hyperbolic tangent function limit the differentiation between
stability indices with large magnitudes.

4.3 Describing Orbital Energy

Orbital energy is often used to supply preliminary insight into accessible regions of
motion and heuristics for maneuver planning. In the CR3BP, the Jacobi constant,
as defined in Eq. 2, is inversely proportional to the energy of the system (Koon
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et al. 2011): an increase in the Jacobi constant corresponds to a decrease in the
energy of the system, and vice versa. Therefore, the energy component of a feature
vector, fe, for a trajectory in the CR3BP is defined as

fe = C̃J (13)

where C̃J is the Jacobi constant normalized to within the range [−1, 1] using
the minimum and maximum values of CJ along the computed set of trajectories.
This component of the feature vector supplies a single parameter to describe the
energetic properties of each member of a set of trajectories in the CR3BP.

4.4 Defining Feature Vectors

Leveraging the geometric, stability, and energetic properties of a trajectory in the
CR3BP, feature vector definitions are formulated separately for periodic orbits
and trajectories along a stable or unstable manifold. The feature vector fPO is
constructed to describe a periodic orbit and simultaneously capture a variety of
considerations of interest to a trajectory designer during initial guess construction.
This parametric feature vector is defined as

fPO = [fg fs fe] (14)

and possesses a length of m = 6lmax + 3. For a planar periodic orbit, the out-of-
plane position and velocity features are omitted, resulting in a feature vector with
a length of m = 4lmax + 3. Similarly, the feature vector fMani is constructed to
describe the geometry of a trajectory along either a stable or unstable manifold
associated with an unstable periodic orbit. This feature vector is defined as

fMani = [fg ∆t̃1 · · · ∆t̃l−1] (15)

where fg contains the states associated with apses along the trajectory with re-
spect to a specified reference point and ∆t̃i is the nondimensional time between
two consecutive apses, normalized by the total integration time of the trajectory.
Note, the terminal state of the trajectory is included in fg, which may or may
not correspond to a desired apsis. The additional normalized time features are
included in fMani to capture the variations in transit time along a nonperiodic
trajectory. Similar to the use of placeholder vectors in fg, values of zero are used
for the remaining normalized time features in fMani when l < lmax for a trajectory.
Furthermore, fe is not included in the feature vector because in this paper all of
the manifold trajectories in a given dataset are associated with one periodic orbit
and, therefore, possess the same value of the Jacobi constant. Therefore, fMani

possesses a length of m = 7lmax−1 for a spatial manifold, or m = 5lmax−1 in the
planar case, and quantitatively summarizes the geometry of a trajectory along a
stable or unstable manifold. Both feature vector definitions supply a finite, quanti-
tative description of trajectories along a family to create an (n×m)−dimensional
dataset that is input to a clustering algorithm for motion primitive extraction.
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5 Summarizing Periodic Orbit Families

The motion primitive construction process is defined for periodic orbits in the
CR3BP and demonstrated in detail via application to the planar DPO and spatial
northern L1 halo periodic orbit families in the Earth-Moon CR3BP. Each of these
periodic orbit families exhibits several changes in geometry, stability, and energy
along the family. Some of these changes may be identified through analytical sepa-
ration criteria capturing a change in the number of apses or locating when a critical
value or turning point occurs for a parameter calculated along the family. These
analytically identifiable changes supply a straightforward verification of some of
the groupings within the clustering results. However, the clustering process should
be able to produce additional differentiation between periodic orbits that a human
may be able to visually identify but may not be described by an associated set of
generalizable and clear analytical criteria formulated as a function of the feature
space description. Thus, both of these families of periodic orbits serve as a suit-
able example for demonstrating the procedure for extracting motion primitives
that summarize the finite set of geometric, stability, and energetic characteristics
admitted by its members. Following a detailed demonstration in the context of
these two families, the motion primitive extraction process is applied to a wider
variety of periodic orbit families throughout the Earth-Moon CR3BP.

5.1 Motion Primitive Construction Process for Periodic Orbits

For a family of periodic orbits, the motion primitive construction procedure con-
sists of the following steps:

1. Compute a family of periodic orbits in the desired system in the CR3BP.
2. For n orbits sampled along the family, compute the full state at each apsis

along the orbit with respect to a specified reference point, the stability indices,
and the Jacobi constant.

3. Construct an (n×m)−dimensional dataset containing the m-dimensional fea-
ture vector fPO of each orbit, as defined in Eq. 14, to reflect the geometry,
stability, and energy of each periodic orbit.

4. Generate an ensemble of NC base clustering results by applying k-means and
agglomerative clustering with Ward linkage to the dataset, each for NC/2 val-
ues of k in a specified range.

5. Specify an inter-cluster distance threshold, t, ranging from 0 to 1 and apply
WEAC to the ensemble of base clustering results computed in Step 4. The
clustering result selected using WEAC possesses a number of clusters with the
largest lifetime above t.

6. Extract a set of motion primitives as the medoids of clusters in the final con-
sensus clustering result to summarize the periodic orbit family.

Once the desired set of trajectories is computed, this procedure only requires
selection of the range of values of k to form the base clustering results and the
value of t used within WEAC to select the final clustering result. In applying this
procedure to the DPO and northern L1 halo orbit families in the Earth-Moon
system, the following values are selected: k ∈ [3, 18] to produce NC = 2× 16 = 32
base clustering results that are input to WEAC, and t = 0.4. The range of selected
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k values is a wide range that encompasses a reasonable number of expected distinct
characteristics along each family. The threshold value of t = 0.4 (i.e., a similarity
value of 0.6) is selected because it ensures that clusters with members that are
co-located more than approximately 60% of the time on average remain clustered
together in the final consensus-derived result. The final “cut” of the dendrogram
is above t = 0.4 and therefore identifies a natural cluster boundary where the
additional merging of two smaller clusters no longer results in a cluster whose
members are frequently co-located. Finally, all clustering results are produced
using the Scikit-Learn v0.23.1 module available in Python and the components of
the WEAC algorithm that do not involve clustering have been implemented by the
authors in MATLAB® (MathWorks 2020; Pedregosa et al. 2011). The computation
time for this clustering procedure to generate motion primitives summarizing a
periodic orbit family is on the order of 100 seconds for each example in this section.

