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Strategies for rapid trajectory design within multi-body systems typically focus on leveraging

dynamical systems and traditional optimization theory for analysis and initial guess construction.

These techniques often demand significant human effort in analyzing a large, complex, and high-

dimensional solution space, as well as large computational resources. These requirements are cum-

bersome in time-critical scenarios where redesign is required and directly impacts the operational

support and cost for missions or initial design tasks; they also limit the speed and capability of

knowledge discovery tasks. However, recent advancements in machine learning have the potential

to reduce the workload of a trajectory designer in analyzing and using information extracted from

large and complex data. For example, techniques from unsupervised learning may aid the astrody-

namicist in summarizing and understanding the solution space, while methods from reinforcement

learning supports generating rapid decision-making models enabling a reduced involvement of the

human operator. Thus, this investigation seeks to explore the incorporation of machine learning

techniques into various steps of the trajectory design process in multi-body systems. Specifically,

the presented work focuses on three fundamental analyses: 1) exploring the solution space with

higher-dimensional Poincaré maps and unsupervised learning; 2) constructing natural spatial trans-

fers between quasi-periodic trajectories with the assistance of manifold learning during initial guess

construction; 3) designing impulsive maneuvers for station-keeping and orbit transfer via reinforce-

ment learning strategies. The presented results highlight the beneficial impact of techniques from

machine learning for trajectory design, offering a foundation for continued development.
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5.2 Poincaré map reflecting a subset of clusters of prograde periapses in the Sun-Earth

CR3BP at a Jacobi constant CJ = 3.00088 and ż = 0 using multiple maps. . . . . . 90
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Chapter 1

Background and Motivation

Future plans of a large variety of space agencies and private companies involve increasing

human presence well-beyond the Earth neighborhood. In this region, the gravitational influence of

multiple planetary bodies governs the path followed by a spacecraft. Therefore, trajectories design

in multi-body systems becomes a fundamental asset for enabling a plethora of future missions. The

analysis and construction of end-to-end trajectories in multi-body systems requires a significant

human involvement and computational resources. For example, investigating a solution space

where a variety of arcs of interest can exist presents a great visualization challenge, demanding

extensive human expertise and formulation of problem-dependent criteria to select an interesting

arc. Likewise, designing sequences of maneuvers enabling an end-to-end trajectory often requires

multiple iterations and large computational resources, sometimes not admissible during the final

fast-paced phases of trajectory design. Techniques from machine learning can reduce the burden of

a trajectory analyst, reducing the human intervention, and generating computationally lightweight

solutions. For example, techniques from unsupervised learning can infer patterns in the solution

space, and improve the visualization of higher-dimensional data, while methods from reinforcement

learning can generate models between data, leading to a decreased involvement of a human operator.

For these reasons, this investigation approaches different challenges of trajectory design in multi-

body systems, trying to reduce computational efforts and human involvement during the different

phases of end-to-end trajectory construction process.

Initially, the available design space is analyzed in a low-fidelity dynamical model to extract
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arcs that respect mission requirements. These arcs might be leveraged to generate transfers tar-

geting specific solutions of interest, for example trajectories resembling periodic or quasi-periodic

solutions. Eventually, these arcs are refined in higher-fidelity dynamical models, and maneuvers

are included to generate end-to-end trajectories. Machine learning techniques are used in this

dissertation to aid a trajectory analyst alongside the design process: unsupervised learning may

reduce human burden in visualizing higher-dimensional solution spaces, manifold learning may aid

an analyst to target existing transfers, while reinforcement learning may reduce the intervention

of human operators for maneuver design. This section introduces previous contributions on these

fundamental phases of trajectory design, together with an overview of techniques from machine

learning that are relevant to this dissertation.

