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As the number of missions in multi-body gravitational environments continues to increase,

new trajectory design techniques that enable autonomous maneuver and trajectory design may

decrease the effort required of human trajectory designers. This benefit may be particularly appar-

ent with the increased usage of low-thrust propulsion systems and exploration of chaotic regimes

with limited dynamical insight to guide the trajectory designer. Exploring the multi-objective

trade space for a trajectory design scenario provides insights to trajectory designers, scientists, and

mission designers during preliminary mission concept development. One approach, multi-objective

reinforcement learning, enables the autonomous generation of optimal low-thrust trajectories with

varying geometries, flight times, and propellant mass usages in multi-body environments. A multi-

objective reinforcement learning algorithm, designated Multi-Reward Proximal Policy Optimization

(MRPPO), is introduced to simultaneously train multiple policies with unique objective prioriti-

zations to maximize distinct regions of the multi-objective solution space. To implement this ap-

proach, this dissertation presents a formulation of the reinforcement learning problem that reflects

the trajectory design problem. This approach is applied to three trajectory design scenarios to de-

velop low-thrust transfers that balance flight time and propellant mass usage and thereby provide

insights into the multi-objective solution spaces for each scenario. The results are then compared

with the solutions recovered via a nonlinear, constrained, gradient descent optimization scheme and

Proximal Policy Optimization (PPO) to validate the performance of MRPPO. Compared to PPO,

MRPPO consistently develops policies with higher total rewards and develops similar solutions to

the transfers produced by the optimization scheme.
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Chapter 1

Background and Motivation

Missions operating in the chaotic regimes of multi-body gravitational environments have long

been at the forefront of NASA’s goal to better humanity’s scientific understanding of the universe.

Further, with the significant increase in access to space provided by the private sector of the

aerospace industry, entities such as research laboratories, private companies, and universities have

begun exploring mission concepts outside of the near-Earth vicinity. The destinations for these

missions include the cislunar regime, Sun-Earth equilibrium points, and further regions where the

gravitational influence from multiple celestial bodies is significant. However, a major challenge

with designing trajectories within these systems is that even with insights gained from dynamical

systems theory into the underlying dynamics of the system, scenarios exist where these is limited

intuition into the solution space. Additionally, once a single solution is identified, a common

challenge is sufficiently exploring nearby solutions of varying geometries and characteristics. Finally,

current methods for trajectory design in multi-body environments are often effort intensive for a

human trajectory designer, necessitating that new techniques be developed to enable autonomous

exploration of the solution space.

Multi-objective optimization is typically used to explore a solution space with competing

objectives and constraints. Such problems exist in astrodynamics when designing feasible thrust-

enabled trajectories for a spacecraft in multi-body systems. For example, there is a well-known

trade-off between minimizing the flight time, minimizing propellant mass usage, minimizing changes

in the thrust direction, and satisfying additional objectives. These multi-objective optimization
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problems are often studied via analysis of the multi-objective solution space, and in particular, the

nondominated solutions that maximize two or more objectives in an environment. In trajectory

design problems, generating a single point solution may be time and resource intensive; as a result,

generating the global solution space, much less a local solution space, may be impractical.

In multi-body systems, one step towards reducing the complexity of trajectory design is to

use the Circular Restricted Three-Body Problem (CR3BP) for preliminary analysis. The CR3BP

closely approximates the dynamics of three-body systems, such as the Sun-Earth and Earth-Moon

systems, yet it is chaotic and exhibits a large variety of fundamental solutions that tend to be

retained in higher-fidelity models. By leveraging insights from the CR3BP into the motion of a

spacecraft within the system, solutions may be constructed in the CR3BP by an expert trajectory

designer and then transferred to a higher-fidelity point mass ephemeris model using numerical tech-

niques such as multiple shooting or collocation. However, with additional continuous or significant

constraints, this approach can be difficult to automate rendering it insufficient when needing rapid

trajectory or maneuver development.

Machine learning, a field of artificial intelligence, offers one solution for enabling autonomous

trajectory and maneuver design for spacecraft without requiring extensive input from a human

trajectory designer. In fact, machine learning has already revolutionized many industries. One of

the goals of machine learning is to map high-dimensional relationships between inputs and outputs

and uncover optimal behavior that may be nonintuitive to a human designer. This goal may

be leveraged within the trajectory design process to uncover the high-dimensional relationships

between the dynamics, spacecraft, constraints, and objectives for a trajectory design scenario.

Reinforcement learning is a distinct class of machine learning algorithms that employ one

or more agents to interact with an unknown dynamical environment to develop optimal solutions

that satisfy a single or multi-objective optimization problem. Specifically, reinforcement learning

algorithms are used to construct a policy that maps states to optimal actions within the environment

that aim to maximize the long-term reward generated for a single trajectory. Additionally, multiple

policies may be trained that maximize unique objective prioritizations corresponding to uncovering



3

distinct regions of the multi-objective solution space. Policies trained using reinforcement learning

may autonomously recover nonintuitive solutions within the solution space while also reducing the

effort required of a human trajectory designer. Reinforcement learning algorithms that train neural

networks to learn optimal behavior within an environment have been successfully applied across a

variety of industries, most notably achieving acclaim in Atari games and Go, demonstrating the

applicability and robustness of these algorithms across multiple disciplines [98, 129].

Multi-objective reinforcement learning algorithms construct multiple optimal solutions simul-

taneously to develop a subset of solutions within the multi-objective solution space. In this disserta-

tion, a multi-objective reinforcement learning algorithm designated Multi-Reward Proximal Policy

Optimization (MRPPO) is constructed and used to recover a subset of the multi-objective solu-

tion space for low-thrust trajectory design within a multi-body system. This research synthesizes

the recent advancements in reinforcement learning algorithms with trajectory design techniques

to create a framework for autonomously uncovering solutions to a multi-objective optimization

problem. This approach is applied to three trajectory design scenarios to recover a multitude of

low-thrust transfers that distinctly balance propellant mass usage and flight time while targeting

the final periodic orbit. Additionally, the solutions are approximately validated and compared to

solutions produced by Proximal Policy Optimization (PPO) and a nonlinear constrained optimiza-

tion scheme. This approach demonstrates the applicability of using a multi-objective reinforcement

learning methodology to autonomously recover optimal solutions within a low-thrust, multi-body

trajectory design scenario.

1.1 Motion in Multi-Body Gravitational Environments

Throughout history, motion in a multi-body gravitational environment has been studied,

explored, and used to develop innovative mathematical and scientific observations. Many of these

observations have been formed in the context of a three-body gravitational system. In a three-body

system, the three bodies gravitationally interact with one another and influencing the path of the

bodies within the system. Three-body systems are inherently chaotic, generally possess no closed
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form analytical solution, and are valuable approximations for the motion of a spacecraft in the

Earth-Moon system, Sun-Earth system, and other regions of the solar system.

Many researchers have focused on the three-body problem to develop insights into the motion

of the bodies in the system throughout time. This insight has been used as a foundation for

trajectory design centuries later. Notable mathematicians studying three-body systems include

both Euler and Lagrange who explored the three-body problem leading to the discovery of periodic

solutions and equilibrium points under certain assumptions about the system [11, 148]. Jacobi

followed on this work by formulating an integral of motion for the system [74]. The mathematical

insights provided by these investigations have been used as a valuable foundation for mission design

in multi-body systems providing humanity with new scientific knowledge about the universe.

Many past, current, and future missions require spacecraft to operate in chaotic regimes where

multiple celestial bodies are significantly influencing the trajectory. For instance, the International

Sun-Earth Explorer (ISEE-3), was the first spacecraft to enter into a three-body orbit in the vicinity

of the Sun-Earth L1 equilibrium point [117]. Other notable missions that have or will operate in

three-body dynamical regimes include Lunar IceCube, the Solar and Heliophysics Observatory

(SOHO), and Near-Earth Asteroid (NEA) Scout in addition to numerous other missions [26, 118,

95]. Most recently, the James Webb Space Telescope (JWST) was inserted into a Lissajous orbit at

the Sun-Earth L2 equilibrium point [88]. Outside of the Earth vicinity, numerous mission concepts

have been designed for missions to the Sun-Earth L5 equilibrium point including proposals by

Akioka et al., Schmidt and Bothmer, and Vourlidas due to its favorable properties for heliophysics

observations [4, 123, 160]. These missions demonstrate the interest in developing new and innovative

mission concepts that leverage multi-body dynamics to enable new scientific observations.

1.2 Low-Thrust Trajectory Design Methods

A variety of techniques based on insights from dynamical systems theory have been developed

to construct low-thrust-enabled transfers in multi-body systems. For instance, Anderson and Lo

explored propellant-optimal, low-thrust transfers and found that the low-thrust transfers often
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follow invariant manifold arcs in a three-body system [5]. Both Bosanac et al. and Ozimek and

Howell develop low-thrust transfers using invariant manifold arcs and dynamical systems theory

in the cislunar regime [26, 108]. More recently, Cox, Howell, and Folta and Prado Pino employed

dynamical structures within a low-thrust CR3BP dynamical model and insights from dynamical

systems theory to develop low-thrust transfers [36, 114]. These techniques often use insights from a

human trajectory designer to recover low-thrust transfers that leverage the natural flow of motion

within a system.

Low-thrust trajectory design in multi-body environments is a challenging and complex prob-

lem due to the need to balance achieving the objectives while also satisfying the constraints with

often limited dynamical insight into the solution space. This problem is compounded when devel-

oping solutions for SmallSats, which pose additional constraints on the available solution space.

Trajectory designers must contend with the additional challenges that the SmallSat form factor im-

poses including: low maneuverability due to a limited propulsive capability, constrained deployment

conditions, and operational scheduling constraints due to limited power. These challenges all im-

pact the availability and geometry of feasible transfer paths that tend to exist in a high-dimensional

design space.

1.3 Low-Thrust Trajectory Optimization

Various optimization methods have been used in the astrodynamics community to recover

optimal solutions to a low-thrust, multi-body trajectory design problem. These problems are

characterized by their high dimensionality, sensitivity due to the chaotic environment, and in some

cases, limited dynamical insight. Previous investigations have focused on using both traditional

optimization and heuristic methods to recover solutions in the multi-objective solution space [15].

Many investigations have implemented these methods in the two-body problem, however, this

dissertation focuses on transfers in a multi-body environment. Traditional optimization schemes

applied to develop transfers in trajectory design scenarios may be broadly categorized into three

types of approaches: 1) indirect optimization methods, 2) direct optimization methods, and 3)
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hybrid optimization methods [137]. However, state-of-the-art traditional optimization methods

often require an initial guess in low-thrust, multi-body trajectory design scenarios to converge on

an optimal solution. Generating this initial guess may be time-consuming for a human trajectory

designer and may strongly influence the local basin of convergence that the optimal solution falls

within [164]. Conversely, heuristic methods, such as evolutionary algorithms, may struggle to find

optimal solutions and are challenging to properly design [77].

1.3.1 Nonlinear Constrained Optimization Methods

Indirect optimization methods leverage calculus of variations to define a two-point bound-

ary value problem (2PBVP) and recover the optimality conditions [15]. This approach has been

used to generate both low-thrust and impulsive optimal trajectories. Investigations in the as-

trodynamics community that incorporated indirect optimization include Colasurdo and Pastrone

employing indirect optimization for minimum fuel impulsive transfers, Pérez-Palau and Epenoy

applying indirect optimization for developing low-thrust transfers in the Sun-Earth-Moon bicir-

cular four-body problem, Taheri, Kolmanovsky, and Atkins investigating smoothing functions in

an indirect optimization scheme for low-thrust interplanetary transfers, and Tang and Jiang using

indirect optimization for capturing near-Earth objects [34, 113, 149, 150]. Indirect optimization

methods generally require less computational time and possess low-dimensionality, but possess less

robust convergence properties and require defining non-intuitive costates [115].

Direct methods use nonlinear programming to solve the optimal control problem by dis-

cretizing the trajectory into a sequence of arcs that may be iteratively updated. A number of

investigations have applied direct optimization to solve optimization problems in the astrodynam-

ics community. These approaches include an investigation by Falck and Dankanich using direct

optimization to compute low-thrust spiral trajectories, Graham and Rao applying direct optimiza-

tion to develop low-thrust transfer between Earth orbits, and Scheel and Conway employing direct

optimization for multi-revolution, low-thrust trajectories [50, 56, 121]. In distinct approaches, Aziz,

Scheeres, and Lantione and Boone and McMahon employed differential dynamic programming to
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develop optimal controls schemes for low-thrust transfers [8, 21, 22]. Direct optimization methods

are generally more robust to initial guess selection and do not require defining costates but possess

higher-dimensionality and lower accuracy compared to indirect optimization methods [115].

Hybrid optimization methods combine elements from indirect and direct optimization meth-

ods to recover locally optimal trajectories. In a hybrid optimization approach, indirect procedures

may be combined with direct methods to retain low-dimensionality while increasing the robustness

of the convergence process. Insights from calculus of variations may be used to define optimal engine

operation and determine the values of the control parameters along a trajectory prior to using a

gradient-based optimization to recover an optimal solution. Within the astrodynamics community,

hybrid optimization has been used by Stuart, Ozimek, and Howell for designing low-thrust transfers

between halo orbits using invariant manifolds as an initial guess [139]. Sullivan et al. followed this

investigation by applying this method for low-thrust transfers to high-inclination science orbits in

the Sun-Earth system [144]. By combining the advantages from the direct and indirect approaches,

solutions may be developed using optimization techniques that are robust to the initial guess.

For each approach, the optimization scheme develops an optimal solution, which may be a

local or global optima, with respect to a defined objective function by updating the parameters

of the initial guess. This objective function captures the objectives and goals of the trajectory

optimization problem, and generally must be continuous and possess continuous first order deriva-

tives. Additionally, boundary and path constraints may be introduced that the optimization scheme

must satisfy when developing the optimal solution. Both equality and inequality constraints may

be incorporated, but the constraints generally must also be continuous and have continuous first

order derivatives. When constraints are introduced, the problem is redefined as a constrained op-

timization problem. Finally, nonlinear optimization methods refer to optimization methods that

recover optimal solutions when at least one objective or constraint is a smooth, nonlinear function.

Nonlinear constrained optimization methods may possess a direct, indirect, or hybrid procedures,

recover local or global optima, and possess single or multi-objective formulations.
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1.3.2 Heuristic Methods

Heuristic methods are a distinct class of methods from classical optimization methods that

enable the generation of optimal spacecraft trajectories. Well-known heuristic methods include evo-

lutionary algorithms, genetic algorithms, ant colony optimization, artificial bee colony optimization,

and particle swarm optimization. Many of these algorithms are inspired by the behavior of bio-

logical organisms evolving throughout time in response to feedback from an environment and may

also be considered swarm-based optimization methods. In a swarm-based optimization approach, a

population of candidates, i.e. trajectories, are evaluated, evolved, and combined over many genera-

tions or iterations until an optimal solution is recovered or the population is no longer significantly

changing. Often, characteristics from members of the population that generate a higher value in

the environment are incorporated into the weaker members of the population to boost their value

and ensure the population continues to explore the environment. Heuristic methods may be used

to solve both unconstrained and constrained nonlinear optimization problems such as those seen in

the astrodynamics community.

Previous investigations in the astrodynamics community have recovered both impulsive and

low-thrust trajectories using a variety of heuristic methods. Abraham, Spencer, and Hart employed

particle swarm optimization to explore the design space for a low-thrust transfer from an Earth

orbit to an Earth-Moon libration point orbit [1]. Gurfil and Kasdin constructed out-of-ecliptic

trajectories in the Sun-Earth CR3BP using deterministic crowding genetic algorithms [60]. Finally,

an investigation by Cage, Braun, and Kroo developed interplanetary spacecraft trajectories using

a genetic algorithm approach [28]. These investigations demonstrated that heuristic methods may

be used to recover optimal solutions in trajectory design scenarios, but more recent investigations

have employed evolutionary algorithms.

Evolutionary algorithms, a type of heuristic method, possess many parallels with reinforce-

ment learning algorithms. In both evolutionary and reinforcement learning algorithms, a population

of candidate solutions may explore an unknown dynamical environment and use feedback from the
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environment and objectives to update the population. In fact, neuroevolutionary algorithms, which

combine neural networks and evolutionary algorithms, possess similar structures and goals to both

evolutionary and reinforcement learning algorithms [73]. Neuroevolutionary algorithms update a

population composed of neural networks, each with distinct weights and biases, by fusing, evolving,

and perturbing the neural networks throughout training to recover an optimal solution in the envi-

ronment that maximizes a set of objectives. However, while neuroevolutionary algorithms do not

require computing the gradients of the neural network parameters for updates, thus eliminating a

costly computational time requirement, they often do not perform as well as reinforcement learn-

ing algorithms in complex environments [82]. Neuroevolutionary algorithm have been applied by

a number of investigations within the astrodynamics community. Dachwald trained evolutionary

neurocontrollers to generate low-thrust transfers to a near-Earth asteroid and solar sail transfers

to a variety of interplanetary destinations [37, 38]. Carnelli, Dachwald, and Vasile also applied

evolutionary neurocontrollers to develop low-thrust interplanetary transfers incorporating grav-

ity assists [29]. Additionally, Huber applied NeuroEvolution Augmenting Topologies (NEAT) to

develop interplanetary trajectories [71].

Alternatively, heuristic methods may be combined with optimization methods to leverage

the benefits of both approaches and recover optimal solutions. For instance, Stuart, Howell, and

Wilson combined ant colony optimization and hybrid optimization to explore the design space

for an asteroid tour while minimizing propellant mass usage [138]. Often, these approaches are

combined to explore and uncover solutions within a multi-objective solution space.

1.3.3 Multi-Objective Optimization

Multi-objective optimization algorithms aim to generate multiple optimal solutions within

a multi-objective solution space that distinctly balance two or more objectives. A nondominated

optimal solution is recovered if a solution balances two or more objectives without being dominated

by another solution, i.e. a solution cannot improve a single objective without decreasing a different

objective. Generating multiple, global, nondominated, optimal solutions enables the recovery of a
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Pareto front for a multi-objective optimization problem [157]. However, since guaranteeing recovery

of global nondominating solutions, rather than just local optima, along the entire Pareto front in an

unknown, complex solution space is challenging, in this research, the goal is limited to recovering

multiple locally optimal solutions within a multi-objective solution space that may potentially lie

along or approximate the Pareto front in a trajectory design scenario.

In a trajectory design scenario, common objectives that are balanced in a multi-objective

optimization problem include propellant mass usage, flight time, uncertainty, scientific observa-

tions, and other mission objectives. Often, there is an inverse relationship between flight time and

propellant mass usage where longer flight times correspond to lower propellant mass usages and

lower flight times require higher propellant mass usages. Additionally, for preliminary mission con-

cept development, uncovering the relationship between flight time and propellant mass usage for a

trajectory design scenario enables insights into the trade space for mission designers and scientists.

There are numerous methods for recovering solutions that span the multi-objective solution space.

One approach is to perform many sequential runs of a single objective optimization method while

varying the weighting of objectives in the objective function [31]. Alternatively, a multi-objective

optimization approach may generate multiple optimal solutions that span a multi-objective solution

space. Traditional multi-objective optimization approaches to spacecraft trajectory design may be

categorized as classical optimization schemes, heuristic methods, or a combination of the two.

Classical multi-objective optimization schemes have been applied to a variety of trajectory

design scenarios balancing distinct objectives and may incorporate direct, indirect, or hybrid op-

timization algorithms. For instance, Russell explored multi-revolution, low-thrust transfers via

indirect optimization in the Jupiter–Europa and Earth–moon restricted three body problems [120].

Dellnitz et al. employed a three-step multi-objective optimization process with dynamical systems

theory and direct optimization to generate transfers from Earth to an Earth-Moon L2 halo orbit

that balance flight time and total ∆V [45]. Jenson and Scheeres applied an indirect multi-objective

optimization method to develop orbit transfers and phasing maneuvers at Bennu balancing mini-

mizing propellant mass usage and uncertainty [75].
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Multi-objective optimization approaches that combine optimization methods and heuristic

methods have also been applied to a variety of trajectory design scenarios and are used within NASA

software packages such as Evolutionary Mission Trajectory Generator (EMTG) to discover distinct

local minima in distinct regions of the solution space [102]. Often, the heuristic method is used in

an outer loop to enable a population of candidates to explore the multi-objective solution space

while the optimization method composes the inner loop to optimize each candidate with respect to

a defined objective function [136]. Notable investigations in the astrodynamics community using

this combination of methods include approaches by Lee et al. which combine genetic algorithms

with a Lyapunov feedback control law to design low-thrust transfers balancing propellant mass

usage and flight time [85] Similar investigations by Coverstone-Carroll, Hartmann, and Mason

and Hartmann, Coverstone-Carroll, and Williams synthesize genetic algorithms with a calculus of

variations optimization techniques to produce a multi-objective solution space for interplanetary

transfers [35, 64]. Other approaches employ Non-dominated Sorting Genetic Algorithm II (NSGA-

II), a multi-objective optimization algorithm that combines a sequential quadratic programming

(SQP) optimization algorithm for the inner loop with a genetic algorithm for the outer loop, to

construct transfers spanning a multi-objective solution space [43]. Deb et al. uncovered the multi-

objective solution space for interplanetary trajectories using NSGA-II [42]. Englander, Vavrina, and

Ghosh used NSGA-II in EMTG to generate insights into the flight time and propellant mass usage

trade space for a main-belt asteroid tour [49]. Finally, Shah, Beeson, and Coverstone recovered the

flight time and ∆V trade space for transfers to the Earth-Moon L2 equilibrium point [128]. While

these methods may be used to recover transfers in chaotic gravitational environments spanning a

multi-objective solution space, the algorithms often require an initial guess or dynamical knowledge

input from a human expert to converge on solutions in complex environments. Additionally, genetic

algorithms, including NSGA-II, often require tuning non-intuitive parameters to recover a diverse

set of solutions for a multi-objective optimization problem [49, 77].
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1.4 Reinforcement Learning

Machine learning has been a rapidly growing field since its renaissance in the 2000’s due to

increases in computation power and the derivation of more efficient, robust algorithms. Machine

learning techniques have been described as a disruptive technology with the ability to reduce cost,

lower design time, and reduce human biases in the design process in a variety of fields [78]. While

there exists a large variety of machine learning algorithms, they may be broadly classified into

three categories: supervised learning, unsupervised learning, and reinforcement learning. Each

classification has advantages and disadvantages depending on the problem the algorithm is being

applied to. Then, the design engineer must make an informed choice on which method to apply.

Reinforcement learning is a field of machine learning that enables the recovery of optimal

behavior in dynamical environments without a priori domain knowledge. Reinforcement learning

algorithms use an agent or multiple agents to autonomously interact with an environment and

generate data to develop solutions that satisfy a single or multi-objective optimization problem.

First explored in the 1950’s and 1960’s, the theory behind reinforcement learning has developed

alongside the increases in computational power [97]. As computational power has increased, new

techniques have been developed and applied to numerous applications. However, one of the most

significant steps that has led to a renewal of interest in reinforcement learning was the incorporation

of neural networks in combination with traditional reinforcement learning methods. This devel-

opment facilitated the recovery of control schemes for Atari games that surpassed human experts

[98]. Since neural networks have been incorporated, reinforcement learning has been applied to

autonomous vehicles, Go, robotics, and a variety of applications and industries [72, 96, 129, 159].

However, traditional reinforcement learning approaches typically focus on recovering a single policy

maximizing a single objective necessitating multiple sequential runs to recover solutions spanning

a multi-objective solution space.
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1.4.1 Applications of Reinforcement Learning to Trajectory Design

Several researchers have applied reinforcement learning for multi-body trajectory and maneu-

ver design. For instance, Das-Stuart, Howell, and Folta used reinforcement learning to construct

low-thrust transfers by exploring and combining arcs computed from periodic orbit families in the

CR3BP [40]. Miller and Linares applied Proximal Policy Optimization (PPO) to develop low-

thrust transfers between distant retrograde orbits in the Earth-Moon CR3BP [96]. LaFarge et al.

expanded on this work by using PPO to generate low-thrust transfers between distinct libration

point orbits following a pre-computed, continuous solution constructed by a human designer [84].

Additionally, LaFarge, Howell, and Folta and Scorsoglio et al. employed reinforcement learning for

targeting periodic orbits in the Earth-Moon CR3BP [83, 127]. Federici et al. developed low-thrust

transfers between distinct libration point orbits in the Earth-Moon CR3BP and using a sparse

reward function formulation that only depends on the final state along a trajectory [51]. Bonasera

et al. and Bosanac et al. constructed impulsive maneuvers using PPO for station-keeping and

reconfiguration scenarios in the Sun-Earth CR3BP [19, 25]. Boone et al. built upon this work by

incorporating uncertainty measures into the state vector for a reinforcement learning environment

to explore the influence of the uncertainty on the robustness of a controls scheme for an impulsive

orbit transfer scenario [20].

1.4.2 Multi-Objective Reinforcement Learning

In multi-objective reinforcement learning, algorithms train multiple policies simultaneously

distinctly balancing multiple objectives to uncover optimal solutions spanning a multi-objective so-

lution space. Researchers have used a variety of multi-objective reinforcement learning approaches,

with and without neural networks, to train policies that recover solutions spanning a multi-objective

optimization problem. Multi-objective reinforcement learning approaches are generally more effi-

cient compared to single objective approaches while developing the multi-objective solution space

and provide deeper insights into the trade-offs between the objectives. A variety of multi-objective
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reinforcement learning algorithms have been developed using distinct frameworks, neural network

and non-neural network implementations, algorithm characteristics, and for numerous applications.

These multi-objective reinforcement learning approaches are broadly assigned into two cate-

gories: (1) the reward function for each policy returns a scalar sum composed of terms representing

each objective and (2) the reward function for each policy returns a vector where each component

directly represents an objective. The first type of approach assumes that the multi-objective space

may be described by multiple scalar reward functions formed using shared reward function compo-

nents that are regulated using linearly-related, scalar weights. This approach generally results in

a less complex formulation and retains the ability to recover nondominated solutions. Well-known

approaches have focused on using Q-learning in a multi-objective framework to develop solutions

for problems including water management, the deep sea treasure problem, electrical power man-

agement, and molecule optimization [30, 100, 152, 158, 167].

Alternative approaches have specified the reward function as a vector valued function. These

approaches also tend to use Q-learning in combination with a vector-valued reward function to con-

struct solutions spanning a multi-objective solution space in problems including resource gathering,

clinical trials, the network routing problem, and the deep sea treasure problem [10, 91, 103, 105].

While both types of approaches may generate nondominated solutions within the global solution

space, the presented research falls within the first category of multi-objective reinforcement learning

algorithms whereby the reward function outputs a scalar.

1.5 Path Planning Approaches

Path planning may be incorporated into a reinforcement learning algorithm to aid explo-

ration in a complex environment and recover optimal solutions. Within the reinforcement learning

community, prior investigations in a variety of path planning applications have noted the inability

of state-of-the-art reinforcement learning algorithms to converge on locally optimal trajectories in

complex environments without either a priori knowledge defined by a domain expert or the incor-

poration of path planning algorithms. This phenomenon has been noted by researchers including
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Panov, Yakovlev, and Suvorov, Spandan et al., and Trott et al. [109, 135, 155]. While domain

knowledge may be incorporated into state-of-the-art reinforcement learning algorithms as demon-

strated by Silver et al., this process requires time and effort from a human expert [129]. Instead,

path planning approaches may be incorporated into a reinforcement learning algorithm to improve

the convergence behavior and performance of the policies.

Reinforcement investigations that leverage path planning have incorporated a variety of struc-

tures to enable a policy to recover optimal behavior. For instance, Trinh, Vu, and Kimura applied

PPO with a point-of-conflict path planning prediction model for pedestrian path planning [154].

Zhang et al. employed geometric reinforcement learning for path planning of uncrewed aerial ve-

hicles (UAVs) [165]. Guo et al. combined reinforcement learning and an artificial potential field to

develop paths for uncrewed ships [59]. Lastly, Park, Kim, and Song developed a motion planning

methodology for a robot by leveraging probabilistic roadmaps and reinforcement learning [110].

Other investigations focused on using reinforcement learning for path planning incorporate

waypoints enabling a policy to follow a set of waypoints towards an objective whereby the waypoints

may be fixed or iteratively adjusted by the reinforcement learning algorithm or a path planning

algorithm. Ebrahimi et al., Li et al., and Yan, Xiang, and Wang applied reinforcement learning

for designing paths for UAVs using waypoints [47, 87, 163]. Within the astrodynamics commu-

nity, Gaudet and Furfaro employed reinforcement learning for spacecraft hovering at waypoints

surrounding an asteroid [54]. In a distinct investigation, Furfaro and Linares combined a Zero-

Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feedback guidance law with waypoints determined

via reinforcement learning for spacecraft entry trajectories for Mars [53]. However, the waypoints

incorporated for reinforcement learning algorithms to follow are generally points in position space

that are defined a priori or autonomously generated without consideration for the natural flow of

motion within the dynamical model.
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1.6 Dissertation Overview

This dissertation focuses on using to autonomously recover subsets of the multi-objective so-

lution space for low-thrust trajectory design in multi-body environments. First, a multi-objective

reinforcement learning algorithm is formulated using a state-of-the-art single objective reinforce-

ment learning algorithm as a foundation. Then, the trajectory design problem is translated into a

reinforcement learning problem to enable the multi-objective reinforcement learning algorithm to

recover a subset of solutions spanning the multi-objective solution space. A nonlinear constrained

optimization scheme is also formulated to validate the low-thrust transfers produced by the multi-

objective reinforcement learning approach. These methodologies are applied to three trajectory

design scenarios of varying complexity to demonstrate the applicability of the multi-objective rein-

forcement learning approach and generate insight into the performance of the approaches.

1.6.1 Contributions

The contributions of this research to the technical community are summarized as:

• A multi-objective reinforcement learning algorithm, designated MRPPO, is developed using

PPO as a foundation to train multiple policies simultaneously. MRPPO is empirically

shown to be more stable in the explored trajectory design scenarios and recover solutions

more efficiently than PPO thereby reducing the required computational time and effort.

• A reinforcement learning problem is formulated to reflect a low-thrust trajectory design

problem in a multi-body system. This formulation incorporates a path planning approach,

inspired by the concept of waypoints, to enable the policies to autonomously develop low-

thrust transfers to a periodic orbit without requiring an initial guess.

• MRPPO is used to solve the formulated reinforcement learning problem in three trajectory

design scenarios. A subset of the multi-objective solution space is therefore generated and

analyzed to provide insights into the propellant mass usage and flight time trade space.
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These results are compared to a nonlinear, constrained optimization scheme to generate

insights into the performance of MRPPO in these trajectory design scenarios.

1.6.2 Organization

The research introduced in this investigation is structured as follows

• Chapter 2: The dynamical models that are used to model the motion of a spacecraft within

a multi-body gravitational environment are derived and explored. First, the equations of

motion and relevant assumptions for the CR3BP are formulated. Additionally, natural

dynamical structures including equilibrium points, periodic orbits, and invariant manifolds

are developed. Then, equations of motion for the higher-fidelity point mass ephemeris

model and for incorporating low-thrust into the dynamical models are derived. Finally,

transformations between inertial and rotating frames are formulated.

• Chapter 3: The general formulation of a reinforcement learning algorithm and classifica-

tions for existing algorithms are introduced. Then, the theory behind neural networks,

actor-critic methods, and policy gradient methods is summarized. PPO synthesizes these

components to train policies to recover optimal behavior in an environment, which may

then be used in transfer learning to update the policies for related dynamical environments

and objectives.

• Chapter 4: MRPPO is developed using PPO as a foundation for training multiple policies

simultaneously in a multi-objective framework. Then, parameters that influence the train-

ing process are explored. Finally, a path planning approach incorporating a continuous set

of waypoints in the environment is integrated into MRPPO to aid the policies in converging

on optimal solutions in complex environments.

• Chapter 5: A multi-objective low-thrust trajectory design optimization problem is formu-

lated as a reinforcement learning problem. The agent properties, episode characteristics,

state vector, action vector, time step, reward function, and termination conditions are
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delineated for the three trajectory design scenarios explored in this research. Lastly, the

transfer learning implementation enabling policies to be trained in a point mass ephemeris

model is introduced.

• Chapter 6: To validate the results of MRPPO, the multi-objective reinforcement learning

problem is translated into a multi-objective optimization problem that is solved using a

nonlinear constrained optimization scheme. The free variables, objectives, constraints, and

initial guess construction are defined, and differences between the results produced by the

optimization scheme and MRPPO due to non-identical implementations are noted.

• Chapter 7: The results produced by MRPPO and the optimization scheme are presented

and explored for three trajectory design scenarios. Additionally, an analysis comparing the

results produced by PPO and MRPPO for the first trajectory design scenario is included.

Finally, an investigation into the influence of the hyperparameter selection and the number

of reference trajectories per policy is presented.

• Chapter 8: A summary of the methodologies and results of this investigation is presented

and followed by recommendations for future work in the areas of reinforcement learning,

multi-objective reinforcement learning, and applying reinforcement learning approaches for

low-thrust trajectory design in multi-body systems.



Chapter 2

Dynamical Models

Dynamical models of varying fidelity are often leveraged to generate an initial guess for a

transfer prior to transitioning the solution to a more complex ephemeris model. First, the equations

of motion for the CR3BP, which approximates the motion of a spacecraft in the vicinity of two

larger primary bodies are presented. Additionally, the CR3BP admits natural dynamical structures

that are approximately retained in higher-fidelity models [48]. Then, locally optimal solutions in

the CR3BP often serve as valuable initial guesses for recovering locally optimal transfers in a

point mass ephemeris model [23]. An example of a higher-fidelity point mass ephemeris model

is presented in this section. In this chapter, the CR3BP and point mass ephemeris equations of

motion for natural trajectories are augmented to incorporate the acceleration imparted by a low-

thrust engine. Finally, the transformations between the rotating and inertial frames are specified

for defined state and thrust vectors.

2.1 Circular Restricted Three-Body Problem

The motion of a spacecraft in multi-body regime may be modeled using the CR3BP. The

CR3BP models the paths of three bodies, denoted as P1, P2, and P3, with masses M̃1, M̃2, and M̃3,

respectively, orbiting a common barycenter, represented as O. In this derivation, tilde notation

denotes dimensional quantities and variables with overhead bars indicate vector quantities. In this

model, the third body is assumed to have negligible mass in comparison to the other bodies such

that M̃3 ≈ 0, and the motion of the third body does not influence the motion of the two larger
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Figure 2.1: Inertial coordinate frame with axes (X̂, Ŷ , Ẑ) centered at the barycenter O with bodies
P1, P2, and P3.

primary bodies nor affect the location of the barycenter. Additionally, both primary bodies are

assumed to be point masses with constant mass where P1 is assumed to possess a larger mass than

P2, i.e. M̃1 > M̃2. Then, P1 and P2 may be treated as an isolated two-body problem and are

assumed to follow coplanar, circular orbits about their mutual barycenter.

Using these assumptions, an inertial frame may be constructed with orthogonal axes (X̂, Ŷ , Ẑ)

that is centered upon the system barycenter. Both X̂ and Ŷ are defined in the orbital plane of the

primary bodies where the Ŷ is set perpendicular to X̂. Then, Ẑ completes the right-handed triad

and directed out of the orbital plane and aligned with the angular momentum vector of bodies

P1 and P2. Figure 2.1 depicts an inertial frame defined for bodies P1, P2, and P3. The position

and velocity of P3 in the inertial frame are designated ˜̄D3 = [X̃3, Ỹ3, Z̃3]
T and ˜̄D′

3 = [X̃ ′
3, Ỹ

′
3 , Z̃

′
3]
T ,

respectively. In the inertial frame, ˜̄Di denotes the vector directed from the origin of the inertial

frame to each body i and is written as ˜̄Di = X̃iX̂ + ỸiŶ + Z̃iẐ. The relative vectors from body i

to body j are expressed as ˜̄Di,j = (X̃j − X̃i)X̂ + (Ỹj − Ỹi)Ŷ + (Z̃j − Z̃i)Ẑ.