5.2 Summarizing the Distant Prograde Orbit Family

The DPO family is composed of members that exhibit multiple distinct geometric
and stability properties while encircling the Moon (Broucke 1968; Lara and Russell
2006). Fig. 1 displays a subset of the DPO family, computed in the Earth-Moon
CR3BP using a multiple shooting algorithm for corrections and pseudo-arclength
continuation. Each orbit in the computed segment of the family is plotted in the
rotating frame with the arrows indicating direction of motion. The equilibrium
points are displayed using red diamonds while the Moon is plotted, not to scale,
using a gray circle. Additionally, the in-plane (s1) and out-of-plane (s2) stability
indices along this segment of the DPO family are displayed in Fig. 2 as a function
of the Jacobi constant. Note that the stability indices are scaled in Fig. 2 using
the function 2 sinh−1(si)/ sinh−1(2) to improve visualization. A stability index
associated with oscillatory modes produces a value of this function within the
range [−2, 2] while a stability index associated with a stable and unstable mode
pair produces a function value that is greater than 2 in magnitude; note that the
sign of the stability index is preserved through this normalization. In addition,
four orbits, each denoted with a distinct color, are highlighted in Fig. 1 and their
associated parameters are plotted in Fig. 2 to facilitate a clear description of
the family. These two figures reveal distinct changes in geometry, stability, and
energy along the DPO family: some changes may be described via quantitative
separation criteria, whereas other changes are challenging to define in an analytical
and generalizable manner. These complex variations render the planar DPO family
a useful first scenario for demonstrating the motion primitive construction process.

To support verification of the recovered motion primitives, the geometry and
stability of members of the DPO family are characterized. At one end of the
computed segment of the family near CJ ≈ 3.1487, denoted in purple in Figs.
1 and 2, the orbits possess stable and unstable in-plane modes and oscillatory
out-of-plane modes. In addition, motion along these orbits is generally prograde
in the rotating frame: there are two prograde perilunes, with one occurring close
to the Moon and one located close to L2, and two retrograde apolunes that occur
near L2 and symmetrically about the x-axis. As the Jacobi constant increases, the
magnitude of the velocity vector at the two apolunes decreases. After reaching a
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Fig. 1 Computed segment of the DPO family in the Earth-Moon CR3BP, displayed in the
rotating frame

Fig. 2 Stability indices, s1 and s2, along the computed segment of the DPO family in the
Earth-Moon CR3BP
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magnitude of zero in the rotating frame, the velocity vector changes direction and
the associated orbit possesses two prograde apolunes. These prograde apolunes
approach the x-axis as the Jacobi constant continues to increase. Eventually, the
orbits evolve to possess only one perilune and one apolune; both apses relative to
the Moon are prograde and located on the x-axis. This evolution of the geometry
is accompanied by a change in the in-plane stability such that these members
of the DPO family do not possess any stable or unstable modes. As the Jacobi
constant increases further, the perilune distance increases and the apolune distance
decreases until the orbit resembles an oval. Eventually, the orbits possess two
prograde perilunes on the x-axis and two prograde apolunes symmetrically located
about the x-axis. As the Jacobi constant reaches a maximum, denoted in red in
Figs. 1 and 2, another change in the stability occurs and the associated members
of the DPO family possess stable and unstable in-plane modes. With a decreasing
Jacobi constant, the apolunes occur at increasing values of y and decreasing values
of x, with a speed that decreases. After the velocity magnitude passes through zero,
denoted in light blue in Figs. 1 and 2 and at low values of the Jacobi constant,
orbits along the DPO family possess low prograde perilunes and high retrograde
apolunes. The out-of-plane stability also changes, resulting in these members of
the DPO family possessing only stable and unstable modes through the end of the
computed segment of the family, as indicated in light brown in Figs. 1 and 2.

The observed distinct changes in geometry and stability are summarized to
facilitate verification of the results. Table 1 lists these changes using labels begin-
ning with “G” to indicate a change in the geometry, assessed via the number and
direction of motion at each apsis, and a prefix “S” indicating a qualitative change
in stability; the numbers in each label are assigned to changes that occur as the
family is traversed from a Jacobi constant starting at CJ ≈ 3.1487, reaching a
maximum at CJ ≈ 3.1827, and ending at CJ ≈ 2.9511. A horizontal bar in Ta-
ble 1 indicates that a change did not occur in a specific property. These distinct
changes in the geometry and stability support verifying some of the cluster-based
differentiation between orbits during the motion primitive construction process.
Specifically, the final clustering result should at least separate solutions of distinct
geometries, as listed in Table 1, while also admitting additional differentiation for
geometric changes that are challenging to describe in an analytical and generaliz-
able manner. Due to the form of the stability component of the feature vector for
a periodic orbit, the stability changes listed in Table 1 may potentially, but not
necessarily, lie close to the boundaries of some clusters.