1.1 Understanding the Solution Space via Poincaré Maps

The early phases of the trajectory design process often involve the investigation of the un-

derlying, complex solution space. Tools from dynamical systems theory, such as Poincaré maps,

supply useful instruments for the exploration of the solution space, in both low- and higher-fidelity

dynamical models [1–4]. A Poincaré map is generated by collecting the intersections a set of tra-

jectories with a common surface of section. Examples of surface of sections include: hyperplanes;

apses; hyperspheres about a central body [2, 5, 6]. A well-constructed Poincaré map reduces the

dimensionality of the problem, therefore simplifying the visualization of the trajectory arcs. How-

ever, Poincaré maps may be difficult to visualize due to higher-dimensional crossings, potentially

leading to data obscuration or loss of information. When the recorded intersections on a map

are high-dimensional, such as when spatial trajectories are analyzed, a 2D representation does not

completely describe a crossing. This problem has been previously analyzed through a variety of

approaches. For example, Haapala leverages glyphs to incorporate more dimensions in a planar rep-

resentation of higher-dimensional Poincaré map, and uses analytical separation criteria to discern

the different trajectories [3]. Gomez et al. reduce the dimension of the data by including additional

constraints [7]. These approaches address the problem of uniqueness in the 2D representation.
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However, if the dataset is more complex, denser or retrieved from a complex dynamical model,

rapid and informed analysis of higher-dimensional Poincaré maps can still represent a challenging

task, especially when fast redesign analysis is needed. Furthermore, a trajectory designer is often

interested in examining the available set of geometries in the solution space.

A recent alternative approach for visualization and analysis of a higher-dimensional Poincaré

map is inspired by the field of Big Data, which uses unsupervised learning. This approach is

designed to: autonomously differentiate trajectory arcs based on specified characteristics; avoid

data obscuration by summarizing the dataset with a representative set of solutions; and avoid the

incorporation of any constraints which limit the design space. Unsupervised learning techniques,

such as clustering, have been applied to problems in astrodynamics in multi-body systems: Nakhijiri

and Villac leverage clustering to extract dynamical features and stability constraints from phase

space maps, while Villac, Anderson and Pini use clustering for autonomous grouping of ballistic

orbits around small bodies [8, 9]. Smith and Bosanac also demonstrate the value of unsupervised

learning in astrodynamics by leveraging different clustering techniques to extract motion primitives

that summarize features of periodic orbits and arcs along the hyperbolic invariant manifolds in the

Earth-Moon Circular Restricted Three-Body Problem (CR3BP) [10–12].

Motivated by these works, Bosanac introduces the use of clustering for the autonomous dif-

ferentiation of a wide variety of trajectories captured by a general Poincaré map to construct a

summary of the solution space, and aid in the visualization of multi-body systems [13]. In her

work, trajectories in the planar Sun-Earth CR3BP are autonomously grouped based on geometric

similarity, leveraging the Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) algorithm [14,15]. Upon differentiation of the trajectory arcs in clusters, each group

is associated with a unique best representative solution which summarizes the geometrical charac-

teristics of the entire group [16]. HDBSCAN offers a robust and computationally efficient solution

for autonomous trajectory differentiation, capable of dividing a dataset in groups with: no a priori

knowledge of the number of clusters; clusters of any shape and density; and identification of noise.

Bonasera and Bosanac build upon this work by extending this framework to higher-dimensional
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maps generated in complex dynamical models by using distributed clustering for the autonomous

differentiation of large datasets of arcs [17, 18]. Through this approach, the trajectory designer

can obtain a summary of the solution space without using analytical separation criteria, without

applying constraints that reduce the design space, and overcoming the effect of data obscuration.

1.2 Constructing Spatial Transfers between Quasi-Periodic Trajectories

The dynamical mechanisms associated with the fundamental structures are often of interest

to either understand natural transport or constructing trajectories with reduced propellant con-

sumption. Examples such as ARTEMIS leverage the natural transport mechanisms granted by the

hyperbolic invariant manifolds of various orbits to steer the spacecraft towards their final desti-

nation trajectories [19]. Some missions leverage trajectories in resonant motion with a secondary

body. Examples include the Interstellar Boundary Explorer (IBEX) and the Transiting Exoplanet

Survey Satellite (TESS), in a 3:1 and 2:1 resonant motion with the Moon, respectively, in the Earth-

Moon system [20, 21]. Missions such as Cassini also use trajectories that leverage the connections

between resonant motions and maneuvers to maximize scientific return [22]. The phenomenon of

natural transport mechanisms between orbits near resonances, enabled by the hyperbolic invariant

manifolds of these structures, is also well recognized in celestial mechanics: Jovian comets like

Oterma, or the Kuiper Belt Objects (KBOs) have been observed or predicted to naturally transit

between orbits near different resonances in their systems [5,23]. For these reasons, investigating the

natural motion of a small body to ballistically transition between different resonances represents an

interesting area of exploration in both the trajectory design and celestial mechanics communities.