In this conservative, multi-body system, the only force acting upon the objects is their mutual

gravitational attractions. Then, the force per unit mass vector acting on P3 is written as ˜̄F3 =

∇̄3Ũ3 =
˜̄D′′
3 where Ũ3 is the potential function describing the gravitational forces of P1 and P2 acting
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on P3. The potential function is composed of two terms which are the gravitational potentials of

bodies P1 and P2 measured with respect to P3. The potential function is computed via Ũ3 =

(G̃M̃1)/(D̃1,3) + (G̃M̃2)/(D̃2,3) where G̃ is the universal gravitational constant defined as G̃ =

6.67408 × 10−11 m3 kg−1 s−2. Additionally, the magnitudes of the relative vectors, D̃13 and D̃23,

are computed via D̃i,3 =
√

(X̃3 − X̃i)2 + (Ỹ3 − Ỹi)2 + (Z̃3 − Z̃i)2 where i denotes primaries P1 and

P2, respectively. Then, the partial derivatives of Ũ3 with respect to ˜̄D3 are written as

∂Ũ3

∂X̃3

= X̃ ′′
3 =

−G̃M̃1(X̃3 − X̃1)

D̃3
1,3

− G̃M̃2(X̃3 − X̃2)

D̃3
2,3

(2.1)

∂Ũ3

∂Ỹ3
= Ỹ ′′

3 =
−G̃M̃1(Ỹ3 − Ỹ1)

D̃3
1,3

− G̃M̃2(Ỹ3 − Ỹ2)

D̃3
2,3

(2.2)

∂Ũ3

∂Z̃3

= Z̃ ′′
3 =

−G̃M̃1(Z̃3 − Z̃1)

D̃3
1,3

− G̃M̃2(Z̃3 − Z̃2)

D̃3
2,3

(2.3)

This formulation produces eighteen equations of motion for the three bodies. However, only 10 in-

tegrals of motion exist: six from the conservation of linear momentum, three from the conservation

of angular momentum, and one from the conservation of energy. Instead, to reduce the dimension-

ality of the equations of motion, the position and velocity of the bodies are nondimensionalized

using the system’s characteristic quantities and the assumptions of the CR3BP are employed.

For the CR3BP, a rotating coordinate system may be conveniently defined using the as-

sumption that the two primary bodies possess circular orbits about a common barycenter. The

rotating coordinate system is centered at the system barycenter O with axes (x̂, ŷ, ẑ): the x̂ axis is

directed from P1 to P2, the ẑ axis is directed along the orbital angular momentum vectors of the

two primaries, and the ŷ axis is defined to create a right-handed coordinate frame. In this rotating

frame, the primaries are held fixed at these locations at ˜̄ρ1 = [x̃1, ỹ1, z̃1]
T and ˜̄ρ2 = [x̃2, ỹ2, z̃2]

T

for P1 and P2, respectively, with position vectors measured with respect to P3 denoted as ˜̄d1

and ˜̄d2, respectively. Figure 2.2 depicts the CR3BP rotating coordinate system defined using P1

and P2. This rotating frame admits a set of dimensional autonomous coordinates for P3 denoted

˜̄d3 =
˜̄d = [x̃, ỹ, z̃]T and ˜̄d′3 =

˜̄d′ = [x̃′, ỹ′, z̃′]T for the position and velocity components, respectively.
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Figure 2.2: Rotating coordinate frame with axes (x̂, ŷ, ẑ) centered at the barycenter O with bodies
P1, P2, and P3.

This formulation enables the conversion between inertial and rotating coordinates to be defined as
x̃

ỹ

z̃

 =


cos(ϕ) sin(ϕ) 0

−sin(ϕ) cos(ϕ) 0

0 0 1




X̃

Ỹ

Z̃

 (2.4)

where ϕ = ñt̃ is the angle of rotation and ñ is the mean motion.

Then, the characteristic quantities of a multi-body system are defined to nondimensionalize

the position, velocity, time, and mass components. First, the characteristic length, ℓ̃∗, is set equal

to the distance between P1 and P2 and written as ℓ̃∗ = ρ̃1 + ρ̃2. Then, the mass of the primaries

is nondimensionalized using the characteristic mass of the system computed via m̃∗ = M̃1 + M̃2.

The characteristic mass is also used to determine the mass ratio of the system via µ = M̃2/m̃
∗ such

that mass ratios approaching 0.5 signify primary bodies with near equal mass. The characteristic

time is defined to set the mean motion of the system to equal unity via n = ñt∗, equivalent to

setting the orbital period of the primaries equal to 2π. Then, the characteristic time is computed

via t̃∗ =
√

(ℓ̃∗)3/(G̃m̃∗). Table 2.1 lists the characteristic quantities used for the Earth-Moon and

Sun-Earth CR3BP, the two systems explored in this investigation.

Using the characteristic quantities, Eqs. (2.1) - (2.3) may be updated to develop equations
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Table 2.1: Characteristic quantities of the Earth-Moon and Sun-Earth CR3BP.

Characteristic Quantity Earth-Moon Sun-Earth

Length (ℓ̃∗), km 3.8440 ×105 1.4960 ×108

Time (t̃∗), s 3.7513 ×105 5.0219 ×106

Mass (m̃∗), s 6.0477 ×1024 1.9891 ×1030

Mass Ratio (µ) 1.2151 ×10−2 3.0035 ×10−6

of motion in the inertial frame for nondimensional coordinates. The simplified equations of motion

for body P3 in the inertial frame using nondimensional coordinates are

∂U3

∂X3
= X ′′

3 = −(1− µ)(X3 −X1)

D3
1,3

− µ(X3 −X2)

D3
2,3

(2.5)

∂U3

∂Y3
= Y ′′

3 = −(1− µ)(Y3 − Y1)

D3
1,3

− µ(Y3 − Y2)

D3
2,3

(2.6)

∂U3

∂Z3
= Z ′′

3 = −(1− µ)(Z3 − Z1)

D3
1,3

− µ(Z3 − Z2)

D3
2,3

(2.7)

These equations of motion are associated with a nonautonomous system dependent on time. Fur-

ther, by incorporating Eq. (2.11), the equations of motion defined in Eqs. (2.5) - (2.7) may be

updated to only require the position and velocity of P3. The final set of equations of motion in the

nondimensional inertial frame are written as

X ′′
3 = −(1− µ)(X3 + µcos(t))

D3
1,3

− µ(X3 − (1− µ)cos(t))

D3
2,3

(2.8)

Y ′′
3 = −(1− µ)(Y3 + µsin(t))

D3
1,3

− µ(Y3 − (1− µ)sin(t))

D3
2,3

(2.9)

Z ′′
3 = −(1− µ)Z3

D3
1,3

− µZ3

D3
2,3

(2.10)

which are used to propagate P3 in the inertial frame under the assumptions of the CR3BP.

This nondimensionalization scheme enables the position of the primary bodies to be written as

ρ̄1 = [−µ, 0, 0]T and ρ̄2 = [1−µ, 0, 0]T in the rotating frame. Additionally, the nondimensional posi-

tion and velocity components of P3 are then defined as d̄3 = d̄ = [x, y, z]T and d̄′3 = d̄′ = [x′, y′, z′]T ,
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respectively. Eq. (2.4) is then redefined for the nondimensional coordinates transformation as
x

y

z

 =


cos(t) sin(t) 0

−sin(t) cos(t) 0

0 0 1




X

Y

Z

 (2.11)

where t is the nondimensionalized time. Finally, the nondimensional position vectors of P3 with

respect to P1 and P2 are d̄1 =
√

(x+ µ)2 + y2 + z2 and d̄2 =
√
(x+ µ− 1)2 + y2 + z2, respectively.

To develop the equations of motion for P3 in the rotating frame defined by P1 and P2, each

side of Eqs. (2.8) - (2.10) are updated to be expressed using a new set of axes. Note, derivatives

with respect to time for a rotating observer will be written with the symbol ( ˙ ) to differentiate

from derivatives with respect to time in the inertial frame. First, Eqs. (2.8) - (2.10) are updated

using the position of bodies P1, P2, and P3 in the rotating frame and written as

X ′′
3 = −(1− µ)(x+ µ)

D3
1,3

− µ(x+ µ− 1)

D3
2,3

(2.12)

Y ′′
3 = −(1− µ)y

D3
1,3

− µy

D3
2,3

(2.13)

Z ′′
3 = −(1− µ)z

D3
1,3

− µz

D3
2,3

(2.14)

Then, the derivative of the position vector in the rotating coordinate system is defined as

d̄′ = ˙̄d+I ω̄R × d̄ (2.15)

where

I ω̄R = [0, 0, 1]T (2.16)

and the rotating frame derivative of the position vector is defined as

(Rdd̄)/(dt) = ẋx̂+ ẏŷ + żẑ (2.17)

Then, the second derivative of the position vector in the inertial frame is found similarly as

d̄′′ = (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ (2.18)



25

Substituting in Eq. (2.18) and rewriting the position vector in the rotating frame defined by P1

and P2 produces a new set of equations written as

ẍ = 2ẏ + x− (1− µ)(x+ µ)

d31
− (µ)(x− 1 + µ)

d32
(2.19)

ÿ = −2ẋ+ y − (1− µ)y

d31
− µy

d32
(2.20)

z̈ =
−(1− µ)z

d31
− µz

d32
(2.21)

This autonomous system of equations may be transformed into a set of six first-order differential

equations and used within a numerical integration scheme to develop solutions to the CR3BP in

the rotating frame.

2.1.1 Jacobi Constant

The equations of motion of the CR3BP in the rotating frame admit a constant of integration,

denoted the Jacobi constant, which reflects the relative energy between states in the CR3BP [74].

First, Eqs. (2.19) - (2.21) may be formulated in terms of the pseudo-potential function as

ẍ− 2ẏ =
∂U∗

∂x
(2.22)

ÿ + 2ẋ =
∂U∗

∂y
(2.23)

z̈ =
∂U∗

∂z
(2.24)

where the pseudo-potential function is

U∗ =
1

2
(x2 + y2) +

1− µ

d1
+

µ

d2
(2.25)

composed of the gravitational influences of P1 and P2 on P3 and additional elements due to the

rotation of the rotating frame. Then, the dot product of the velocity and acceleration vectors of

P3 in the rotating frame produces

ẋẍ+ ẏÿ + żz̈ = ẋ
∂U∗

∂x
+ ẏ

∂U∗

∂y
+ ż

∂U∗

∂z
(2.26)
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which may be analytically integrated and written as

1

2
(ẋ2 + ẏ2 + ż2) =

∫
dU∗ − dU∗

dt
(2.27)

The Jacobi constant exists in an autonomous system such that dU∗/dt = 0, and results from the

constant of integration from
∫
dU∗. Then, Eq. (2.27) may be updated such that

1

2
(ẋ2 + ẏ2 + ż2) = U∗ − C (2.28)

Substituting in Eq. (2.25), the Jacobi constant is set equal to

CJ = x2 + y2 +
2(1− µ)

d1
+

2µ

d2
− ẋ2 − ẏ2 − ż2 (2.29)

which remains constant along natural trajectories in the CR3BP.

2.1.2 Equilibrium Points

The CR3BP admits a variety of fundamental solutions that are useful in the trajectory

design process [81]. The CR3BP is known to possess five equilibrium, or Lagrange points, which are

commonly denoted as L1, L2, and L3 for the collinear points and L4 and L5 for the triangular points

[156]. The locations of the equilibrium points are computed by setting velocity and acceleration

terms in the CR3BP equations of motion to zero which allows Eqs. (2.19) - (2.21) to be written as

0 = x− (1− µ)(x+ µ)

d31
− (µ)(x− 1 + µ)

d32
(2.30)

0 = y − (1− µ)y

d31
− µy

d32
(2.31)

0 =
−(1− µ)z

d31
− µz

d32
(2.32)

Eq. (2.32) indicates that the z position for all five points is zero requiring all five points to be

located in the orbital plane of P1 and P2.

To compute the locations of the collinear equilibrium points, the y position is set equal to zero.

Then, the x coordinate of the three collinear equilibrium points is solved according to the location
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along the x-axis where each point is located. In order of increasing x position, the equilibrium

points are located in the intervals

(x+ µ) < 0, (x+ µ− 1) < 0 (2.33)

(x+ µ) > 0, (x+ µ− 1) < 0 (2.34)

(x+ µ) > 0, (x+ µ− 1) > 0 (2.35)

corresponding to having an x position less than both primary bodies, an x position between both

primaries, and an x position greater than both primary bodies, respectively. The x coordinate of

each point is solved via a numerical corrections scheme where initial guesses are placed according to

the region along the x-axis where the equilibrium point is located. For mass ratios corresponding

to the Earth-Moon and Sun-Earth systems, L1, L2, and L3 possess stable and unstable modes

indicating that motion naturally approaches or departs these equilibrium points as well as oscillatory

modes corresponding to the existence of periodic orbits.

Unlike the collinear equilibrium points, the triangular equilibrium points possess a non-zero

y coordinate. These two equilibrium points are known to by symmetric across the x-axis and may

be computed numerically via

x =
1

2
− µ (2.36)

y = ±
√
3

2
(2.37)

where L4 and L5 correspond to positive and negative y coordinates, respectively. In the Earth-Moon

and Sun-Earth CR3BP, L4 and L5 possess oscillatory modes indicating stability and the existence

of periodic orbits. Figures 2.3a and 2.3b depict the locations of the equilibrium points in the

Earth-Moon CR3BP and Sun-Earth CR3BP, respectively. The stability of each equilibrium point

indicates the existence of nearby periodic orbit families, which may be leveraged in the trajectory

design process.
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(a) Earth-Moon CR3BP (b) Sun-Earth CR3BP

Figure 2.3: Locations of equilibrium points in the Earth-Moon CR3BP and Sun-Earth CR3BP
(primary bodies not to scale).

2.1.3 Periodic Orbits

In the CR3BP, periodic orbits exist as naturally repeating motions in the rotating frame

defined by P1 and P2 that may be leveraged in the trajectory design process [23, 70]. These periodic

orbits exist in continuous families with variations in Jacobi constant, geometry, and stability [57].

While periodic orbit families may emanate from each of the equilibrium points, families also exist

centered at both primaries and in resonance with the motion of the secondary primary. One

method for computing the members of a periodic orbit families in a multi-body system is to use

a corrections scheme to compute individual orbits and a pseudo-arclength continuation method

to find nearby members along the family. In this method, an initial guess for each member is

corrected; then, pseudo-arclength continuation method uses the tangent of the solution curve to

predict a nearby member while constraining the new member to possess a certain distance from

the current member of the periodic orbit family [23]. The initial guess may be constructed using

the stability information from an equilibrium point, a two-body orbit approximation, following a

bifurcation from another periodic orbit family, or from initial conditions obtained from a library of

periodic orbits [23]. This method is implemented using the procedure explained by Bosanac [23].

Examples of periodic orbit families in multi-body systems include the L1 Lyapunov, L2
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(a) L1 northern halo (b) L2 southern halo

Figure 2.4: Members of the Earth-Moon periodic orbit families shaded by Jacobi constant (Moon
not to scale).

Lyapunov, L1 halo, L2 halo, and L5 short period orbit families. The L1 Lyapunov, L2 Lyapunov,

and L5 short period orbit families are planar in the xy-plane of the CR3BP rotating frame while

the L1 halo and L2 halo periodic orbit families are spatial in the configuration space. Further, the

L1 halo and L2 halo orbit families are symmetric across the xy-plane requiring only the northern

and southern segments of the family to be depicted [57]. Figure 2.4 depicts selected members of

periodic orbit families in the Earth-Moon CR3BP shaded by the Jacobi constant. Similarly, Fig. 2.5

displays members from periodic orbit families generated in the Sun-Earth CR3BP shaded by Jacobi

constant. Selected members of the periodic orbit families may then be used in the trajectory design

process to construct low-thrust transfers throughout a multi-body system.

2.1.4 Invariant Manifolds

Periodic orbits that are unstable possess stable and unstable manifolds that guide natural

motion towards and away from the orbit. Stable manifolds may be leveraged to access a periodic

orbit while unstable manifolds may be used to guide a spacecraft away from a periodic orbit [81].

These manifold structures may be approximated by taking a small step in the direction of the stable
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(a) L2 northern halo (b) L5 short period

Figure 2.5: Members of the Sun-Earth periodic orbit families shaded by Jacobi constant (primaries
not to scale).

or unstable eigenvector computed from the monodromy matrix, M(0, P ); the state transition matrix

propagated forward in time for one orbital period. Figure 2.6 depicts a stable manifold guiding

motion to an L2 southern halo orbit in the Earth-Moon CR3BP. However, for periodic orbits

without stable or unstable invariant manifolds, an additional acceleration is required in order to

insert into these orbits. One method of inserting into these orbits is by using a low-thrust engine

to gradually adjust the path of the spacecraft and guide a spacecraft into these stable orbits.

2.2 Point Mass Ephemeris Model

In a point mass ephemeris model, the celestial bodies are modeled to follow their actual paths,

described by the ephemerides in NASA’s SPICE toolkit [3]. Similar to the CR3BP, the celestial

bodies are modeled as point masses and the mass of the body of interest, i.e. spacecraft, is negligible

in comparison to the masses of the primary bodies. Additionally, the position, velocity, time, and

mass values are nondimensionalized to aid the numerical integration scheme. The equations of

motion for the point mass ephemeris model are formulated in an inertial frame, assumed to be the

International Celestial Reference Frame (ICRF), with axes (X̂, Ŷ , Ẑ). The equations of motion for

a spacecraft relative to primary body P1 in an inertial frame defined using the axes of the ICRF is
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Figure 2.6: Stable manifold governing natural motion approaching an L2 southern halo orbit in the
Earth-Moon CR3BP (Moon not to scale).

written as

¨̄D1,sc = −GM1D̄1,sc

D3
1,sc

+

N∑
i=2

GMi

(
D̄sc,i

D3
sc,i

− D̄1,i

D3
1,i

)
(2.38)

where the 1 subscript denotes the primary influencing the motion of the spacecraft, D̄1,sc = [X,Y, Z]

is the nondimensional position of the spacecraft in the inertial frame measured with respect to the

primary, and the summation incorporates the gravitational influences of N additional celestial

bodies on the motion of the spacecraft. Then, the motion of a body of negligible mass may be

numerically propagated in a point mass ephemeris model composed of multiple celestial bodies

using the position and velocity of the bodies at defined epochs.

2.3 Incorporating Low-Thrust Acceleration into the Dynamical Models

The equations of motion for both the CR3BP and point mass ephemeris model are modified

to incorporate the low-thrust acceleration imparted by a low-thrust engine and the associated

decrement in the spacecraft mass. For these equations of motion, the spacecraft is assumed to

possess a single low-thrust engine with a constant specific impulse. Additionally, the direction of

the thrust vector output by the spacecraft is expressed in the rotating frame defined by the two
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largest primaries. In the rotating frame, the nondimensional acceleration vector output by the

low-thrust-enabled spacecraft is written as

ā =
T̃ t̃∗2

1000m̃scℓ̃∗

(
uxx̂+ uyŷ + uz ẑ

)
= axx̂+ ayŷ + az ẑ (2.39)

where m̃sc is the wet mass of the spacecraft in kg, T̃ is the thrust magnitude in N, û = [ux, uy, uz]
T

is the thrust direction unit vector, and the multiplicative factor of 1000 is included to ensure

dimensional consistency when ℓ̃∗ is measured in km. Incorporating the low-thrust acceleration and

propellant mass usage, the equations of motion for the low-thrust-enabled CR3BP are written as

ẍ = 2ẏ + x− (1− µ)(x+ µ)

d31
− µ(x− 1 + µ)

d32
+ ax (2.40)

ÿ = −2ẋ+ y − (1− µ)y

d31
− µy

d32
+ ay (2.41)

z̈ =
−(1− µ)z

d31
− µz

d32
+ az (2.42)

Then, the augmented state of the spacecraft in the low-thrust-enabled CR3BP is defined as x̄ =

[x, y, z, ẋ, ẏ, ż,msc]
T composed of the position, velocity, and mass quantities. Similarly, the equa-

tions of motion for the low-thrust-enabled point mass ephemeris model are written as

¨̄D1,sc = −GM1D̄1,sc

D3
1,sc

+

N∑
i=2

GMi

(
D̄sc,i

D3
sc,i

− D̄1,i

D3
1,i

)
+ I ā (2.43)

where I ā is the low-thrust acceleration imparted by the spacecraft expressed in the axes of the

ICRF. In the inertial frame, the augmented state of the spacecraft may be defined as X̄ =

[X,Y, Z,X ′, Y ′, Z ′,msc]
T measured with respect to the barycenter or a primary body. Addition-

ally, the decrement in the spacecraft mass due to propellant mass usage via the low-thrust engine

is modeled via the mass flow rate equation, written as

ṁsc =
−T̃ t̃∗

Ĩspg̃0m̃sc,0

(2.44)

where Ĩsp is the specific impulse of the low-thrust engine in seconds and g̃0 = 9.81 m/s2 is the

gravitational acceleration at the surface of the Earth [156]. This differential equation is included in

a numerical integration scheme for both the low-thrust-enabled CR3BP and point mass ephemeris

model equations of motion.
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2.4 Transformation from Rotating to Inertial Frames

States and control vectors in an ephemeris model may be transformed from an inertial frame

to a rotating frame defined by two primaries in a multi-body system [39]. One example of a

transformation would be between the ICRF and the Sun-Earth rotating frame. To support the

transformation at a defined epoch, the instantaneous characteristic length and time quantities, ℓ̃†

and t̃†, and the instantaneous axes of the rotating frame relative to the largest primary, (x̂∗, ŷ∗, ẑ∗),

are computed using ephemeris state information accessed via SPICE. First, ℓ̃† and t̃† found using

the instantaneous distance between P1 and P2 and t̃† =
√

(ℓ̃†)3/(G̃m̃∗), respectively. Then, given

the position and velocity of P2 relative to P1, the instantaneous unit vectors are defined as

x̂∗ =
D̄1,2

|D̄1,2|
(2.45)

ŷ∗ = ẑ∗ × x̂∗ (2.46)

ẑ∗ =
D̄1,2 × D̄′

1,2

|D̄1,2 × D̄′
1,2|

(2.47)

where D̄1,2 denotes the position vector measured from P1 to P2. These instantaneous vectors are

used to directly construct the rotation matrix from the instantaneous rotating frame to the inertial

frame using the axes of the ICRF and written as

CR,I = [x̂∗, ŷ∗, ẑ∗] (2.48)

Additionally, the instantaneous angular velocity vector of the system is computed as

ω̄ =
(D̄1,2 × D̄′

1,2)t̃
†

(ℓ̃†)2
(2.49)

The nondimensional state of the spacecraft in the rotating frame, x̄, is transformed from being

centered at the barycenter of the system to a primary since the ICRF and instantaneous rotating

frame defined by P1 and P2 possess different origins. Then, x̄ is dimensionalized using ℓ̃† and t̃†,

denoted as ˜̄x1,sc. The dimensional state of the spacecraft in the rotating frame relative to P1 is

then transformed to the inertial frame and denoted ˜̄X1,sc. This state vector is calculated as

˜̄X1,sc =

CR,I 03×3

ĊR,I CR,I

 ˜̄x1,sc (2.50)
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where

ĊR,I =


ωCR,I,1,2 −ωCR,I,1,1 0

ωCR,I,2,2 −ωCR,I,2,1 0

ωCR,I,3,2 −ωCR,I,3,1 0

 (2.51)

where CR,I,i,j denotes the (i, j) component of the CR,I matrix. Finally, the dimensional inertial

state of the spacecraft, ˜̄X1,sc, is nondimensionalized via the CR3BP characteristic quantities, ℓ̃∗

and t̃∗, to produce X̄1,sc. This transformation is also be used to convert the thrust direction from

the CR3BP rotating frame to an inertial frame using the axes of the ICRF.

2.5 Transformation from Inertial to Rotating Frames

State and control vectors are also transformed from an inertial frame to the CR3BP rotating

frame at a specified epoch using the CR3BP and instantaneous characteristic quantities. First,

the nondimensional state vector in the inertial frame using the axes of the ICRF is converted to

dimensional quantities using the CR3BP characteristic quantities, ℓ̃∗ and t̃∗. Then, x̌, y̌, ž, and

ω̄ are computed using Eqs. 2.45 - 2.49. These quantities may be used to construct the rotation

matrix and written as

CI,R = [x̌, y̌, ž]T (2.52)

The dimensional state of the spacecraft in the instantaneous rotating frame defined by P1 and P2

is calculated via

˜̄d1 = CI,R
˜̄D1,sc (2.53)

˙̄̃
d1 = CI,R

˜̄D′
1,sc +CI,R(˜̄ω × ˜̄D1,sc) (2.54)

Finally, the dimensional state of the spacecraft is transformed to be measured with respect to the

barycenter of the system and nondimensionalized using the instantaneous characteristic quantities,

ℓ̃† and t̃†. This process produces the nondimensional state of the spacecraft in the CR3BP rotating

frame from a nondimensional inertial state using data from the NASA SPICE toolkit.



Chapter 3

Reinforcement Learning

Reinforcement learning algorithms have been of significant interest for applications where an

optimization problem cannot be solved analytically and can be formulated as a Markov Decision

Process (MDP). An MDP, as originally defined by Bellman, is formulated as a discrete set of time

steps where state transitions between steps are governed by a probability distribution that is in-

fluenced by a control exerted at the time step [14]. The control may be selected to maximize goals

within the environment. However, greedy control selections, which only maximize the immediate

reward, may produce sub-optimal long-term behavior. Instead, there is often a need to consider the

trade-off between the immediate reward and long-term reward generated for an MDP. Addition-

ally, balancing the exploration vs. exploitation trade-off for an MDP requires insight into when to

continue exploring to potentially find a better strategy compared to exploiting the existing, poten-

tially sub-optimal strategy. The first explorations into solving MDP-like problems occurred during

World War 2 analyzing multi-armed bandit problems, but found the problems to be intractable

[55]. Latter explorations used dynamic programming, a precursor to reinforcement learning, to

recursively break down a complex problem into simple problems to develop an optimal solution

to the complex problem [13]. Well-known examples of dynamic programming algorithms include

Dijkstra’s algorithm and A∗ [46, 63]. However, disadvantages of dynamic programming algorithms

include that they generally require the state transitions to be fully known a priori for each state

in the environment. Consequently, dynamic programming algorithms suffer from the curse of di-

mensionality leading to exponentially growing computational requirements as the number of states
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and actions in the environment increases [146]. Instead, reinforcement learning algorithms do not

require a dynamical model to be known a priori to solve an MDP and may generate solutions in

large state spaces without exponential memory requirements by using methods to approximate the

state space.

Fundamentally, reinforcement learning algorithms possess an agent interacting with an en-

vironment, defined via a known or unknown dynamical model, taking actions that maximize the

expected total reward at a given state. This returned reward is mathematically encapsulated within

a scalar value function that denotes the expected long-term reward of a particular state within the

state space [146]. Additionally, the set of actions that are performed throughout the state space to

maximize the value function is often identified as the policy. Developing a policy that maximizes

the value function requires mapping a locally optimal state-action relationship for any state within

the state space.

While the overall structure of reinforcement learning problems has generally remained consis-

tent over time, numerous methods have been introduced to solve these problems. State-of-the-art

reinforcement learning methods generally model the policy using one or more neural networks,

which act as universal function approximators [69]. Neural networks are able to recover the com-

plex, high-dimensional state-action relationships within an environment much more efficiently and

robustly compared to similar reinforcement learning structures, such as support vector machines

and Q-tables [146]. Of particular interest in this analysis are actor-critic methods which incorporate

two independent neural networks to develop an optimal policy within an environment. Actor-critic

methods have gained significant traction in a wide variety of disciplines due to their computational

efficiency and robust convergence properties [146]. Actor-critic methods separate learning the pol-

icy from learning the value function by using two distinct neural networks; the actor which models

the policy and the critic which approximates the value function [80]. While actor-critic structures

do not require neural networks to model the actor and critic, neural networks are used due to their

robust convergence properties and ability to act as universal function approximators. Recent ad-

vancements in computational power and the development of more efficient algorithms have resulted
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in robust algorithms that are capable of generating policies for a continuous action space in highly

complex environments.

One approach for training neural networks in an actor-critic structure that has demonstrated

strong performance in astrodynamics and other applications is PPO by Schulman et al. in combina-

tion with a stochastic gradient descent optimization scheme [126]. PPO is an on-policy, model-free,

online, actor-critic reinforcement learning algorithm. Further, stochastic gradient descent optimiza-

tion schemes are often used in reinforcement learning to reduce sensitivity to noisy data inputs,

reduce computational times, and are well-suited for tuning the parameters in a neural network

[146]. Additionally, PPO is a state-of-the-art reinforcement learning algorithm that has demon-

strated strong performance and favorable convergence properties in chaotic environments [66]. PPO

trains a single policy to maximize the expected total reward returned for an environment and re-

ward function while limiting the size of updates from destabilizing the networks by enforcing a soft

constraint within an objective function [126].

As an extension to reinforcement learning, multi-objective reinforcement learning methods si-

multaneously train multiple policies, each with a distinct reward function, by sharing environmental

information across all policies. This approach generally enables a more efficient use of computa-

tional resources when recovering transfers within a region of a multi-objective solution space when

compared with multiple, independent runs of a traditional reinforcement learning method [158].

PPO has been helpful for training a policy to maximize a single reward function and employed

as a foundation for many related reinforcement learning algorithms. Then, based on its favorable

convergence properties, PPO is a suitable candidate for developing a multi-objective reinforcement

learning algorithm. A multi-objective framework may leverage the beneficial convergence proper-

ties of PPO in complex environments while also recovering solutions that span a multi-objective

solution space.

Finally, transfer learning may be employed to use trained policies for one dynamical model

and objective function as initial guesses for policies being trained for a more complex dynamical

model or related objective function. The benefits of transfer learning include that transfer learning
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significantly reduces the required training time and computational resources, increase the conver-

gence rates of the neural networks, and produces policies in new scenarios that behave similarly

to policies trained in more simple scenarios [168]. In this chapter, the framework of reinforcement

learning is summarized including neural networks, actor-critic methods, policy gradient methods,

PPO, and transfer learning.

3.1 Reinforcement Learning Formulation

Reinforcement learning is a type of machine learning that enables the autonomous recovery

of optimal behavior that maximizes an objective function in an unknown dynamical environment.

Reinforcement learning algorithms are typically composed of three elements: (1) the dynamical

environment which governs state transitions and determines the reward for state-action pairs, (2)

the agent which interacts with the environment and supplies the states and actions to propagate

within the dynamical environment, and (3) the policy which controls the agent and determines the

action to perform at a state in the environment. Figure 3.1 depicts a representation of the interplay

between the three components demonstrating how states and actions are shared between the policy,

agent, and environment. In this structure, the policy determines the action, ūt, to perform at the

state, s̄t, in the environment. The environment encapsulates both the dynamical model and the

reward function which mathematically determines the instantaneous reward, rt, of a state-action

pair within the environment. The reward function must be formulated to capture the goals of a

designer for a defined scenario [104]. Once the instantaneous reward is determined for a state-action

pair, the data point is termed a state-action-reward experience. Then, the policy is updated once

a set number of state-action-reward experiences have been gathered in the environment.

In many reinforcement learning implementations, multiple agents controlled by a single pol-

icy may be used in parallel to interact independently with the environment. This enables the

agents to be dispersed across a server and more efficiently generate state-action-reward experi-

ences. Ultimately, the goal of a reinforcement learning algorithm is to generate state-action-reward

experiences in the environment while balancing exploration and exploitation in the environment to
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Figure 3.1: General reinforcement learning configuration including the environment, agent, and
policy.

train the policy to produce optimal behavior [146]. Using this feedback loop, the policy may con-

verge on optimal behavior for controlling one or more agents in the environment while maximizing

the expected total reward throughout a trajectory.

3.2 Reinforcement Learning Classifications

Reinforcement learning algorithms may be categorized into many classifications, which pro-

vide insight into the advantages and disadvantages of the algorithms and aid a designer in deter-

mining which reinforcement learning algorithm to apply to a specific problem. Classifications of

reinforcement learning algorithms including: (1) on-policy vs. off-policy, (2) model-free vs. model-

based, (3) offline vs. online, and (4) policy-based vs. value-based vs. actor-critic methods [146].

Figure 3.2 depicts how a select number of reinforcement learning algorithms fall within the model-

free vs. model-based classification. Additionally, an algorithm classified as being model-free may

also be classified as on-policy, off-policy, online, offline, policy-based, value-based, or an actor-critic

method. These overlapping classifications are valuable for generating preliminary insights into how

an algorithm may behave and the advantages and disadvantages of an approach. However, the per-

formance and behavior of reinforcement learning algorithms grouped within a single classification

may vary significantly.

In on-policy algorithms, a policy is updated using the state-action-reward experiences that the

policy produced within the environment [6]. Once the policy is updated, new state-action-reward
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Figure 3.2: Taxonomy of selected reinforcement learning algorithms sorted by model-free vs. model-
based approaches.

experiences are collected from the environment. Examples of on-policy algorithms include State-

Action-Reward-State-Action (SARSA) by Rummery and Niranjan, Trust Region Policy Optimiza-

tion (TRPO) formulated by Schulman et al., and PPO formulated by Schulman et al. [119, 124, 126].

On-policy algorithms are generally more stable and easier to formulate, but are often more ineffi-

cient since state-action-reward experiences are only used once to update the policy [58]. Conversely,

off-policy methods may use two distinct policies to recover an optimal policy: one policy which is

used to generate the data and a second policy that is improved using that data. For example, the

policy interacting with the environment may be a greedy policy, i.e. the policy takes the action with

the highest immediate reward, while the policy being updated may be non-greedy and attempting

to maximize the total reward over an entire trajectory. Well-known off-policy algorithms include

Twin Delayed Deep Deterministic Policy Gradient (TD3) devised by Fujimoto, Hoof, and Meger,

Soft Actor-Critic (SAC) created by Haarnoja et al., Deep Deterministic Policy Gradient (DDPG)

designed by Lillicrap et al., Deep Q-Networks (DQN) formulated by Mnih et al., and Q-learning

developed by Watkins [52, 61, 89, 98, 161]. These algorithms benefit from using state-action-reward
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experiences multiple times to update the policy leading to greater sample efficiency but at the cost

of reduced stability guarantees and requiring more complex implementations [58].

In a model-free reinforcement learning algorithm, the policy focuses solely on maximizing the

expected total reward within the environment while model-based algorithms attempt to learn both

the dynamical model and the behavior that maximizes the expected total reward in that model

[99]. More specifically, model-based methods predict the response output from the environment

and use that prediction to formulate an action whereas model-free methods do not attempt to

explicitly predict a response from the environment [99]. Notable model-based approaches include

Expert Iteration (ExIt) by Anthony, Tian, and Barber, Probabilistic Inference for Learning Control

(PILCO) by Deisenroth and Rasmussen, MuZero by Silver et al., AlphaZero by Silver et al., and

Dyna-Q by Sutton [7, 44, 129, 130, 145]. Conversely, model-free approaches include TD3, SAC,

DDPG, DQN, SARSA, TRPO, PPO, and Q-learning [52, 61, 89, 98, 119, 124, 126, 161]. Model-

free approaches are generally simpler to implement and generate higher total rewards for most

applications [99]. This has been theorized to be attributed to model-free methods only learning a

single component in the environment, i.e. maximize the expected total reward, while model-based

methods must learn both the value function and the dynamical model to a high-fidelity to be

return optimal behavior [99]. However, the policies developed by model-based approaches have the

potential to be more adaptable when used in a transfer learning scheme if the objectives within

the environment change but the dynamics remain the same. Additionally, there are methods for

reducing the complexity of model-based methods by providing the algorithm with the dynamical

model, such as AlphaZero, rather than requiring the algorithm to learn an approximation of the

dynamical model [130].