Consensus clustering is used to differentiate periodic orbits within the DPO
family. First, the parametric feature vector defined in Eq. 14 is used to represent
the geometric, stability, and energetic properties of 400 members of the family,
computed using multiple-shooting for corrections and pseudo-arclength continu-
ation. The geometry of each orbit is represented as a sequence of apses relative
to the Moon. Furthermore, the out-of-plane position and velocity features of each
apsis are omitted because all members of the DPO family lie in the plane of the
primaries. The feature vectors of the selected members of this family are used to
form a (400×19)−dimensional dataset. Then, k-means and agglomerative cluster-
ing with Ward linkage are applied to the dataset, each for 16 values of k ranging
from 3 to 18, to produce 32 base clustering results. The resulting dendrogram
formed when WEAC is applied to this ensemble of clustering results is displayed
in Fig. 3. Each vertical blue line represents a cluster and each horizontal blue line
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Table 1 Dominant geometric and stability changes along the DPO family; prograde is abbre-
viated as ‘pro.’ and retrograde is abbreviated as ‘retro.’ to describe direction of motion

Label Before Change After Change Approx. CJ
Apses Stability Apses Stability

G1 2 retro. apolune s1 < −2 2 pro. apolune — 3.1610
2 pro. perilune −2 < s2 < 2 — —

G2/S1 2 pro. apolune s1 < −2 1 pro. apolune −2 < s1 < 2 3.1698 (G2)
2 pro. perilune −2 < s2 < 2 1 pro. perilune — 3.1700 (S1)

G3/S2 1 pro. apolune −2 < s1 < 2 2 pro. apolune s1 > 2 3.1822 (G3)
1 pro. perilune −2 < s2 < 2 2 pro. perilune — 3.1827 (S2)

G4 2 pro. apolune s1 > 2 2 retro. apolune — 3.0859
2 pro. perilune −2 < s2 < 2 — —

S3 2 retro. apolune s1 > 2 — — 3.0264
2 pro. perilune −2 < s2 < 2 — s2 > 2

represents the merging of two clusters at various values of the inter-cluster dis-
tance, displayed on the vertical axis. Values on the horizontal axis are not labeled
because they indicate the cluster identification numbers, which are arbitrarily set
by the algorithm as new clusters are formed with new values of inter-cluster dis-
tance. The solid black line indicates the specified inter-cluster distance threshold
of t = 0.4. Analyzing the dendrogram, the number of clusters with the largest
lifetime above this threshold is k = 9, as indicated by the bounding dashed red
lines. Other potential natural cluster boundaries in the dataset occur for k = 6
and k = 7 as evident in the dendrogram based on the size of each cluster lifetime.
However, k = 9 is selected consistent with possessing the largest lifetime above
the threshold. Motion primitives are extracted from this clustering result as the
medoid of each cluster.

Fig. 3 Dendrogram constructed via WEAC to determine clusters of periodic orbits in the
DPO family

The motion primitives and associated clusters are depicted in the configuration
space and as a function of Jacobi constant to support further analysis. First,
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Fig. 4 Motion primitives constructed for the DPO family in the Earth-Moon CR3BP, dis-
played with respect to the corresponding clusters in the rotating frame; clusters and motion
primitives are split across two subfigures for visual clarity

the nine clusters of periodic orbits are displayed in Fig. 4 in the configuration
space using unique colors, with the black arrows indicating direction of motion
relative to the Moon. Within each cluster, the periodic orbit selected as the motion
primitive is highlighted in bold while additional members lie within the region of
the same color. To support further analyzing these results, these clusters and
motion primitives are also displayed on the left of Fig. 5 as a function of CJ .
DPOs at various values of CJ are displayed on the right of Fig. 5 for reference;
the selected orbits correspond to those highlighted in Fig. 1. Each cluster in Fig.
5 is colored consistent with Fig. 4 and each motion primitive is located by a black
diamond. Furthermore, the four dominant geometry changes (G1, G2, G3, G4)
and the three dominant stability changes (S1, S2, S3) summarized in Table 1 are
denoted with dashed black and gray lines, respectively.

Analysis of the clustering results in Figs. 4 and 5 reveals that the motion
primitive set successfully captures variations in geometry and stability of mem-
bers along the DPO family: including those identified in Table 1 and more subtle
changes that are challenging to describe in an analytical and generalizable man-
ner. The presented procedure successfully identifies, at a minimum, all four distinct
changes in geometry via changes in the number of and direction of motion at the
apses. Additional clusters capture more subtle changes in Jacobi constant, stabil-
ity, and geometry. For example, as CJ decreases after the change in geometry at
G4, WEAC identifies three different clusters of orbits with two high retrograde
apolunes and two low prograde perilunes due to the variations in CJ and stability.
In fact, the third stability change, S3, is identified by the clustering approach but
not exactly at the boundary due to the continuous feature description used to
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Fig. 5 Clustering result and motion primitives for the DPO family in the Earth-Moon CR3BP
as a function of CJ ; dominant changes in geometry and stability are labeled on left of figure

capture orbital stability. The distinct geometric differences between each of these
clusters is visible in Fig. 4a: although members of these clusters admit a similar
general shape, regions along each orbit with a different direction of motion possess
a distinctly different relative size in the configuration space. Another example of
successful geometric differentiation is visible in Fig. 4b: the gray cluster possessing
members with the largest y-extension admit a significantly different geometry and
evolution of the location of apses compared with members in the neighboring ma-
roon cluster. This example demonstrates the capacity to use clustering to extract
a small set of motion primitives representing a family of planar periodic orbits.