The study of the natural transitions in multi-body systems has been primarily focused on

finding connections between periodic orbits in low-fidelity dynamical models, leveraging tools from

dynamical systems theory. For example, Koon et al. analyze the hyperbolic invariant manifolds and

the associated intersections with a well-constructed Poincaré map to explain the natural transition

of comet Oterma between two orbits near resonances in the planar Sun-Jupiter system [5]. Later,

Vaquero [24] and Haapala and Howell [25] extend this investigation by studying natural transitions
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between spatial resonances. The solution space may be further expanded by considering natural

bounded motion near these orbits, i.e. quasi-periodic trajectories.

Quasi-periodic trajectories foliate invariant tori near periodic orbits which exhibit a non-

empty central manifold in low-fidelity dynamical models. Among the variety of approaches to

compute invariant tori near periodic orbits [26], methods developed by Jorba [27], Gomez et al.

[28], and Olikara and Scheeres [29, 30] supply computationally-feasible approaches to recovering

families of tori and their associated hyperbolic invariant manifolds in low-fidelity dynamical mod-

els of multi-body systems. Olikara applies this algorithm to demonstrate the existence of natural

transport between two tori in a prescribed region of the design space in the Earth-Moon CR3BP,

demonstrating two different methods which: 1) fix a-priori the departure torus and recover the

arrival structure after convergence in a specified region of the design space or 2) use continuation

from a nearby planar connection between two periodic orbits. More recently, Henry and Scheeres

leverage whiskers to find connections between prescribed tori in position space, later adjusting

the trajectory via an impulsive maneuver to ensure full-state continuity [31]. These approaches

successfully generate connections between invariant tori. However, a trajectory designer may be

interested in finding natural connections between two predefined tori, or obtaining an overview of

the array of transfers connecting families of tori. Previous contributions have focused on natural

connections between two unstable orbits by investigating intersections between the invariant man-

ifolds on a common surface of section [24,25, 28]. However the higher-dimensionality of the design

space of unstable tori and the associated larger dataset can hinder the process of identifying feasible

connections.

Methods from machine learning may support the analyst in identifying natural transport

mechanisms by reducing the complexity of the Poincaré map visualization process. In particu-

lar, techniques from manifold learning can help the trajectory designer by projecting a dataset,

such as the crossings on a Poincaré map, onto a lower-dimensional space. Among the variety of

existing manifold learning approaches, Uniform Manifold Approximation and Projection (UMAP)

is a robust and computationally-efficient state-of-the-art solution for projecting highly nonlinear
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datasets onto low-dimensional spaces [32]. UMAP has been successfully used in various scientific

domains, such as visualizing complex proteins in single cell biology [33], studying genetic structures

in cohorts [34] and categorizing the origin of solar wind [35]. The lower-dimensional representation

constructed by UMAP preserves the relative distances between points, while minimizing the topo-

logical distance between the original dataset and its projection. Leveraging manifold learning to

reduce the visualization burden may help the trajectory designer to find natural connections be-

tween two spatial tori and understand the solution space. Moreover, the discovery of these transfers

can support the analysis of small-bodies transitioning between resonances in the solar system.

1.3 Designing Station-Keeping and Orbit Transfer Maneuvers

Sequences of maneuvers are often implemented to target specific solutions of the design space

or mitigate the effect of unmodeled dynamical perturbations that may divert the spacecraft from

the designed path. Furthermore, the dynamical characteristics of a mission orbit may naturally

steer the spacecraft away from its designed reference path when perturbations occur. Therefore,

trajectory designers often leverage maneuvers to allow the spacecraft to remain bounded near the

designed path. Examples of maneuvers that are regularly employed include station-keeping and

orbit transfer maneuvers.