State-of-the-art reinforcement learning algorithms also tend to be online algorithms instead

of offline algorithms. Offline algorithms use a precomputed data set to train a policy without intro-

ducing additional data throughout training [86]. Figure 3.3 illustrates how an offline reinforcement

learning algorithm may interact with an environment. Initially, a policy, P0, collects state-action-

reward experiences within the environment. Once a set number of state-action-reward experiences
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Figure 3.3: Structure of an offline reinforcement learning algorithm.

have been gathered, data collection ceases and the existing data is used to iteratively update pol-

icy Pi, to generate optimal behavior. This approach is most similar to supervised learning due

to the use of an existing data set to map high-dimensional relationships between inputs and out-

puts. While having significant potential in applications with pre-existing data and limited insight

into a complex dynamical model, a majority of offline reinforcement learning methods struggle to

converge on optimal solutions without some online learning incorporated into the approach [86].

AlphaGo, a precursor to AlphaZero, used elements of offline learning to learn the basics of Go; a

process that was discarded with more advanced versions of AlphaZero [129]. Conversely, online

reinforcement learning methods, originally formulated by Rummery and Niranjan, allow a policy

to continually interact and generate data from an environment [119]. TD3, SAC, DDPG, TRPO,

PPO, AlphaZero, and Q-learning are all considered online reinforcement learning methods and

follow the structure displayed in Fig. 3.1 [52, 61, 89, 124, 126, 130, 161].

Another distinction made between reinforcement learning algorithms is whether they pri-

marily follow a policy-based, value-based, or actor-critic implementation. Policy-based methods

operate on the policy function directly by using state-action-reward experiences to determine op-

timal actions for states in the environment [146]. These methods generally perform better in

high-dimensional environments whereby a policy may be continually refined to generate optimal

behavior [80]. For instance, Williams formulated REINFORCE, a policy-based reinforcement learn-

ing method, to solve simple reinforcement learning problems [162]. However, policy-based methods
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are generally sample-inefficient and may experience high variance in estimating the influence of

certain state-action-pairs. Conversely, value-based methods determine the value of states in the

environment, and indirectly generate the policy by learning state-action transitions that produce

the highest value. Value-based methods are generally more stable and more sample-efficient com-

pared to policy-based algorithms [80]. Common value-based methods include DQN, SARSA, and

Q-learning [98, 119, 161]. Additionally, while value-based methods may produce optimal policies

in simple environments, policies in high-dimensional environments may fluctuate rapidly due to

small changes in the approximation of the value function at each state. Actor-critic methods com-

bine elements of both policy-based and value-based methods represented using the actor and critic,

respectively, to leverage the advantages of each approach to produce stable, efficient learning in

complex environments [80]. A majority of state-of-the-art reinforcement learning algorithms such

as TD3, SAC, DDPG, TRPO, and PPO are primarily used with an actor-critic implementation

[52, 61, 89, 124, 126].

3.3 Neural Networks

Neural networks offer one method for approximating nonlinear mappings between inputs and

outputs via the construction of a web of nodes similar to the composition of neurons in a brain [69].

There are a variety of neural network structures including convolutional neural networks, recurrent

neural networks, generative adversarial networks, and feed forward neural networks. However, for

reinforcement learning approaches without image data input, feed forward neural networks are

often leveraged to recover high-dimensional relationships between the inputs and outputs.

Feed forward neural networks accept the state of the agent into the first layer of the neural

network, denoted the input layer. Then, each node in the input layer is fully connected to each

node in the proceeding layer, termed the first hidden layer. Each of these connections is assigned

a weight and bias, denoted W̄i and b̄i, respectively, for the ith hidden layer. The initial values

assigned for the weights and biases are generated either randomly by an initialization scheme or

using a method that takes in data generated by a human expert. While both approaches have
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advantages and disadvantages, to reduce the time and effort required of a human designer, the

initial values for the weights and biases are assigned randomly using an initialization scheme.

The nodes in the first hidden layer take in each of the weighted inputs and feed them through

an activation function to add nonlinearity to the function approximation. The output from a node

in a hidden layer is calculated via

yi,j = f(W̄ T
i ȳi−1 + bi,j) (3.1)

where i is the current network layer, j is the current node in the network layer, ȳi−1 denotes the

outputs from the previous network layer, and f represents the activation function. For deep neural

networks, this process is continued through multiple hidden layers, each with weighted connections

and biases until the final hidden layer which is connected to the output layer, again using a set of

weighted connections. The training parameters for the neural network, denoted θ̄ are written as

θ̄ = [W̄1, b̄1, W̄2, b̄2, W̄3, b̄3, . . . , W̄h+1, b̄h+1]
T (3.2)

where h is the number of hidden layers in the neural network. Then, the training parameters

are updated throughout training via backpropagation [65]. Figure 3.4 displays a conceptual rep-

resentation of a deep neural network with two hidden layers where the blue nodes represent the

input layer; two hidden layers are depicted in purple; the output layer is pink; connections between

the nodes are denoted using black arrows; and the nodes within each layer are numbered using

superscripts for the layer number and subscripts to enumerate the nodes within one layer. Then,

a reinforcement learning algorithm may update the parameters in one or more feed forward neural

networks via backpropagation to recover optimal behavior in an environment.

Deep neural networks are distinct from single hidden layer neural networks by the inclusion

of two or more hidden layers in the neural network. Deep neural networks often require less nodes

per hidden layer to arrive at a local optimal solution and tend to perform better in more complex

scenarios than single hidden layer neural networks [90]. Yet, deep neural networks are generally only

guaranteed to converge to a local optimum [9, 147]. While constructing and evaluating feed forward
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Figure 3.4: Feed forward neural network structure with an input layer, two hidden layers, and an
output layer.

neural networks requires a trivial amount of computational resources, training neural networks may

be time-consuming and highly sensitive to the structure of the network.

For instance, selecting a suitable activation function, which adds nonlinearity to the function

approximation, is still an active areas of research in the reinforcement learning community [106].

The choice of activation function for the nodes of a feed forward neural network is nontrivial and

may be problem dependent [106]. Neural networks may use a single activation function for all layers

or incorporate distinct activation functions for each layer of the neural network. However, in this

research, the neural networks are modeled using the same activation function for all hidden layers

to simplify the construction and training of the neural networks. Table 3.1 lists seven activation

functions commonly used in reinforcement learning and the associated equations for each function:

hyperbolic tangent (Tanh), sigmoid, rectified linear unit (ReLU) formulated by Nair and Hinton,

leaky rectified linear unit (LeakyReLU), softplus, exponential linear unit (ELU) introduced by

Clevert, Unterthiner, and Hochreiter, and swish developed by Hendrycks and Gimpel [33, 67, 101].

For the LeakyReLU formulation in this research, cLeaky denotes a scaling factor which is set to

0.1. Additionally, Fig. 3.5 depicts the outputs from each activation function for a range of inputs,
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Table 3.1: Selection of activation functions commonly used in neural networks trained via rein-
forcement learning.

Activation Function Formulation, y = f(x)

Hyperbolic Tangent y = ex−e−x

ex+e−x

Sigmoid y = 1
1+ex

Rectified Linear Unit if x ≤ 0, y = 0 else y = x

Leaky Rectified Linear Unit if x ≤ 0, y = −cLeakyx else y = x

Softplus y = ln(ex + 1)

Exponential Linear Unit if x ≤ 0, y = ex − 1 else y = x

Swish y = x
1+e−x

Figure 3.5: Common activation functions evaluated for a range of inputs.

[−2, 2], demonstrating nonlinear behavior for the outputs. However, the most common activation

function selections used in reinforcement learning investigations are the Tanh and ReLU functions,

and ReLU is primarily used in this research.
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Figure 3.6: Structure of an Actor-Critic method with the environment of the system, actor, critic,
and parameters that are passed between the components.

3.4 Actor-Critic Methods

State-of-the-art reinforcement learning algorithms often incorporate an actor-critic structure

to uncover optimal behavior within an environment. Actor-critic methods form the foundation of

many modern reinforcement learning algorithms due to their robust convergence properties and

applicability to a wide variety of problems [66]. Using two distinct structures to learn the op-

timal behavior simplifies the learning process and leads to more robust convergence properties

compared to singular structure methods such as policy iteration or value iteration methods [80].

These methods are typically implemented using two neural networks: one for the actor and one for

the critic. While many function approximators exist, neural networks have demonstrated advan-

tageous performance across many applications; thus, they are used to construct the actor and the

critic. Figure 3.6 depicts a conceptual representation of an actor-critic method interacting with an

environment. In an actor-critic structure, learning is separated into two components: (1) the actor

maps states to actions in the environment, denoted as the policy function π(s̄t, ūt), and (2) the

critic estimates the value function, denoted as V π(s̄t), for every state in the environment [146].

When determining the action to perform at a state in the environment using an actor neural

network, the final output layer is formulated to output the components of an independent multi-

variate probability distribution. This probability distribution is dependent on the state input to the

actor neural network. Further, during the training phase for the actor, action components are ran-

domly drawn from the probability distributions while in the evaluation phase, action components
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(a) Gaussian distribution (b) Beta distribution

Figure 3.7: Gaussian distribution with mean µG and standard deviation σG and beta distributions
with varying α and β shape parameters for an action vector component.

are taken from the mean of the distribution. State-of-the-art reinforcement learning approaches

generally model the probability distribution as a Gaussian or beta probability distribution. For a

Gaussian distribution, the influence of the action components are assumed to be independent, have

a mean and standard deviation, µG and σG, respectively, that may be updated throughout training,

and possess covariance values equal to zero. Figure 3.7a depicts a subset of a Gaussian distribution

bounded between µG−3σG and µG+3σG. However, a Gaussian distribution is unbounded such that

any action drawn must be subsequently bounded according to the constraints of the reinforcement

learning scenario. Bounding the action creates a gap between the unbounded action that the actor

neural network believes was performed and the bounded action that the environment experiences.

Conversely, for a beta distribution, the α and β shape parameters are updated throughout the

training process, and the distribution is guaranteed to produce a bounded action [32]. Figure 3.7b

displays beta distributions for a variety of α and β values. While using a Gaussian distribution

to represent the action action is more common and was observed to produce better convergence

behavior, the beta distribution possesses advantageous theoretical properties due to the ability to

produce a bounded action [6].

The probability of drawing each action by the actor is stored in logarithmic form as a log-
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likelihood value, which is used when estimating the impact of an update to the neural networks.

As the neural networks converge on a locally optimal solution, the probability distribution at a

state narrows as the networks become more certain of which action to take, i.e. exploiting prior

knowledge more than continuing to explore. Then, when evaluating the trained neural networks,

the mean of the probability distribution for each action component is used for generating the action

to perform at a state.

For the critic, the value function models the expected total reward over the remaining tra-

jectory for every state in the environment and is computed as

V π(s̄t) = E
[ τ∑

t=0

γtrt(s̄t, ūt, s̄t+1)

]
(3.3)

where γ denotes the discount factor which reduces the influence of future rewards and τ is the

maximum number of time steps in the trajectory [125]. Unlike the actor neural network, the

critic neural network does not approximate the value function via a probability distribution and

instead outputs a scalar for each state in the environment. While actor-critic structures with neural

networks are often used as the basis for learning the optimal policy and value functions, there are

a variety of approaches available for updating the networks.

3.5 Policy Gradient Theorem

A policy gradient method is used to update the parameters of the actor and critic neural

networks. In a policy gradient method, the training parameters of the neural networks, θ̄, are itera-

tively updated based on the collected experiences from the agent interacting with the environment

to maximize the expected total reward written as

J(θ̄j) = Et

[ τ∑
t=0

rt(s̄t, ūt, s̄t+1)

]
(3.4)

which is evaluated along a single trajectory where θ̄j denotes the neural network parameters at

update j [125]. To maximize the returned reward, the gradient of this function, labeled ĝ, is
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estimated as

ĝ = ∇θ̄,jJ(θ̄j) = ∇θ̄,j Et

[ τ∑
t=0

rt(s̄t, ūt, s̄t+1)

]
= Êt[∇θ̄,j logπθ̄,j(ūt|s̄t)Ât] (3.5)

where circumflex symbols denote estimated values and Ât is termed the estimated advantage func-

tion at a defined time step [125]. One approach for estimating the advantages of state-action pairs

is using Generalized Advantage Estimation (GAE) developed by Schulman et al. [125]. GAE

evaluates the advantage via the difference between the expected and returned rewards as

Âπ
t (s̄t, ūt) =

τ∑
ζ=0

(γλ)ζ∂t+ζ (3.6)

where

∂t = rt(s̄t, ūt, s̄t+1) + γV π
θ̄,j(s̄t+1)− V π

θ̄,j(s̄t) (3.7)

is the estimated advantage of action ūt at state s̄t, λ denotes the GAE factor which determines the

bias-variance trade-off within the estimated advantages, and V π
θ̄,j

is the estimated value output by

the critic with parameters θ̄j [125]. Using these definitions, a loss function is formulated as

LPG(θ̄j) = Êt[logπθ(ūt|s̄t)Ât] (3.8)

which may be differentiated to generate Eq. (3.5) and may be used within an optimization scheme

to train the actor and critic neural networks [125]. However, the limitation of this approach is the

potential for large updates to destabilize the neural networks under poorly sampled state, action,

and reward data.

Instead, TRPO mitigates this issue by setting a hard constraint on the size of the update

through the Kullback-Leibler (KL) divergence evaluation, a measure of the entropy, i.e. difference,

between two updates [124]. Using TRPO, the optimization problem for updating a policy may be

written as

maximizeθ̄: Êt

[
πθ̄,j(ūt|s̄t)
πθ̄,j−1(ūt|s̄t)

Ât

]
(3.9)

subject to: Êt[KL[πθ̄,j−1(·|s̄t), πθ̄,j(·|s̄t)]] ≤ δ (3.10)
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Figure 3.8: Representative diagram of the structure of PPO for a reinforcement learning problem.

where KL indicates the KL divergence function evaluation and δ is a bound on the KL divergence

between the policies [124]. Additionally, the probability ratio, Rt, between the old and new policies

is defined as

Rt(θ̄j) =
πθ̄,j(ūt|s̄t)
πθ̄,j−1(ūt|s̄t)

(3.11)

where probability ratios near unity denote smaller updates to the policy [124]. However, deter-

mining a suitable value for δ is nontrivial across multiple, distinct environments. Further, even

within a single environment, adjusting parameters of the implementation may necessitate updating

δ. Additionally, TRPO requires solving a nontrivial constrained optimization problem for each

update to the neural networks. Subsequent policy gradient algorithms have been developed that

improve on these limitations, but generally follow the structure defined above.

3.6 Proximal Policy Optimization

PPO was originally developed to overcome the limitations of TRPO, eliminating the necessity

of predefining a trust region and reducing the complexity of solving the constrained optimization

problem [126]. PPO trains a single policy to maximize the expected total reward returned for an

environment and reward function while limiting the size of updates from destabilizing the networks

by enforcing a soft constraint within the objective function [126]. The soft constraint is implemented

via a clipping parameter, ε, defined using the ratio, Rt(θ); any update to the policy πθ,j(ūt|s̄t) that

causes the ratio to diverge away from 1 is penalized. Figure 3.8 depicts a representative diagram

demonstrating how PPO may be used to train a policy to maximize the expected total reward in

a reinforcement learning environment.
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The objective function used by PPO to update the neural networks consists of three elements:

(1) the clipped objective which inhibits highly rewarding or penalizing state-action pairs from over

correcting the neural networks, (2) a value error term that measures the error of the estimated

value function by the critic with respect to the actual value computed using the training data, and

(3) an entropy term that balances the exploration-exploitation trade-off in the environment [126].

First, the clipped objective function is written as

LCLIP
t (θ̄j) = Êt[min(Rt(θ̄j)Ât, clip(Rt(θ̄j), 1− ε, 1 + ε)Ât)] (3.12)

which is formulated to ignore changes in the probability ratio if the update improves the objective,

but considers the probability ratio when the update produces a decrease in the objective function

[126]. Then, to encourage the critic to accurately approximate the value function, the value error

objective is defined as

LV F
t (θ̄j) = (V π

θ̄,j(s̄t)− V target
t (s̄t))

2 (3.13)

where V target
t is computed using the rewards generated from the environment [126]. Additionally,

an entropy term is defined using the entropy of the probability distribution output by the actor,

St[πθ̄,j ], to encourage exploration within the environment. Combining the three terms, the objective

function that is used within PPO is then written as

LCLIP+V F+S
t (θ̄j) = Êt[L

CLIP
t (θ̄j)− c1L

V F
t (θ̄j) + c2St[πθ̄,j ](s̄t)] (3.14)

c1 and c2 are scalar coefficients for the value error and entropy terms, respectively [126].

Once a set number of state-action-reward experiences for a policy are evaluated using the

objective function, the weights of the neural networks are optimized and updated using the AdamW

optimizer. AdamW offers improved convergence performance compared to the traditionally used

Adam optimizer by incorporating a weight decay term in the update to the neural networks [79,

92]. PPO training neural networks in an actor-critic structure using AdamW has demonstrated

strong performance in chaotic dynamical environments compared to other reinforcement learning

algorithms [6]. Using this approach, PPO trains a single policy to maximize the expected total

reward generated over a trajectory for a defined dynamical model and reward function.



53

3.7 Transfer Learning

Transfer learning enables a set of neural networks trained in a dynamical model for a defined

objective to initialize a policy in a more complex dynamical model or for a distinct objective. This

enables policies to be trained more rapidly than re-initializing the policies with no a priori domain

knowledge [151]. For example, transfer learning has been used to develop a controls scheme for a

robot in a simulated environment prior to uploading and updating the controls scheme for a robot

in a real-world environment [159]. In this research, transfer learning enables policies first trained in

a lower-fidelity dynamical model to serve as initial guesses for policies in a higher-fidelity dynamical

model with similar objectives. Then, once a policy recovers a locally optimal solution in the simpler

dynamical model, the policy is used as an initial guess for a similar locally optimal solution in the

more complex dynamical model. This is valuable for dynamical regimes where the propagation

time for state-action pairs comprises a significant portion of the total training time, such as the

point mass ephemeris model, or when a simulated environment cannot capture the complexity of

a real-world environment. In this research, a C++ implementation of numerical integration in the

point mass ephemeris model requires approximately 50× the computational time compared to a

similar numerical integration in the CR3BP. This increase in total computational time effectively

prohibits the rapid training of policies in the point-mass ephemeris model. Instead, transfer learning

is leveraged to first train policies to recover locally optimal transfers in the CR3BP with no a priori

domain knowledge, and initialize policies trained in the point mass ephemeris model for a much

smaller number of updates to the neural networks.



Chapter 4

Multi-Reward Proximal Policy Optimization

In this chapter, a multi-objective reinforcement learning algorithm, designated MRPPO, is

presented to produce solutions to a multi-objective optimization problem. MRPPO leverages PPO

as a building block for a multi-objective framework, and expands the structure of PPO to enable

multiple policies, each with distinct reward function formulations, to be trained simultaneously by

sharing state-action propagation information across all policies [140, 142]. The reward functions

are composed of the same components with distinct weightings to enable the policies trained by

MRPPO to recover locally optimal solutions distinctly balancing multiple objectives and spanning

a multi-objective solution space. Additionally, sharing the propagation information with addi-

tional policies significantly reduces the required computational time and resources since numerical

integration often accounts for over 90% of the total training time for a policy in multi-body grav-

itational environments. Further, sharing the propagation data also enables policies to learn from

the innovative or disadvantageous actions undertaken by other policies, aiding the convergence

and stability of all policies. Since multiple policies, each with unique objective prioritizations, are

simultaneously trained on a single scenario, the required computational resources are decreased,

stability is introduced, and a subset of the solutions spanning the multi-objective design space may

be more efficiently generated. However, like PPO, the policies developed using MRPPO and the

performance of the algorithm are influenced by hyperparameter selections.
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4.1 Multi-Reward Proximal Policy Optimization

MRPPO leverages a multi-objective framework using PPO as a foundation to train multiple

policies, each assigned a distinct reward function, to autonomously recover a subset of the multi-

objective solution space for a defined dynamical model [140, 141]. The multi-objective framework

allows the state-action pairs generated by one policy to be shared with every other policy throughout

training. Sharing state-action pairs across policies significantly reduces the total computational

time required to train multiple policies and recover solutions spanning the multi-objective solution

space of a trajectory design problem. Additionally, potentially beneficial or disadvantageous actions

undertaken by one policy may be used by other policies to improve their own performance leading to

enhanced behavior across all policies. Using MRPPO, N policies, denoted [P1 . . . PN ], are trained

in a dynamical model where each policy controls Ki independent agents gathering state-action

pairs stored in a shared memory. During the training process, policies receive the current state

at time t of each assigned agent for that policy. Then, the actor neural network of each policy

outputs actions for each agent to perform that each policy controls. The dynamical model returns

the state at time t + 1 to generate a state-action transition, (s̄t, ūt, s̄t+1). For one update to the

neural networks, this process is repeated until the maximum number of state-action transitions,

denoted Λ, have been generated for each policy. Then, the state-action transitions for one policy

are shared with every other policy via saving in a shared memory; thus, each policy learns from an

additional (N − 1)Λ transitions in the environment.

Once a set number of state-action transitions have been collected in the dynamical model,

the shared state-action transitions are input to the reward function for each policy and the result-

ing state-action-reward experiences are used to update each policy. Specifically, the state-action

transitions from all policies are input into the assigned reward function for each policy, designated

ri,t(s̄t, ūt, s̄t+1) for policy Pi. The reward function assigned to each policy corresponds to the unique

objective prioritization that each policy is attempting to maximize via recovery of a locally optimal

set of parameters for the neural networks. The policies are continually updated throughout training
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Figure 4.1: MRPPO architecture illustrating N policies, each with an assigned reward function
ri,t(s̄t, ūt, s̄t+1), controlling Ki agents subject to the dynamical model.

until a terminating condition is reached; typically, terminating the training process is defined using

a maximum number of updates. Figure 4.1 displays the structure of MRPPO for N policies in blue,

each controlling Ki agents, depicted in red, the dynamical model is illustrated as a black box, the

reward function for each policy is displayed in gold, and the memory object in pink stores state-

action transitions prior to updating each policy. Additionally, while policies may be trained using

distinct hyperparameters and neural network structures, in this research, policies are trained using

the same set of hyperparameters and neural network structures. This assumption simplifies the

training process and facilitates direct comparisons between the policies. While the training phase

for MRPPO follows a similar configuration to PPO, the updates to the neural network parameters

for MRPPO benefit from modifications to the objective function.

Due to the limited machine precision available and the statistical nature of certain actions,

the objective function used by PPO must be adjusted for MRPPO to enable a smooth training

process. For instance, actions selected by one policy must be evaluated to determine their value

and log-likelihood for every other policy during training. Throughout the training process, policies

become more deterministic and exploitative as they converge towards locally optimal solutions.

Then, actions selected by one policy may become statistically unlikely for other policies, which

is encapsulated within the log-likelihood action probabilities. However, the limitations imposed

by machine precision cause some of these log-likelihood values to equal zero thereby causing the

denominator of the probability ratio defined in Eq. (3.11) to produce near-infinite values. This
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causes the backpropagation process to destabilize the neural networks during the update phase of

training. Instead, to combat this destabilizing effect, the probability ratio is reformulated as

Ri,t(θ̄i,j) = πθ̄,i,j(ūt|s̄t)− πθ̄,i,j−1(ūt|s̄t) (4.1)

where θ̄i,j denotes the neural networks parameters corresponding to policy Pi at update j [68, 166].

This formulation inhibits statistically improbable actions from derailing the training process. Using

the redefined probability ratio, values near zeros indicate negligible changes between updates to a

policy. The clipping objective used by PPO defined in Eq. (3.12) is then rewritten as

LCLIP
i,t (θ̄i,j) = Êt[min(Ri,t(θ̄i,j)Âi,t, clip(Ri,t(θ̄i,j),−ε, ε)Âi,t)] (4.2)

to include the new bounds, [−ε, ε] on the probability ratio [166]. Then, the objective function used

by MRPPO is updated to

LCLIP+V F+S
i,t (θ̄i,j) = Êi,t[L

CLIP
i,t (θ̄i,j)− c1L

V F
i,t (θ̄i,j) + c2Si,t[πθ̄,i,j ](s̄t)] (4.3)

Using these equations, MRPPO is implemented in PyTorch, an open-source machine learning

library, but may be formulated in other open-source machine learning libraries [112]. Finally,

MRPPO has been observed to retain PPO’s beneficial convergence properties in chaotic environ-

ments as demonstrated in Ch. 7.

4.2 Hyperparameters

MRPPO is governed by multiple hyperparameters that influence the resulting behavior of the

trained policies. Using PPO as a foundation, MRPPO generally retains PPO’s robustness to hy-

perparameter selection compared to other state-of-the-art reinforcement learning algorithms [6, 66].

Generally, the hyperparameter selection process explores a high-dimensional, multi-modal distri-

bution where the effects of certain hyperparameters are coupled. Hyperparameters that influence

the policies trained by MRPPO include:

• Environmental steps taken during training, Λ: sets the number of state-action-reward expe-

riences gathered using each agent prior to updating the parameters of the neural networks.
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Note that the total number of state-action-reward experiences used when updating the

neural networks, Ψ, is a function of both the number of agents, K, and the number of

environmental steps such that Ψ = K × Λ.

• Epochs, E: determines the number of times the state-action-reward experiences are used

to update the parameters.

• Mini batches, M : divides the total number of experiences into smaller sets of data, where

each subset is then used to update the parameters. Figure 4.2 illustrates the relation-

ship between epochs and mini batches demonstrating the total number of updates to the

parameters of a neural network for a set of experiences is E ×M .

• Update phases, Φ: determines the number of times state-action-reward experiences are

gathered in the environment to update the neural networks.

• Discount factor, γ: determines how heavily future rewards are discounted when computing

the estimated value and advantage functions.

• GAE factor, λ: affects how states are considered when calculating the advantages and

influences the bias-variance trade-off in the estimated advantage computation using GAE.

• Learning rate, lr: affects how quickly the neural networks are updated from a set of state-

action-reward experiences using the AdamW optimizer, set equal for both the actor and

critic neural networks. Note, the learning rate is modified throughout training following a

triangular cycle increasing from the initial learning rate to the maximum learning rate and

then decreasing back to the initial learning rate.

• Clipping parameter, ε: limits the size of the updates to the parameters of the neural

networks in the objective function.

• Value function coefficient, c1: scales the value loss error in the objective function.
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Figure 4.2: Epoch and mini batches used to update the neural networks for Ψ experiences where
the data is randomized between each epoch to aid in convergence.

• Entropy coefficient, c2: determines the amount of entropy inclucded in the objective func-

tion calculation.

• Maximum gradient norm, cmax: constrains the estimated gradients of the objective function

to lie within specified bounds.

These hyperparameters directly influence the policy training, but additional factors may also affect

the policies and their performance.

Construction parameters are also defined that influence the resulting behavior of the policies

during and after the training phase. Construction parameters that influence the policies recovered

by MRPPO in this research include:

• Actor hidden layers, la: determines the number of hidden layers in the actor neural network.

• Critic hidden layers, lc: sets the number of hidden layers in the critic neural network.

• Actor hidden nodes, na: dictates the number of hidden nodes per hidden layer in the actor

neural network.

• Critic hidden nodes, nc: governs the number of hidden nodes per hidden layer in the critic

neural network.
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• Activation function: determines the activation function used within each hidden layer of

the actor and critic neural networks.

• Initialization scheme: governs how the weights and biases of the neural networks are ini-

tialized prior to training.

• Action space representation: dictates how the probability distribution for the actor neural

network is parameterized.

Both the hyperparameters and construction parameters may be adjusted to improve the perfor-

mance of policies trained by MRPPO in this research.



Chapter 5

Low-Thrust Trajectory Design as a Reinforcement Learning Problem

MRPPO is used to recover low-thrust transfers between periodic orbits in multi-body gravi-

tational environments without the need for a predefined reference trajectory or initial guess. First,

the trajectory design problem is formulated as a reinforcement learning problem necessitating def-

inition of the spacecraft parameters, state vector, action formulation, reward function, initial and

final periodic orbits, engine configuration, and scenario parameters. Policies are initialized without

any a priori knowledge of the environment or objectives and are trained to guide a low-thrust-

enabled SmallSat from an initial periodic orbit to a final periodic orbit in a multi-body system.

Transfer learning may be employed in certain trajectory design scenarios to update the policies to

construct locally optimal low-thrust transfers in a point mass ephemeris model.

A path planning approach similar to a set of continuous waypoints is also incorporated into

MRPPO to enable policies to autonomously generate low-thrust transfers from an initial periodic

orbit to a final periodic orbit in a multi-body system. Specifically, reference trajectories are selected

using the best trajectories generated throughout training to guide the policies from the initial

periodic orbit to the final periodic orbit. As observed in prior work, reference trajectories often serve

as valuable guides for training policies to recover transfers between two periodic orbits in complex

trajectory design scenarios; without a reference trajectory, training in both PPO and MRPPO may

fail to produce successful policies [141, 143]. As constructed, updating the reference trajectories

throughout training requires no initial guess to be defined prior to training and enables the best

trajectories generated throughout training for each policy to serve as a reference trajectory until a
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Table 5.1: Initial and final periodic orbits for each transfer scenario and the associated nondimen-
sional characteristics.

Scenario Orbit x y z ẋ ẏ ż Period CJ

# 1
L2 Southern Halo 1.1676 0 -0.1029 0 -0.1973 0 3.3216 3.11
L2 Southern Halo 1.1484 0 -0.1494 0 -0.2192 0 3.1808 3.07

# 2
L1 Northern Halo 0.8687 0 -0.0451 0 -0.1881 0 2.7614 3.15
L2 Southern Halo 1.1676 0 -0.1029 0 -0.1973 0 3.3216 3.11

# 3
L2 Northern Halo 1.0081 0 -0.0016 0 0.0108 0 3.0983 3.0008
L5 Short Period 0.5945 -0.8660 0 -0.0591 -0.0916 0 6.2832 2.995

better trajectory is generated. Using MRPPO with the updating reference trajectories enables the

design of transfers in high-dimensional, multi-objective solution spaces.

5.1 Trajectory Design Scenario Overview

In this research, trajectory design scenarios are defined for low-thrust transfers between

periodic orbits in the Earth-Moon and Sun-Earth CR3BP. Specifically, three types of low-thrust

transfers are designed: (1) from an L2 southern halo orbit to a higher-energy L2 southern halo

orbit in the Earth-Moon CR3BP, (2) from an L1 northern halo orbit to an L2 southern halo orbit

in the Earth-Moon CR3BP, and (3) from an L2 northern halo orbit to an L5 short period orbit

in the Sun-Earth CR3BP. The selected periodic orbits are members of the periodic orbit families

depicted in Figs. 2.4 and Figs. 2.5. Table 5.1 presents initial conditions and characteristics of the

periodic orbits for each trajectory design scenario. Each of these scenarios possesses an increasing

level of complexity for transfer design and also reflects the differences in sensitivity between the

Earth-Moon and Sun-Earth systems. However, in each of these scenarios, the transfers are designed

to balance minimizing propellant mass usage and flight time by adjusting the transfer geometry

and thrust profile.

Scenario # 1: The goal of the first trajectory design scenario is to construct low-thrust

transfers between neighboring periodic orbits in the Earth-Moon CR3BP. In this scenario, four



63

Table 5.2: Departure locations along the Earth-Moon L2 southern halo orbit for the first trajectory
design scenario.

Location x y z ẋ ẏ ż

1 1.0855 0 0.0626 0 0.2735 0

2 1.1018 0.1107 0 0.0645 0.0713 -0.1576

3 1.1676 0 -0.1029 0 -0.1973 0

4 1.1018 -0.1107 0 -0.0645 0.0713 0.1576

policies are trained to develop low-thrust transfers. The spacecraft is assumed to begin in the

vicinity of a fixed point along the initial halo orbit, and target any state along the final L2 southern

halo orbit. Specifically, four departure locations are explored where the initial conditions of the

spacecraft are drawn near one of four locations around the initial orbit defined in Table 5.2. Fig-

ure 5.1 depicts both a spatial and planar view of this trajectory design scenario and the locations

of the initial conditions for each of the four departure locations. In these figures, the black dashed

arc denotes the initial periodic orbit, the solid black arc represents the final periodic orbit, and

the equilibrium points are displayed using red diamonds. This trajectory design scenario serves as

a valuable test case for performing a hyperparameter exploration and generating insights into the

influence of hyperparameter selections for MRPPO prior to moving onto more complex scenarios

incorporating flybys of primary bodies.

Scenario # 2: In the second trajectory design scenario, low-thrust transfers are explored

between periodic orbits near the L1 and L2 equilibrium points of the Earth-Moon CR3BP. Four

policies are trained to generate low-thrust transfers spanning the propellant mass usage and flight

time trade space. Figure 5.2 displays the initial and final periodic orbits defined for this trajectory

design scenario using the same color configuration as Fig. 5.1. Specifically, the spacecraft are

initialized along an L1 northern halo orbit and follow a reference trajectory that is autonomously

generated and updated by a policy to target an L2 southern halo orbit. This scenario demonstrates

that the neural networks may recover transfers in dynamically sensitive regions of the Earth-Moon
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(a) Spatial view (b) Planar view

Figure 5.1: Initial and final periodic orbits and initial condition locations defined for the first
trajectory design scenario.

(a) Spatial view (b) Planar view

Figure 5.2: Initial and final periodic orbits defined for the second trajectory design scenario.

CR3BP with close lunar flybys, similar to those planned for the upcoming Lunar Gateway and

Artemis program [41, 132].

Scenario # 3: The final scenario requires guiding a low-thrust-enabled SmallSat from a

Sun-Earth L2 northern halo orbit to a Sun-Earth L5 short period orbit in the Sun-Earth CR3BP.

Recall, the Sun-Earth L5 region is of significant interest to the scientific community. In fact,

spacecraft positioned at the Sun-Earth L5 equilibrium point may serve as early warning systems
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(a) Planar view (b) Zoomed-in view

Figure 5.3: Initial and final periodic orbits defined for the third trajectory design scenario.

for detecting coronal mass ejection events while also providing a unique perspective for studying the

solar environment that is currently unavailable to the scientific community [123]. For this scenario,

the number of policies trained is increased from four to eight to more thoroughly span the multi-

objective solution space. Once policies are trained to recover transfers in the Sun-Earth CR3BP,

similar transfers are recovered in a higher-fidelity ephemeris model via transfer learning. By using

the policies trained in the low-thrust CR3BP dynamical model as an initial guess for training

in the higher-fidelity model, policies may be updated to produce optimal low-thrust transfers for

significantly less computational time and resources. Figure 5.3 depicts the periodic orbits in the

Sun-Earth CR3BP defined for this trajectory design scenario using the same color configuration

as Fig. 5.1. Additionally, a comparison is performed to the investigation by Elliott et al., which

explored transfers with similar spacecraft and deployment conditions to a Sun-Earth L5 short period

orbit with CJ = 2.995 [48].

In these three trajectory design scenarios, due to the difference in energy between the orbits

and the potential for no natural transfers, maneuvers are required to facilitate these transfers.

Further, each trajectory design scenario necessitates the exploration of motion outside of the Earth-

Moon and Sun-Earth xy-planes prohibiting planar simplifications. This limits the application of
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certain dynamical systems theory techniques that rely upon the planar simplification. Additionally,

for a constant thrust engine configuration, MRPPO may be used to autonomously locate locally

optimal segments to activate the low-thrust engine along a trajectory rather than require a human

expert, with limited insight, to determine where to place the low-thrust segments. Finally, MRPPO

may recover locally optimal solutions for discontinuous constraints and objectives, which would

violate the assumptions of many traditional trajectory design techniques. Reinforcement learning,

and by extension MRPPO, may serve a new trajectory design technique that possesses advantages

compared to traditional trajectory design techniques for low-thrust transfers in multi-body systems.

5.1.1 Spacecraft Properties

In all three trajectory design scenarios, the agents in the environment are modeled as ESPA-

class SmallSats equipped with a single constant specific impulse engine with full control over thrust

direction in the CR3BP rotating frame. However, for transfers in the Sun-Earth-Moon point

mass ephemeris model, the thrust direction is specified in the Sun-Earth instantaneous rotating

frame. While SmallSats may provide a viable low-cost option for achieving a targeted science

return, they introduce significant challenges into the trajectory design process. Trajectory designers

must contend with the additional challenges that the SmallSat form factor imposes including: low

maneuverability due to a limited propulsive capability, constrained deployment conditions, and

operational scheduling constraints due to limited power. These challenges all impact the availability

and geometry of feasible transfer paths that tend to exist in a high-dimensional design space [26].