5.3 Summarizing the Northern L1 Halo Orbit Family

The L1 halo orbits comprise a spatial family that emerges from a bifurcation along
the L1 Lyapunov orbit family (Breakwell and Brown 1979; Zagouras and Kazantzis
1979). Fig. 6 displays in black a subset of the northern L1 halo family computed in
the Earth-Moon CR3BP with selected members highlighted in distinct colors; note,
only the northern orbits are analyzed due to their symmetry with the southern
halo orbits about the plane of the primaries. At one end of the computed segment
of the northern L1 halo family, denoted in light brown in Fig. 6, members intersect
the L1 planar Lyapunov orbit family and revolve in a clockwise manner about L1.
At the other end of the computed segment of the family, denoted in purple in Fig.
6, members possess large z-extensions above the plane of the primaries and a low
perilune. Analysis of Fig. 6 reveals a variation in the shape and three-dimensional
geometry along this spatial family. However, unlike the previous example with
the DPO family, these geometric changes cannot be straightforwardly identified
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Fig. 6 Subset of the northern L1 halo orbit family in the Earth-Moon CR3BP, displayed in
the rotating frame

or analytically separated because the number of apses and the direction of motion
at each apsis relative to the Moon are constant along the family. There are some
changes in the number of apses relative to L1, but the direction of motion at these
apses also remains constant along the family. With geometry changes that are
visually identifiable but challenging to locate analytically, the northern L1 halo
orbit family offers a suitable second demonstration case for the motion primitive
construction process.

The stability indices of the computed segment of the northern L1 halo family
also admit multiple qualitative changes. Fig. 7 displays the stability indices, s1
and s2, scaled using the same normalization function as Fig. 2 and plotted as a
function of the Jacobi constant; the parameters associated with the highlighted
orbits in Fig. 6 are indicated using the same color scheme. The qualitative changes
in the orbital stability along the family are summarized in Table 2, using the same
configuration as Table 1. There are five primary changes in stability along the
computed segment of the family. The s1 index exhibits three changes in stability,
occurring in regions of the family where the halo orbits possess a large inclination
and low perilune. For members of the family that approach the L1 equilibrium
point with a Jacobi constant that is above CJ = 3.0, s1 possesses a large positive
value, corresponding to the existence of stable and unstable modes governing fast
arrival into or departure from the periodic orbit. Conversely, s2 indicates two
changes in stability: the value of s2 passes through the critical value of -2 near
Jacobi constants of CJ ≈ 2.9435 and CJ ≈ 2.9986. However, for members that
possess a high inclination, low perilune, and values of the Jacobi constant that are
less than CJ = 3.0, the magnitude of the stability index is on the order of 100. As
a result, natural arrival into and departure from the vicinity of these members via
these stable and unstable modes is relatively slow.
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Fig. 7 Stability indices, s1 and s2, of the northern L1 halo orbits in the Earth-Moon CR3BP

Using the geometric, stability, and energetic properties of members along the
northern L1 halo orbit family, an associated set of motion primitives is constructed.
Similar to the DPO example, multiple-shooting and pseudo-arclength continuation
are used to compute 498 orbits along the northern halo orbit family. Then, the
feature space encoding is constructed using Eq. 14. The reference point used to
compute the apses and relative position vectors along each halo orbit is selected as
the Moon, consistent with the evolution of this family towards the Moon. Together,
these orbits and feature vectors produce a (498×15)-dimensional dataset.K-means
and agglomerative clustering with Ward linkage are then applied to the dataset,
each for 16 values of k ranging from 3 to 18, to generate the ensemble of base
clustering results. WEAC is then applied to this ensemble with an inter-cluster
distance threshold of t = 0.4. Fig. 8 displays the dendrogram produced by WEAC

Table 2 Dominant stability changes along the northern L1 halo orbit family

Label Before Change After Change Approx. CJ
S1 −2 < s1 < 2 — 2.9435

−2 < s2 < 2 s2 < −2
S2 −2 < s1 < 2 s1 > 2 2.9470

s2 < −2 —
S3 s1 > 2 −2 < s1 < 2 3.0040

s2 < −2 —
S4 −2 < s1 < 2 — 2.9986

s2 < −2 −2 < s2 < 2
S5 −2 < s1 < 2 s1 > 2 2.9978

−2 < s2 < 2 —
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Fig. 8 Dendrogram constructed via WEAC to determine clusters of periodic orbits in the
northern L1 halo family

for this family of halo orbits. As denoted in Fig. 8 with dashed red lines, the
clusters produced using k = 11 possess the largest lifetime. The associated clusters,
denoted by unique colors, and the motion primitives, denoted with black diamonds,
are displayed in Fig. 9a as a function of the discretized orbit number along the
family; although this quantity does not possess a physical significance, it enables a
clear and unique initial visualization of the results. Furthermore, the five dominant
stability changes (S1, S2, S3, S4, S5) summarized in Table 2 are denoted with
dashed gray lines. Fig. 9b displays the members of each cluster in configuration
space; the motion primitives are highlighted in bold and the corresponding clusters
capture the region of existence of each primitive in the system.

Despite the absence of distinct or hard boundaries between members within
the 15-dimensional feature space, the motion primitive set successfully captures
the variety of geometric and stability characteristics exhibited by the northern L1

halo orbit family. Fig. 9a reveals that members are differentiated into separate
clusters in the vicinity of, but not exactly at the location of, each qualitative
change in orbital stability; such a result is not unexpected due to the definition
of the stability component of the feature vector as a continuous function. S1,
S2, S3, and S4 each describe stability changes where the two nontrivial pairs
of eigenvalues of the monodromy matrix remain close to the unit circle in the
complex plane and, therefore, the values of the stability component of the feature
vector are similar on either side of each soft boundary. On the other hand, S5 is
more closely captured by the clustering approach because it marks a more distinct
change in stability as the magnitude of s1 increases significantly away from the
critical value of 2. The remaining clusters along the family above the dashed line
for S5 in Fig. 9a primarily reflect changes in geometry. In fact, analysis of Fig.
9b reveals that these clusters capture the evolution of the eccentricity, inclination,
shape, and location of members along this family as they evolve towards the plane
of the primaries near L1 and away from the Moon. The reduced set of motion
primitives effectively captures the characteristics of the computed members of the
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Fig. 9 Clustering result and motion primitives for the northern L1 halo orbits in the Earth-
Moon CR3BP; dominant stability changes are labeled on left of figure

northern L1 halo orbit family, thereby supplying a simplified representation of the
continuous family of spatial periodic orbits for future use in rapid and informed
trajectory design strategies.