Station-keeping maneuvers are designed to allow the spacecraft to maintain bounded motion

with respect to a desired orbit. Astrodynamicists often leverage tools from dynamical systems the-

ory and optimization to generate station-keeping maneuvers in high-fidelity multi-body systems.

For example, Pavlak and Howell analyzed the correlation between the direction of the locally op-

timal station-keeping maneuvers with the hyperbolic stable manifold near the underlying periodic

orbit [36]. More recently, Farrés et al. [37] further investigate this observed alignment. These ob-

servations can be leveraged for the design of impulsive station-keeping maneuvers, as demonstrated

by Bosanac et al.: in their work, initial guesses for the station-keeping maneuvers leverage the

hyperbolic stable manifold of the orbit, and later refined via optimization techniques for the orbit

maintenance of the Nancy Grace Roman Space Telescope [38].
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Reconfiguration and orbit transfer maneuvers are used to guide a cluster or a single space-

craft, to a new relative geometric configuration or reference orbit. To date, two-body perturbed

dynamics represent the major focus of reconfiguration maneuver design [39–41]. However, the

chaotic dynamics of multi-body systems may potentially require new reconfiguration approaches

for continuous and impulsive control [42–46]. Reconfiguration maneuvers in multi-body systems

are a key component of operating formations: examples include the Laser Interferometer Space

Antenna (LISA) [47], the Cluster II [48], the Magnetospheric Multiscale Mission (MMS) [49] and

the future HelioSwarm missions [50]. The design of orbit transfer maneuvers, enabling single space-

craft to transit between different solutions in low-energy regimes has been extensively investigated

leveraging dynamical system theory and optimization schemes [2,51–53]. Natural transport mech-

anisms and families of orbits existing in low-fidelity multi-body systems can be used to generate

transfers between prescribed solutions, along with continuous and impulsive control [53–55].

The design of station-keeping, reconfiguration, and orbit transfer maneuvers sometimes de-

mands expertise and involvement of the trajectory designer due to the complex dynamical envi-

ronment and the impact of uncertainties. This poses a high risk in time-critical scenarios where

rapid redesign is required, corresponding to higher costs for operational support. Techniques from

Reinforcement Learning (RL) have the potential for significantly reducing of analyst workload. An

RL scenario involves training a policy which generates an action from the input observation, and

an environment which governs the transition between two observation-action pairs. The policies

are trained to maximize a user-defined quantity, the discounted cumulative reward. The trained

policy can then be used in the maneuver design process: the trained policy can generate an action,

for example a maneuver, upon receiving an input observation, for example the spacecraft state.

Various implementations of RL algorithms have already demonstrated their benefits for a reduced

human workload in multiple scientific domains [56–58].

In astrodynamics, several researchers have successfully explored state-of-the-art RL algo-

rithms in chaotic multi-body systems for maneuver design in transfer scenarios [59–64], for relative

motion around periodic orbits [65] and station-keeping [66–68]. For example, Bonasera et al.
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demonstrate the use of a state-of-the-art RL algorithm for autonomous generation of sequences of

station-keeping maneuvers in low- and higher-fidelity dynamical models [69]. Among the variety

of RL methods, a member of the family of Proximal Policy Optimization algorithms, shortly re-

ferred to as PPO, has shown favorable convergence behavior for continuous maneuver generation

for spacecraft in chaotic dynamical models [61–64, 67]. In these implementations, PPO is used to

train a policy, which is represented by artificial neural networks. The trained networks, serving

as universal function approximators, are employed to autonomously generate the required maneu-

vers and correct the spacecraft state. Leveraging PPO to train neural networks can be beneficial

for station-keeping, reconfiguration and orbit transfer scenarios: the trained networks can reduce

the workload from an astrodynamicist, and speed up the maneuver design process, especially in

time-critical redesign situations.

1.4 Organization of the Manuscript

This dissertation focuses on applying machine learning techniques to different phases of the

trajectory design process with the goal of aiding an astrodynamicist by simplifying information

extraction of large design spaces, and constructing models for rapid trajectory and maneuver design.