The spacecraft is assumed to have an initial wet mass of m̃sc,0 = 180 kg and a specific

impulse of Ĩsp = 3000 s, both within the current or near-term technological capabilities of low-

thrust engines [24, 76]. However, the nominal maximum thrust for each scenario is varied according

to the maximum thrust required to complete the periodic orbit transfer. Specifically, the nominal

maximum thrust is determined by running simulations for a range of maximum thrust values and

selecting the lowest value in which the policies develop transfers that consistently converge on the

final periodic orbit. In the first trajectory design scenario, the spacecraft is assigned a nominal
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maximum thrust of T̃max = 250 mN while the second and third trajectory design scenarios are

assigned maximum thrusts of T̃max = 150 mN and T̃max = 25 mN, respectively. Additionally two

engine models are explored: (1) a variable thrust engine where the spacecraft may output a thrust

magnitude between T̃ = [0, T̃max] and (2) a constant thrust engine where the spacecraft may only

coast or thrust at the maximum thrust level. These two engine models are reflective of distinct

technological capabilities available for SmallSats. Note, the constant thrust engine configuration is

only implemented within the third trajectory design scenario.

5.1.2 Episode Initialization

Throughout training for each trajectory design scenario, the initial conditions for the space-

craft are randomly drawn from along the initial periodic orbit and perturbed in both position

and velocity components. For the first trajectory design scenario, the departure location along

the initial periodic orbit is fixed for a single training run. However, for the second and third

trajectory design scenarios, the location along the initial periodic orbit is drawn from a uniform

probability distribution such that the entire periodic orbit is equally sampled for initial conditions.

Additionally, for all three trajectory design scenarios, the induced perturbations are drawn from

a Gaussian distribution with zero mean and a standard deviation of σIC nondimensional units for

both the position and velocity. Perturbing the spacecraft off of the initial orbit enables the policies

to experience a wider array of environmental information within the vicinity of the initial orbit

and reflects off-nominal initial conditions the spacecraft may encounter. For the first and second

trajectory design scenarios, which are in the Earth-Moon CR3BP, the standard deviation is set to

σIC = 1× 10−3, while for the third trajectory design scenario in the Sun-Earth CR3BP, the stan-

dard deviation is set equal to σIC = 1× 10−8. Due to the difference in distance scales between the

Earth-Moon and Sun-Earth CR3BP, a smaller standard deviation is required to prevent spacecraft

from being initialized far outside of the initial periodic orbit in the Sun-Earth CR3BP.

Three additional values for the input state to the neural networks are also initialized with

the spacecraft: κ, the initial time, and the initial mass. For the first trajectory design scenario,
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κ = 0 at the initial time step since the reference trajectory is always the nearest dynamical arc.

For the second and third trajectory design scenarios, the initial κ value is determined depending

on if the spacecraft is closer to the initial orbit or reference trajectory where κ is set to either -1

or 0, respectively. The initial time is always set to 0. Finally, the initial mass is set equal to the

initial wet mass of the spacecraft, msc,0 = 180 kg for all three trajectory design scenarios.

Once the training process is complete, the trained neural networks are evaluated on a com-

mon set of initial conditions to facilitate equivalent comparisons between the policies. For the first

trajectory design scenario and hyperparameter exploration, the trained neural networks are eval-

uated on 25 initial conditions. However, for the second and third trajectory design scenarios, the

policies are evaluated on 1,000 initial conditions. This initialization ensures equivalent comparisons

between all of the policies and that enough initial conditions are evaluated to analyze the behavior

of the policies. Once a spacecraft is initialized near the initial orbit, the state and action vectors

for the policies are formulated, and a transfer is developed to target the final periodic orbit.

5.2 Autonomous Trajectory Design with MRPPO

To enable policies trained by MRPPO to autonomously recover solutions in complex trajec-

tory design scenarios, a path planning approach similar to a set of continuous waypoints is incorpo-

rated to facilitate low-thrust transfers between periodic orbits in a multi-body system. Specifically,

reference trajectories are used to guide the policies from the initial periodic orbit to the final peri-

odic orbit since reference trajectories often serve as valuable guides for training policies to recover

transfers between two periodic orbits. Prior investigations in a variety of path planning applications

have noted the limitations of DRL algorithms to converge on locally optimal trajectories in com-

plex environments without either a priori domain knowledge or the use of path planning algorithms

[154, 134]. To address this challenge, some applications of reinforcement learning for path planning

have successfully leveraged a set of waypoints that guides an agent through the configuration space

while maximizing the reward function; these waypoints may be fixed or iteratively adjusted by the

reinforcement learning algorithm or a path planning algorithm [154, 134, 163]. These waypoints
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are often states or position vectors that are defined a priori or autonomously generated. Directly

applying this waypoint concept to low-thrust transfer design in a multi-body system would require

time and support from a human with sufficient knowledge of the solution space; an expectation

that is not always reasonable, particularly in the low-thrust-enabled CR3BP. Rather, this paper

builds upon this approach by formulating a reinforcement learning problem for transfer design that

uses the best transfer generated by each policy during training directly in the state and reward

definitions. The best transfer for each policy, labeled within this paper as the policy’s ‘reference tra-

jectory’, is autonomously generated as the agents controlled by that policy explore the environment

and updated as the policies learn better control profiles. This approach is empirically observed to

facilitate each policy uncovering locally optimal behavior that leverage the natural flow of motion

within complex environments while reducing both the bias induced by a human trajectory designer

as well as the time and computational resources needed to manually identify a reference trajectory

or sequence of waypoints a priori.

Throughout the training process, the reference trajectories are autonomously updated, which

aids policies in autonomously recovering solutions in a complex trajectory design scenario [143].

Each policy may construct and follow one or more reference trajectories from the initial orbit to

the final orbit that are initially undefined [141]. The policies each autonomously generate multiple

reference trajectories such that if a spacecraft is initialized along one segment of the initial periodic

orbit, the transfer may follow a distinct geometry than if the spacecraft is initialized at a different

segment of the initial periodic orbit. Updating the reference trajectory is defined by the following

steps during the training of each policy:

(1) Generate a trajectory for policy Pi that follows reference trajectory Ri,k

(2) Evaluate as reference trajectory Ri,k

• If first trajectory: set as Ri,k

• Else: compare to Ri,k and replace if better

where Ri,k is the reference trajectory generated by policy Pi for initial conditions initialized along

the kth segment of the initial periodic orbit. Figure 5.4 displays a representation of updating a
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Figure 5.4: Updating the reference trajectory throughout training in a transfer design scenario.

reference trajectory for a single policy during training to recover transfers between two periodic

orbits. In this figure, the initial periodic orbit is represented by the black dashed arc, the final

periodic orbit is denoted by the solid black arc, the initial reference trajectory is expressed as an

empty black dashed box to indicate that it is undefined at the start of the training process, and the

reference trajectories are depicted in a variety of hues to demonstrate how the reference trajectory

for this policy is updated throughout the training process. As training progresses, the reference

trajectory converges on a locally optimal solution. Additionally, Fig. 5.5 displays a zoomed-in

view demonstrating that for a single policy, reference trajectories with distinct geometries may

be generated for each region of the initial periodic orbit. Then, the best trajectories generated

throughout the training process are used as the reference trajectories for each policy.

Determining whether a new training trajectory supplies a better reference may depend on

the properties of interest, e.g., via criteria defined in the phase space, evaluation of the reward

function, or a combination of factors. Throughout training, a reference trajectory is continually

updated based on a set of criteria that may include closest approach to the final orbit, highest

total reward, lowest propellant mass usage, or other objectives and constraints significant to the

trajectory design scenario. To recover transfers in multi-body trajectory design scenarios with
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Figure 5.5: Zoomed-in view of reference trajectories with unique geometries assigned to distinct
segments of an initial periodic orbit.

minimal propellant mass usage, a combination of criteria is used to determine when a training

trajectory should be used as a reference trajectory. Initially, reference trajectories are determined

by the trajectories that approach the target orbit closest in configuration space. Since trajectories

may approach and then depart the final periodic orbit prior to the policies learning to converge

on the orbit early on in the training, an average of the k closest states in position space to states

along the final orbit is computed. To facilitate an accurate approximation without an excessive

computational requirement, the final orbit is finely discretized into 1,000 states equally spaced in

time. If the average of the closest states is less than the average computed for the current reference

trajectory that this trajectory is following, than this training trajectory is updated to be the new

reference trajectory. However, once the reference trajectories converge on the target orbit, defined

using a set of hyperspheres for the position and velocity deviations, the reference trajectories are

then updated based on minimizing

Jref =

tmax∑
t=0

(
− 1− cm∆m̃t

)
(5.1)

where cm is the propellant mass coefficient assigned to each policy and ∆m is the propellant mass

usage caused by the most action ūt. This function primarily discourages high propellant mass

usages for the policies, but also inhibits long flight times for the reference trajectories. Other

combinations of criteria have been explored, but minimizing the position deviations followed by
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minimizing propellant mass usage in combination with minimizing the flight time has been found to

produce reference trajectories with flight times and propellant mass usages comparable to transfers

recovered via an optimization scheme.

This approach enables each policy to develop transfers with unique geometries subject to

where the transfers depart the initial periodic orbit. Specifically, each policy produces unique

reference trajectories corresponding to the distinct objective prioritization assigned to the policy

through the reward function. Additionally, employing multiple reference trajectories facilitates

faster transfer times, a wider variety of transfer geometries, and policies to develop locally opti-

mal solutions for multiple segments of the initial periodic orbit. However, while many reference

trajectories may be assigned for each policy, too many reference trajectories may not allow the

policies to update and produce locally optimal solutions for each region of the periodic orbit. Us-

ing MRPPO while updating the reference trajectories enables policies to uncover locally optimal

behavior in complex environments without the need for predefined reference trajectories, thereby

reducing both the bias induced by a human trajectory designer and the time and computational

resources needed to develop the reference trajectories for each policy.

5.2.1 State Vector Formulation

Once an initial condition is selected for an agent, the spacecraft information is used to form

a state vector that is input to the neural networks to generate an action. Note, the assumptions

of reinforcement learning, that the optimization problem may be formulated as a MDP, requires

that the input state to the neural networks contains all information about the agent necessary to

formulate a locally optimal action. In this research, the state vector for the neural networks is

defined as a 15× 1 vector written as

s̄t = [d̄Tt , v̄
T
t ,msc,∆d̄Tt ,∆v̄Tt , κt, t]

T (5.2)

where the components are standardized to be approximately in the range of [-1,1]. In this state

formulation, d̄t and v̄t denote the nondimensionalized position and velocity vectors of the spacecraft
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with respect to the barycenter of the CR3BP rotating frame; msc is the spacecraft mass; ∆d̄t

and ∆v̄t represent the relative states of the spacecraft measured with respect to the initial orbit,

final orbit, or reference trajectory; κt is an index that signifies whether the relative states are

measured with respect to the initial orbit, final orbit, or reference trajectory, and t is the current

nondimensional time. However, for the first trajectory design scenario, only the final orbit and

reference trajectory are used to determine the relative states. Additionally, for low-thrust transfers

in the Sun-Earth-Moon point mass ephemeris model, d̄t and v̄t are measured with respect to the

Sun-Earth instantaneous rotating frame.

Each component of the state vector provides information about the spacecraft and environ-

ment to the neural networks when determining a locally optimal action. Including d̄t and v̄t in the

state vector enables the neural networks to determine the dynamics acting on the spacecraft at the

current time in the system. Meanwhile, the relative states, ∆d̄t and ∆v̄t, are measured with respect

to the closest periodic orbit or reference trajectory in position space unless the spacecraft is within

some distance of the final orbit. Note, ∆d̄t and ∆v̄t are non-unique and supply the neural networks

with a nonminimal state description. Providing the relative state information to the neural networks

enables the selection of actions that minimize the state deviation from the dynamical structures,

facilitates convergence on the final periodic orbit, and was observed to improve the performance of

the neural networks. For the three trajectory design scenarios investigated, the position threshold is

defined as 5,000 km, 10,000 km, and 7.5 ×106 km. This position threshold with respect to the final

orbit is used to prevent chattering in the relative states between a reference trajectory and final

orbit. Then, κt corresponds to how the relative states are measured and is set as -1, 0, or 1 for the

initial orbit, reference trajectory, or final orbit, respectively. Incorporating κt into the input state

provides the neural networks with information about how the relative state is measured, and the

expected reward output from the reward function formulations defined in Section 5.2.4. Finally, t is

the current time measured from a defined epoch, which generates insights into the dynamics acting

on a spacecraft in a point mass ephemeris model and any termination conditions that may be time

dependent. This state formulation provides the neural networks information about the spacecraft
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and enables the trained neural networks to draw locally optimal actions for the spacecraft.

Each of the state components input to the neural networks is gathered from the agent infor-

mation and is standardized to be approximately between [-1,1]. Standardizing the state components

input to the neural networks aids the convergence of the neural networks on optimal behavior and

generally leads to improved performance [146]. The state vector components are standardized via

s̆t,i =
2(s̄t,i − s̆i,min)

s̆i,max − s̆i,min
− 1 (5.3)

where s̆t,i indicates agent states after standardization, s̆i,max represents the upper standardization

value for a neural network state component, and s̆i,min denotes the lower standardization value for a

neural network state component. The standardization values are defined to ensure that a majority

of the states encountered within the environment may be standardized to be between [-1,1].

The standardization values are selected using the characteristics of the trajectory design

scenario. For the position and velocity components, the standardization values are computed using

the maximum and minimum state components of the initial and final periodic orbits. For example,

the lower standardization value of the x state component is defined using the minimum x-coordinate

of either the initial or final periodic orbit, i.e. whichever orbit possesses a smaller x-coordinate.

A similar process using the two periodic orbits is employed for the other position and velocity

standardization values. For the mass component, the upper standardization value is set as the

initial wet mass of the spacecraft while the lower standardization value is defined as approximately

75% of the spacecraft mass at the conclusion of the transfer if the spacecraft used the maximum

thrust magnitude throughout the transfer. This was empirically observed across the trajectory

design scenarios to produce strong and consistent behavior. For the relative state components,

the standardization values are typically defined using the radii of the convergence hyperspheres set

at the final orbit. For instance, if the spacecraft enters within 5 × 10−3 in position and velocity

space of a state along the final orbit, the spacecraft is considered to have converged on the final

orbit. Then, the standardization values for the relative position states are typically set equal to

the radii of the convergence hyperspheres while the standardization values of the relative velocity
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Table 5.3: Standardization values for the input vector to the neural networks for the three trajectory
design scenarios.

Scenario #1 Scenario #2 Scenario #3
Quantity s̆i,min s̆i,max s̆i,min s̆i,max s̆i,min s̆i,max

x 1.0522 1.1676 0.8240 1.1676 0.3681 1.0112

y -0.1325 0.1325 -0.1168 0.1168 -0.9562 0.0049

z -0.1494 0.0751 -0.1029 0.0626 -0.0016 0.0021

ẋ -0.0993 0.0993 -0.0843 0.0843 -0.1209 0.1220

ẏ -0.2192 0.3667 -0.1973 0.2735 -0.0916 0.0841

ż -0.2278 0.2278 -0.1576 0.1576 -0.0037 0.0037

ms/c 179 180 179 180 150 180

∆x −5× 10−3 5× 10−3 −5× 10−3 5× 10−3 −5× 10−3 5× 10−3

∆y −5× 10−3 5× 10−3 −5× 10−3 5× 10−3 −5× 10−3 5× 10−3

∆z −5× 10−3 5× 10−3 −5× 10−3 5× 10−3 −5× 10−3 5× 10−3

∆ẋ −1× 10−2 1× 10−2 −1× 10−2 1× 10−2 −1× 10−2 1× 10−2

∆ẏ −1× 10−2 1× 10−2 −1× 10−2 1× 10−2 −1× 10−2 1× 10−2

∆ż −1× 10−2 1× 10−2 −1× 10−2 1× 10−2 −1× 10−2 1× 10−2

κ -1 1 -1 1 -1 1

t 0 3 0 9 0 25.3

states are defined as twice the radii of the convergence hyperspheres. The standardization values

of the relative velocity states are twice as large because the relative velocity states are typically

an order of magnitude larger than the relative position states for the transfers explored in this

research. The standardization values for the index for how the relative states are measured are

defined as -1 and 1 for a periodic orbit transfer scenario. If additional dynamical structures are

included, the standardization values for the index may need to be altered to reflect more than

three dynamical structures. Finally, the standardization values for the time are set to zero and

the maximum time allotted for the transfer. Table 5.3 displays the values for s̆i,max and s̆i,min for

each state component for each trajectory design scenario. Using these standardization values for

the neural network input state enables the networks to efficiently learn locally optimal actions for

every state in the environment.
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5.2.2 Action Vector Formulation

Once the current standardized state, s̄t, is input to the neural networks, the actor neural

network generates an action that aims to maximize the long-term reward along a trajectory in

the environment. Specifically, the action vector output from the actor neural network enables the

spacecraft to maneuver towards the final orbit while maximizing the expected total reward in the

dynamical model. The action vector is defined as a 4×1 vector written as ūt = [ux, uy, uz, uT ] where

the first three components determine the thrust direction and the fourth component determines the

thrust magnitude. These action components are drawn from the probability distributions output

by the actor neural network, which depend on the input state. Recall, throughout the training

phase, action components are randomly drawn from the probability distributions while during the

evaluation phase, the means of the probability distributions are used for each action component.

In this research, the actor neural network is parameterized to output a Gaussian distribution

to determine the action vector where the actor neural network learns and outputs the means of

the Gaussian distributions. The standard deviation of the Gaussian distribution for each action

component is initialized to be 0.5 to ensure sufficient exploration early in the training process. The

standard deviation is then annealed throughout training via a linear decrease following the update

to the policies until reaching a value of zero at the conclusion of training. Figure 5.6 depicts the

Gaussian distribution for a single action component for an input state where the action component

may be drawn randomly from the distribution during training and set equal to the mean during the

evaluation phase. Once an action vector is drawn, the action components are bounded depending

on the quantity that each component represents.

Although the actor neural network may produce an unbounded action vector, it must be

bounded to conform to the hardware and operational constraints of the spacecraft. The first three

components of an action vector are normalized to produce a unit vector, ût, to determine the

thrust direction in the CR3BP rotating frame or Sun-Earth instantaneous rotating frame. The
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Figure 5.6: Sample Gaussian distributions for an action component output by an actor neural
network from an input state.

thrust direction unit vector is computed via

ût =
[ux, uy, uz]√
u2x + u2y + u2z

(5.4)

and used in Eqs. (2.40)-(2.42). Then, the thrust magnitude component is interpreted differently

depending on whether the spacecraft is equipped with a variable thrust or constant thrust engine.

For a variable thrust engine, the thrust magnitude T̃ used in Eq. (2.39) is computed via

T̃ = T̃max

(
tanh(uT ) + 1

2

)
(5.5)

where the hyperbolic tangent function first constrains the thrust magnitude component, uT to

be between -1 and 1. Then, the component is normalized to be between 0 and 1, which is then

multiplied by T̃max to produce the actionable thrust magnitude for the specified thrust direction in

the CR3BP rotating frame or Sun-Earth instantaneous rotating frame. Conversely, for a constant

thrust engine configuration, the sign of the thrust magnitude component, uT determines whether

the low-thrust engine is activated; if the thrust magnitude component is greater than 0, than the
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low-thrust engine is activated, else the spacecraft engine is deactivated and the spacecraft is in

coast mode. This formulation helps the neural networks determine when to activate the low-thrust

engine since the outputs from the actor neural network are typically in the range of [-1,1]. Then,

the actor neural network may shift the mean of the Gaussian distribution for the fourth action

component to either side of zero depending on whether the agent should perform a maneuver. For

a constant thrust engine configuration, the thrust magnitude is determined via

T̃ =


T̃max, if (uT > 0)

0, if (uT ≤ 0)

(5.6)

Once a state-action pair is generated, the spacecraft is propagated for a defined time step using the

equations of motion specified for the trajectory design scenario.

5.2.3 Time Step Definition

Since reinforcement learning is formulated in the context of an MDP, the continuous time

trajectory design problem must be transformed into a discrete time process. In a discrete time

formulation, a state-action pair for an agent is propagated for a defined time step, denoted ∆t,

and then subsequently assigned a reward, new state vector, and new action vector to perform. A

discrete time formulation may not recover the precise action to perform at every point in time that

a continuous time formulation for a classical optimization scheme may recover. However, a discrete

time formulation may more closely match operational requirements only allowing the spacecraft to

perform a new maneuver after a set amount of time. These operational requirements may stem

from discouraging large changes in the thrust direction vector over a small amount of time, limited

communication windows, or preventing maneuvers from interfering with scientific observations.

Further, it has been observed that neural networks learn more rapidly when ∆t is larger and there

are less steps in the environment due to the need to learn less combinations of state-action pairs to

find an optimal solution that converges on the final orbit. However, smaller time steps may allow

the recovered solution to sufficiently resemble a continuous time solution recovered via a classical
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Table 5.4: Propagation time and maximum number of time steps for the trajectory design scenarios.

Scenario ∆t tmax

# 1 3× 10−2 100

# 2 6× 10−2 150

# 3 0.22 115

optimization scheme, and enable the neural networks to slightly reduce the required propellant

mass and flight time to arrive at the final orbit. Thus, the size of ∆t must be balanced to enable

the neural networks to learn the control profiles that solve the reinforcement learning problem,

converge on the final orbit, and limit the required propellant mass usage and flight time.

In this research, ∆t is generally set to allow the neural networks a maximum of 100-150

time steps to converge on the final orbit. This maximum number of time steps for a trajectory,

denoted tmax, is empirically determined to enable the neural networks to learn to converge on the

final orbit with a high degree of control without requiring the neural networks to learn a significant

number of states in the environment. Additionally, the neural networks generally only reach the

maximum number of time steps early on in training prior to the networks learning to converge

on the final orbit. Table 5.4 denotes the discrete time step size and maximum number of time

steps for the three trajectory design scenarios explored in this research where the propagation time

is nondimensionalized using the CR3BP characteristic time, t̃∗. Then, each state-action pair is

propagated in the dynamical model forward in time for ∆t nondimensional time units and state-

action pairs are continually generated until one or more of the termination conditions is activated.

5.2.4 Reward Function Formulation

Each policy trained by MRPPO attempts to maximize the expected total reward for a tra-

jectory returned from a reward function. The reward functions are structured to encourage the
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policies to balance multiple objectives in the dynamical model; specifically targeting the final or-

bit while minimizing propellant mass usage and flight time. Unlike in constrained optimization

techniques, in reinforcement learning, reaching the target orbit is formulated as a goal that is max-

imized rather than a hard constraint in this proof of concept approach. Additionally, the terms in

the reward functions are scaled to be approximately on the order of 100 throughout the transfer

for the three trajectory design scenarios. This scaling enables the terms in the reward functions to

have approximately similar influences throughout the environment. Then, by selecting the relative

weighting between propellant mass usage and flight time, the policies recover distinct regions of

the multi-objective solution space associated with propellant mass usage and flight time. However,

unlike in a conventional optimization problem, the reward function cannot be set to maximize the

final mass or to have too high of a propellant mass usage penalty because the policies would then be

incentivized to not perform any actions and stay along the initial orbit. While the reward function

formulations for each trajectory design scenario are similar, there are notable differences due to the

spacecraft parameters, propagation time, and scenario assumptions. The specific reward function

definitions are outlined in the following sections.

Scenario # 1: For the first trajectory design scenario, the neural networks are tasked with

constructing a transfer from an L2 southern halo orbit to a higher-energy L2 southern halo orbit

in the Earth-Moon CR3BP, which is reflected in the reward function formulation. The reward

function for this trajectory design scenario is written as

rt(s̄t, ūt) =


−1− cm(m̃sc,t − m̃sc,t+∆t) + Ω Reference Trajectory

−10|∆d̄t+∆t| − |∆v̄t+∆t| − cm(m̃sc,t − m̃sc,t+∆t) + Ω Final Orbit

(5.7)

where cm denotes the mass coefficient which scales the penalty on propellant mass usage, Ω is the

bonus or penalty associated with the termination conditions, and the reward depends on whether

the location of the spacecraft is measured with respect to the reference trajectory or the final

orbit. When the location of the spacecraft is measured with respect to the reference trajectory, the

reward is composed of a propellant mass usage term, termination condition terms, and a constant
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penalty of -1 to incentivize the policies to rapidly approach the final orbit. Although the policy is

not incentivized to follow the reference trajectory closely, the reference trajectory does still supply

information about targeting the final orbit through the position and velocity deviations terms in

the state vector. Once the spacecraft enters the vicinity of the final orbit, i.e., κ = 1, the reward

function incentivizes the policy to decrease the state discontinuities with respect to the final orbit

while also conserving propellant mass. In both cases, the propellant mass usage term is calculated

using the most recent action, ut, and is scaled by cm to reflect a distinct relative weighting between

minimizing propellant mass and minimizing flight time for each policy while reaching the final

orbit. Specifically, four policies are trained with mass coefficients of cm = [0, 13.33, 26.66, 40],

corresponding to increasingly larger penalties for propellant mass usage along a low-thrust-enabled

transfer. With this formulation of the reward function, the variable mass coefficient enables recovery

of solutions spanning the multi-objective trade space for this trajectory design scenario.

Scenario # 2: For the second trajectory design scenario, the reward functions are structured

based on whether the location of the spacecraft is measured with respect to the initial orbit, final

orbit, or reference trajectory. In this scenario, it was observed that rewarding the policies to

decrease state deviations with respect to the reference trajectory aided convergence in this more

complex scenario. The general reward function formulation for this trajectory design scenario is

written as

rt(s̄t, ūt) =



−8− 10|∆d̄t+∆t| − |∆v̄t+∆t| − cm(m̃s/c,t − m̃s/c,t+∆t) + Ω Initial Orbit

−4− 10|∆d̄t+∆t| − |∆v̄t+∆t| − cm(m̃s/c,t − m̃s/c,t+∆t) + Ω Reference

−100|∆d̄t+∆t| − 10|∆v̄t+∆t| − cm(m̃s/c,t − m̃s/c,t+∆t) + Ω Final Orbit

(5.8)

which includes an additional case if the location of the spacecraft is measured with respect to

the initial orbit. Specifically, the four policies are assigned the propellant mass usage coefficients,

cm = [0, 83.33, 166.66, 250], respectively, whereby higher coefficients increase the penalty associated

with propellant mass usage. Additionally, the scalar penalties at each time step, i.e. -8, -4, and 0,

decrease as the spacecraft transfers from the initial orbit to the reference trajectory and then to
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the final orbit to encourage targeting the final orbit. Finally, the coefficients on the state deviation

terms are lower for the initial orbit and reference trajectory components to penalize large deviations

while the coefficients for the state deviation terms for the final orbit component are increased to

encourage convergence to the final orbit. This formulation enables the policies to learn to follow

the dynamical arcs within the system to target the final orbit while also limiting flight time and

propellant mass usage.

Scenario # 3: The third trajectory design scenario uses a similar reward function formu-

lation as the second trajectory design scenario defined in Eq. (5.8) but with distinct propellant

mass usage coefficients. Instead, the eight policies trained for each dynamical and engine model

are assigned cm = [0, 9/7, 18/7, . . . , 9], respectively, whereby higher coefficients increase the penalty

associated with propellant mass usage. The propellant mass usage coefficients are altered to reflect

the increase in propagation time between state-action pairs, the smaller maximum thrust magni-

tude of the low-thrust engine, and the distinct dynamics of the Sun-Earth system. This general

formulation encourages the policies to target the final orbit while balancing flight time and pro-

pellant mass usage for a variety of dynamical and engine models. The resulting policies are used

to uncover regions of the multi-objective solution space that balance minimizing flight time and

propellant mass usage.

To aid the convergence behavior of the neural networks in the trajectory design scenarios, the

rewards generated for each policy are standardized to possess a mean of zero and standard deviation

equal to unity. Standardizing the rewards before every update to the neural networks encourages

the neural networks to target the best state-action pairs generated throughout training and has been

shown to improve the performance of policies [146]. Since each policy for each trajectory design

scenario generates distinct rewards for identical state-action pairs due to the unique propellant

mass usage coefficients, the standardization is performed for each policy. The rewards for each

policy are standardized via

rt =
rt −mean(r0:Ψ)

stddev(r0:Ψ)
(5.9)
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where r0:Ψ denotes the rewards for policy Pi associated with the state-action pairs collected by all

policies for one update phase for the policies, and mean(r0:Ψ) and stddev(r0:Ψ) compute the mean

and standard deviation of the rewards for that policy, respectively. The standardized rewards are

then input to the estimated advantage and objective functions to update the neural networks.

5.2.5 Termination Conditions

Termination conditions are defined for each trajectory design scenario corresponding to the

termination of a trajectory in the environment. Once a termination condition has been activated,

a bonus or penalty is applied depending on whether the spacecraft has converged upon the final

orbit or a constraint has been violated. In each trajectory design scenario, policies and agents

are rewarded for converging on the final orbit within defined position and velocity hyperspheres of

the closest state in position space along the final periodic orbit. The final periodic orbit in each

trajectory design scenario is discretized into 1,000 states equally spaced in time. The time step for

each discretization is significantly less than the propagation time for each step of the agent enabling

the spacecraft to determine that it has converged on the final orbit. However, discretizing the final

orbit into too many states significantly increases the required computational time to determine

the closest state along the final orbit in position space. Since this must be performed for every

state generated by the policies across all updates, a balanced approach is used to limit the required

computational time while still enabling an accurate determination of convergence. Additionally, for

each trajectory design scenario, the agent is allowed a maximum number of time steps to converge

on the final orbit. If the agent does not reach the final orbit, the trajectory is terminated and a

penalty is applied.

Scenario # 1: For the first trajectory design scenario, four termination conditions for a

trajectory are defined:

(1) The spacecraft approaches within 1 × 10−3 and 5 × 10−3 in position and velocity space,

or 384 km and 5.1 m/s respectively, of the closest state in position space of the final halo

orbit where Ω = 100.
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(2) The maximum number of time steps, 100, is reached and Ω = 0.

(3) The spacecraft drifts farther than 7,500 km from both the final orbit and reference trajec-

tory, selected to allow the policies to explore the environment but not so large as to depart

the vicinity of the initial and final orbits, where Ω = −1000.

(4) The spacecraft impacts the Moon where Ω = −1000.

These termination conditions enable the policies to explore the environment and exploit multiple

geometries to reach the final orbit while limiting exploration of the state space that is significantly

outside the region of the periodic orbits.

Scenario # 2: Similarly, the termination conditions for a trajectory in the second trajectory

design scenario are:

(1) The spacecraft is within 5 × 10−3 in position and velocity of the closest state in position

space of the final halo orbit and Ω = 1000.

(2) The maximum number of time steps, 150, is reached and Ω = 0.

(3) The spacecraft strays over 12,500 km from the initial orbit, final orbit, and reference tra-

jectory and Ω = −1000.

(4) The spacecraft enters within 5 Moon radii of the Moon and Ω = −1000.

These penalties discourage the spacecraft from departing the system or impacting the Moon while

the bonus rewards convergence to the final orbit. Both the first and second trajectory design

scenarios are within the Earth-Moon CR3BP so are assigned similar termination conditions.

Scenario # 3: For the final trajectory design scenario in the Sun-Earth system, the termi-

nation conditions are defined as:

(1) The spacecraft converges within a defined hypersphere in position and velocity of the closest

state in position space along the L5 short period orbit and Ω = 1000.



85

(2) The maximum number of time steps, 115, is reached and Ω = 0.

(3) The spacecraft diverges farther than 0.205 in nondimensional position units from the initial

orbit, final orbit, and reference trajectory and Ω = −1000.

(4) The spacecraft impacts the Earth or Moon and Ω = −1000.

For the Sun-Earth CR3BP, the position and velocity hyperspheres are set as 5× 10−3 while for the

Sun-Earth-Moon point mass ephemeris model, the position and velocity hyperspheres are defined

to be 1×10−2. The position and velocity hyperspheres are increased for the ephemeris model to aid

the neural networks in converging on the final orbit in the more complex dynamical model while

still achieving bounded motion near the Sun-Earth L5 equilibrium point.

5.2.6 Hyperparameter Selection

Values are assigned to the hyperparameters and construction parameters that influence the

behavior of the policies in each trajectory design scenario. Recall, the hyperparameters influence

the training process for the policies while the construction parameters determine how the actor and

critic neural networks are initialized. Further, Figs. 5.7 and 5.8 depict the roles of the actor and

critic in a trajectory design scenario determining the action to perform and value at every state in

the environment.

Scenario # 1: In the first trajectory design scenario, a set of baseline hyperparameters

is defined to examine the behavior of MRPPO and serve as a comparison prior to performing a

hyperparameter exploration. Table 5.5 summarizes the hyperparameter values used as a baseline

for the first trajectory design scenario, prior to hyperparameter exploration. In the hyperparameter

exploration, a one dimensional search along a single hyperparameter is performed while all other

hyperparameters are set to the baseline values. This exploration provides insights into the influence

of certain hyperparameters on the behavior of the policies throughout training. Notably, the

learning rate is adjusted throughout training following a triangular cycle which was demonstrated

by Andrychowicz et al. and Smith and Topin to aid the convergence of the policies [6, 131].
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Figure 5.7: Demonstration of an actor outputting action vectors for a spacecraft to perform in a
representative trajectory design problem.

Figure 5.8: Demonstration of a critic generating values for spacecraft states in a representative
trajectory design problem.

The baseline hyperparameters and construction parameters are selected due to their tendency to

produce relatively stable performance during training across a variety of applications and many

trajectory design scenarios as demonstrated by Andrychowicz et al., Bonasera et al., Henderson et

al., and Sullivan et al. [6, 19, 66, 141].

Scenario # 2: Following the hyperparameter exploration detailed in Section 7.1.4, the

hyperparameters are modified for the second and third trajectory design scenarios. Table 5.6

displays the hyperparameters and construction parameters used for the second trajectory design

scenario. Namely, three parameters are altered. The GAE factor is increased from 0.85 to 0.9 which

increases the variance and lowers the bias in the bias-variance trade-off. Additionally, the number
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Table 5.5: MRPPO baseline hyperparameter and construction parameter values for the first tra-
jectory design scenario.

Quantity Value

Update Phases, Z 500

Environmental Steps, Λ 4096

Epochs, E 5

Mini Batches, M 4

Discount Factor, γ 0.95

GAE Factor, λ 0.85

Initial Learning Rate, lr 1× 10−3

Maximum Learning Rate, lr 5× 10−3

Clipping Parameter, ε 2× 10−3

Value Function Coefficient, c1 0.5

Entropy Coefficient, c2 1× 10−3

Maximum Gradient Norm, cmax 0.5

Actor Hidden Layers, la 2

Actor Hidden Nodes per Layer, na 64

Critic Hidden Layers, lc 2

Critic Hidden Nodes per Layer, nc 1024

Initialization Scheme Orthogonal

Activation Function Tanh

of critic hidden layers is decreased from 2 to 1 decreasing the total number of training parameters

for estimating the value function. Finally, the activation function is modified to ReLU instead of

the hyperbolic tangent since ReLU is found to generate higher and most consistent total rewards.

Scenario # 3: In the final trajectory design scenario, the hyperparameters are adjusted

for this more complex trajectory design scenario. Table 5.7 displays the hyperparameters and

construction parameters used for the third trajectory design scenario. The number of hidden layers

and hidden nodes per hidden layer for the critic neural network are updated to 2 and 64, respectively,

which produced more stable convergence behavior. Additionally, although the number of policies

is increased from four to eight while the number of agents per policy is held constant. This enables

each policy to collect a significant amount of information in the environment via agents the policy

controls while still learning from the state-action-reward experiences gathered by other policies.
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Table 5.6: MRPPO baseline hyperparameter and construction parameter values for the second
trajectory design scenario.