5.4 Summarizing Periodic Orbit Families Throughout the Earth-Moon System

To further demonstrate the utility of summarizing a subset of the solution space
of a multi-body system, the motion primitive construction process is applied to a
variety of planar and spatial periodic orbit families throughout the Earth-Moon
CR3BP. Each family of orbits is summarized based on its geometric, stability, and
energetic properties following the procedure outlined in Sect. 5.1. Fig. 10 displays
the set of motion primitives constructed to summarize a variety of planar peri-
odic orbit families in the Earth-Moon system including: the low prograde orbits
(LoPOs); distant retrograde orbits (DROs); L1, L2, and L3 Lyapunov orbits; L5

short and long period orbits; and 3:1 resonant orbits. The black arrows indicate
direction of motion, while each color indicates a distinct cluster and the associated
motion primitive is highlighted in bold. The corresponding cluster for each motion
primitive also reflects the region of existence of the primitive in the configuration
space of the Earth-Moon system. Note that although colors are frequently repeated
across distinct families for visual clarity, each cluster is localized to a single family
of periodic orbits. Using a similar configuration to Fig. 10, Fig. 11 displays the
motion primitives generated to summarize the northern L2 and L3 halo orbits; the
L1, L2, and L3 axial orbits; and the L1, L2, and L3 vertical orbits. These orbit
families are diverse in terms of their geometric, stability, and energetic properties
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as well as their locations in the configuration space of the Earth-Moon system.
Despite the diversity and complexity exhibited by each family of periodic orbits,
the general motion primitive construction process presented in Sect. 5.1 is ap-
plied to each family in the same manner. This automated, unsupervised approach
successfully constructs groupings that capture the fundamental characteristics of
members along each family. As a result, these examples indicate the capacity for a
data-driven procedure to extract smaller sets of motion primitives that summarize
the wide variety of periodic orbits that influence the solution space within a multi-
body system. This simpler representation of periodic orbit families may be used
to reduce the complexity of constructing an initial guess for a complex trajectory;
such use of the constructed motion primitives is the focus of ongoing work.

6 Summarizing Hyperbolic Invariant Manifolds

The role of hyperbolic invariant manifolds in governing natural transport through-
out a multi-body system has resulted in trajectory designers analyzing the geom-
etry of arcs of finite duration along stable and unstable manifolds and assembling
them to construct initial guesses for complex transfers (Koon et al. 2011). In this
section, the motion primitive construction process is defined and demonstrated
by summarizing these arcs along the unstable manifold associated with a single
L1 Lyapunov orbit in the Earth-Moon CR3BP. This procedure is similar to the
process presented in Sect. 5.1 for periodic orbit families with some modifications,
primarily in the computation and description of the nonperiodic trajectories com-
prising the dataset and additional cluster refinement.

6.1 Constructing Motion Primitive Sets for Hyperbolic Invariant Manifolds

To construct a set of motion primitives summarizing arcs along a hyperbolic in-
variant manifold, the clustering procedure is defined as follows:

1. Select an unstable periodic orbit and discretize the orbit into NPO states,
equally spaced in time. Then, generate the stable or unstable manifold by
propagating each nearby state that lies in the approximation of the manifold
backward or forward in time, respectively, until any termination criteria are
satisfied. In this section, each trajectory along the unstable manifold of the
selected periodic orbit is propagated until either 15 subsequent apses occur
relative to the Moon, an impact with the Moon occurs, or the trajectory departs
the lunar vicinity either through the L1 or L2 gateways.

2. Discretize each trajectory into multiple smaller arcs based on an apsis window,
where each apsis is defined relative to a specified reference point. In this section,
up to the first 12 apses that occur along each trajectory along the unstable
manifold of the selected periodic orbit are used to define smaller arcs each com-
posed of a total of 4 apses relative to the Moon. Along a given trajectory, the
first arc is defined from the first apsis event of the trajectory propagated until
the fourth apsis event, the second arc is defined from the second apsis event
propagated until the fifth apsis event, and so forth until the final computed arc
terminates at the final recorded apsis of the trajectory. If the apsis window is
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Fig. 10 Motion primitives summarizing planar periodic orbit families in the Earth-Moon
CR3BP, displayed with respect to the corresponding clusters in the rotating frame
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Fig. 11 Motion primitives summarizing spatial periodic orbit families in the Earth-Moon
CR3BP, displayed with respect to the corresponding clusters in the rotating frame

larger than the total number of apses along the trajectory, then the trajectory
is considered a single arc.

3. Compute the feature vector fMani defined by Eq. 15 for each arc constructed
in Step 2. In this feature vector, the time between apses along an arc is nor-
malized by the total integration time of the corresponding arc. Additionally,
the terminal state of an arc is included in fMani if the associated trajectory
contains fewer apses than the specified apsis window.

4. Construct an (n×m)−dimensional dataset containing the feature vectors com-
puted in Step 3.



28 Thomas R. Smith, Natasha Bosanac

5. Generate an ensemble of NC base clustering solutions by applying k-means
and agglomerative clustering with Ward linkage to the dataset, each for NC/2
values of k in a specified range.

6. Specify an inter-cluster distance threshold, t, ranging from 0 to 1 and apply
WEAC to the ensemble of base clustering solutions computed in Step 5. The
clustering result selected using WEAC possesses a number of clusters with the
largest lifetime above t.