This document is structured as follows:

Chapter 2: dynamical models provide mathematical formulations to generate an approx-

imation of the motion of a spacecraft. Two models of progressively higher fidelity are

introduced. Initially, the circular restricted three-body problem, often used during the

early stages of the trajectory design process, is formulated. Then, the higher fidelity point

mass ephemeris model, leveraged to generate end-to-end arcs that fulfill mission require-

ments, is detailed. Eventually, coordinate frames rotation between rotating and inertial

frames are presented.

Chapter 3: the low fidelity circular restricted three-body problem admits a variety of

particular solutions that are often investigated during the early stages of the trajectory
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design process. These solutions, detailed in the chapter, include: periodic orbits, orbits

near resonances, invariant tori, and hyperbolic manifolds. Then, numerical methods used

to construct these solutions, and to transfer an arc from a low- to a higher-fidelity dynamical

model, are presented. Eventually, Poincaré maps, a tool from dynamical system theory used

to investigate the characteristics of the solution space, are introduced.

Chapter 4: techniques from machine learning that are used throughout this manuscript

are detailed. First, unsupervised learning is highlighted: an overview of two algorithms

from clustering and manifold learning, the Hierarchical Density-Based Spatial Clustering

with Noise and the Uniform Manifold Approximation and Projection, is introduced. Then,

reinforcement learning is presented, focusing on the family of proximal policy optimization

algorithms and neural networks.

Chapter 5: techniques from unsupervised learning, comprising clustering, manifold learn-

ing, and distributed data mining, are leveraged to partition large high-dimensional datasets

of trajectories on a Poincaré map generated in different dynamical models. The generated

results are analyzed to demonstrate the benefit of unsupervised learning for an informed ex-

traction of interesting trajectories arc, and establish correlation between groups of solutions

across distinct models. Eventually, arcs along the stable hyperbolic manifolds of invariant

tori are projected onto the generated result, visually demonstrating their governing nature

and the additional benefits of a data-driven summary of the solution space.

Chapter 6: a flexible methodology to design natural transfer connecting invariant tori is

presented. A technique from manifold learning is used to aid the identification of possible

intersections between connecting arcs. The method is presented for a variety of transfers

connecting quasi-periodic trajectories near resonances. Ultimately, the generated single

point transfer is used to generate families of natural transfers with similar geometries that

connect families of invariant tori.
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Chapter 7: an algorithm from reinforcement learning is leveraged to construct models for

autonomous generation of maneuver sequences. The algorithm is tested on three scenarios:

a station-keeping maneuver framework for a spacecraft near a quasi-halo trajectory in a

perturbed point mass ephemeris model in the Sun-Earth system; two orbit transfer scenarios

between periodic orbits in the Earth-Moon circular restricted three-body problem. Transfer

learning is used to reduce the required computational resources for training.

Chapter 8: the generated results are summarized, and an overview of future work recom-

mendations is presented.

1.5 Contributions

Techniques from machine learning are used in this manuscript within different phases of the

trajectory design process. Specifically, challenges associated with three phases of the design process

are identified, and distinct methods from machine learning are applied to solve them. Therefore,

the main contributions of the presented work include:

Unsupervised learning for higher-dimensional Poincaré maps

1.1) Used distributed data mining, clustering, and manifold learning to partition large datasets

composed of high-dimensional trajectories into groups of arcs of similar geometrical fea-

tures. The goal of this approach is to reduce the visualization burden of complex and

high-dimensional design spaces.

1.2) Used a data-driven approach to correlate clusters of geometrically similar trajectories across

Poincaré maps constructed in distinct dynamical models. Correlated clusters of distinct

maps generated in higher-fidelity models at different values of the independent variable.

1.3) Associated subsets of the generated partitions of the solution space to arcs along the stable

manifolds of invariant tori near L1 and L2 in the Sun-Earth circular restricted three-body

problem.