Quantity Value

Update Phases, Ψ 500

Environmental Steps, Λ 4096

Epochs, E 5

Mini Batches, M 4

Discount Factor, γ 0.95

GAE Factor, λ 0.9

Initial Learning Rate, lr 1× 10−3

Maximum Learning Rate, lr 5× 10−3

Clipping Parameter, ε 2× 10−3

Value Function Coefficient, c1 0.5

Entropy Coefficient, c2 1× 10−3

Maximum Gradient Norm, cmax 0.5

Actor Hidden Layers, la 2

Actor Hidden Nodes per Layer, na 64

Critic Hidden Layers, lc 1

Critic Hidden Nodes per Layer, nc 1024

Initialization Scheme Orthogonal

Activation Function ReLU

Agents per Policy 4

5.3 Transfer Learning Implementation

Transfer learning is a technique used within the machine learning community that enables

neural networks trained for one environment to be used as an initial guess for policies in a new en-

vironment [151, 168]. Transfer learning has been employed in a variety of domains and applications

included autonomous driving, guidance and control for drones, biological systems, and supervised

learning [159, 168]. When applied to a reinforcement learning problem, the environment may be

updated to possess a distinct dynamical model, a new set of objectives, changes to the agents, or

a combination of the three components. While transfer learning typically assumes that the new

environment is similar to the original environment that the policies are first trained on, this is not

a requirement. However, more similar environments typically require less updates to the policies
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Table 5.7: MRPPO baseline hyperparameter and construction parameter values for the third tra-
jectory design scenario.

Quantity Value

Update Phases, Ψ 500

Environmental Steps, Λ 4096

Epochs, E 5

Mini Batches, M 4

Discount Factor, γ 0.95

GAE Factor, λ 0.9

Initial Learning Rate, lr 1× 10−3

Maximum Learning Rate, lr 5× 10−3

Clipping Parameter, ε 2× 10−2

Value Function Coefficient, c1 0.5

Entropy Coefficient, c2 1× 10−3

Maximum Gradient Norm, cmax 0.5

Actor Hidden Layers, la 2

Actor Hidden Nodes per Layer, na 64

Critic Hidden Layers, lc 2

Critic Hidden Nodes per Layer, nc 64

Initialization Scheme Orthogonal

Activation Function ReLU

Agents per Policy 4

to recover a locally optimal solution. Further, in environments where significant data collection

may be time- and cost-prohibitive, transfer learning may be applied to enable policies trained in

an approximate, cheaper model to serve as valuable initial guesses for the more complex environ-

ment. Transfer learning may be employed to reduce the required computational times, facilitate

the recovery similar locally optimal solutions in more complex environments, and iteratively update

policies to maximize the objectives in complex trajectory design scenarios.

In this research, transfer learning is used to train policies in a higher-fidelity ephemeris model

using policies trained in the CR3BP as an initial guess similar to the approach used by Bonasera et

al. [18]. This approach is similar to employing continuation across dynamical models, a technique

commonly used when designing transfers first in a lower-fidelity model prior to updating the transfer
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for a higher-fidelity model. However, since the weights, biases, and structure of the neural networks

are held constant in the transfer learning approach, the state and action vector formulations must

also be identical between dynamical models. An important note when applying this to trajectory

design is that some input state variables do not influence the actions during the training in the

lower-fidelity model, but they are necessary to include for the higher-fidelity dynamical model.

Then, while the time component in the state vector formulation in Eq. (5.2) for the CR3BP, which

is an autonomous dynamical model, may not influence the dynamics of the spacecraft or the decision

of the neural networks in the environment, the time is necessarily included for the neural network

structure for the ephemeris model dynamics.

Specifically, transfer learning is used to train policies to recover low-thrust transfers in the

Sun-Earth-Moon point mass ephemeris model using policies from the Sun-Earth CR3BP as an

initial guess for the third trajectory design scenario. First, policies are trained in the Sun-Earth

CR3BP to recover low-thrust transfers to a Sun-Earth L5 short period orbit. Then, the neural

networks constituting the policies are used as initial guesses for developing transfers in the Sun-

Earth-Moon point mass ephemeris model. Once policies have been trained for both the variable

thrust and constant thrust engine configurations in the Sun-Earth CR3BP, these policies are used as

an initial guess to develop locally optimal trajectories in the Sun-Earth-Moon point mass ephemeris

model using transfer learning.

To limit the changes between the dynamical models in this transfer learning approach, the

final periodic orbits in both models are assumed to be similar. However, in this approach, the

Sun-Earth L5 short period orbit is no longer periodic in the Sun-Earth-Moon point mass ephemeris

model. Instead, 1,000 states discretized along the Sun-Earth L5 short period orbit are used to for-

mulate natural trajectories in the Sun-Earth-Moon point mass ephemeris model that are generated

to resemble the Sun-Earth L5 short period orbit in the higher-fidelity model at each epoch. The

states and rewards are measured with respect to the closest state in configuration space correspond-

ing to the current epoch along each natural trajectory. Figure 5.9 depicts the 1,000 trajectories

in the Sun-Earth-Moon point mass ephemeris model for the 115 epochs defined for the reinforce-
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(a) Sun-Earth L5 short period orbit (b) Approximated Sun-Earth L5 short period
orbit

Figure 5.9: Optimized trajectories in the Sun-Earth-Moon point mass ephemeris model approxi-
mating the Sun-Earth L5 short period orbit.

ment learning environment. Section 6.4 details the optimization process for generating the natural

transfers that approximate the Sun-Earth L5 short period orbit in the Sun-Earth-Moon point mass

ephemeris model.

The weights and biases of the neural networks used to construct the policies in the CR3BP are

used to initialize the neural networks in the Sun-Earth-Moon point mass ephemeris model. Then,

the neural networks are updated using state-action-reward experiences generated in the Sun-Earth-

Moon point mass ephemeris model. While the state, action, and reward function formulations are

equivalent between the two dynamical models, the original MRPPO hyperparameters in Table 5.7

are modified. Instead, the policies are trained for 25 updates in the Sun-Earth-Moon point mass

ephemeris model with an initial learning rate of 1 × 10−4 and a maximum learning rate of 1.1 ×

10−4 following a cyclic annealing process. The learning rate is decreased for the transfer learning

approach to prevent the state-action-reward experiences generated in the Sun-Earth-Moon point

mass ephemeris model from destabilizing the policies trained in the Sun-Earth CR3BP.



Chapter 6

Transforming a Reinforcement Learning Problem to a Nonlinear Constrained

Optimization Problem

Two nonlinear constrained optimization schemes are formulated to: 1) validate the low-

thrust transfers generated by policies trained using MRPPO and 2) develop natural trajectories

in the Sun-Earth-Moon point mass ephemeris model that approximate the configuration of a Sun-

Earth L5 short period orbit. For the first task, the local optima recovered by reinforcement learning

approaches have been validated in a variety of domains and applications using distinct optimization

techniques. For example, reinforcement learning approaches have surpassed human experts in

domains such as Go, Atari, and Chess [27, 130]. Additionally, reinforcement learning has compared

favorably against dynamic programming, genetic algorithms, and classical optimization techniques

in other applications and industries [12, 82, 143]. A variety of optimization techniques have been

employed within the astrodynamics community including classical optimization approaches and

genetic algorithms, both of which possess single and multi-objective formulations. For this research,

a nonlinear, constrained, gradient descent optimization technique employing a multiple shooting

algorithm in combination with SQP implemented in fmincon in MATLAB© is used.

The gradient descent optimization algorithm is assigned a single objective to maximize which

may be composed of multiple objectives via a weighted sum, similar to the reward function for a

policy trained using MRPPO. The optimization problem for validating the transfers developed by

MRPPO is formulated to match as closely as possible to the reinforcement learning problem to

facilitate a fair and near-equivalent comparison. Generating locally optimal solutions using the
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optimization scheme enables the validation of the results produced by MRPPO for each trajectory

design scenario and comparisons between the solution spaces uncovered by the two methodologies.

6.1 Multiple Shooting

Shooting methods are one approach to solving a two point boundary value problem by con-

verting the boundary value problem into an initial value problem [107]. One method for imple-

menting a shooting method is through a free variable and constraint vector formulation where the

free variables may be altered and constraints which must be satisfied. A multiple shooting method

discretizes a trajectory into multiple arcs, which are simultaneously updated to both satisfy bound-

ary constraints and continuity and other constraints [23]. This is a common technique used by

a variety of researchers for recovering trajectories in multi-body systems [23, 48, 137]. Multiple

shooting methods are more computationally expensive to evaluate and possess more complex im-

plementations, but are generally more robust in complex scenarios. In this research, a multiple

shooting scheme is used to correct a trajectory due to its: 1) robust convergence properties in

chaotic environments, 2) suitability for defining equality constraints used within SQP in fmincon,

and 3) similarity to the reinforcement learning episode definition.

In a multiple shooting approach, a trajectory is discretized into a sequence of arcs which are

simultaneously updated to satisfy a set of predefined constraints. Figure 6.1 depicts a representation

of using multiple shooting to correct a discontinuous initial guess into a continuous trajectory

where blue arcs denote coast segments and red arcs denote low-thrust segments. Each arc along an

trajectory is described by an initial state, propagation time, and any other required parameters. The

initial set of arcs, i.e. the initial guess, may be continuous or discontinuous and is defined using a

set of free variables. The free variables describing each arc are encapsulated within the free variable

vector, denoted V̄ , which is iteratively updated using a quasi-Newton approach. Further, the free

variables are updated to satisfy a set of constraints, which are defined in the constraint vector,

designated F̄ (V̄ ). These constraints may include full state continuity between each arc, targeting

boundary conditions, enforcing the thrust direction to be a unit vector, and other constraints
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Figure 6.1: Representative diagram of a trajectory updated via multiple shooting.

required for a specific trajectory design scenario. The update to the free variable vector for when

there are fewer constraints than free variables is written as

V̄i+1 = V̄i −DF̄ (V̄i)
T (DF̄ (V̄i)DF̄ (V̄i)

T )−1F̄i(V̄i) (6.1)

where i denotes the current iterative update and DF̄ (V̄i) is a matrix composed of the partial

derivatives of the constraints taken with respect to each free variable. This matrix is computed

using a combination of analytical and numerically-approximated derivatives, calculated via a first-

order central difference.

6.2 Constrained Optimization via Sequential Quadratic Programming

Within fmincon, multiple optimization techniques may be used to recover locally optimal

solutions including (1) SQP, (2) Interior Point, and (3) Trust Region Reflective [94]. In this paper,

SQP in fmincon is used due to the demonstrated effectiveness of this method in a variety of trajec-

tory design scenarios by Betts, Parrish and Scheeres, and Hargraves and Paris [16, 111, 62]. SQP

methods formulate the optimization problem as a quadratic programming problem and solutions

are iteratively updated until an optimal solution is found [17]. Additionally, SQP algorithms may

handle nonlinear constraints and do not require the initial guess to be feasible prior to generating

an optimal solution [17].
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6.3 Constrained Optimization of Low-Thrust Transfers

A nonlinear constrained optimization scheme is formulated to validate the reference trajec-

tories generated by policies trained using MRPPO in each trajectory design scenario. Since the

multiple shooting algorithm inside of SQP requires an initial guess, the solutions developed by

MRPPO serve as the initial guess prior to optimization. Note, only transfers generated using a

variable thrust engine in the CR3BP are compared to the optimization scheme. This provides

validation for the results produced by MRPPO on all three trajectory design scenarios and insight

into the solution space expected for transfers employing a constant thrust engine configuration or

in the Sun-Earth-Moon point mass ephemeris model.

To validate the results produced by MRPPO, the principal components of a multiple shoot-

ing scheme employed in combination with SQP in fmincon may be formulated to replicate the

reinforcement learning environment. First, the free variable vector is constructed to resemble the

sequential decision making process a policy follows in a reinforcement learning environment. Then,

the constraint vector is designed to match the constraints inherent to a reinforcement learning

environment, namely enforcing full state continuity between arcs and enforcing the thrust direction

specified at each arc to be a unit vector. Finally, when formulating a multiple shooting scheme with

SQP, an objective function is also defined. The objective function is minimized for a trajectory,

and is used within SQP to update the free variables and recover a locally optimal solution.

In a multiple shooting algorithm, nodes are distributed at the beginning of arcs, which is

similar to the states along a trajectory in a reinforcement learning environment where a policy

determines an action to perform. In this optimization scheme, the characteristics of the initial

guess including the low-thrust propagation time, maximum available thrust, and thrust vector

formulation, are consistent between the MRPPO and SQP implementations. However, a completely

equivalent implementation between MRPPO and SQP is not possible because of several notable

differences. Namely, SQP implemented in fmincon requires the objective function and constraints to

be continuous and possess continuous first order derivatives. The reward function used by MRPPO
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in each trajectory design scenario violates these requirements. Then, two objective functions similar

to the reward function maximized by MRPPO are explored using SQP implemented in fmincon

for each trajectory design scenario. The objective functions are formulated to solely maximize

either: 1) an augmented total reward and 2) the final mass. In both formulations, state and

action continuity is enforced via constraints. Note, in a reinforcement learning algorithm, state

and action continuity is guaranteed along a trajectory due to sequential propagation leading to

another difference between implementations. While the recovered solution spaces are expected to

be slightly different due to the difference in objective functions and implementation distinctions,

the comparison facilitates insights into the validity of the multi-objective solution space recovered

by MRPPO.

6.3.1 Free Variables

The free variable vector is parameterized to describe two distinct components of a trajectory:

(1) a low-thrust segment based on a reference trajectory produced by MRPPO and (2) a coast

segment along the final periodic orbit. The first component of the trajectory models the low-thrust

transfer produced by MRPPO specified in the reinforcement learning environment. The coast

segment is included to determine whether the optimization scheme converged on the final orbit.

Specifically, the coast segment is propagated from the termination of the low-thrust segment and

targets a defined state along the final periodic orbit. By targeting a state along the final periodic

orbit using a coast segment, the low-thrust transfer is considered to have converged on the final

periodic orbit.

Both the low-thrust and coast segments are discretized into multiple arcs that are described

by nodes located at the initial states of the arcs. The transfers are constrained to begin from

the same initial conditions as the reference trajectories generated by MRPPO to facilitate direct

comparisons between the solutions. The position and velocity for the initial conditions are randomly

perturbed from a state along the initial periodic orbit in all three trajectory design scenarios. Then,

the position, velocity, and mass of the initial condition are not included as free variables in the
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free variable vector for the initial node. Instead, only the action components for this node, ū1, are

included as free variables for the initial node and written as

N̄LT,1 = [ux, uy, uz, uT ]
T (6.2)

where ux, uy, uz are the components of the thrust direction unit vector specified in the CR3BP

rotating frame and uT is the thrust magnitude component when multiplied by T̃max along the

thrust direction. Note, uT is bounded between [0, 1].

For all proceeding low-thrust nodes, the position, velocity, and mass of the spacecraft at the

beginning of the low-thrust arc are included as free variables for the node in addition to the control

components of the low-thrust engine. Then, all proceeding low-thrust nodes are written as

N̄LT,i≥2 =
[
x, y, z, ẋ, ẏ, ż,ms/c, ux, uy, uz, uT

]T
(6.3)

enabling the optimization scheme to significantly alter the solution from the initial guess constructed

using MRPPO. Note, the propagation time is not included as a free variable to ensure an equivalent

comparison to the reinforcement learning environment, which assumes discrete time steps with the

same propagation time. Additionally, this may be representative of operational constraints on the

spacecraft allowing a change in the thrust direction only after a specified time.

For the coast segment that enables determining if the solution has converged on the final

orbit, the position, velocity, and propagation time are all included as free variables for each node.

The free variables for the coast nodes are written as

N̄C = [x, y, z, ẋ, ẏ, ż,∆t]T (6.4)

Unlike the low-thrust arcs, the free variables for the coast arcs do include the propagation time to

enable the optimization scheme to alter where the solution arrives along the final periodic orbit.

Additionally, the mass of the spacecraft is not included as a free variable because in the CR3BP

equations of motion, the mass of the spacecraft is assumed to not influence the ballistic trajectory.

Finally, the entire free variable vector is written as

V̄ =
[
N̄LT,1, N̄LT,2, . . . , N̄LT,n, N̄C,1, . . . N̄C,q

]T
(6.5)
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where n denotes the number of low-thrust arcs and q is the number of coast arcs along the final

periodic orbit. This free variable vector formulation facilitates comparisons between the solutions

produced by MRPPO and an optimization scheme combining a multiple shooting corrections scheme

with SQP in fmincon.

6.3.2 Equality Constraints

Unlike the MRPPO implementation where soft constraints are incorporated via penalties in

the reward function, hard constraints are explicitly defined and satisfied by the solutions to the

constrained optimization problem. The constraint vectors for the three trajectory design scenarios

are formulated to ensure full state continuity between all arcs, mass continuity between low-thrust

arcs, and unity magnitude for the thrust direction for each low-thrust arc. Full state continuity is

enforced via

c̄i = x̄i,F − x̄i+1,0 (6.6)

where i includes all low-thrust and coast arcs except for the final coast arc, x̄i,F is the initial

condition of the ith arc propagated forward in time for ∆t nondimensional time units, and x̄i+1,0

is the initial condition of the i+1th arc. The full state continuity constraint for the final coast arc

to ensure insertion into the final orbit is written as

c̄F = x̄p+n,F − x̄IC,F in (6.7)

where x̄IC,F in is set equal to the initial condition vector for the final orbit specified in Table 5.1.

Note, the multiple shooting algorithm is constrained to target the final orbit initial conditions

to machine precision. The partial derivatives of these constraints taken with respect to the free

variables are either found via the state transition matrix or a first order central difference. Similarly,

the mass continuity constraints for the low-thrust arcs are defined as

∆mi = mi,F −mi+1,0 (6.8)

while the thrust direction vector constraints for the low-thrust arcs are written as

Ui = u2i,x + u2i,y + u2i,z − 1 (6.9)
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Figure 6.2: Free variables and constraints describing the segments along a transfer.

These formulations facilitate straightforward analytical partial derivatives for the constraints when

taken with respect to the free variable vector for the DF̄ (V̄ ) matrix.

Then, the entire constraint vector is written using these components as

F̄ (V̄ ) = [c̄1, . . . c̄F ,∆m1, . . . ,∆mn, U1, . . . , Un]
T (6.10)

Figure 6.2 depicts a representative diagram for the second trajectory design scenario incorporating

a free variable vector constructed using the results from MRPPO where spherical markers denote

the initial state of an arc, red arcs correspond to low-thrust arcs, blue arcs represent coast arcs,

and constraints are noted between each arc connection. In this research, the tolerance on satisfying

the constraints is set as 1× 10−10 nondimensional units measured using the norm of the constraint

vector. These constraints are used to ensure that the solution recovered by SQP is continuous in

the state, mass, and thrust directions to within a specified tolerance.

6.3.3 Initial Guess Construction

Each initial guess for the free variable vector input to SQP in fmincon is formulated using

a reference trajectory developed by MRPPO. First, the low-thrust arcs are straightforwardly con-

verted from each reference trajectory into low-thrust arcs for the corresponding initial guess. For

the final orbit coast arcs, the end state of the final low-thrust arc is naturally propagated forwards
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in time until the trajectory intersects the x-axis. This natural trajectory is then discretized into a

specified number of coast nodes to form the final segment of the initial guess supplied to the SQP

optimization scheme in fmincon. In this research, four coast arcs are used to ensure that the free

variable vector is robust to numerical sensitivities.

6.3.4 Objective Functions

Once the initial guesses have been constructed, they are input to SQP in fmincon to generate

locally optimal trajectories. However, SQP in fmincon requires that both the constraints and

objective function be continuous and possess continuous first-order derivatives [94]. While the

constraint vector formulation satisfies these requirements, the reward functions defined for the

trajectory design scenarios are generally discontinuous and violate the requirements of SQP in

fmincon as formulated in the reinforcement learning environment. This necessitates the definition

of alternative objective functions that approximately capture the objectives that the reinforcement

learning policies are trying to maximize.

In this research, two objective functions with distinct formulations are explored to validate

the solution space recovered by MRPPO on three trajectory design scenarios. The first objec-

tive function formulation resembles the reward functions maximized by the policies trained using

MRPPO in Eqs. (5.7) and (5.8) but with a negative sign multiplied into each component since SQP

aims to minimize the objective function rather than maximize the objective function. The reward

function enables policies generate low-thrust transfers that target the final orbit while minimizing

flight time and propellant mass usage. The first objective function for the first trajectory design

scenario is defined as

J1 = 100 +
n∑

i=1


1 + cm(m̃sc,i,0 − m̃sc,i,F ) Reference Trajectory

10|∆d̄i,F |+ |∆v̄i,F |+ cm(m̃sc,i,0 − m̃sc,i,F ) Final Orbit

(6.11)
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and for the second and third trajectory design scenarios as

J2,3 = 1000 +

n∑
i=1



8 + 10|∆d̄i,F |+ |∆v̄i,F |+ cm(m̃s/c,i,0 − m̃s/c,i,F ) Initial Orbit

4 + 10|∆d̄i,F |+ |∆v̄i,F |+ cm(m̃s/c,i,0 − m̃s/c,i,F ) Reference

100|∆d̄i,F |+ 10|∆v̄i,F |+ cm(m̃s/c,i,0 − m̃s/c,i,F ) Final Orbit

(6.12)

where the 100 and 1000 constant offsets do not affect the optimization results, but facilitate direct

comparisons to the transfers produced by MRPPO that receive bonuses for converging on the final

orbit. Both formulations are only evaluated for the low-thrust arcs composing the trajectory. In

each case, the propellant mass usage coefficient, cm is assigned depending on the policy that this

initial guess corresponds to. Additionally, the soft constraints encapsulated within the Ω term are

omitted, however, the convergence bonus is included to enable comparison between the objective

function evaluation and the sum of the rewards for the optimization scheme and MRPPO transfers,

respectively. In this formulation, each node is assigned a reward function formulation associated

with a dynamical arc prior to optimization, i.e. if low-thrust node i in the initial guess is closest to

the reference trajectory, the objective function evaluation for that node is always measured with

respect to the reference trajectory even if the node is updated to be closer to a different dynamical

arc. This assumption prevents discontinuities in the objective function evaluation and facilitates a

closer comparison between the results generated by the optimization scheme and MRPPO.

This objective function closely approximates the value function that the policies trained by

MRPPO are maximizing, but does not include the discount factor. However, since the rewards are

scaled using Eq. 5.9 to have a mean of zero and standard deviation of one prior to each update to the

neural networks, these scaled rewards influence the approximation of the value function and advan-

tage function. Then, the critic neural network is no longer directly estimating the value function,

but instead, a normalized value function that is continually updated throughout training as more

state-action-reward experiences are generated and the policies converge on behavior that returns

higher rewards. While this objective function may be modified to include the discount factor, this

would no longer reflect the ultimate goal of the policies, which is to return the cumulative reward
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over a trajectory within the environment. Instead, this alternative objective function formulation,

without the discount factor, based on the reward function is used to measure the performance of

the policies in maximizing the total reward over a trajectory.

While the first formulation of the objective function enables a more direct comparison be-

tween the two methodologies, an alternative objective function formulation is used to explore the

characteristics of the flight time and propellant mass usage trade space recovered by MRPPO. Thus,

a distinct but comparable objective function is specified for use in SQP implemented in fmincon

to maximize the final mass of the spacecraft as

Jm = −m̃n,F (6.13)

where the final mass of the spacecraft is measured at the termination of the final propagated low-

thrust node. This objective function enables the recovery of locally optimal, minimal propellant

solutions for a fixed flight time. Then, this objective function maximizes distinct objectives com-

pared to the objective functions defined in Eqs. 6.11 and 6.12, which balance flight time, propellant

mass usage, and minimizing state deviations from the dynamical arcs. The recovered solutions

necessarily are part of a distinct multi-objective solution space compared to the solutions recovered

by MRPPO. However, for the purposes of uncovering insights into the flight time vs. propellant

mass usage trade space, both methodologies and objective functions are valuable. In this research,

the tolerance on satisfying the optimality in fmincon is set as 1× 10−8 nondimensional units.

6.3.5 Summary of Differences in Implementation from Reinforcement Learning

A number of differences must be noted between the implementations of the two method-

ologies, MRPPO and SQP, and the influence on the resulting multi-objective solution spaces. As

noted in Section 6.3.4, the solutions recovered by the optimization scheme are maximizing distinct

objectives compared to the MRPPO reward functions. While the objective functions defined in

Eqs.6.11 and 6.12 are similar to the reward function used by MRPPO to maximize the cumulative

reward encapsulated within the value function, as noted, the MRPPO implementation incorporates
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a discount factor and reward scaling altering the estimation of the value function by the critic neu-

ral network. Then, the policies trained by MRPPO are no longer maximizing the default value

function, but instead, a normalized value function at each update that incentivizes the policies to

continue to improve. However, since the goal of MRPPO is to maximize the cumulative reward re-

turned from the reward function, MRPPO and SQP may be compared in how well they accomplish

that goal.

A second difference results from the approach used by both methods. In MRPPO, policies

learn from many training trajectories originating at unique initial conditions surrounding the initial

periodic orbit. Thus, when evaluating the policies, the policies are only able to generate a trajectory

from a unique initial condition once in the environment and are not able to iterate on that trajectory

to produce a better solution. Conversely, SQP may iterate thousands of times on a trajectory

originating from a single initial condition to develop an optimal solution.

Another difference in implementations occurs due to how the transfers are constructed in

both environments. In MRPPO, transfers are guaranteed to be continuous throughout the entire

transfer while in the optimization scheme, full state continuity must be enforced between all arcs

via constraints. While the constraints are satisfied to within a small tolerance, that tolerance is

always larger than the numerical integration error that the transfers generated by MRPPO possess.

However, for targeting the final orbit, the optimization scheme is constrained to target a smaller

hypersphere along the orbit than the solutions produced by MRPPO. Since the optimization scheme

may iterate thousands of times to develop a locally optimal solution, the size of the hyperspheres

is decreased.

A final difference in both implementations is how the transfer geometries are selected. MRPPO

autonomously explores the solution space prior to selecting a transfer geometry to exploit, a conse-

quence of the exploration vs. exploitation trade-off inherent to reinforcement learning algorithms.

Conversely, the reference trajectories generated by MRPPO serve as initial guesses for the opti-

mization scheme constraining the optimization scheme to develop optimal solutions within the local

basin of convergence surrounding the initial guess. The optimization scheme may recover a better



104

solution for a distinct objective function within the local basin of convergence, but a similar solution

would validate that MRPPO recovered the optimal solution within the local basin of convergence.

While a global optimization scheme may uncover a better solution by extensively exploring the

entire solution space, both MRPPO and SQP in fmincon only guarantee recovery of a local op-

tima. The noted differences in implementations between the two methodologies guarantee that the

recovered solution spaces cannot be identical, however, the comparison is valuable for generating

insights into the validity of the multi-objective solution spaces recovered by MRPPO and exploring

the differences in the transfer geometries for the three trajectory design scenarios.

6.4 Recovering a Trajectory that Resembles a Periodic Orbit in an Ephemeris

Model

In addition to validating the low-thrust transfers generated by policies trained using MRPPO,

a similar nonlinear optimization scheme is employed to develop natural trajectories in the Sun-

Earth-Moon point mass ephemeris model that resemble a nearby Sun-Earth L5 short period orbit

for the third trajectory design scenario. While the CR3BP serves as a valuable initial guess for

approximating motion in higher-fidelity dynamical models, corrections must be introduced to ac-

count for the non-circular orbits of the Sun and Earth and the gravitational influence of the Moon.

However, implementing a corrections scheme within a reinforcement learning environment is com-

putationally expensive. Instead, the 1,000 states discretized along the L5 short period orbit in the

Sun-Earth CR3BP are propagated in the Sun-Earth-Moon point mass ephemeris model and used

to seed initial guesses for trajectories that resemble a Sun-Earth L5 short period orbit. Specifically,

optimization is used to minimize the cumulative position difference from the Sun-Earth L5 short

period orbit modeled in the Sun-Earth CR3BP [23, 133]. Then, at each time step in the rein-

forcement learning environment, 1,000 states at the defined epoch for each ephemeris trajectory

are drawn and used to approximate the L5 short period orbit. A spacecraft approaching to within

specified position and velocity hyperspheres along any of the 1,000 states is considered converged

and remains in bounded, natural motion around the Sun-Earth L5 equilibrium point. A nonlinear
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constrained optimization scheme is employed to facilitate the development of the 1,000 natural

ephemeris trajectories.

6.4.1 Free Variables

The initial guess for a natural ephemeris trajectory is composed of only natural arcs. For

each node of the initial guess, the epoch and propagation time are fixed to match the epochs defined

for the reinforcement learning ephemeris environment. Then, the free variables for each arc of the

ephemeris trajectory are

N̄E = [x, y, z, ẋ, ẏ, ż]T (6.14)

where the position and velocity are allowed to vary in the non-pulsating Sun-Earth instantaneous

rotating frame. Then, the free variable vector is written as

V̄ =
[
N̄E,1, . . . , N̄E,tmax

]T
(6.15)

where tmax = 115 for the third trajectory design scenario. This formulation of the free variable

vector enables the development of natural ephemeris trajectories that may be optimized to retain

bounded motion near a Sun-Earth L5 short period orbit.

6.4.2 Equality Constraints

The constraint vector for generating the natural ephemeris trajectories that resemble a Sun-

Earth L5 short period orbit is formulated to ensure full state continuity between neighboring arcs.

Eq. (6.6) ensures full state continuity between neighboring natural nodes and the full constraint

vector is written as

F̄ (V̄ ) = [c̄1, . . . c̄tmax−1]
T (6.16)

where continuity is not enforced at the beginning of the initial arc nor at the termination of the

final arc. This enables the initial and final arcs to not be precisely on the Sun-Earth L5 short

period orbit, but instead, be optimized remain as close as possible in the configuration space to the
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Figure 6.3: Initial guess for an ephemeris trajectory used to approximate a Sun-Earth L5 short
period orbit.

Sun-Earth L5 short period orbit. Within SQP, the tolerance on satisfying the constraints is set as

1× 10−10 nondimensional units.

6.4.3 Initial Guess Construction

The initial guess for the ephemeris trajectory is generated by propagating the specified state

along the Sun-Earth L5 short period orbit in the Sun-Earth-Moon point mass ephemeris model

for 4.02 years. This natural trajectory is discretized evenly in time every 0.22 nondimensional

time units to formulate tmax = 115 natural arcs composing the initial guess. Figure 6.3 displays

one trajectory propagated in the Sun-Earth-Moon point mass ephemeris model from a state along

the Sun-Earth L5 short period orbit and discretized to formulate an initial guess. In this figure,

the black arc denotes the Sun-Earth L5 short period orbit, the blue dotted arc represents the

ephemeris trajectory, and the blue spheres designate nodes used to construct the initial guess for

the optimization scheme. This same process is used to develop initial guesses for all 1,000 states

along the Sun-Earth L5 short period orbit.
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6.4.4 Objective Function

An objective function is defined to optimize the 1,000 trajectories near a Sun-Earth L5 short

period orbit at the defined epochs by minimizing the cumulative position difference from the Sun-

Earth L5 short period orbit in the Sun-Earth CR3BP. Then, one formulation for an objective

function that prioritizes minimizing the position difference near the Sun-Earth L5 short period

orbit is written as

J =

tmax∑
i=1

|d̄i,0 − d̄i,0,SPO| (6.17)

where d̄i,0 is the initial position of each node and d̄i,0,SPO is the position of a state selected a priori

along the Sun-Earth L5 short period orbit. The tolerance on satisfying the optimality condition in

fmincon is set as 1×10−8 nondimensional units. This formulation minimizes the position deviation

between the natural ephemeris trajectory and the Sun-Earth L5 short period orbit at each epoch.

6.4.5 Example of an Ephemeris Trajectory Resembling a Periodic Orbit

The optimization scheme is used to produce natural ephemeris trajectories that approximate

the motion of a Sun-Earth L5 short period orbit in the Sun-Earth-Moon point mass ephemeris

model. First, lets examine the trajectory produced from the initial guess initial guess depicted

in Fig. 6.3. Figure 6.4 displays the optimized ephemeris trajectory using the solid blue arc, the

initial ephemeris trajectory is displayed using the dashed blue arc, and the black arc represents the

Sun-Earth L5 short period orbit in the Sun-Earth CR3BP. In this figure, the optimized ephemeris

trajectory closely resembles the L5 short period orbit and envelopes the orbit preventing visualiza-

tion. Further, Fig. 6.5a demonstrates that the initial ephemeris trajectory possesses over an order

of magnitude larger position deviation measured from the closest state along the Sun-Earth L5

short period orbit compared to the optimized ephemeris trajectory. Similarly, Fig. 6.5b depicts the

velocity deviation measured from the closest state along the Sun-Earth L5 short period orbit for

both the initial and optimized ephemeris trajectories. Since the objective function does not include

velocity components, the optimized ephemeris trajectory possesses velocity deviations closer to the
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(a) Planar View (b) Spatial View

Figure 6.4: Optimized ephemeris trajectory and initial guess used to approximate a Sun-Earth L5

short period orbit.

(a) Position deviation (b) Velocity deviation

Figure 6.5: State deviations for an optimized ephemeris trajectory approximating a Sun-Earth L5

short period orbit.

initial guess. This demonstrates one approach to rapidly recovering ephemeris trajectories that

closely resemble a periodic orbit in an ephemeris model.



Chapter 7

Application: Low-Thrust Transfers in Multi-Body Systems

MRPPO is used to train multiple policies, each with a distinct reward function, to recover

unique controls schemes for low-thrust transfers in the Earth-Moon and Sun-Earth systems. Once

trained, each policy is evaluated to examine a region of the multi-objective solution space and the

balance between propellant mass usage and flight time for each trajectory design scenario. Then, the

reference trajectories associated with each policy for each trajectory design scenario supply initial

guesses to the constrained optimization scheme for approximate verification of the results generated

via multi-objective reinforcement learning. The resulting solution spaces from both methodologies

are used to validate the results produced by MRPPO with the moving reference modification.

Further, the results generated by MRPPO for the first trajectory design scenario are also verified

and compared to results developed using PPO. Additionally, the impact of hyperparameter selection

on the policies and training is examined for the first trajectory design scenario. Finally, for the

third trajectory design scenario, the low-thrust transfers are recovered using a variable thrust and

a constant thrust engine configuration. For both engine models, the policies are first trained to

recover locally optimal solutions in the Sun-Earth CR3BP prior to incorporating a transfer learning

approach to update the policies to recover locally optimal solutions in the Sun-Earth-Moon point

mass ephemeris model. This exploration is used to demonstrate the use of MRPPO to autonomously

recover a subset of the multi-objective solution space in a higher-fidelity dynamical model using

transfer learning.
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7.1 Low-Thrust Transfers from an Earth-Moon L2 Halo Orbit to a Neigh-

boring Earth-Moon L2 Halo Orbit

Multiple policies, each with a distinct reward function, are trained to recover unique controls

schemes for a transfer between two L2 southern halo orbits in the Earth-Moon CR3BP starting at

one of four departure locations along the initial orbit. In this trajectory design scenario, MRPPO

is run once to train four policies for each initial condition. Specifically, for the i-th initial reference

location along the periodic orbit, policy P1,i seeks to maximize the reward function with no penalty

on propellant mass usage, i.e. cm = 0; the proceeding policies, Pj,i for j = [2, 3, 4], correspond to

larger propellant mass penalties with cm = [13.33, 26.66, 40]. Once trained, each policy is evaluated

to examine a region of the multi-objective solution space and the balance between propellant mass

usage and flight time. Characteristics from the evaluation trajectories are used to extract the mean

propellant mass usage and flight times for each controls scheme in the multi-objective solution space.

Then, the reference trajectories associated with each policy for each initial condition supply initial

guesses to the constrained optimization scheme for verification of the results generated via multi-

objective reinforcement learning. The initial guesses are optimized using two distinct objective

functions to validate the transfers recovered by MRPPO. The first objective function is similar

to the reward function used by MRPPO while the second objective function solely minimizes

propellant mass usage. The multi-objective solution spaces and characteristics of the solutions

recovered by SQP are compared to the results produced by MRPPO. Finally, one initial condition

is selected and the effect of hyperparameter selection on the policies throughout training is evaluated

using the total reward summed across all policies.