7. If necessary, refine the clusters produced by WEAC. For each cluster with more
than 10 members, construct a c-nearest neighbor graph from the members in
the cluster using a specified value of c and compute the number of connected
components in the graph. If there is more than one connected component, then
split the original cluster into multiple sub-clusters that each contain one con-
nected component in the graph. However, for clusters with 10 members or less,
a c-nearest neighbor graph is well-connected for even small values of c due to its
size. Therefore, the similarity values computed in WEAC are directly leveraged
to refine small clusters and ensure the members have a high degree of similarity.
Specifically, for clusters with 10 members or less, members in the cluster with
similarity values greater than or equal to 0.75 are grouped; this value tends to
split a small cluster of insufficiently similar members into multiple sub-clusters,
each composed of members with a high degree of similarity.

8. Extract a set of motion primitives as the medoids of clusters in the final con-
sensus clustering result to summarize the set of trajectories along the selected
stable or unstable manifold.

Given a desired set of trajectories, this motion primitive construction process is
an automated procedure that only requires selecting the range of k, specifying t,
and, if applicable, specifying c. In applying this process to the unstable manifold
associated with an L1 Lyapunov orbit in the Earth-Moon system, the inter-cluster
distance threshold is set at t = 0.4. Furthermore, the range of k values used
to generate the cluster ensemble is selected based on the size of the dataset as
k ∈ [3, 61] (Fred and Jain 2005; Huang et al. 2015). This range is selected to ensure
the evidence supplied to WEAC in the form of base clustering results encompasses
both a small number of clusters, which tends to raise the average similarity values
between members in the matrix A, and a large number of clusters that tends to
lower the average similarity values in A; as a result, a wide range of k values tends
to balance out these effects to more clearly reflect the natural structure of this
complex dataset (Fred and Jain 2005; Huang et al. 2015). Finally, all clustering
results are produced using the Scikit-Learn v0.23.1 module available in Python and
the components of the WEAC algorithm that do not involve clustering have been
implemented by the authors in MATLAB® (MathWorks 2020; Pedregosa et al.
2011). The computation time for this clustering procedure to generate motion
primitives summarizing the arcs along a hyperbolic invariant manifold is on the
order of 101 seconds for the example in this section.

An additional step for cluster refinement is included in the motion primitive
construction procedure due to the potential sparsity of arcs computed along a
hyperbolic invariant manifold and for cases when related, yet visually distinct
arcs are incorrectly clustered together; such issues may occur in high-dimensional
feature spaces due to the curse of dimensionality (Aggarwal and Reddy 2014).
Inspired by a previous use of graph theory for more complex cluster refinement in
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hierarchical clustering (Karypis et al. 1999), a c-nearest neighbor graph is a simple
and powerful tool to autonomously determine if a cluster should be further split
into smaller groups. For example, a homogeneous cluster will likely only contain
one connected component in a c-nearest neighbor graph while a cluster consist-
ing of several smaller and separated sub-clusters may contain multiple connected
components depending on the selected value of c. When c = 1, a sparse graph
is produced and may contain a large number of connected components that each
possess only two members, resulting in an excessive fragmentation of an original
cluster. However, c = 2 generates a better-connected graph that avoids this issue
and may preserve the structure of continuous, homogeneous clusters. A large value
of c naturally results in a well-connected graph because c dictates the number of
nearest neighbors each member is connected to in the graph (Han et al. 2012).
Therefore, c may be selected based on the desired scale of cluster refinement; in
this section, c is set equal to 2. This automated refinement process limits the
burden on a human analyst when additional refinement is deemed appropriate.

A sub-cluster that is comprised of only one or two members cannot be iden-
tified using a c-nearest neighbor graph when c ≥ 2; these types of sub-clusters
may be considered as outliers. To address these edge cases and include outlier
detection, two rules are formulated to identify sub-clusters with only one or two
members during the cluster refinement in Step 7 of the motion primitive construc-
tion process. A member of a cluster is identified as the sole member of a sub-cluster
when: i) it is not a nearest neighbor of any other members in its cluster, and ii)
its average similarity to its nearest neighbors is less than 0.75. By leveraging this
large similarity value threshold with the c-nearest neighbor graph, sub-clusters
with only one member are automatically identified as outliers but only when there
is not a high degree of similarity to the original cluster. Similarly, two members of
a cluster form a sub-cluster when both members are not a nearest neighbor of any
other members in their cluster aside from each other. These rules support outlier
detection while also avoiding excessive fragmentation during cluster refinement.

6.2 Summarizing an Unstable Half-Manifold of an L1 Lyapunov Orbit

A set of motion primitives is constructed to summarize segments of the global un-
stable half-manifold associated with an L1 Lyapunov orbit and directed towards
the Moon. The global unstable half-manifold is generated for a motion primitive in
the L1 Lyapunov orbit family; specifically, at a Jacobi constant of 3.1670. The tra-
jectories that lie along this unstable manifold exhibit many close approaches and
revolutions around the Moon, while some trajectories impact the Moon or leave
the vicinity of the Moon through the L1 gateway. Fig. 12a displays short segments,
denoted in red, of trajectories computed along the unstable half-manifold depart-
ing the L1 Lyapunov orbit, denoted in black, and directed towards the Moon.
The gray regions in Fig. 12 correspond to the forbidden regions and are bound
by zero-velocity curves. Furthermore, Fig. 12b displays a Poincaré map with an
apsis surface of section, defined with respect to the Moon, recording up to 15
perilunes and apolunes that lie along this unstable half-manifold of the selected
L1 Lyapunov orbit. Then, 500 trajectories that lie on this unstable manifold are
sampled to produce up to 12 smaller arcs along each trajectory, each admitting 4
apses, unless impacting the Moon or passing through the L1 or L2 gateways first.
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Fig. 12 Trajectories along the unstable manifold of an L1 Lyapunov orbit at CJ = 3.1670
and directed towards the Moon along with the resulting apsis map relative to the Moon for
up to 15 returns