11

Manifold learning for constructing natural transfers between invariant tori

2.1) Developed a strategy for generating and correcting an initial guess for a natural transfer

between two prescribed invariant tori using a manifold learning algorithm that aids in the

identification of arcs existing in high-dimensional and large design spaces.

2.2) Generated families of natural transfers with distinct geometries between invariant tori near

resonances in the Earth-Moon circular restricted three-body problem.

Reinforcement learning for autonomous design of impulsive maneuver sequences

3.1) Formulated reinforcement learning environments for training models for autonomous station-

keeping and orbit transfer maneuver design.

3.2) Demonstrated use of reinforcement learning to train a policy for autonomous design of

sequences of impulsive maneuvers for station-keeping in a point mass ephemeris model.

Compared the trained policy with station-keeping maneuver sequences obtained through

constrained optimization.

3.3) Demonstrated use of reinforcement learning for constructing policies for autonomous design

of sequences of impulsive maneuvers for orbit transfer between prescribed solutions and

families of orbits in the Earth-Moon circular restricted three-body problem.

3.4) Demonstrated use of transfer learning to reduce the computational burden of training, and

enabling the construction of policies with challenging environment formulations.



Chapter 2

Dynamical Models

Three dynamical models are leveraged in this work to investigate the trajectory solution space

and allow the generation of arcs in multi-body systems: the circular restricted three-body problem

(CR3BP), the elliptic restricted three-body problem, and a point mass ephemeris model. The first

represents a framework where the motion of an assumed massless spacecraft is governed by the

gravitational force of two main bodies, co-rotating in a circular motion. Although representing an

approximation of the real dynamics governing the spacecraft motion, the CR3BP is often leveraged

at the early stages of the trajectory design process to investigate the available solution space.

Indeed, the dynamics described by the CR3BP requires significantly lower computational resources

for trajectory propagation with respect to higher fidelity models. Higher fidelity dynamical models,

like a point mass ephemeris model, more closely represent the real dynamics governing spacecraft

motion, and are often used to refine trajectories obtained in the lower fidelity CR3BP. In this

chapter, the dynamics of the circular restricted three-body problem is introduced in Sec. 2.1,

followed by an overview of the elliptic restricted three-body problem in Sec. 2.2, and a discussion of

a higher fidelity point mass ephemeris model in Sec. 2.3. Ultimately, Sec. 2.4 introduces a method

to transition a spacecraft state between a rotational and an inertial frame.

2.1 Circular Restricted Three-Body Problem

The equations of motion for the circular restricted three-body problem are obtained from the

application of the law of gravitation in a system of three bodies centered in the system barycenter
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[70]. A test particle or spacecraft, P3, is considered moving under the gravitational influence of

two main bodies, P1 and P2, referred to as the primaries. The mass of each body is referred to

as Mi. The position vector of the spacecraft in an inertial frame with axes X̂Ŷ Ẑ and relative

to an origin O is R = R3 = XX̂ + Y Ŷ + ZẐ, while the locations of the two primaries are

R1 = X1X̂+Y1Ŷ +Z1Ẑ and R2 = X2X̂+Y2Ŷ +Z2Ẑ. The relative position vector of body i with

respect to body j is expressed as Rij = (Xj −Xi) X̂ + (Yj − Yi) Ŷ + (Zj − Zi) Ẑ, with `2-norm

Rij = ‖Rij‖. The equations governing the motion of P3 with respect to an inertially fixed observer

can therefore be obtained as:

R̃′′ = −G̃
∑
j=1,2

M̃j(R̃3 − R̃j)

R̃3
j3

(2.1)

where G̃ = 6.6730 × 10−20 km3/(kg s2) is the universal gravitational constant, (·)′ represents the

time derivative for an inertial observer, and the tilde denotes dimensional quantities. Equation

2.1, together with the dynamics describing the position and velocity of the primaries, constitute

a system of 18 differential equations. Therefore, a total of 18 integrals of motion is necessary to

solve for the motion of each considered body. However, only 10 constants of motion exist for the

investigated system, generated from the conservation of linear momentum, angular momentum and

energy. For this reason, an analytical expression explicitly describing the motion of P3 cannot be

formulated and Eq. (2.1) can be solved via numerical propagation.