7.1.1 Transfers Recovered via MRPPO with Baseline Hyperparameters

Four policies are simultaneously trained using MRPPO to develop controls schemes that guide

a low-thrust-enabled SmallSat from initial conditions near one of four departure locations along

an L2 southern halo orbit to a higher-energy L2 southern halo orbit in the Earth-Moon system
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using the baseline set of hyperparameters defined in Table 5.5. Figure 7.1 depicts a subset of the

recovered multi-objective solution spaces for each departure location using the characteristics from

each evaluation trajectory for each policy. In these figures, the evaluation trajectory characteristics

are displayed as semi-transparent circles and the mean values as squares, each shaded corresponding

to the associated policy. Policies P4,i recover solutions requiring approximately 1 kg of propellant

mass while policies P1,i generate transfers requiring approximately 1.7 kg of propellant mass except

for policy P1,3 which necessitates approximately 2.8 kg of propellant mass. Additionally, policy

P2,3 develops transfers with significantly higher propellant mass usage than policies P2,1, P2,2,

and P2,4. Further, while P3,3 and P4,3 produce transfers with lower propellant mass usages, these

transfers possess significantly longer flight times. This insight suggests that x̄IC,3 may not be

a favorable departure location along the initial periodic orbit compared to the other departure

locations. However, each solution space indicates, as expected, that a longer flight time corresponds

to a lower required propellant mass for each policy at each departure location.

The trajectories controlled by each policy at each departure location are also examined.

Figures 7.2 - 7.5 depict both the reference trajectories and the trajectories generated by evaluating

P1,i, P2,i, P3,i, and P4,i for i = [1, 4]. The evaluation trajectories are shaded using a variety of hues

to aid in differentiation and the final reference trajectory generated by each policy is depicted as a

dotted arc and completely enveloped by the evaluation trajectories. In addition to the variations in

flight time and propellant mass across these solutions, there are noticeable differences in geometry

corresponding to the distinct basins of convergence for each policy, supporting recovery of the

distinct regions of the solution space. Transfers originating near xIC,1, xIC,3, and xIC,4 possess

similar geometries which converge to the final orbit near the maximum ỹ amplitude that are distinct

from the transfers generated near xIC,2 which approach near the maximum x̃ amplitude. Further,

for xIC,3, the evaluation trajectories produced by P3,3, and P4,3 tend to follow the initial periodic

orbit until approaching the vicinity of xIC,4 leading to the increased flight time for these transfers.

Conversely, policies P1,3, and P2,3 develop transfers that immediately depart the vicinity of the

initial periodic orbit and arrive at distinct locations along the final periodic orbit corresponding
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.1: Characteristics of the evaluation trajectories constructed by policies trained using
MRPPO.

to significantly higher propellant mass usages but lower flight times. This further evidences that

xIC,3 is not a favorable departure location compared to xIC,1, xIC,2, and xIC,4.

The differences in the transfer geometries are due to the distinct thrust magnitude profiles

developed by each policy. Figure 7.6 depicts the thrust magnitude profiles for the reference tra-

jectories developed by P1,i, P2,i, P3,i, and P4,i at each departure location along the initial periodic

orbit. The reference trajectories developed by policies P1,i and P2,i possess similar thrust magni-

tude profiles with thrust levels between 50 mN and 200 mN throughout the transfers. However, the

thrust magnitude profiles of the reference trajectories developed by policies P3,i and P4,i exhibit

much lower thrust magnitudes throughout the transfers except for near the end of the transfers
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(a) Planar view (b) Spatial view

Figure 7.2: Evaluation and reference trajectories controlled using policies P1,i trained using MRPPO
(Moon not to scale).

(a) Planar view (b) Spatial view

Figure 7.3: Evaluation and reference trajectories controlled using policies P2,i trained using MRPPO
(Moon not to scale).

when the spacecraft is approaching the final periodic orbit. This effect is attributable to the higher

propellant mass usage penalty assigned to policies P3,i and P4,i, which also influences the increase

in flight time across the reference trajectories. Further, the reference trajectories constructed by

P3,3 and P4,3 possess near-zero thrust magnitudes for a majority of the transfers while the refer-

ence trajectories follow the initial periodic orbit demonstrating that xIC,3 is not an ideal departure



114

(a) Planar view (b) Spatial view

Figure 7.4: Evaluation and reference trajectories controlled using policies P3,i trained using MRPPO
(Moon not to scale).

(a) Planar view (b) Spatial view

Figure 7.5: Evaluation and reference trajectories controlled using policies P4,i trained using MRPPO
(Moon not to scale).

location since alternative reference trajectories with shorter flight times and less propellant mass

usages were not recovered.

Lastly, Fig. 7.7 displays the Jacobi constant throughout the reference trajectories developed

by policies P1,i, P2,i, P3,i, and P4,i, respectively where the black dashed line and the black solid line
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(a) Policies P1,i (b) Policies P2,i

(c) Policies P3,i (d) Policies P4,i

Figure 7.6: Thrust magnitude profiles of the reference trajectories controlled using policies P1,i,
P2,i, P3,i, and P4,i trained using MRPPO.

denote the Jacobi constants of the initial and final periodic orbits, respectively. For all reference

trajectories, the Jacobi constant decreases throughout the transfer to match the Jacobi constant

of the final orbit. Similar to the thrust magnitude profiles, the Jacobi constants of the reference

trajectories produced by policies P1,i and P2,i possess similar geometries as they decrease towards

the Jacobi constant of the final periodic orbit. However, the Jacobi constants of the reference tra-

jectories developed by P1,3 and P2,3 overshoot the Jacobi constant of the final periodic orbit further

explaining the high propellant mass usage required for these transfers. The reference trajectories

developed by policies P3,1, P3,4, P4,1, and P4,4 also possess Jacobi constants that approximately

linearly decrease towards the Jacobi constant of the final periodic orbit. However, the reference
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trajectories developed by policies P3,2, P3,3, P4,2, and P4,3 only slightly decrease the Jacobi con-

stant until approaching the final orbit whereby the Jacobi constant significantly decreases which

corresponds to the increase in the thrust magnitude. Further, the Jacobi constants at the end of

the reference trajectories do not exactly match the Jacobi constant of the final orbit due to the

non-zero position and velocity hyperspheres defined to determine convergence to the final orbit.

These position and velocity deviations do not guarantee that the Jacobi constant of the reference

trajectory matches the Jacobi constant of the final periodic orbit, which is reflected in the plots.

Similarly, the perturbations induced on the initial condition locations selected along the initial pe-

riodic orbit influence the Jacobi constant at the beginning of the reference trajectories. Each policy

distinctly balances flight time and propellant mass usage for each departure location allowing the

recovery of transfers that span the multi-objective solution space.

7.1.2 Transfers Recovered via PPO with Baseline Hyperparameters

The low-thrust transfers generated by policies trained using MRPPO are compared to policies

trained via PPO with a nearly-identical set of baseline hyperparameters and set of reward functions.

Recall, PPO trains a single policy to maximize the cumulative reward returned from a single reward

function in an unknown dynamical environment without learning from other policies exploring the

environment. Table 5.5 lists the set of hyperparameters used throughout the training process for

PPO with the exception of the number of agents per policy which is updated from 4 to 16 agents

per policy. This increase in number of agents per policy theoretically should provide the same

amount of information to each policy trained by MRPPO and PPO, but with more agents per

policy, the PPO policies possess more agency in the environment. This should provide improved

performance for PPO policies compared to MRPPO policies since each PPO policy has more agents,

i.e. spacecraft, to explore unknown regions of the solution space. However, since a policy trained via

PPO only has access to the actions that policy performs, the policy may not be able to learn from

potentially innovative advantageous or disadvantageous actions taken by another policy exploring a

distinct region of the solution space. Additionally, since PPO is generally robust to hyperparameter
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(a) Policies P1,i (b) Policies P2,i

(c) Policies P3,i (d) Policies P4,i

Figure 7.7: Jacobi constants of the reference trajectories controlled using policies P1,i, P2,i, P3,i,
and P4,i trained using MRPPO.

selection, these results assume that the selecting hyperparameters lie close to the optimal set of

hyperparameters for this trajectory design scenario. Then, MRPPO and PPO are used to train

policies to construct transfers departing from initial conditions in the vicinity of x̄IC,1 along an L2

southern halo orbit to a higher-energy L2 southern halo orbit in the Earth-Moon CR3BP.

Five simulations with four policies each are trained using PPO and MRPPO to enable insights

into the consistency and training behavior of PPO and MRPPO on this trajectory design scenario.

In a single simulation for PPO, four policies, denoted ρj for j = [1, 2, 3, 4], are trained sequentially

and assigned the reward function defined in Eq.(5.7) where cm = [0, 13.33, 26.66, 40] is varied across

the four policies. Then, this set of four policies is evaluated on a common set of 25 initial conditions,
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grouped together, and compared to the policies trained simultaneously using MRPPO for the same

trajectory design scenario and set of reward functions. Five simulations are performed due to the

stochastic nature of reinforcement learning.

The total reward summed across all four policies for all 25 evaluation trajectories for each

simulation provides insights into how well MRPPO and PPO trained the policies to maximize the

cumulative reward returned from an assigned set of reward functions. The total reward is computed

for every tenth update to the policies to demonstrate how the total reward evolves throughout the

training process. Then, three values are computed across each simulation trained using PPO and

MRPPO to determine the effectiveness of using PPO and MRPPO to maximize the cumulative

reward returned from the set of reward functions: (1) the maximum total reward simulation, (2)

the minimum total reward simulation, and (3) the mean of the total reward of all five simulations.

Figure 7.8 depicts the total reward throughout the training process for the five simulations trained

using MRPPO and PPO in blue and red, respectively. While the simulations trained using MRPPO

and PPO perform similarly at the start of the training process, the MRPPO simulations by the

end of training outperform and return higher total rewards compared to the PPO simulations.

Additionally, the MRPPO simulations return a more consistent total reward across simulations,

approximately 250, compared to the five PPO simulations which return total rewards between -2050

and 70. Then, not only does MRPPO return a higher maximum, minimum, and mean total reward

across all simulations compared to PPO, but MRPPO returns more consistent total rewards also

on this trajectory design scenario.

Since the PPO policies are trained individually, another method of comparison is to examine

the PPO policies that return the highest cumulative reward for each reward function regardless of

the simulation that the policies are categorized within. These four best PPO policies may then also

be compared to a single run of MRPPO, in this case the MRPPO results shown in Section 7.1.1.

The total reward returned by the best four PPO policies at the end of training is 254 while the

highest total reward generated by a MRPPO simulation at the conclusion of training is 255. While

the total rewards may be similar between the MRPPO and PPO simulations, directly examining
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Figure 7.8: Total reward for policies trained using MRPPO and PPO applied for transfer design
between Earth-Moon L2 halo orbits.

the evaluation trajectories highlights that there are still significant differences between the two

simulations. Figure 7.9 displays evaluation trajectories generated by the best PPO policies for ρ1-

ρ4 using the same color configuration as Fig. 7.2. The evaluation trajectories produced by policies

trained using PPO possess similar geometries to the results produced by MRPPO and depicted in

Fig. 7.2 with minimal difference across policies for this departure location.

However, an inspection of the evaluation trajectory solution space in Fig. 7.10a reveals that

MRPPO produces a more consistent solution space across the four policies compared to the poli-

cies trained using PPO. In this figure, the characteristics of the evaluation trajectories produced

by PPO are depicted using stars while the characteristics of the evaluation trajectories produced

by MRPPO are displayed using circles that are shaded out to aid in visualization. Specifically, pol-

icy ρ2 trained using PPO produces nearly identical evaluation trajectory characteristics as policy

ρ3 also trained using PPO. This may be due to both ρ2 and ρ3 independently recovering similar

locally optimal solutions without learning from other policies, as in MRPPO, that better solutions

exist. Instead, policy ρ2 trained using MRPPO recovers solutions that lie between the evaluation

trajectories recovered using policies ρ1 and ρ3. Additionally, for policy ρ4, MRPPO recovers evalu-

ation trajectories with lower propellant mass usages for equivalent flight times compared to PPO.
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(a) Policy ρ1 (b) Policy ρ2

(c) Policy ρ3 (d) Policy ρ4

Figure 7.9: Evaluation and reference trajectories controlled using the best policies for ρ1 - ρ4 trained
using PPO (Moon not to scale).

The only policy that produce evaluation trajectories with similar flight time and propellant mass

usages for both MRPPO and PPO is policy ρ1. Similarly, Fig. 7.10b depicts the flight time and

propellant mass usage solution space for the reference trajectories constructed by policies trained

using MRPPO and PPO. Again, MRPPO produces a more consistent relationship between flight

time and propellant mass usage across the four policies with solutions demonstrating a consistent

decrease in propellant mass usage and increase in flight time as the assigned cm values in the reward

functions increase.

In addition to the recovered solution spaces, MRPPO and PPO may also be compared via

the computational time required to train the policies. The required computational time for both
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(a) Evaluation trajectories (b) Reference trajectories

Figure 7.10: Characteristics of the evaluation and reference trajectories departing near x̄IC,1 con-
structed by policies trained using MRPPO and PPO.

Table 7.1: Machine specifications for measuring the computational time required to train policies
using MRPPO and PPO.

Component Model

Central Processing Unit AMD Ryzen 7 2700X

Graphics Processing Unit EVGA GeForce RTX 2070

Power Supply Unit Corsair RMX850X

Motherboard Asus Prime X470-Pro AM4

algorithms is measured on the same computational environment to facilitate a direct and fair com-

parison between the algorithms. Table 7.1 lists the specifications of the computational environment

used to evaluate both algorithms. For this trajectory design scenario, PPO necessitated 49.3 hours

to train four policies sequentially while MRPPO required 16.3 hours to train four policies simul-

taneously. If the four policies trained by PPO are run simultaneously on the same computational

environment, the required computational time decreases to 20.6 hours. In either case, the com-

putational time required by PPO is significantly greater than the computational time required by

MRPPO and produces demonstrably worse results for this trajectory design scenario.

On this trajectory design scenario, MRPPO and PPO recover solutions spanning the propel-
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lant mass usage and flight time trade space. However, the solutions produced by MRPPO more

evenly span the multi-objective solution space, return a higher total reward, and possess lower pro-

pellant mass usages for equivalent flight times. Additionally, across the five simulations, MRPPO

returns a consistently high total reward across the four policies while PPO produces lower rewards

and more inconsistent behavior. MRPPO also requires significantly less computational time than

PPO. Further exploration into the hyperparameter selection process for PPO may yield improved

results, however, when using nearly identical sets of hyperparameters, MRPPO outperforms PPO

on this trajectory design scenario for this specific set of simulations. By enabling policies to share

data generated from the environment with one another, policies trained using MRPPO learn from

the advantageous and disadvantageous state-action pairs explored by other policies with distinct

objective prioritizations leading to overall better performance across the policies. While MRPPO

returns better results compared to PPO on this trajectory design scenario, the results generated

by MRPPO are also validated using a classical optimization scheme.

7.1.3 Transfers Recovered via Classical Optimization

The results autonomously generated by MRPPO are used as initial guesses for constrained

optimization, supporting verification of the results produced using multi-objective reinforcement

learning. In this section, the reference trajectories generated by policy Pj,i are used as initial guesses

to recover a single locally optimal solution, labeled Oj,i, by solving the constrained optimization

process outlined in Chapter 6 and implemented using SQP in fmincon. This process is followed for

all the reference trajectories from policies P1,i to P4,i for i = [1, 4], producing a total of 16 locally

optimal transfers. Then, the initial guesses are optimized with respect to two distinct objective

functions: 1) maximizing the total reward and 2) minimizing the propellant mass usage. The first

objective function provides insights into the effectiveness of using MRPPO to maximize the set

of defined reward functions for this trajectory design scenario and the second objective function

generates insights into the optimality of the solutions developed using MRPPO in the propellant

mass usage and flight time trade space. However, neither objective function is mathematically
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(a) Policies P1,i (b) Policies P4,i

Figure 7.11: Low-thrust transfers maximizing the total reward associated with policies P1,i and
P4,i from an L2 southern halo orbit to a higher-energy L2 southern halo orbit in the Earth-Moon
CR3BP (Moon not to scale).

identical to the reward function defined in Eq. (5.7) for this trajectory design scenario. Using

fmincon with SQP, locally optimal low-thrust transfers are developed from an L2 southern halo

orbit to a higher-energy L2 southern halo orbit in the Earth-Moon CR3BP while adhering to the

constraints defined for this trajectory design scenario.

The first objective function resembles the reward function maximized for each trajectory

using MRPPO, and serves as a closer comparison to the results produced by MRPPO. Fig-

ures 7.11a and 7.11b display the results of this process with the initial guesses represented using

dashed arcs, the optimal transfers depicted with solid arcs, the black dashed arc denoting the initial

periodic orbit, and the black solid arc representing the final periodic orbit. The transfers of the

policies at the extrema of the solution space are pictured since these transfers and policies provide

insight into the overall behavior of the policies as the penalty on propellant mass usage increases.

At each departure location, the low-thrust segments of the optimal transfers O1,i for i = [1, 4] re-

main close to the initial guess and, therefore, the reference trajectories generated by P1,i. However,

for P4,i, the optimal solutions, O4,i for i = [1, 4], exhibit slight deviations from the initial guess and,

therefore, the reference trajectories generated by P4,i.

The flight time and propellant mass usage trade spaces generated from the MRPPO and SQP
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.12: Solution space for transfers recovered via optimization while maximizing the total
reward from initial guesses developed using MRPPO.

transfers for each departure location are also examined. Figures 7.12 depicts the flight time and

propellant mass usage for the low-thrust transfers associated with each policy at each departure

location where MR denotes the solutions recovered by MRPPO and SQP represents solutions

recovered using fmincon with SQP. For the low-thrust transfers associated with policies P2,i, P3,i,

and P4,i, SQP recovers solutions with lower required propellant mass usages. For policies P1,i,

MRPPO develops transfers with lower propellant mass usages than SQP for all departure locations

except x̄IC,3. However, for policies with a higher penalty on propellant mass usage and longer flight

times, the gap in propellant mass usage decreases between the low-thrust transfers produced by

MRPPO and SQP.
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The optimization results may also be viewed in a flight time and total reward solution space

reflecting the effectiveness of the optimization scheme in recovering the maximum total reward for

a low-thrust transfer with a fixed flight time. Figure 7.13 displays the flight time and total reward

for the low-thrust transfers associated with each policy at each departure location along the initial

periodic orbit. For each initial condition, policies P1,i recover solutions with nearly identical total

rewards as the optimization scheme. However, as the penalty on propellant mass usage increases,

the optimization scheme tends to produce transfers that require slightly less propellant mass usage,

which is reflected in the total reward. These differences are due to the differences in implemen-

tations; namely, fmincon may extensively iterate on a single solution to limit the propellant mass

usage while MRPPO learns from training data to generate transfers for not previously seen initial

conditions. These results demonstrate that the policies trained using MRPPO generate a similar

solution space to those generated with constrained local optimization for the specified set of re-

ward functions. Accordingly, the results produced by MRPPO are approximately verified via the

optimization scheme demonstrating that MRPPO enables the recovery of a solution space that is

similar to a solution space produced by an optimization scheme without requiring a predefined

initial guess to construct transfers.

The initial guesses constructed by MRPPO are also optimized with respect to the second ob-

jective function, minimizing propellant mass usage, using SQP in fmincon. Figures 7.14a and 7.14b

exhibit the initial guesses and optimal transfers from SQP for policies P1,i and P4,i, respectively,

using the same color configuration as Fig. 7.11. The optimal transfers developed by SQP possess

similar geometries as the optimal transfers generated for the first objective function; namely, the

transfers associated with policies P1,i resemble the initial guess while transfers associated with poli-

cies P4,i tend to be shifted to have smaller x̃-positions. Moreover, the recovered solutions seem to

possess similar geometries for both objective functions.

Examining the multi-objective solution space via the characteristics of the transfers developed

by both methodologies, Fig. 7.15 depicts the propellant mass usage and flight time characteristics

of the initial guesses and optimal trajectories for each policy at each departure location. These
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.13: Solution space for transfers recovered via optimization while maximizing the total
reward from initial guesses developed using MRPPO.

figures demonstrate that the optimal transfers developed for the second objective function require

much less propellant mass usage than the transfers generated by MRPPO. However, the difference

in propellant mass usage between the initial guess and optimal solution decreases as the flight

time increases suggesting that MRPPO recovers solutions resembling propellant-optimal solutions

at longer flight times. Since policy P1,i is not incentivized to decrease the propellant mass usage

with cm = 0, this results in a large gap from the propellant-optimal solution which aims to solely

minimize propellant mass usage while satisfying the constraints. Then, as the penalty on propellant

mass usage increases, the transfers tend to more closely match the optimization results. Further, the

differences in implementations also contribute to the differences between the two solution spaces.
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(a) Policies P1,i (b) Policies P4,i

Figure 7.14: Low-thrust transfers maximizing the total reward associated with policies P1,i and
P4,i from an L2 southern halo orbit to a higher-energy L2 southern halo orbit in the Earth-Moon
CR3BP (Moon not to scale).

Additionally, the thrust magnitude profiles for both the initial guesses and optimal transfers

provide insights into the discrepancy in propellant mass usage requirements. Generally, propellant-

optimal solutions possess a bang-bang thrust magnitude profile [111]. However, the thrust mag-

nitude profiles depicted in Figs. 7.6a and 7.6d do not possess perfectly bang-bang control profiles.

Bang-bang control profiles are not expected since the reward functions used by MRPPO are com-

posed of both propellant mass usage terms and state deviation terms. Instead, the reference

trajectories developed by MRPPO may serve as valuable initial guesses for an optimization scheme

for recovering propellant-optimal solutions with a fixed flight time.

Using the transfers developed by the optimization scheme, Figs. 7.16 and 7.17 display the

thrust magnitude profiles of the initial guesses and optimal low-thrust trajectories associated with

policies P1,i and P4,i, respectively. Additionally, Figs. 7.18 and 7.19 depict the thrust direction pro-

files, which are minimally updated by the optimization scheme from the initial guess. The thrust

magnitude profiles for all of the optimal transfers are updated to resemble a bang-bang control

profile. However, recovering a perfect bang-bang control profile is often challenging and may only

slightly decrease the required propellant mass usage. Instead, these propellant-optimal transfers

possess bang-bang-like profiles suggesting that these solutions may only be locally optimal. Since
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.15: Solution space for transfers recovered via optimization while minimizing the propellant
mass usage from initial guesses developed using MRPPO.

SQP in fmincon only guarantees recovery of a locally optimal solution based on the local basin of

convergence for the initial guess, it can be inferred that the initial guess provided by MRPPO is

close to the propellant-optimal solution and resulted in the successful recovery of a locally opti-

mal solution with a bang-bang-like control profile. However, further optimization techniques are

necessary to recover a purely bang-bang control profile.

The MRPPO results are approximately validated compared to transfers developed by an

optimization scheme that both maximize the total reward and minimize the propellant mass usage.

For both objective functions, the policies at each departure locations develop transfer geometries

that are approximately retained by the optimization scheme. However, the optimal solutions with
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.16: Thrust magnitude profiles for low-thrust transfers minimizing the propellant mass
usage associated with P1,i from an L2 southern halo orbit to a higher-energy L2 southern halo orbit
in the Earth-Moon CR3BP.

shorter flight times tend to require less propellant mass usage than the reference trajectories.

Specifically, as the penalty on propellant mass usage increases, the policies recover transfers with

characteristics that more closely resemble the optimization solutions. This may be attributed to

policies P3,i and P4,i prioritizing conserving propellant mass while policies P1,i and P2,i have limited

incentive to decrease propellant mass usage. Further, while the thrust magnitude profiles of the

reference trajectories are updated to bang-bang-like profiles in the optimal solutions, the thrust

direction profiles of the reference trajectories produced by MRPPO are minimally updated by the

optimization scheme.



130

(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.17: Thrust magnitude profiles for low-thrust transfers minimizing the propellant mass
usage associated with P4,i from an L2 southern halo orbit to a higher-energy L2 southern halo orbit
in the Earth-Moon CR3BP.

7.1.4 MRPPO Hyperparameter Exploration

Throughout training, the selected hyperparameters for MRPPO significantly influence the

resulting policies: poor selections may prevent policies from converging to better locally optimal

solutions. For the hyperparameter selection exploration, MRPPO is used to train policies using the

initial conditions associated with Scenario #1 defined in Table 5.2 and with the baseline hyperpa-

rameters defined in Table 5.5. In this exploration, the hyperparameters are individually modified

to explore the influence of the hyperparameter on the behavior of the policies throughout training.

Then, the trained policies for each set of hyperparameters are evaluated on a common set of per-
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.18: Thrust direction profiles for low-thrust transfers minimizing the propellant mass usage
associated with P1,i from an L2 southern halo orbit to a higher-energy L2 southern halo orbit in
the Earth-Moon CR3BP.

turbed initial conditions to generate fundamental insights into the influence of each hyperparameter

selection. Their effectiveness is evaluated using the total reward which is measured by summing

the rewards from the evaluation trajectories for all four policies. Similar to Section 7.1.2, the total

reward is computed for every tenth update to the policies to study the evolution of the total reward

throughout training. Additionally, three values are again used to determine the influence of the hy-

perparameter selection on the behavior of MRPPO: (1) the maximum total reward simulation, (2)

the minimum total reward simulation, and (3) the mean of the total reward of all five simulations.

These values are calculated to generate insight into how each hyperparameter affects the training

of policies on this scenario using MRPPO.
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(a) Transfers near x̄IC,1 (b) Transfers near x̄IC,2

(c) Transfers near x̄IC,3 (d) Transfers near x̄IC,4

Figure 7.19: Thrust direction profiles for low-thrust transfers minimizing the propellant mass usage
associated with P4,i from an L2 southern halo orbit to a higher-energy L2 southern halo orbit in
the Earth-Moon CR3BP.

First, Fig. 7.20a depicts the reward for distinct values of the number of environmental steps

per update used during training. Generally, as the number of environmental steps used during

training increases, the mean total reward increases. Additionally, higher numbers of environmental

steps also produce higher minimum and maximum total rewards throughout the training process.

This trend generally demonstrates the benefit of incorporating more information into the updates

of the neural networks at the expense of increased training times and memory requirements. The

number of epochs and mini batches, however, displayed in Figs. 7.20b and 7.20c respectively, used

during the update phase also influences the increase in the total reward throughout training. The

best scenario is found by not setting the hyperparameters to the smallest or largest values, but
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(a) Environmental steps (b) Epochs (c) Mini batches

Figure 7.20: Total reward for policies trained using MRPPO applied for transfer design between
Earth-Moon L2 halo orbits.

instead, setting the hyperparameters to intermediate values. This observation may be attributed

to both the sensitive environment and the data gathered in a single update being used to update

the networks too many times, thereby biasing the training and forcing the policies to converge to

sub-optimal results. Instead, a balanced approach is more suitable where the data is used to update

the networks multiple times, but not too many so as to produce substandard policies.

Further insights are generated by examining the hyperparameters used within each update to

the neural networks, including the discount factor, GAE factor, and learning rate, which influence

how the data is used within a single update to the neural networks. Figure 7.21a depicts the

influence of the discount factor, using six values. For this scenario, setting γ ≥ 0.9 produces high

mean, maximum, and minimum total reward and enables future rewards to be considered without

under-estimating their influence. However, the GAE factor exploration displayed in Fig. 7.21b

reveals that selecting the GAE factor necessitates a balanced approach such that 0.85 ≤ λ ≤

0.95 produces high mean total rewards across multiple runs. While the values for the discount

factor and GAE factor do influence the training, the value for the learning rate impacts training

more significantly. In fact, high learning rate values result in policy divergence and suboptimal

behavior. Figure 7.21c depicts the total reward for five learning rate values. The higher learning

rate produces policies that significantly diverge while lower learning rates yield more consistent

total rewards across policies. Specifically, setting lr = 1 × 10−3 produces stable behavior for
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(a) Discount factor (b) GAE factor (c) Learning rate

Figure 7.21: Total reward for policies trained using MRPPO applied for transfer design between
Earth-Moon L2 halo orbits.

the policies while returning slightly higher mean, maximum, and minimum total rewards. These

three hyperparameter explorations demonstrate that properly selecting these values that govern

the updates to the neural networks is a necessity for training policies with efficient and stable

convergence properties and for generating a high, final total reward.

Three additional hyperparameters are used within the objective function defined in Eqs. (3.14)

and (4.2): the clipping parameter, value function coefficient, and entropy coefficient. Figure 7.22a

depicts the results of five clipping parameter values. Higher values for the clipping parameter

produce a faster initial convergence but significant potential for divergence while low values result

in a slower and smoother convergence of the policies due to the update size being limited. The

clipping parameter exploration demonstrates a balanced approach is necessary such that setting

ε = 2 × 10−3 in this scenario provides efficient and smooth convergence while also leading to the

highest mean total reward. Then, Fig. 7.22b displays the influence of the value function coefficient

with c1 ≥ 0.5 producing high mean, maximum, and minimum total rewards. Similarly, for the

entropy coefficient, Fig. 7.22c illustrates that the policies converge to high total reward with no

significant difference in performance except when c2 = 5 × 10−4. Each of these hyperparameters

directly affects the evaluation of the objective function during training leading to distinct behavior

when evaluated on the same initial conditions.

Six construction parameters are also explored to analyze their influence on the trained poli-
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(a) Clipping parameter (b) Value function coefficient (c) Entropy coefficient

Figure 7.22: Total reward for policies trained using MRPPO applied for transfer design between
Earth-Moon L2 halo orbits.

cies. Figure 7.23a depicts the total reward for five values of the number of hidden layers in the

actor neural network for each policy. The exploration demonstrates that less hidden layers in the

actor neural network tends to produce higher total rewards. Similarly, Fig. 7.23b displays the

results for the number of hidden nodes per actor hidden layer demonstrating that 8, 16, and 64

nodes per actor hidden layer produce high maximum, minimum, and mean total rewards. This

suggests that less actor nodes per hidden layer may produce more consistent behavior across runs

while higher values may be more inconsistent. However, the exploration into the number of hidden

layers in the critic neural network in Fig. 7.23c produces distinct results with 2 ≤ lc ≤ 4 delivering

significantly higher mean, maximum, and minimum total rewards than lc = 1 and lc = 5. Due to

similar higher maximum, minimum, and mean total rewards, selecting the critic neural network to

have two hidden layers reduces the memory requirements compared to a higher number of critic

hidden layers. The number of hidden nodes per hidden layer for the critic neural network displayed

in Fig. 7.24a also demonstrates a trend whereby smaller values tend to produce higher mean total

rewards although all selections produce at least one run with a mean total reward above 200. The

results indicate that smaller numbers of hidden layers and hidden nodes for both the actor and

critic neural networks tend to produce better results for this specific trajectory design scenario

and set of runs, potentially due to the number of parameters in the neural networks being a much

smaller multi-dimensional space.
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(a) Actor layers (b) Actor nodes (c) Critic layers

Figure 7.23: Total reward for policies trained using MRPPO applied for transfer design between
Earth-Moon L2 halo orbits.

(a) Critic nodes (b) Weight initialization method (c) Activation function

Figure 7.24: Total reward for policies trained using MRPPO applied for transfer design between
Earth-Moon L2 halo orbits.

The final two construction parameters, the weight initialization method and the activation

function selection affect both the actor and critic neural networks. Figure 7.24b displays the results

of using different initialization strategies for the weights of the neural networks. This figure reveals

that the initial weights of each network slightly influence the resulting behavior of the policy in this

scenario where orthogonal and Xavier initialization schemes produce high maximum, minimum,

and mean total rewards for all five simulations. Finally, Fig. 7.24c depicts the results of varying

activation function used within the networks. All activation functions except ELU and sigmoid

produce high total maximum, minimum, and mean total rewards across the five simulations.

Overall, the baseline hyperparameter set listed in Table 5.5 produces stable and consistent

behavior throughout the training process across five simulations for this simple trajectory design
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scenario. These results indicate the influence of altering each hyperparameter on the training

process. While some hyperparameters may be altered to produce slightly better performance, the

baseline hyperparameter set serves as the foundation for the hyperparameters selected in the more

complex trajectory design scenarios explored in this research.

7.2 Low-Thrust Transfers from an Earth-Moon L1 Halo Orbit to an Earth-

Moon L2 Halo Orbit

MRPPO is used to train four policies that recover low-thrust transfers between halo orbits at

distinct libration points in the Earth-Moon system. Specifically, a low-thrust enabled SmallSat is

initialized near an L1 northern halo orbit and targets an L2 southern halo orbit in the Earth-Moon

CR3BP. Recall, the initial conditions are drawn from anywhere along the initial periodic orbit

and randomly perturbed in both position and velocity. The four policies trained by MRPPO are

assigned distinct reward functions to encourage the policies to uncover distinct solutions within

the multi-objective solution space balancing flight time and propellant mass usage. Once the

four policies are trained, the policies are evaluated on 1,000 initial conditions to facilitate direct

comparisons between the policies and generate insights into the flight time and propellant mass

usage trade space. Characteristics of both the evaluation and reference trajectories are explored

to generate further insights. Then, the reference trajectories associated with each policy are used

to construct initial guesses that are subsequently input to the optimization problem solved via

fmincon for both objective functions. The resulting solution spaces from both methodologies are

used to validate the results produced by MRPPO.

7.2.1 Transfers Recovered via MRPPO

Four policies are trained using MRPPO to construct transfers for low-thrust-enabled Small-

Sats from an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP.

Specifically, policy P1 has no penalty on propellant mass usage while policy P4 is assigned the

highest penalty on propellant mass usage to encourage a variety of solutions within the multi-



138

objective solution space. Once trained, both the policies and resulting reference trajectories for

each policy are evaluated to uncover a subset of solutions within the propellant mass usage and

flight time trade space.

The reference trajectories are the best trajectories generated throughout the training process

for each policy according to the evaluation criteria. Figures 7.25a and 7.25b depict the reference

trajectories developed by policies P1 and P4 respectively, where the initial orbit is denoted by

a black dashed arc, the final orbit by a solid black arc, and the reference trajectories are rep-

resented by dotted black arcs. Note,each policy develops a single reference trajectory and the

reference trajectories begin near a state along the initial periodic orbit due to the perturbations

induced on the state drawn along the orbit. While the trajectories may possess similar geometries,

Figs. 7.26a and 7.26b demonstrate that the Jacobi constant and thrust magnitude profiles of each

reference trajectory differ reflecting increases in the propellant mass usage penalty from policy P1

to policy P4. Specifically, policy P1 produces a higher thrust magnitude throughout the beginning

of the transfer corresponding to an increase in the energy of the spacecraft. Conversely, policy P4

initially produces negligible thrust and coasts until the spacecraft approaches the vicinity of the

final periodic orbit. Policies P2 and P3 exhibit intermediary behavior with smaller levels of thrust

than P1 but larger than P4. However, when the reference trajectories for policies P2, P3, and

P4 do approach the final periodic orbit, the thrust magnitude significantly increases resembling a

bang-bang-like profile. This behavior suggests that the reference trajectories are following motion

that resembles an unstable invariant manifold trajectory departing the initial periodic orbit until

the reference trajectories approach the final orbit. This phenomenon has been explored by Ander-

son and Lo and suggests that the policies are autonomously recovering near-optimal behavior that

models this known dynamical phenomenon [5]. Additionally, the reference trajectory developed by

policy P2 possesses a significantly distinct thrust magnitude and Jacobi constant profile compared

to policies P2, P3, and P4 demonstrating that the policies recovered distinct solutions. Finally,

since the policies are only trained to enter within a 5× 10−3 hypersphere in position and velocity

around the final orbit, a small difference in the Jacobi constant at the conclusion of the transfer is
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(a) Policy P1 (b) Policy P4

Figure 7.25: Reference trajectories developed by policies P1 and P4 trained using MRPPO (Moon
not to scale).

(a) Jacobi constant (b) Thrust magnitude

Figure 7.26: Characteristics of the reference trajectories generated by each policy during training.

evident. These reference trajectories are selected from the best trajectories generated during the

training phase and serve as guides for the policies to construct transfers between the orbits.