These arcs are used to form the dataset that describes the unstable manifold and
is summarized using the clustering procedure outlined in Sect. 6.1 for a general hy-
perbolic invariant manifold. Using the feature vector fMani defined by Eq. 15, the
resulting dataset is a (951× 19)−dimensional dataset. Given the expected diverse
and complex geometric variations along manifold structures as well as the size
of the dataset, a large range of k ∈ [3, 61] is selected to encompass a reasonable
number of distinct characteristics in the dataset. WEAC is then applied to the
resulting 118 base clustering results along with the cluster refinement procedure,
identifying 40 clusters and their associated motion primitives.

Trajectory arcs lying along the unstable half-manifold of an L1 Lyapunov or-
bit at CJ = 3.1670 exhibit a variety of distinct geometries in the lunar vicinity.
Following application of the presented procedure to this dataset, the resulting 40
clusters and motion primitives are displayed in Figs. 13, 14, and 15. Each clus-
ter and corresponding motion primitive is labeled with the prefix “U” followed
by a number to facilitate discussion of the results. In these figures, the corre-
sponding trajectories for each cluster are plotted in configuration space with the
motion primitives denoted in bold and unique colors assigned to distinct clusters.
Focusing initially on arcs admitting fewer than 4 apses, the clustering approach
generates five different clusters and motion primitives, U1-U5, as displayed in Fig.
13. Clusters that contain only two members, such as U4, depict both members of
the cluster with one member arbitrarily selected as the motion primitive because
either arc is suitable to summarize the motion in the cluster. Analysis of this figure
reveals that clusters U2-U4 effectively capture several distinct geometries admit-
ted by arcs that impact the Moon after departing the vicinity of the L1 Lyapunov
orbit. The motion primitives computed from clusters U1 and U5 capture arcs that
leave the lunar vicinity via the L1 gateway after a single revolution around the
Moon, but with distinct geometries. The remaining 35 different clusters, U6-U40,
in Figs. 13, 14, and 15 produce motion primitives that represent arcs admitting
4 apses. Multiple fundamental departure geometries from the initial L1 Lyapunov
orbit are uncovered via clusters U25-U30 in Fig. 14. The remaining motion primi-
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tives effectively summarize the variety of geometries admitted by subsequent arcs
along the selected unstable manifold in the lunar vicinity: a variety of arcs revolv-
ing around the Moon with varying close approaches are recovered as well as the
flow of trajectories towards the L2 gateway. Some of the arcs revolving around the
Moon possess segments that resemble known periodic orbits. For example, clus-
ters U14-U16 in Fig. 13 and clusters U17-U24 in Fig. 14 contain segments with
similar geometries to a member of the DPO family at CJ = 3.1670. This set of
motion primitives supplies a succinct summary of the trajectories along an unsta-
ble half-manifold that may be useful when designing a transfer in cislunar space;
incorporating this summary into the initial guess construction process is the focus
of ongoing work.

Due to the sparsity of the trajectories discretized along the unstable manifold
and the feature space definition, the original WEAC results may sometimes pro-
duce clusters that appear to contain distinct smaller clusters. Before refining the
clusters, the initial WEAC result for the arcs computed along the unstable man-
ifold associated with the L1 Lyapunov orbit at CJ = 3.1670 identifies 25 distinct
clusters; 13 of these clusters are refined. A majority of these clusters consisted of
one dense sub-cluster and one or more smaller sparse sub-clusters containing only
a few outlier members, typically ranging from 1 to 6 outliers; a total of 41 outliers
are identified (approximately 4.3% of the total members of the dataset). For ex-
ample, the WEAC approach originally produced the cluster displayed in Fig. 16a

Fig. 13 Subset of trajectory clusters U1-U16 along the unstable manifold directed towards
the Moon for an L1 Lyapunov orbit at CJ = 3.1670; motion primitives are denoted in bold
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Fig. 14 Subset of trajectory clusters U17-U32 along the unstable manifold directed towards
the Moon for an L1 Lyapunov orbit at CJ = 3.1670; motion primitives are denoted in bold

that appears to contain one dense sub-cluster and one smaller sparse sub-cluster
consisting of 6 members; while there are some similarities in the general geome-
tries of these clusters, they are distinct. This cluster is automatically refined using
the process outlined in Step 7 of the motion primitive construction procedure for
hyperbolic invariant manifolds, producing the two distinct clusters displayed in
Fig. 16b using distinct shades of purple. Additionally, clusters composed of one
or two members, such as U21-U24, are the result of splitting several denser clus-
ters, such as U18-U20, as displayed in Fig. 14. As previously discussed, due to the
sparsity of the dataset there may be clusters with only a few outlier members that
are incorrectly clustered with trajectories that are most similar to them in the
prescribed feature space. Therefore, the presented refinement process is able to
successfully identify and form these smaller sub-clusters to separate outliers with
distinct geometries. Of course, increasing the number of states sampled along the
original periodic orbit and used to generate the associated unstable half-manifold
may reduce the need for such refinement. However, in the absence of an iterative
data generation and parameter selection procedure, driven by a human analyst,
the additional cluster refinement approach ensures that the final set of motion
primitives captures the variety of geometries admitted by arcs along the unstable
half-manifold.
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Fig. 15 Subset of trajectory clusters U33-U40 along the unstable manifold directed towards
the Moon for an L1 Lyapunov orbit at CJ = 3.1670; motion primitives are denoted in bold

Fig. 16 Refinement of a single cluster, produced by WEAC, into two distinct clusters

7 Discussion

Generated through a data-driven approach, motion primitives summarize arcs
along families of fundamental solutions that govern motion in a multi-body sys-
tem. This process has been constructed with the goal of eventually simplifying and
supporting rapid and informed trajectory design strategies. Specifically, ongoing
work by the authors has focused on developing and demonstrating a preliminary
procedure for analyzing, selecting, and assembling motion primitives to construct
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initial guesses of desired geometries for both natural and maneuver-enabled trans-
fers in the Earth-Moon system. Although this work is the focus of a separate
paper, Smith and Bosanac (2021), a brief summary is presented here to motivate
the potential utility of motion primitives in the trajectory design process.