The trained policies are also evaluated on a common set of 1,000 initial conditions per-

turbed from the initial periodic orbit to facilitate direct comparisons between the policies. Fig-

ures 7.27a and 7.27b depict the 1,000 evaluation trajectories constructed by policies P1 and P4,

respectively, and shaded in a variety of hues to aid in differentiation between the transfers. Both

policies produce transfers that resemble the generated reference trajectories for each policy prior
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(a) Policy P1 (b) Policy P4

Figure 7.27: Evaluation trajectories developed by policies P1 and P4 trained using MRPPO (Moon
not to scale).

to converging on the final periodic orbit. Further, all of the policies tend to converge on the same

transfer geometry. Additionally, the propellant mass usage and flight time is calculated for each

evaluation trajectory. Figure 7.28a portrays the propellant mass usage and flight time values for

each evaluation trajectory as circles and reference trajectory as diamonds constructed by each

policy. The large dispersion in flight times and propellant mass usages may be attributed to the

requirement for certain evaluation trajectories to follow the initial periodic orbit for nearly an entire

orbital period prior to departing along the reference trajectory. The resulting trade space demon-

strates a clear trend across the policies whereby propellant mass usage decreases at the expense

of an increase in flight time as the propellant mass usage penalty increases. Similarly, Fig. 7.28b

focuses on the propellant mass usage and flight time for each reference trajectory mirroring the

trend in the evaluation trajectories. The reference trajectories for each policy accordingly corre-

spond to the best trajectories generated and serve as a valuable basis for the initial guesses used

in the optimization scheme.
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(a) Evaluation and reference trajectories (b) Reference trajectories

Figure 7.28: Propellant mass usage and flight time characteristics for the evaluation trajectories
and reference trajectories generated by policies trained using MRPPO.

7.2.2 Transfers Recovered via Classical Optimization

The results autonomously generated by MRPPO are used to construct initial guesses for

optimization in SQP implemented in fmincon. Similar to Section 7.1.3, the locally optimal solutions

developed by SQP are denoted Oj , corresponding to policies Pj for j = [1, 2, 3, 4]. Recall, both

objective functions explored for this optimization scheme are not equivalent to but only similar

to the reward function used in MRPPO to train the policies. However, exploring both objective

functions further validates the results produced by MRPPO. The initial guesses are optimized to

minimize both objective functions while continuity is ensured via hard constraints. Then, fmincon

with SQP is used to recover a distinct solution space.

Reference trajectories produced by MRPPO form the initial guess to the optimization algo-

rithm for the first objective function. Figures 7.29a and 7.29b depict the flight time and propellant

mass usage and flight time and total reward trade spaces, respectively, generated by MRPPO and

fmincon with SQP. For this objective function, which aims to maximize the total reward across a

trajectory, SQP recovers solutions with slightly higher total rewards for all four transfers. Further,

with the exception of the solutions associated with policy P1, SQP develops transfers with lower

propellant mass usages.
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(a) Flight time and propellant mass usage (b) Flight time and total reward

Figure 7.29: Solution space recovered via optimization while maximizing the total reward from
initial guesses developed using MRPPO.

(a) Policy P1 transfers (b) Policy P4 transfers

Figure 7.30: Low-thrust transfers maximizing the total reward associated with policies P1 and P4

from an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP (Moon not
to scale).

Examining the solutions produced by both algorithms further enables the validation of the

results produced by MRPPO. Figure 7.30a depicts the initial guess and optimal trajectory developed

by SQP for policies P1 and P4. In these figures, the red arcs correspond to low-thrust nodes while the

blue arcs denote coast nodes. The geometry of the two transfers closely resemble one another with

small differences in the solutions produced by SQP due to the differences in the implementations.
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(a) Policy P1 (b) Policy P4

Figure 7.31: Thrust magnitude profiles for low-thrust transfers maximizing the total reward from
an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP.

The thrust profiles are also examined to generate insights into the difference in transfers

recovered by the two methodologies for this objective function. Figure 7.31 displays the thrust

magnitude profiles for the initial guess and optimal trajectory developed by SQP for policies P1

and P4. Additionally, Fig. 7.32 depicts the thrust direction profiles for both policies and trajectories.

Both the thrust magnitude and direction profiles for the optimal trajectories resemble the profiles

for the initial guess. This further demonstrates that MRPPO recovers near-optimal solutions

compared to SQP for objective functions maximizing the total reward across the trajectory, an

objective function that more closely reflects the reward functions used in MRPPO.

Using the second objective function, SQP may be used to update the initial guesses to

maximize the final spacecraft mass via the second objective function. Figure 7.33 displays the

propellant mass usage and flight time trade spaces recovered by fmincon with SQP using the initial

guesses constructed by MRPPO. For all four policies, fmincon with SQP recovers transfers with

lower propellant mass usage than the transfers recovered by MRPPO. However, except for policy P1

which has no incentive to decrease propellant mass usage, the difference in propellant mass usage

is minimal and decreases as the flight time increases. The differences in propellant mass usage

may be attributed to the differences in implementations; namely, the methodologies are recovering
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(a) Policy P1 (b) Policy P4

Figure 7.32: Thrust direction profiles for low-thrust transfers maximizing the total reward from an
L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP.

Figure 7.33: Solution space recovered via optimization while minimizing the propellant mass usage
from initial guesses developed using MRPPO.

distinct but related solution spaces. Both MRPPO and SQP develop related solution spaces and

demonstrate that as the flight time increases, the required propellant masses for both local minima

approach similar values.

The low-thrust transfers associated with policies P1 and P4 provide additional insight into

solutions produced by SQP. Figure 7.34 depicts two transfers associated with policies P1 and

P4 using the same color configuration as Fig. 7.30. Both optimized transfers possess geometries
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(a) Policy P1 transfers (b) Policy P4 transfers

Figure 7.34: Low-thrust transfers minimizing the propellant mass usage associated with policies P1

and P4 from an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP
(Moon not to scale).

that closely resemble the initial guesses developed by MRPPO. This observation demonstrates

that MRPPO generates initial guesses that sufficiently predict optimal solutions produced by an

optimization scheme.

Figures 7.35 and 7.36 depict the thrust magnitude and direction profiles associated with

the MRPPO and SQP transfers for policies P1 and P4, respectively. In these figures, the thrust

magnitude profile associated with policy P1 is altered by SQP to resemble a bang-bang like profile

with additional changes to the thrust direction. These changes may be due to the differences in

the objective functions between the two methodologies. However, the thrust profile for policy P4

is negligibly altered by SQP. The results produced by the optimization scheme suggest that the

results generated by MRPPO lie close to the local optima in the propellant mass usage and flight

time solution space. While fmincon with SQP may recover transfers with a lower propellant mass

usage for transfers with lower flight times, the difference in propellant mass usage decreases as

the flight time increases. Both sets of results validate that MRPPO is autonomously recovering

near-optimal solutions for low-thrust transfers from an L1 northern halo orbit to an L2 southern

halo orbit in the Earth-Moon CR3BP.
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(a) Policy P1 (b) Policy P4

Figure 7.35: Thrust magnitude profiles for low-thrust transfers minimizing the propellant mass
usage from an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP.

(a) Policy P1 (b) Policy P4

Figure 7.36: Thrust direction profiles for low-thrust transfers minimizing the propellant mass usage
from an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon CR3BP.

For this trajectory design scenario, MRPPO produces solutions that more closely resemble

the transfers developed by an optimization scheme. This may be attributed to the ability of the

policies to generate transfers with bang-bang-like control profiles in this trajectory design scenario

whereas in the previous trajectory design scenario, the policies produce a more continuous control

profile throughout the reference trajectories.
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7.2.3 Varying Number of Reference Trajectories per Policy

The number of reference trajectories designed by each policy is also varied to generate in-

sights into the behavior of the policies as the number of reference trajectories increases. Recall, the

initial periodic orbit is segmented into arcs of equal time and a policy updates a reference trajectory

originating from each segment of the initial periodic orbit. More reference trajectories per policy

may lead to the recovery of a wider variety of transfer geometries for the evaluation trajectories.

However, too many reference trajectories may prohibit a policy from updating each reference tra-

jectory consistently leading to poor behavior for evaluation trajectories initialized along certain

segments of the initial periodic orbit.

The number of reference trajectories per policy is varied from one to sixty four and twenty

simulations with four policies are run for each set number of reference trajectories. Figure 7.37

depicts a box plot exhibiting the median, quartiles, and outliers of the total reward for the set of

twenty simulations evaluated on the common set of 1,000 initial conditions for low-thrust trans-

fers originating near an L1 northern halo orbit to an L2 southern halo orbit in the Earth-Moon

CR3BP. In this trajectory design scenario, as the number of reference trajectories per policy in-

creases, the total reward across policies tends to decrease. However, simulations using one, two,

and four reference trajectories per policy achieve total rewards greater than 2000 demonstrating

that some simulations with more reference trajectories per policy are recovering strong behavior in

this trajectory design scenario. These simulations are examined to generate further insights into

how the number of reference trajectories per policy influences the behavior of the trained policies.

The simulations with the highest total reward for each number of reference trajectories are

used to examine the influence of the number of reference trajectories per policy on the recovered low-

thrust transfers. Figure 7.38 depicts the reference trajectories constructed by policies P1 and P4 for

the simulations with the highest total reward using between two and sixty four reference trajectories

while the results from using one reference trajectory per policy are exhibited in Section 7.2.1. The

reference trajectories and the originating arcs along the initial orbit are depicted using the same
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Figure 7.37: Box plot of total reward across twenty simulations while varying the number of
reference trajectories per policy.

color composed of shades of red and blue to map the reference trajectory that the policy developed

to each segment of the initial periodic orbit. Policies P1 and P4 are able to consistently recover

transfers for one, two, four, eight, and sixteen reference trajectories per policy. In fact, while

most of the reference trajectories target the final orbit with similar direct geometries, policy P4,

when assigned eight reference trajectories, is able to recover a reference trajectory that leverages

a revolution about the Moon prior to targeting the final orbit. This demonstrates how using

more than one reference trajectory per policy may produce a wider variety of transfer geometries.

However, with the update procedure, for both policies P1 and P4 with thirty two and sixty four

reference trajectories per policy, a significant number of the reference trajectories fail to converge on

the final orbit demonstrating that the policies did not update the reference trajectories sufficiently

to converge on the final orbit.

Additional insights into the influence of the number of references trajectories per policy are

gathered from examining the propellant mass usage and flight time solution spaces of the evaluation

and reference trajectories. Figure 7.39 depicts the flight time and propellant mass usage solution

space for each number of reference trajectories while Fig. 7.40 displays the evaluation trajectories

developed by policies P1 and P4. Note, these figures depict only the evaluation trajectories that



149

(a) Policy P1 with 2 references (b) Policy P1 with 4 references (c) Policy P1 with 8 references

(d) Policy P4 with 2 references (e) Policy P4 with 4 references (f) Policy P4 with 8 references

(g) Policy P1 with 16 references (h) Policy P1 with 32 references (i) Policy P1 with 64 references

(j) Policy P4 with 16 references (k) Policy P4 with 32 references (l) Policy P4 with 64 references

Figure 7.38: Reference trajectories developed by policies P1 and P4 from an L1 northern halo orbit
to an L2 southern halo orbit in the Earth-Moon CR3BP (Moon not to scale).
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converge on the final orbit. As the number of reference trajectories per policy increases, the

number of evaluation trajectories that fail to converge on the final orbit also increases. Additionally,

policy P4 with eight reference trajectories, which recovered a reference trajectory with a revolution

about the Moon, is unable to replicate that behavior in the evaluation trajectories as many of the

evaluation trajectories following that reference trajectory diverge. This divergence may be due to

the sensitive dynamics associated with the lunar flyby. Further, the flight time and propellant mass

usage characteristics of the reference trajectories tend to be captured within the characteristics of

the evaluation trajectories. Then, for this trajectory design scenario, there are limited advantages

for assigning more than four reference trajectories per policy since the simulations tend to return a

lower total reward, possess more evaluation trajectories that fail to converge to the final orbit, and

tend to recover similar propellant mass usage and flight time solution spaces. However, a distinct

set of hyperparameters or new methods for updating the reference trajectories may address the

convergence issues for including a high number of reference trajectories per policy in this trajectory

design scenario.

7.3 Low-Thrust Transfers from a Sun-Earth L2 Halo Orbit to a Sun-Earth

L5 Short Period Orbit

Eight policies are trained via MRPPO to construct low-thrust transfers to the vicinity of

Sun-Earth L5 and recover a subset of solutions in the multi-objective solution spanning flight time

and propellant mass usage. Two dynamical models are employed, the Sun-Earth CR3BP and the

Sun-Earth-Moon point mass ephemeris model. Additionally, two sets of policies are trained to

develop low-thrust transfers; one set constructing transfers using a variable thrust engine and a

second, distinct set of policies designing transfers using a constant thrust engine. These two engine

configurations are reflective of distinct technological capabilities for low-thrust-enabled SmallSats.

For both engine models, the policies are first trained to recover locally optimal solutions in the

Sun-Earth CR3BP prior to incorporating a transfer learning approach to update the policies to

recover locally optimal solutions in the Sun-Earth-Moon point mass ephemeris model. Once trained,



151

(a) 2 reference trajectories per policy (b) 4 reference trajectories per policy

(c) 8 reference trajectories per policy (d) 16 reference trajectories per policy

(e) 32 reference trajectories per policy (f) 64 reference trajectories per policy

Figure 7.39: Solution spaces recovered while varying the number of reference trajectories per policy
in MRPPO for transfers from an L1 northern halo orbit to an L2 southern halo orbit in the Earth-
Moon CR3BP.
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(a) Policy P1 with 2 references (b) Policy P1 with 4 references (c) Policy P1 with 8 references

(d) Policy P4 with 2 references (e) Policy P4 with 4 references (f) Policy P4 with 8 references

(g) Policy P1 with 16 references (h) Policy P1 with 32 references (i) Policy P1 with 64 references

(j) Policy P4 with 16 references (k) Policy P4 with 32 references (l) Policy P4 with 64 references

Figure 7.40: Evaluation trajectories developed by policies P1 and P4 from an L1 northern halo
orbit to an L2 southern halo orbit in the Earth-Moon CR3BP (Moon not to scale).
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the policies for each dynamical model and engine combination are evaluated on a common set of

1,000 initial conditions to facilitate direct comparisons between the policies and develop the flight

time and propellant mass usage trade space. Additionally, the reference trajectories developed for

variable thrust transfers in the Sun-Earth CR3BP are used to seed initial guesses for an optimization

scheme to validate the results produced by MRPPO. Finally, an exploration into the influence of

the number of reference trajectories per policy on the behavior of the trained policies is performed

for variable thrust transfers in the Sun-Earth CR3BP.

7.3.1 Variable Thrust Transfers in the Sun-Earth CR3BP Recovered via MRPPO

Low-thrust transfers are first constructed using a spacecraft with a variable thrust engine in

the Sun-Earth CR3BP. Eight policies are trained on this scenario using MRPPO with the policies

each using and updating four reference trajectories to follow depending on where along the initial

periodic orbit the spacecraft is initialized. Once trained, the policies are evaluated on a common

set of 1,000 initial conditions to generate low-thrust trajectories spanning a region of the propellant

mass usage and flight time multi-objective solution space. Figure 7.41 displays the evaluation

trajectories for policies P1 - P8, respectively, where the initial L2 northern halo orbit is denoted

by a black dashed arc, the final L5 short period orbit by a solid black arc, and the evaluation

trajectories are depicted in a variety of hues to aid in differentiation.

Each evaluation trajectory resembles one of the four reference trajectories developed by each

policy, which are depicted in Fig. 7.42 in shades of reds and blues to differentiate the segments

along the initial periodic orbit that the reference trajectories originate from. Additionally, Fig. 7.43

displays a zoomed-in view of the reference trajectories developed by policies P1 and P8 illustrating

the segments of the periodic orbit that each shade of red and blue corresponds to. Moving from

policy P1 to P2 and P2 to P3, an additional periapsis with respect to the Sun is incorporated into

the reference trajectories. This raises the flight time by up to a year and modifies the transfer

geometry in the rotating frame. Then, policies P3 - P8 possess two periapses with respect to the

Sun, but distinct locations for those periapses. For instance, policies P3 - P6 construct reference
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.41: Evaluation trajectories developed for policies P1 - P8 using MRPPO for a variable
thrust configuration, Sun-Earth CR3BP transfer (primaries not to scale).
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trajectories with loops where the velocity in the rotating frame changes directions, but the reference

trajectories generated by policies P7 and P8 do not possess the same loops. Further, policies P2

and P6 both develop the reference trajectories shaded in light red that possess significantly distinct

geometries from the other reference trajectories developed by these policies.

The thrust magnitude profiles and Jacobi constants throughout the reference trajectories are

also examined to generate further insights into the recovered solution space. Figure 7.44 displays the

thrust magnitudes of the reference trajectories developed by policies P1 - P8. The policies construct

reference trajectories with thrust magnitude profiles that gradually decrease across policies as the

penalty on propellant mass usage increases. In fact, policy P1 produces reference trajectories

that require near maximum thrust output from the low-thrust engine while policy P8 generates

reference trajectories that possess a comparatively lower thrust for a majority of the transfer until

the spacecraft approaches the final orbit; such solutions may be used to recover trajectories with

coast arcs, which may be valuable for opportunistic science observations [48]. Further, policies P3-

P8 recover bang-bang-like control profiles, which are known to be propellant-optimal demonstrating

how the policies are autonomously generating optimal behavior without a priori domain knowledge.

Specifically, as the penalty on propellant mass usage increases, the trajectories approach a natural

transfer arc in the CR3BP resembling an invariant manifold trajectory, which may be used to

depart or arrive into a target orbit.

This trend is also reflected in Fig. 7.45 which depicts the Jacobi constants throughout the

reference trajectories developed by policies P1 - P8. Policies P1 and P2 constructs reference tra-

jectories with Jacobi constants that significantly oscillate about the Jacobi constants of the two

periodic orbits. Conversely, policies P3 - P8 develop references trajectories with Jacobi constants

that remain near CJ = 3.0008, the Jacobi constants of the initial periodic orbit, until the transfer

approaches the final periodic orbit. Then, the Jacobi constants are decreased to match the Jacobi

constant of the final periodic orbit. This result suggests that an arc from the unstable invariant

manifold departing the Sun-Earth L2 northern halo orbit may serve as a good initial guess for a

transfer to a Sun-Earth L5 short period orbit [48]. Additionally, this agrees with the conclusions
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.42: Reference trajectories developed for policies P1 - P8 using MRPPO for a variable
thrust configuration, Sun-Earth CR3BP transfer (primaries not to scale).
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(a) Policy P1 (b) Policy P8

Figure 7.43: Zoomed-in view of the reference trajectories developed for policies P1 and P8 using
MRPPO for a variable thrust configuration, Sun-Earth CR3BP transfer (Earth not to scale).

reached by Anderson and Lo, that low-thrust transfers in multi-body systems tend to resemble

invariant manifold arcs [5]. However, due to the non-zero position and velocity hyperspheres used

to define convergence to the final orbit, the Jacobi constants at the conclusion of the trajectories

do not reach the Jacobi constant of the final orbit. This may be attributed to the size of the

hyperspheres specified to define convergence at the final periodic orbit. In this proof of concept

approach, the hyperspheres are defined with a large size to enable the policies to recover solutions

that consistently target the final orbit. However, if the size of the hyperspheres is decreased, the

policies tend to struggle to converge on the final orbit. While the policies develop transfers that

converge on the final orbit within the specified hyperspheres, they are not incentivized to converge

to a defined Jacobi constant near that of the final periodic orbit.

Finally, Figs. 7.46a and 7.46b depict the solution spaces associated with the evaluation tra-

jectories and reference trajectories, respectively. Low-thrust transfers are recovered with flight

times as low as 1.33 years while other transfers require only 4.11 kg of propellant mass. For this

trajectory design scenario, policy P1 produces transfers with lower flight times than policy P8 at

the expense of increased propellant mass usage while policies P2 - P7 possess intermediate values

between the two extrema, consistent with the assigned values of cm. Further, the reference tra-

jectories developed by policies P3 - P8 possess similar transfer geometries, propellant mass usages,
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.44: Thrust magnitude profiles of the reference trajectories developed for policies P1 - P8

using MRPPO for a variable thrust configuration, Sun-Earth CR3BP transfer.
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.45: Jacobi constants of the reference trajectories developed for policies P1 - P8 using
MRPPO for a variable thrust configuration, Sun-Earth CR3BP transfer.
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(a) Evaluation solution space (b) Reference solution space

Figure 7.46: Evaluation and reference solution spaces developed using MRPPO for a variable thrust
configuration, Sun-Earth CR3BP transfer.

and flight times, which lie near the maximum final mass solution. This may be attributed to the

update equation in Eq. 5.1 used to determine when to update the reference trajectories primarily

encouraging propellant mass usage. These variable thrust, low-thrust transfers are produced in the

Sun-Earth CR3BP dynamical model which are valuable approximations for low-thrust transfers in

higher-fidelity models.

7.3.2 Variable Thrust Transfers in the Sun-Earth CR3BP Recovered Using Clas-

sical Optimization

The variable thrust transfers from an L2 northern halo orbit to an L5 short period orbit in

the Sun-Earth CR3BP produced by MRPPO are compared to similar transfers generated by SQP

in fmincon. The initial guesses are seeded using the reference trajectories developed by each policy

and optimized with respect to two objective functions: 1) maximizing the total reward and 2)

maximizing the final mass. Using both objective functions validates the performance of MRPPO

in maximizing the total reward over a single trajectory, which is the goal of each policy, and how

effective MRPPO is in uncovering solutions that lie along the front of the propellant mass usage

and flight time trade space. However, as noted, differences in implementation prevent a completely
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equivalent comparison between the two methodologies. For both objective functions, the solutions

developed by SQP are designated Oj , corresponding to policies Pj for j = [1, . . . , 8] with increasing

penalties on propellant mass usage. Additionally, the four reference trajectories constructed by

each policy are used to see initial guesses for SQP producing thirty two optimal solutions for each

objective function.

The first objective function more closely aligns with the reward function formulation used

by MRPPO in this trajectory design scenario. Figure 7.47 depicts the initial guess and optimal

solutions developed by SQP associated with policies P1 - P8 for variable thrust transfers from an

L2 northern halo orbit to an L5 short period orbit in the Sun-Earth CR3BP. In this figure, the

initial guesses are designated using dashed arcs, the optimal transfers are represented with solid arcs

shaded according to the reference trajectory used to see the initial guess, the initial periodic orbit

is illustrated using a black dashed arc, and the final periodic orbit is depicted using the solid black

arc. A majority of the solutions developed by SQP closely resemble the initial guesses, however,

the optimal solutions generated for P1 possess noticeable deviation from the initial guesses near the

Sun-Earth L5 short period orbit. Additionally, a single locally optimal solution for both policies

P2 and P5 differs significantly from the initial guess. However, the geometries of the initial guesses

produced by MRPPO are generally retained in the locally optimal solutions developed by SQP.

In addition to the transfer geometries, the thrust magnitude and thrust direction profiles

are explored for the optimal solutions that maximize the total reward. Figure 7.48 depicts the

thrust magnitude profiles for the optimal solutions generated using each reference trajectory for

each policy. Similar to the previous trajectory design scenarios, the thrust magnitude profiles are

updated during optimization to resemble a bang-bang-like control scheme. This is most pronounced

for the solutions associated with P1 which previously had continuous control profiles. However, this

is less evident for the latter policies, which developed reference trajectories that already possessed

bang-bang-like control profiles. Additionally, Fig. 7.49 displays the thrust direction profiles for the

reference trajectories and solutions generated using SQP associated with policies P1 and P8. In

each case, the thrust direction profiles are only minimally updated by SQP demonstrating how the
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(a) Policy P1 transfers (b) Policy P2 transfers

(c) Policy P3 transfers (d) Policy P4 transfers

(e) Policy P5 transfers (f) Policy P6 transfers

(g) Policy P7 transfers (h) Policy P8 transfers

Figure 7.47: Variable thrust transfers produced by SQP maximizing the total reward associated
with policies P1 - P8 from an L2 northern halo orbit to an L5 short period orbit in the Sun-Earth
CR3BP (primaries not to scale).
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thrust direction profiles generated by MRPPO lie close to the locally optimal solutions found by

SQP in fmincon.

The multi-objective solution spaces are also examined to generate insights into the character-

istics of the optimal solutions that maximize the total reward. Figure 7.50a depicts the propellant

mass usage and flight time characteristics of the initial guesses and optimal solutions produced by

SQP. In this figure, SQP, with the exception of transfers associated with P2, develops solutions

with similar propellant mass usages to MRPPO while maximizing the total reward. Specifically,

the transfers constructed by SQP associated with policy P1, which has no incentive to decrease

propellant mass usage, and policies P3 - P8, which already lie close to the maximum final mass

solution, recover similar propellant mass usages to MRPPO. Additionally, Fig. 7.50b illustrates

the flight time and total reward solution space for the transfers developed by SQP that maximize

the total reward. While some differences in the transfer geometry are apparent for the initial

guesses and optimal solutions associated with P1, P2, and P5, the transfers possess similar total

rewards. These figures demonstrate that both SQP and MRPPO are recovering similar solutions

that maximize the total reward validating the results produced by MRPPO.

The initial guesses developed by MRPPO for variable thrust transfers in the Sun-Earth

CR3BP are also optimized to maximize the final mass. Figure 7.51 displays the initial guesses

developed by MRPPO and the locally optimal solutions designed by SQP that maximize the final

mass for policies P1 - P8 for variable thrust transfers from an L2 northern halo orbit to an L5 short

period orbit in the Sun-Earth CR3BP using the same color configuration as Fig. 7.47. Compared

to the first objective function, the optimal solutions developed by SQP possess a wider variety

of transfer geometries that do not resemble the initial guesses. This may be attributed to the

objective function, which no longer incentivizes following the reference. However, a significant

number of solutions still retain the geometry of the initial guesses demonstrating how MRPPO

may be recovering transfers near propellant-optimal solutions. Specifically, the transfers associated

with policies P3 and P8 retain similar transfer geometries for all four optimal solutions while policies

P4, P5, P6, and P7 retain similar transfer geometries for three of the four optimal solutions.
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.48: Thrust magnitude profiles for low-thrust transfers maximizing the total reward from
an L2 northern halo orbit to an L5 short period orbit in the Sun-Earth CR3BP.
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(a) Policy P1 blue reference (b) Policy P8 blue reference

(c) Policy P1 light blue reference (d) Policy P8 light blue reference

(e) Policy P1 light red reference (f) Policy P8 light red reference

(g) Policy P1 red reference (h) Policy P8 red reference

Figure 7.49: Thrust direction profiles of the reference trajectories and solutions developed by SQP
maximizing the total reward associated with policies P1 and P8 using MRPPO for a variable thrust
configuration, Sun-Earth CR3BP.
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(a) Flight time and propellant mass usage (b) Flight time and total reward

Figure 7.50: Solution spaces recovered via optimization while maximizing the total reward from
initial guesses developed using MRPPO for a variable thrust configuration, Sun-Earth CR3BP
transfer from an L2 northern halo orbit to an L5 short period orbit.

The thrust magnitude and thrust direction profiles of the solutions developed by SQP are also

examined to generate insights into the solutions that maximize the final mass. Figure 7.52 displays

the thrust magnitude profiles for the initial guesses and optimal solutions associated with each

policy. For each transfer, the thrust-magnitude profiles are updated to a bang-bang-like control

profile, which is known to correspond to propellant-optimal solutions. Additionally, each transfer

tends to have a thrust arc at the beginning to depart the initial periodic orbit, a coast segment

during the transit leg, and a thrust arc once the transfer approaches the vicinity of the final periodic

orbit. This trend also supports the use of invariant manifold arcs for constructing an initial guess

for a transfer to the Sun-Earth L5 short period orbit. However, MRPPO autonomously recovered

this behavior, which was replicated within the optimization scheme. Further, Fig. 7.53 depicts the

thrust direction profiles for the initial guesses and optimal solutions associated with policies P1 and

P8. Similarly to the first objective function, the thrust direction profiles are minimally updated

for each reference trajectory further demonstrating that MRPPO recovers near-propellant-optimal

solutions in this trajectory design scenario.

Finally, the propellant mass usage and flight time trade space is explored for the solutions

developed by SQP that maximize the final mass. Figure 7.54 displays the characteristics of the
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(a) Policy P1 transfers (b) Policy P2 transfers

(c) Policy P3 transfers (d) Policy P4 transfers

(e) Policy P5 transfers (f) Policy P6 transfers

(g) Policy P7 transfers (h) Policy P8 transfers

Figure 7.51: Variable thrust transfers produced by SQP maximizing the final mass associated with
policies P1 - P8 from an L2 northern halo orbit to an L5 short period orbit in the Sun-Earth CR3BP
(primaries not to scale).
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.52: Thrust magnitude profiles for low-thrust transfers maximizing the final mass from an
L2 northern halo orbit to an L5 short period orbit in the Sun-Earth CR3BP.
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(a) Policy P1 blue reference (b) Policy P8 blue reference

(c) Policy P1 light blue reference (d) Policy P8 light blue reference

(e) Policy P1 light red reference (f) Policy P8 light red reference

(g) Policy P1 red reference (h) Policy P8 red reference

Figure 7.53: Thrust direction profiles of the reference trajectories and solutions developed by SQP
maximizing the final mass associated with policies P1 and P8 using MRPPO for a variable thrust
configuration, Sun-Earth CR3BP.
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Figure 7.54: Propellant mass usage and flight time solution space recovered via optimization while
maximizing the total reward from initial guesses developed using MRPPO for a variable thrust
configuration, Sun-Earth CR3BP transfer from an L2 northern halo orbit to an L5 short period
orbit.

solutions developed by SQP and MRPPO for variable thrust transfers from an L2 northern halo

orbit to an L5 short period orbit in the Sun-Earth CR3BP. Generally, SQP recovers solutions with

lower propellant mass usages than MRPPO. However, as the flight time and penalty on propellant

mass usage increases, the MRPPO and SQP results tend to converge near the maximum final

mass solution. Specifically, transfers associated with policies P3 - P8 recover similar propellant

mass usages using both MRPPO and SQP. However, due to the differences in implementations and

the large convergence hyperspheres used by MRPPO, the solutions produced by SQP use similar

propellant mass usages, but converge within a much tighter hypersphere at the final periodic orbit.

Nevertheless, this demonstrates that in this trajectory design scenario, MRPPO trains policies

with higher propellant mass usage penalties that generate near-propellant-optimal transfers that

are approximately validated using SQP.

7.3.3 Varying Number of Reference Trajectories per Policy

Similar to Section 7.2.3, the number of reference trajectories per policy is explored to de-

termine the influence on the trained policies, recovered transfer geometries, and resulting multi-
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objective solution space. Recall, each reference trajectory originates from an assigned segment

along the initial periodic orbit and is updated throughout training to incentivize decreasing pro-

pellant mass usage and flight time. Additionally, in this trajectory design scenario, policies are

incentivized to follow the reference trajectory to the final orbit via state deviation penalty terms in

the reward function formulation. For transfers from an L1 northern halo orbit to an L2 southern

halo orbit, increasing the number of reference trajectories per policy had a detrimental effect on

the trained policies and recovered multi-objective solution spaces. However, this trajectory design

scenario demonstrates the benefits of including more reference trajectories per policy.

First, twenty simulations are run for each number of reference trajectories where the reference

trajectories are modified from one to sixty four. Then, the trained policies are evaluated on a

common set of 1,000 initial conditions for low-thrust transfers from an L2 northern halo orbit to

an L5 short period orbit. Figure 7.55 displays a box plot illustrating the median, quartiles, and

outliers of the total reward for each set of twenty simulations. In this trajectory design scenario,

the maximum total reward recovered is approximately 5950 regardless of the number of reference

trajectories per policy. Similarly, the median total reward for each set of simulations is equal to or

greater than 5500. This demonstrates that the number of reference trajectories per policy does not

have a detrimental influence on maximizing the total reward in this trajectory design scenario.

The simulation with the highest total reward for each number of reference trajectories per

policy is explored to generate further insights into the behavior of the policies and the recovered

multi-objective solution spaces. Figure 7.56 displays the reference trajectories generated by policies

P1 and P8 as the number of reference trajectories per policy is varied from one to sixty four.

Note, the results for employing four reference trajectories per policy are depicted in Section 7.3.1.

These figures demonstrate that the reference trajectories for both policies P1 and P8 are all able to

converge on the final periodic orbit and recover similar transfer geometries regardless of the number

of reference trajectories per policy. However, for 16, 32, and 64 reference trajectories per policy, a

wider variety of transfer geometries are uncovered evidencing one benefit of increasing the number

of reference trajectories per policy. Further, Fig. 7.57 depicts the evaluation trajectories produced
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Figure 7.55: Box plot of total reward across twenty simulations while varying the number of
reference trajectories per policy.

by policies P1 and P8 demonstrating that the policies are able to consistently follow the reference

trajectory and target the final periodic orbit.

Finally, the propellant mass usage and flight time of the reference trajectories are analyzed

to investigate the influence of increasing the number of reference trajectories per policy on the

resulting multi-objective solution space. Recall, the objective function used to determine when to

update the reference trajectories defined in Eq.5.1 balances minimizing both propellant mass usage

and flight time for policies P2-P8 while for P1, the function prioritizes decreasing propellant mass

usage. Then, Fig. 7.58 exhibits the propellant mass usage and flight time solution space for the

reference trajectories developed by the simulations with the highest total reward for each number

of reference trajectories per policy. As the number of reference trajectory per policy increases,

the solution space becomes more filled. Whereas the solution space associated with one reference

trajectory per policy is sparse and does not provide a trajectory designer with extensive information,

the solution space associated with sixty four reference trajectories per policy more clearly depicts

the propellant mass usage and flight time trade space and helps uncover additional regions of the

solution space. Then, while in some trajectory design scenarios, increasing the number of reference

trajectories per policy has a detrimental influence on the trained policies, for low-thrust transfers



173

(a) Policy P1 with 1 reference (b) Policy P1 with 2 references (c) Policy P1 with 8 references

(d) Policy P8 with 1 reference (e) Policy P8 with 2 references (f) Policy P8 with 8 references

(g) Policy P1 with 16 references (h) Policy P1 with 32 references (i) Policy P1 with 64 references

(j) Policy P8 with 16 references (k) Policy P8 with 32 references (l) Policy P8 with 64 references

Figure 7.56: Reference trajectories developed by policies P1 and P8 from an L2 northern halo orbit
to an L5 short period orbit in the Sun-Earth CR3BP (primaries not to scale).
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(a) Policy P1 with 1 reference (b) Policy P1 with 2 references (c) Policy P1 with 8 references

(d) Policy P8 with 1 reference (e) Policy P8 with 2 references (f) Policy P8 with 8 references

(g) Policy P1 with 16 references (h) Policy P1 with 32 references (i) Policy P1 with 64 references

(j) Policy P8 with 16 references (k) Policy P8 with 32 references (l) Policy P8 with 64 references

Figure 7.57: Evaluation trajectories developed by policies P1 and P8 from an L2 northern halo
orbit to an L5 short period orbit in the Sun-Earth CR3BP (primaries not to scale).
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from an L2 northern halo orbit to an L5 short period orbit in the CR3BP, increasing the number of

reference trajectories per policy provides the trajectory designer with significantly more information

about the multi-objective solution space.

7.3.4 Variable Thrust Transfers in the Sun-Earth-Moon Point Mass Ephemeris

Model

Using a transfer learning approach similar to Bonasera et al., the policies trained by MRPPO

for a variable thrust engine model in the Sun-Earth CR3BP initialize the policies trained in the

Sun-Earth-Moon point mass ephemeris model [18]. The state, action, and reward formulations are

consistent between dynamical models to minimize the updates required for the neural networks. To

demonstrate the policies have converged in the Sun-Earth-Moon point mass ephemeris model, the

total reward, which is the summed reward for each policy across all 1,000 evaluation trajectories, is

evaluated to determine if the total reward converges to a steady state value at the end of the training

process. Figure 7.59 depicts the total reward for the eight policies demonstrating improvement such

that after updating the policies for the Sun-Earth-Moon point mass ephemeris model, the policies

produce a total reward of 3152 from an initial total reward of 1866. This increase in total reward

indicates that the policies have improved due to the additional training in the Sun-Earth-Moon

point mass ephemeris model.

In addition to improving the total reward across the eight policies, the propellant mass usage

and flight time characteristics of the evaluation and reference trajectories evolve in the Sun-Earth-

Moon point mass ephemeris model. Figures 7.60a and 7.60b display the evaluation trajectory and

reference trajectory solution spaces, respectively, where the non-dominating solutions exhibit simi-

lar propellant mass usage and flight time characteristics as the non-dominating solutions computed

in the Sun-Earth CR3BP and depicted in Figs. 7.46a and 7.46b. The maximum final mass transfer

requires 5.21 kg of propellant mass usage while the minimum flight time transfer recovered is 1.26

years. However, in Fig. 7.60a, only the characteristics associated with transfers that converge on

the target orbit are included. These characteristics are distinct from the characteristics of the eval-
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(a) 1 reference trajectory per policy (b) 2 reference trajectories per policy

(c) 8 reference trajectories per policy (d) 16 reference trajectories per policy

(e) 32 reference trajectories per policy (f) 64 reference trajectories per policy

Figure 7.58: Solution spaces recovered while varying the number of reference trajectories per policy
in MRPPO for transfers from an L2 northern halo orbit to an L5 short period orbit in the Sun-Earth
CR3BP.
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Figure 7.59: Total reward developed using transfer learning for a variable thrust, Sun-Earth-Moon
point mass ephemeris model transfer.

(a) Evaluation solution space (b) Reference solution space

Figure 7.60: Evaluation and reference solution spaces developed using transfer learning for a variable
thrust configuration, Sun-Earth-Moon point mass ephemeris model transfer.

uation trajectories displayed in Fig. 7.46a for variable thrust transfers in the Sun-Earth CR3BP

due to the policies inconsistently targeting the final periodic orbit in the Sun-Earth-Moon point

mass ephemeris model.

Figure 7.61 depicts the evaluation trajectories for policies P1 - P8 using the same color config-

uration as Fig. 7.41. Note, only the converged solutions are plotted for each policy. Approximately

10% of transfers for policies P3 - P6 and 30% of transfers for policies P2, P7, and P8 fail to converge

on the final orbit. Further, of the transfers that do converge on the final orbit, many require addi-
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tional revolutions about the Sun-Earth L5 short period orbit significantly increasing the flight time

of these solutions. While a majority of the trajectories for each policy possess similar flight times

on the transfer leg, the inconsistent convergence on the final orbit leads to a large dispersion in

the flight time and propellant mass usage solution space for the evaluation trajectories. This may

be attributed to a number of factors: 1) the method for modeling the Sun-Earth L5 short period

orbit causes small discontinuities between epochs in the reinforcement learning environment, 2)

the tight convergence hyperspheres at the Sun-Earth L5 short period orbit, and 3) certain policies

with neural network parameters that are not easily adaptable to the Sun-Earth-Moon point mass

ephemeris model.

In addition to the evaluation trajectories, Fig. 7.62 displays the reference trajectories for

policies P1 - P8. While the policies develop evaluation trajectories that struggle to converge on the

final orbit, this trend is not exhibited in the reference trajectories because the references are updated

using transfers that converge quickly on the final periodic orbit. Additionally, Fig. 7.63 depicts a

zoomed-in view of the reference trajectories departing the initial periodic orbit using the same

color configuration as Fig. 7.43. While the reference trajectories developed by P1 rapidly depart

the initial periodic in both the Sun-Earth CR3BP and Sun-Earth-Moon point mass ephemeris

model, one of the reference trajectories developed by P8 performs a flyby of the Earth prior to

departing through the L2 gateway. This indicates significant changes in the trajectory geometry

during policy updates for a Sun-Earth-Moon point mass ephemeris model. However, the other

three reference trajectories constructed by P8 follow similar paths in both the Sun-Earth CR3BP

and Sun-Earth-Moon point mass ephemeris model.

Finally, Fig. 7.64 displays the thrust magnitude profiles of the reference trajectories for poli-

cies P1 - P8, respectively, in the Sun-Earth-Moon point mass ephemeris model. These figures illus-

trate similarities between the thrust magnitude profiles associated with the reference trajectories

generated for the Sun-Earth CR3BP and Sun-Earth-Moon point mass ephemeris model. Namely,

that as the penalty on propellant mass usage increases, the policies tend to produce reference tra-

jectories with smaller thrust magnitudes. However, unlike the reference trajectories developed by
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.61: Evaluation trajectories developed by policies P1 - P8 using MRPPO for a variable
thrust configuration, Sun-Earth-Moon point mass ephemeris model transfer (primaries not to scale).
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.62: Reference trajectories developed by policies P1 - P8 using MRPPO for a variable thrust
configuration, Sun-Earth-Moon point mass ephemeris model transfer (primaries not to scale).
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(a) Policy P1 (b) Policy P8

Figure 7.63: Zoomed-in view of the reference trajectories developed for policies P1 and P8 using
MRPPO for a variable thrust configuration, Sun-Earth-Moon point mass ephemeris model transfer
(Earth not to scale).

policies P3 - P7 for variable thrust transfers in the Sun-Earth CR3BP that possess a bang-bang-

like thrust profile, in the Sun-Earth-Moon point mass ephemeris model, policies P3 - P7 generate

reference trajectories that have a more continuous thrust profile. Additionally, Fig. 7.65 depicts

the thrust direction profiles for the reference trajectories by policies P1 and P8. Across the refer-

ence trajectories, the policies tend to produce similar thrust direction profiles. These low-thrust

transfers demonstrate the potential for transfer learning to facilitate training policies in complex

dynamical models in a manner that reduces the required computational resources.

7.3.5 Constant Thrust Transfers in the Sun-Earth CR3BP

MRPPO is also used to train policies to construct low-thrust transfers for a constant thrust

engine configuration in the Sun-Earth CR3BP to generate insights into the propellant mass usage

and flight time multi-objective solution space. Figure 7.66 depicts the evaluation trajectories for

policies P1-P8 using the same color configuration as Fig. 7.41. For this constant thrust configuration

and dynamical model, the policies are evaluated to produce 1,000 transfers that converge to the

final orbit. Additionally, the reference trajectories generated by policies P1 - P8 are displayed in

Fig. 7.67. The evaluation trajectories developed by policy P1 possess similar geometries to the
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.64: Thrust magnitude profiles of the reference trajectories developed by policies P1 - P8

using MRPPO for a variable thrust configuration, Sun-Earth-Moon point mass ephemeris model
transfer.



183

(a) Policy P1 blue reference (b) Policy P8 blue reference

(c) Policy P1 light blue reference (d) Policy P8 light blue reference

(e) Policy P1 light red reference (f) Policy P8 light red reference

(g) Policy P1 red reference (h) Policy P8 red reference

Figure 7.65: Thrust direction profiles of the reference trajectories developed by policies P1 and P8

using MRPPO for a variable thrust configuration, Sun-Earth-Moon point mass ephemeris model
transfer.
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reference trajectories, which more directly target the final orbit. Conversely, the evaluation and

reference trajectories developed by policies P2 - P8 possess increasing numbers of periapses with

respect to the Sun. The policies develop distinct transfer geometries depending on where the

trajectories depart the initial periodic orbit, which are reflective of the penalty on propellant mass

usage that each policy is assigned.

The characteristics of the reference trajectories are further examined to generate insights into

the recovered solutions. Figure 7.68 depict the thrust magnitude profiles of the reference trajectories

generated by policies P1 - P8. The figures demonstrate that the reference trajectories developed

by policy P1 thrust nearly the entire transfer while the reference trajectories developed by policies

P2 - P8 coast for a majority of the transfer. This may be attributed to the objective function used to

determine when to update the reference trajectories which prioritizes conserving propellant mass.

Figure 7.69 exhibits the change in the Jacobi constant due to the activation of the low-thrust engine

throughout the reference trajectories developed by policies P1 - P8. The reference trajectories

developed by P1 possess Jacobi constants that vary significantly depending on where along the

initial orbit the reference trajectory departs. While all four reference trajectories have similar

Jacobi constants at the beginning of the trajectories, the Jacobi constants diverge approximately

halfway through the transfer before ultimately approaching the Jacobi constant of the final periodic

orbit. In fact, the light blue and light red Jacobi constant profiles are approximately mirrored across

the axis of the Jacobi constant of the initial periodic orbit. Conversely, the reference trajectories

developed by P2 - P8 possess Jacobi constants that remain near the Jacobi constant of the initial

periodic orbit until the trajectories enter into the vicinity of the final periodic orbit. Once the low-

thrust engine is activated, the Jacobi constants of the reference trajectories developed by P2 - P8

are decreased to approach the Jacobi constant of the final periodic orbit. However, similar to the

variable thrust transfers, there is a noticeable gap between the Jacobi constant at the conclusion

of the reference trajectories using a constant thrust engine and the Jacobi constant of the final

orbit. This is due to the transfers reaching the non-zero position and velocity hyperspheres, which

determine convergence to the final orbit. Reducing the size of the hyperspheres would reduce the



185

(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.66: Evaluation trajectories developed for policies P1 - P8 using MRPPO for a constant
thrust configuration, Sun-Earth CR3BP transfer (primaries not to scale).
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.67: Reference trajectories developed for policies P1 - P8 using MRPPO for a constant
thrust configuration, Sun-Earth CR3BP transfer (primaries not to scale).
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gap between the Jacobi constants at the risk of causing the policies to struggle to consistently

target the hyperspheres. An alternative approach may incorporate a controls scheme, potentially

distinct neural networks, that specialize in minimizing the state deviations when the spacecraft is

near the final orbit.

The propellant mass usage and flight time characteristics of the evaluation and reference

trajectories further demonstrate that MRPPO successfully recovers a wide variety of solutions in

this trajectory design scenario. Figures 7.70a and 7.70b depict the characteristics of the evalu-

ation trajectories and reference trajectories, respectively, developed by the eight policies for the

propellant mass usage and flight time trade space. While the policies developed by MRPPO pro-

duce evaluation trajectories that span the propellant mass usage and flight time trade space, the

reference trajectories are instead clustered into two distinct groupings. The reference trajectories

constructed by P1 possess similar characteristics to the evaluation trajectories generated by P1.

However, the reference trajectories constructed by the other policies are close to the maximum

final mass solution rather than spanning the propellant mass usage and flight time trade space.

This again may be attributed to the function defined in Eq. 5.1 and used to determine when to

update a reference trajectory. This function generally prioritizes limiting propellant mass usage

rather compared to minimizing the flight time. The maximum final mass transfer requires 2.82 kg

of propellant mass usage while the minimum flight time transfer recovered is 1.23 years.

Slight differences in the solution spaces produced for the variable thrust and constant thrust

engine configurations also exist. Compared to the policies trained for a variable thrust engine in the

CR3BP, for a constant thrust engine, the policies P1 and P6 produce transfers with higher propellant

mass usages and similar flight times; policies P2, P4, P5 develop transfers with lower propellant

mass usages and similar flight times; policy P7 constructs transfers with lower propellant mass

usages and longer flight times; and policies P3 and P8 generate transfers with similar propellant

mass usages and flight times. These small differences may be attributed to both the distinct

engine configurations the policies are trained on and the stochastic nature of the training process.

These policies demonstrate that MRPPO may be used to recover low-thrust transfers from an L2



188

(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.68: Thrust magnitude profiles of the reference trajectories developed for policies P1 - P8

using MRPPO for a constant thrust configuration, Sun-Earth CR3BP transfer.
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.69: Jacobi constants of the reference trajectories developed for policies P1 - P8 using
MRPPO for a constant thrust configuration, Sun-Earth CR3BP transfer.
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(a) Evaluation solution space (b) Reference solution space

Figure 7.70: Evaluation and reference solution spaces developed using MRPPO for a constant
thrust configuration, Sun-Earth CR3BP transfer.

northern halo orbit to an L5 short period orbit for both variable thrust and constant thrust engine

configurations in the Sun-Earth CR3BP.

7.3.6 Constant Thrust Transfers in the Sun-Earth-Moon Point Mass Ephemeris

Model

Policies trained to produce locally optimal low-thrust transfers for a constant thrust engine

configuration in the Sun-Earth CR3BP are used to initialize neural networks for training in the

Sun-Earth-Moon point mass ephemeris model. This engine and dynamical model combination is

most similar to the exploration performed by Elliott et al. which used a dynamical systems theory

approach to design trajectories for SmallSats from secondary deployment conditions near the Earth

to a Sun-Earth L5 short period orbit in the Sun-Earth-Moon point mass ephemeris model [48].

Although that analysis did not perform optimziation or explore the flight time and propellant mass

usage trade space, it offers a useful comparison to these results. However, in this investigation,

MRPPO is used to recover locally optimal transfers using a higher maximum thrust magnitude

and different initial conditions. Figure 7.71 displays the total reward through each update to the

policies to demonstrate that the policies have improved during training. In the Sun-Earth CR3BP,
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Figure 7.71: Total reward developed using transfer learning for a constant thrust, Sun-Earth-Moon
point mass ephemeris model transfer.

the policies return a cumulative reward of 5850 once training is concluded. However, in the Sun-

Earth-Moon point mass ephemeris model, the initial guess for the policies returns a total reward of

762 prior to training. After training, the policies are significantly improved and converge to return a

total reward of 1896. Additionally, without the initial guess, policies initialized with random weights

and biases return a total reward of approximately -8000. While transfers to the Sun-Earth L5 short

period orbit are feasible for each initial condition drawn, a number of challenges prevent the policies

from being retrained to consistently target the final periodic orbit. These challenges include: 1)

the small convergence hyperspheres at the final periodic orbit, 2) the ephemeris trajectories used to

approximate the Sun-Earth L5 short period orbit possessing discontinuities between epochs in the

reinforcement learning environment, 3) the pulsating rotating frame in the Sun-Earth-Moon point

mass ephemeris model, and 4) the neural network parameters of the trained policies are locally

optimal in the Sun-Earth CR3BP, but may not easily be modified for the Sun-Earth-Moon point

mass ephemeris model. Due to these challenges, the policies struggle to return higher total rewards

without increasing the size of the convergence hyperspheres.

Additional insights are generated from examining the propellant mass usage and flight time

trade space for this trajectory design scenario. Figures 7.72a and 7.72b depict the evaluation
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trajectory and reference trajectory solution spaces, respectively, for this engine and dynamical

model combination for all trajectories. However, if a trajectory does not converge on the L5

short period orbit, the characteristics of that trajectory are omitted from the evaluation trajectory

solution space. Compared to the transfers produced in the Sun-Earth CR3BP, the policies trained

in the Sun-Earth-Moon point mass ephemeris model possess a larger variation in flight time and

propellant mass usage across evaluation trajectories. Yet, the reference trajectories are more evenly

distributed across the propellant mass usage and flight time trade space. This may be attributed

to many of the evaluation trajectories requiring an additional revolution about the Sun-Earth L5

short period orbit prior to converging within the specified hyperspheres. Additionally, a significant

number of the evaluation trajectories for policies P2, P4, P5, and P8 fail to converge. This also

may be attributed to the differences between modeling transfers in the Sun-Earth and the local

optimally training parameters that these policies recovered not being as transferable to a higher-

fidelity dynamical model. However, of the transfers that do converge, the maximum final mass

transfer requires 3.75 kg of propellant mass usage while the minimum flight time transfer recovered

is 1.23 years. While all of the evaluation trajectories reach the vicinity of the Sun-Earth L5 short

period orbit, approximately 5% of the transfers for policies P3 and P6 - P8 and approximately 50%

of the transfers for policies P2, P4, and P5 do not enter the convergence hyperspheres defined for

the final orbit. These are some of the policies that have significant changes in transfer geometry

suggesting that through this transfer learning approach, the policies are significantly disrupted and

are unable to stay close to the behavior that they developed in the Sun-Earth CR3BP.

Then, the evaluation and reference trajectories also provide insights into the characteristics of

the recovered multi-objective solution space. Figure 7.73 illustrates the evaluation trajectories that

converge on the final orbit for policies P1-P8, demonstrating that a number of the policies struggle

to produce transfers that converge on the final orbit within the specified convergence hyperspheres

without additional revolutions near the Sun-Earth L5 short period orbit. This additional revolution

drives the increase in flight time exhibited in Fig. 7.72a for all of the policies. Further, policies P2-

P6 possess the most significant change in transfer geometries, which corresponds to decreased rates
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(a) Evaluation solution space (b) Reference solution space

Figure 7.72: Evaluation and reference solution spaces developed using transfer learning for a con-
stant thrust configuration, Sun-Earth-Moon point mass ephemeris model transfer.

of convergence to the final orbit. This again may be attributed to these policies being unable to

recover the transfer geometries used in the Sun-Earth CR3BP in this higher-fidelity model and being

required to relearn a new transfer geometry to target the final periodic orbit. Additional training

or modifications to the methodology may improve the convergence rate of policies in this dynamical

and engine model combination. Further, Fig. 7.74 depicts the reference trajectories generated by

each policy in the Sun-Earth-Moon point mass ephemeris model. Similar to the variable thrust

configuration, the transfers in the ephemeris model produced by policies with smaller penalties on

propellant mass usage tend to possess more similar geometries across distinct departure locations.

However, as the penalty on propellant mass usage increases, the policies recover a wider variety

of transfer geometries. Additionally, the transfer geometries of the trajectories produced in the

Sun-Earth CR3BP for policies P1, P7, ad P8 are approximately retained in the Sun-Earth-Moon

point mass ephemeris model.

Finally, Fig. 7.75 displays the thrust magnitude profiles of the reference trajectories generated

in the Sun-Earth-Moon point mass ephemeris model. The policies produce reference trajectories

with thrust magnitude profiles that gradually increase the amount of coasting time in conjunction

with the increase in propellant mass usage penalty for the constant thrust configuration in the

Sun-Earth-Moon point mass ephemeris model. Additionally, the reference trajectories produced by
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.73: Evaluation trajectories developed by policies P1 - P8 using MRPPO for a constant
thrust configuration, Sun-Earth-Moon point mass ephemeris model transfer (primaries not to scale).
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.74: Reference trajectories developed by policies P1 - P8 using MRPPO for a constant thrust
configuration, Sun-Earth-Moon point mass ephemeris model transfer (primaries not to scale).
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policies P1 and P8 in both the Sun-Earth CR3BP and Sun-Earth-Moon point mass ephemeris model

retain similar thrust magnitude profiles. However, policies P2 - P7 develop reference trajectories

that possess more thrust time in the Sun-Earth-Moon point mass ephemeris model than reference

trajectories in the Sun-Earth CR3BP. Further, while the investigation performed by Elliott et al.

assumed that the spacecraft deployed as a secondary payload with distinct initial conditions with a

smaller maximum available thrust and recovered transfers requiring 2.578 years of flight time and

30.31 kg of propellant mass, the transfers recovered by policy P8 in this investigation possess a

similar geometry, thrust profile, and a smaller flight time and required propellant mass usage [48].

7.4 Summary of Key Findings

MRPPO is used to train policies that generate low-thrust transfers that span the propellant

mass usage and flight time solution space in three trajectory design scenarios. In each scenario,

insights into the behavior of the policies is generated via analysis of the evaluation and reference

trajectories developed by MRPPO and comparison to other methodologies. The key findings of

this dissertation include:

• In the first trajectory design scenario, policies recover transfers with continuous thrust

profiles. However, in the second and third trajectory design scenarios, the reference and

evaluation trajectories recovered by MRPPO possess a bang-bang-like control profile re-

sembling invariant manifold arcs.

• MRPPO recovers better solutions than PPO for the first trajectory design scenario for a

lower computational time.

• The low-thrust transfers for both a variable thrust and constant thrust engine configuration

in the third trajectory design scenario are compared and demonstrate similar geometries

and characteristics.

• In the first trajectory design scenario, the optimization algorithm produces transfers with

similar total rewards, but lower propellant mass usages by transforming the thrust magni-
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(a) Policy P1 (b) Policy P2

(c) Policy P3 (d) Policy P4

(e) Policy P5 (f) Policy P6

(g) Policy P7 (h) Policy P8

Figure 7.75: Thrust magnitude profiles of the reference trajectories developed by policies P1 - P8

using MRPPO for a constant thrust configuration, Sun-Earth-Moon point mass ephemeris model
transfer.
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tude profiles of the transfers to a bang-bang-like control scheme. However, in the second

and third trajectory design scenarios, the reference trajectories developed by the policies

closely resemble the solutions produced by the optimization scheme. In all three trajectory

design scenarios, MRPPO does produce meaningful results. However, how close the results

are to locally optimal solutions developed by an optimization scheme does vary.

• An exploration into the number of reference trajectories per policy reveals that larger

numbers of reference trajectories per policy enables policies to recover a wider variety of

transfer geometries in the third trajectory design scenario, but has a detrimental influence

on the policies in the second trajectory design scenario.

• A transfer learning approach enables the policies to rapidly develop transfers in the higher-

fidelity model. However, due to a number of factors, a significant percentage of the eval-

uation trajectories fail to converge on the final orbit in the Sun-Earth-Moon point mass

ephemeris model. Transfer learning was not as successful as required, and significant future

development is needed for updating policies for higher-fidelity dynamical models.



Chapter 8

Concluding Remarks

8.1 Summary

Developing new techniques that autonomously generate optimal low-thrust transfers in multi-

body gravitational environments provides insights into a trajectory design scenario while limiting

the time and effort required of a human trajectory designer. Reinforcement learning is one ap-

proach to autonomously recover optimal solutions in an unknown dynamical environment while

balancing exploration of new regions of the solution space with the exploitation of current knowl-

edge. Specifically, reinforcement learning is an approach that updates a controls scheme that may

be modeled using neural networks to develop optimal behavior that maximizes a single set of ob-

jectives. However, in multi-body trajectory design scenarios, low-thrust transfers typically exist

within multi-objective solution spaces. Further, these solution spaces are often examined through

the nondominating solutions that distinctly balance multiple objectives to generate insights into

the trade space. To efficiently and autonomously uncover multiple low-thrust transfers spanning a

multi-objective solution space in a multi-body trajectory design scenario, multi-objective reinforce-

ment learning is employed.

A multi-objective reinforcement learning algorithm, designated Multi-Reward Proximal Pol-

icy Optimization (MRPPO), is designed using Proximal Policy Optimization (PPO) as a foundation

to enable multiple policies to be trained simultaneously in a shared environment with a multi-

objective solution space. By sharing propagation data from the dynamical model, each policy

may learn from the potentially beneficial or disadvantageous actions undertaken by other policies
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thereby introducing additional exploration into the training; this produces a more stable, efficient

training phase for MRPPO compared to PPO. Additionally, the structure of MRPPO reduces the

computational resources and time required to train policies compared to sequentially training the

policies using PPO.

To generate these solutions, the transfer design problem is translated into a reinforcement

learning problem that also supports a successful and efficient training process. Inspired by the

concept of a waypoint that is often used in path planning, this reinforcement learning problem is

formulated using information about the best transfers generated during training. This approach

balances exploitation by incorporating the best transfers into the state and reward definitions with

exploration by updating these best transfers using training data. By incorporating information

about the best transfers generated throughout training, policies recover feasible solutions for low-

thrust transfers between periodic orbits. Then, MRPPO is used to simultaneously train multiple

policies, each with a scalar reward function that reflects a distinct relative weighting between the

two competing objectives of minimizing flight time and propellant mass usage.

In this investigation, MRPPO is applied to train policies that construct low-thrust transfers

balancing multiple objectives in three trajectory design scenarios: 1) between L2 southern halo

orbits in the Earth-Moon CR3BP, 2) from an L1 northern halo orbit to an L2 southern halo orbit

in the Earth-Moon CR3BP, and 3) from an L2 northern halo orbit to an L5 short period orbit in

both the Sun-Earth CR3BP and Sun-Earth-Moon point mass ephemeris model. The trained poli-

cies for each trajectory design scenario are evaluated using the reference trajectories and evaluation

trajectories generated from a common set of initial conditions near the initial periodic orbit. This

enables the recovery of a subset of solutions along the propellant mass usage and flight time trade

space and insights into the transfer geometries recovered by the policies. Additionally, for the first

trajectory design scenario, a preliminary investigation into the effect of hyperparameter selection

is performed to generate insights into the influence of each hyperparameter on the behavior of the

policies throughout the training process. Further, for the third trajectory design scenario, low-

thrust transfers are designed for both a variable thrust and constant thrust engine configuration
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and transfer learning is employed to update policies for the Sun-Earth-Moon point mass ephemeris

model. Exploring distinct engine configurations facilitates additional insights into how the space-

craft parameters influence the resulting multi-objective solution space. Finally, for each trajectory

design scenario, the reference trajectories generated by MRPPO are leveraged as initial guesses in

an optimization algorithm to approximately validate the solution space produced by MRPPO. The

results generated by the optimization scheme are sufficiently close to the solution space produced

by MRPPO. These results demonstrate the applicability and potential of MRPPO to autonomously

construct low-thrust transfers spanning the multi-objective solution space in multi-body gravita-

tional environments without an initial guess thereby reducing the time and effort required of a

human trajectory designer.

8.2 Future Work

The multi-objective reinforcement learning framework developed in this research and applied

for low-thrust trajectory design scenarios in multi-body gravitational environments may benefit

from incorporating new research areas within the machine learning and astrodynamics communities.

For instance, within the multi-objective reinforcement learning framework, improvements in the

convergence behavior may be generated via incorporating:

• Physics-informed neural networks developed by Raissi, Perdikaris, and Karniadakis and

used by Schiass et al. and Martin and Schaub for trajectory design in two-body grav-

itational environments, which ensure the neural networks conform to defined dynamics

[93, 116, 122].

• Constrained policy optimization techniques that naturally enforce constraints via the policy

updates rather than within the reward function similar to the proposal by Achiam et al. [2].

This may simplify the learning process and enable policies to recover low-thrust transfers

that solely maximize the final mass.

• Robust reinforcement learning techniques that enable policies to contend with state or
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action uncertainty within a reinforcement learning environment and guarantee local opti-

mality similar to the technique proposed by Tessler, Efroni, and Mannor [153].

Similarly, within the trajectory design scenarios, a number of improvements that may be incorpo-

rated to improve the results returned by MRPPO including:

• Trajectory design techniques that enable the recovery of transfers with distinct numbers

of revolutions about primary bodies to enable the recovery of distinct segments of the

multi-objective solution space.

• Improving the description of target motions in higher-fidelity ephemeris models to improve

the performance for the neural networks targeting small convergence hyperspheres.

• Currently, MRPPO can only design solutions that target a dynamical arc to within signif-

icant hyperspheres. Reducing the size of the hyperspheres would produce solutions with a

higher accuracy, facilitate more direct comparisons to solutions produced by an optimiza-

tion scheme, and generate insights into transfers targeting tight convergence to a dynamical

arc.

• Exploring alternative reward function formulations that are only composed of flight time,

propellant mass usage, or other significant goals of the trajectory design scenario.

Once incorporated, MRPPO could be used to robustly and autonomously generate insights into

complex trajectory design scenarios with limited time and effort required of a trajectory designer.
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[113] Daniel Pérez-Palau and Richard Epenoy. Fuel optimization for low-thrust earth–moon trans-
fer via indirect optimal control. Celestial Mechanics and Dynamical Astronomy, 130(2):1–29,
2018. https://doi.org/10.1007/s10569-017-9808-2.

[114] Bonnie J. Prado Pino. Energy-Informed Strategies For Low-Thrust Trajectory Design in
Cislunar Space. PhD thesis, Purdue University Graduate School, 2020.

[115] Robert E. Pritchett. Numerical Methods for Low-Thrust Trajectory Optimization. PhD
thesis, Purdue University, 2016.



212

[116] Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.
https://doi.org/10.1016/j.jcp.2018.10.045.

[117] David L. Richardson. Halo orbit formulation for the isee-3 mission. Journal of Guidance and
Control, 3(6):543–548, 1980. https://doi.org/10.2514/3.56033.

[118] Craig Roberts, Sara Case, John Reagoso, and Cassandra Webster. Early mission maneuver
operations for the deep space climate observatory sun-earth l1 libration point mission. In
AIAA/AAS Astrodynamics Specialist Conference, Vail, CO, 2015.

[119] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning Using Connectionist Systems,
volume 37. University of Cambridge, Department of Engineering, 1994.

[120] Ryan P. Russell. Primer vector theory applied to global low-thrust trade studies. Journal of
Guidance, Control, and Dynamics, 30(2):460–472, 2007. https://doi.org/10.2514/1.22984.

[121] Wayne A. Scheel and Bruce A. Conway. Optimization of very-low-thrust, many-revolution
spacecraft trajectories. Journal of Guidance, Control, and Dynamics, 17(6):1185–1192, 1994.
https://doi.org/10.2514/3.21331.

[122] Enrico Schiassi, Andrea D’Ambrosio, Kristofer Drozd, Fabio Curti, and Roberto Furfaro.
Physics-informed neural networks for optimal planar orbit transfers. Journal of Spacecraft
and Rockets, pages 1–16, 2022. https://doi.org/10.2514/1.A35138.

[123] W.K.H. Schmidt and V. Bothmer. Stereoscopic viewing of solar coronal and interplane-
tary activity. Advances in Space Research, (4):369–376, 1996. https://doi.org/10.1016/0273-
1177(95)00602-B.

[124] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In 32nd International Conference on Machine Learning, Lille,
FRA, 2015.

[125] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[126] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[127] Andrea Scorsoglio, Roberto Furfaro, Richard Linares, and Mauro Massari. Actor-critic re-
inforcement learning approach to relative motion guidance in near-rectilinear orbit. In 29th
AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, 2019.

[128] Vishwa Shah, Ryne Beeson, and Victoria L. Coverstone. Automated global optimization
of impulsive trajectories in three-body problems. In AIAA/AAS Astrodynamics Specialist
Conference, Long Beach, CA, 2016. https://doi.org/10.2514/6.2016-5438.

[129] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe1, John Nham, Nal Kalchbrenner, Timothy Lillicrap,



213

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
https://doi.org/10.1038/nature16961.

[130] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of go without human knowledge. Nature, 550(7676):354–359,
2017. https://doi.org/10.1038/nature24270.

[131] Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks
using large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications, pages 369 – 386. International Society for Optics and Photonics,
SPIE, 2019. https://doi.org/10.1117/12.2520589.

[132] Marshall Smith, Douglas Craig, Nicole Herrmann, Erin Mahoney, Jonathan Krezel, Nate
McIntyre, and Kandyce Goodliff. The artemis program: An overview of nasa’s activities to
return humans to the moon. In 2020 IEEE Aerospace Conference, Big Sky, MT, pages 1–10.
IEEE, 2020. https://doi.org/10.1109/AERO47225.2020.9172323.

[133] Thomas R. Smith and Natasha Bosanac. Using motion primitives to design libration point or-
bit transfers in the earth-moon system. In AAS/AIAA Astrodynamics Specialist Conference,
Virtual, 2021.

[134] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Autonomous drone
racing with deep reinforcement learning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Prague, CZE, 2021.

[135] V. Spandan, P. Bharadwaj, M. Bassenne, and L. Jofre. Scalar source tracking in turbulent
environments using deep reinforcement learning. In Proceedings of the 2018 Summer Program,
pages 155–164. Center for Turbulence Research, 2018.

[136] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondom-
inated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.
https://doi.org/10.1162/evco.1994.2.3.221.

[137] Jeffrey R. Stuart. A Hybrid Systems Strategy for Automated Spacecraft Tour Design and
Optimization. PhD thesis, Purdue University, 2014.

[138] Jeffrey R. Stuart, Kathleen C. Howell, and Roby Wilson. Automated design of propellant-
optimal, end-to-end, low-thrust trajectories for trojan asteroid tours. Journal of Spacecraft
and Rockets, (5):1631–1647, 2014. http://dx.doi.org/10.2514/1.A32748.

[139] Jeffrey R. Stuart, Martin Ozimek, and Kathleen C. Howell. Optimal, low-thrust, path-
constrained transfers between libration point orbits using invariant manifolds. In AIAA/AAS
Astrodynamics Specialist Conference, Toronto, CAN, 2010.

[140] Christopher J. Sullivan and Natasha Bosanac. Using multi-objective deep reinforcement learn-
ing to uncover a pareto front in multi-body trajectory design. In AAS/AIAA Astrodynamics
Specialist Conference, Virtual, 2020.



214

[141] Christopher J. Sullivan, Natasha Bosanac, Rodney L. Anderson, and Alinda Mashiku. Ex-
ploring the low-thrust transfer design space in an ephemeris model via multi-objective rein-
forcement learning. In 32nd AIAA/AAS Space Flight Mechanics Meeting, San Diego, CA,
2022. https://doi.org/10.2514/6.2022-1887.

[142] Christopher J. Sullivan, Natasha Bosanac, Rodney L. Anderson, Alinda K. Mashiku,
and Jeffrey R. Stuart. Exploring transfers between earth-moon halo orbits via
multi-objective reinforcement learning. In IEEE Aerospace Conference, Virtual, 2020.
https://doi.org/10.1109/AERO50100.2021.9438267.

[143] Christopher J. Sullivan, Natasha Bosanac, Alinda K. Mashiku, and Rodney L. Anderson.
Multi-objective reinforcement learning for low-thrust transfer design between libration point
orbits. In AAS/AIAA Astrodynamics Specialist Conference, Virtual, 08 2021.

[144] Christopher J. Sullivan, Jeffrey Stuart, Rodney L. Anderson, and Natasha Bosanac. Designing
low-thrust transfers to high-inclination science orbits via hybrid optimization. Journal of
Spacecraft and Rockets, 58(5):1339–1351, 2021. https://doi.org/10.2514/1.A34980.

[145] Richard S. Sutton. Integrated modeling and control based on reinforcement learning and
dynamic programming. In Advances in Neural Information Processing Systems 3, Denver,
CO, 1990.

[146] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
press, Cambridge, MA, 2nd edition, 2018.

[147] Grzegorz Swirszcz, Wojciech Marian Czarnecki, and Razvan Pascanu. Local minima in train-
ing of deep networks. arXiv preprint arXiv:1611.06310, 2016.

[148] Victor Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies. Academic
Press, New Haven, CT, 1967. https://doi.org/10.1016/B978-0-12-395732-0.X5001-6.

[149] Ehsan Taheri, Ilya Kolmanovsky, and Ella Atkins. Enhanced smoothing technique for indirect
optimization of minimum-fuel low-thrust trajectories. Journal of Guidance, Control, and
Dynamics, 39(11):2500–2511, 2016. http://dx.doi.org/10.2514/1.G000379.

[150] Gao Tang and Fanghua Jiang. Capture of near-earth objects with low-thrust propul-
sion and invariant manifolds. Astrophysics and Space Science, 361(1):1–14, 2016.
https://doi.org/10.1007/s10509-015-2592-0.

[151] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(56):1633–1685, 2009.

[152] Gerald Tesauro, Rajarshi Das, Hoi Chan, Jeffrey Kephart, David Levine, Freeman Rawson,
and Charles Lefurgy. Managing power consumption and performance of computing systems
using reinforcement learning. In 21st Conference on Neural Information Processing Systems,
Vancouver, CAN, pages 1497–1504, 2007.

[153] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In 36th International Conference on Machine Learning,
Long Beach, CA, pages 6215–6224. Proceedings of Machine Learning Research, 2019.



215

[154] Thanh-Trung Trinh, Dinh-Minh Vu, and Masaomi Kimura. Point-of-conflict prediction for
pedestrian path-planning. In 12th International Conference on Computer Modeling and
Simulation, Brisbane, AUS, page 88–92, 2020. https://doi.org/10.1145/3408066.3408079.

[155] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. In 33rd Conference on Neural
Information Processing Systems, Vancouver, CAN. Curran Associates Inc., 2019.

[156] David A. Vallado. Fundamentals of Astrodynamics and Applications. Microcosm Press, El
Segundo, CA, 4th edition, 2013.

[157] Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Em-
pirical evaluation methods for multiobjective reinforcement learning algorithms. Machine
learning, 84(1):51–80, 2011. https://doi.org/10.1007/s10994-010-5232-5.
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