Consider the fundamental example of designing planar transfers from an L1

Lyapunov orbit to an L2 Lyapunov orbit in the Earth-Moon CR3BP. Two Lya-
punov orbits are selected and displayed in Fig. 17 in solid purple and light brown,
respectively, and each correspond to a motion primitive of their respective periodic
orbit families; additional members of each family that possess similar geometric,
stability, and energetic properties and are assigned to the same cluster lie within
the associated transparent shaded regions. The selected L1 and L2 Lyapunov or-
bits possess Jacobi constants of CJ = 3.1670 and CJ = 3.1666, respectively. To
assemble an initial guess for a maneuver-enabled transfer between two periodic or-
bits that possess a similar geometry to the selected Lyapunov orbits, the unstable
and stable manifolds of these representative periodic orbits are generated. Motion
primitive sets are then constructed to summarize the finite geometries of arcs that
lie along these fundamental solutions that govern motion in the lunar vicinity.
Using this summary, an initial guess for a transfer with a desired geometry is con-
structed by directly selecting and assembling motion primitives; in this example,
lying within the pink and maroon shaded regions and displayed using dashed arcs.
The selected motion primitives are then morphed within their associated regions of
existence to improve the quality of the initial guess. This morphed initial guess, dis-
played using solid arcs, is input to a constrained optimization algorithm that uses
collocation to recover a maneuver-enabled transfer. The trajectory designer may
then construct additional transfers with distinct geometries by selecting a differ-
ent number or combination of motion primitives. Through this procedure, motion
primitives have the potential to: reduce the complexity of analyzing arcs along the
families of fundamental solutions that are often used in trajectory design; offer ad-
ditional insight into their distinct geometric, stability, and/or energetic properties;
and support initial guess construction for a wide variety of complex trajectories
throughout multi-body systems.

8 Conclusion

In this paper, the concept of a motion primitive is used to summarize funda-
mental dynamical structures in a multi-body system with the goal of eventually
reducing the complexity of analysis required in current strategies for trajectory
design and examination of natural transport. Across a variety of disciplines, a mo-
tion primitive is a fundamental building block of complex motion in a dynamical
environment, representing a range of similar solutions. In this paper, a motion
primitive set is defined as a set of arcs that capture the characteristics of a larger
set of trajectories and support assembly of an initial guess for a more complex
path in a multi-body system. This paper presents a data-driven framework for
autonomously extracting these primitives from a set of trajectories, without the
need for significant human intervention or analytical separation criteria. A set
of trajectories is first encoded in a feature space description that captures com-
mon design parameters of interest such as geometry, stability, and energy. Then,
an ensemble of clustering results is computed for the dataset using k-means and
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Fig. 17 Initial guess constructed using motion primitives and their corresponding regions of
existence for a transfer between an L1 and L2 Lyapunov orbit in the Earth-Moon CR3BP
with a single revolution around the Moon

agglomerative clustering evaluated for a variety of input parameters. WEAC, a
consensus clustering method, is leveraged to generate the final clustering result.
A set of motion primitives is then extracted as the medoids of the clusters. Uti-
lizing a consensus clustering algorithm in conjunction with traditional clustering
approaches produces results without requiring significant intervention from a hu-
man; rather, this approach learns from an ensemble of accumulated evidence to
uncover the natural groupings within a set of trajectories.

Using the presented data-driven procedure, motion primitives are constructed
to summarize families of periodic orbits and hyperbolic invariant manifolds in
the Earth-Moon CR3BP. A set of motion primitives is constructed for the planar
family of distant prograde orbits, the spatial family of northern L1 halo orbits, and
a variety of other periodic orbit families; in each case, the motion primitive sets
capture the complex variations in geometry, stability, and energy along each family.
A similar clustering approach is also employed to summarize a set of trajectories
along an unstable half-manifold of an L1 Lyapunov orbit. Each trajectory along
the manifold is discretized into a series of smaller arcs based on an apsis window to
identify the fundamental variations in geometry of arcs along the manifold. This
approach effectively summarizes the departure geometries from the L1 Lyapunov
orbit toward the Moon and L2, motion around the Moon, and trajectories that
either directly impact the Moon or leave the lunar vicinity. For both the periodic
orbit families and the manifold trajectories, the outputs of the developed approach
include: i) a set of fundamental trajectories that summarize larger sets of natural
motions in a multi-body system, and ii) a depiction of the regions in which the
motion primitives exist. These outputs serve as a key, fundamental step towards
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future work in leveraging motion primitives for rapidly generating initial guesses
for complex trajectories within multi-body systems.
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Dimensional Poincaré Maps in the Circular Restricted Three-Body Problem.
Celest. Mech. Dyn. Astron., 133(51). DOI: https://doi.org/10.1007/s10569-021-
10047-3.

Bosanac, N. (2016). Leveraging Natural Dynamical Structures to Explore Multi-
Body Systems. PhD dissertation, Purdue University, West Lafayette, IN.

Bosanac, N. (2020). Data-Mining Approach to Poincaré Maps in Multi-
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