A variety of simplifying assumptions can be introduced to construct a dynamical model

that retains a good level of fidelity, allowing the generation of useful insights with a reduced

computational cost. Initially, the mass of the spacecraft is considered negligible with respect to the

two primaries. This constitutes a reasonable assumption for the cases treated in this manuscript,

since the primaries are represented by massive bodies like by the Earth, the Sun and the Moon,

while P3 is assumed as a spacecraft. Since the gravitational influence exerted by body P3 on the

primaries is negligible, the barycenter of the system is located along the segment connecting the two

primaries. It follows that the motion described by the primaries is represented by conics centered at

the system barycenter. In the formulation of the dynamics described by the CR3BP, the primaries
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are assumed following a circular motion, therefore maintaining a constant distance. Moreover, the

system barycenter is used as the origin of the inertial frame.

To favor comparison between systems with primaries of different masses and reduce ill-

conditioning among state components, the dynamical equations of the CR3BP are often expressed

with nondimensional quantities. Three characteristic quantities, associated with distance l?, mass

m? and time t?, are introduced for normalization as

l? = R̃1 + R̃2, m? = M̃1 + M̃2, t? =

√
(R̃1 + R̃2)

3

G̃(M̃1 + M̃2)
(2.2)

In the CR3BP, the characteristic distance equals the constant displacement between the two pri-

maries, the characteristic mass represents the mass of the system and the characteristic time is

computed to generate a normalized system with a unity mean motion. Also, a mass ratio µ is

introduced as

µ =
M̃2

M̃1 + M̃2

(2.3)

Examples of characteristic quantities for the Sun-Earth and the Earth-Moon systems are reported

in Table 2.1.

System t? [s] l? [km] µ

Sun-Earth 5.02264× 106 149597870 3.00348× 10−6

Earth-Moon 3.75190× 105 384400 0.01215

Table 2.1: Characteristic quantities and mass ratios for the Sun-Earth and the Earth-Moon systems.

The characteristic quantities, together with the mass ratio, support writing the nondimen-

sional equations of motion of the CR3BP in an inertial frame centered at the system barycenter.

However, the equations still manifest an explicit dependence from the nondimensional time. To

express the equations of motion in an autonomous configuration, a rotating frame with axes x̂ŷẑ

and the same origin as the inertial frame is introduced. The spacecraft location in the inertial

frame (X,Y, Z), is transformed with a rotation matrix into a nondimensional spacecraft location
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in the rotating frame (x, y, z) as:
x

y

z

 =


cos (θ) sin (θ) 0

− sin (θ) cos (θ) 0

0 0 1




X

Y

Z

 (2.4)

where θ represents the angle between the X̂- and the x̂-axis, as represented in Fig. 2.1. The

nondimensional locations of the primaries in the defined rotating frame are (−µ, 0, 0) and (1 −

µ, 0, 0). The position vectors of the spacecraft from the primaries are r1 = (x + µ)x̂ and r2 =

(x− 1 + µ)x̂.

Figure 2.1: Geometry of the circular restricted three-body problem (celestial bodies not to scale).

The constructed rotation allows to express the nondimensional equations of motion governing

the spacecraft in the rotating frame as:

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32

z̈ = −(1− µ)z

r31
− µz

r32

(2.5)
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where ˙(·) represent the time derivative for an observer in the rotating frame, while r1 = ‖r1‖ and

r2 = ‖r2‖ are the distances of the spacecraft from the primaries. The system of ordinary differential

equation expressed in Eq. (2.5) can be employed to propagate an initial spacecraft nondimensional

state in the rotational frame x = (x, y, z, ẋ, ẏ, ż) [70]. Ultimately, the dynamics expressed by

Eq. (2.5) allows the existence of three symmetries:

1) Image of the xy-plane: if a trajectory x1(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)] exists, the

mirrored trajectory with respect to the xy-plane, x2(t) = [x(t), y(t),−z(t), ẋ(t), ẏ(t),−ż(t)],

also satisfies Eq. (2.5).

2) Backward image of the xz-plane: if a trajectory x1(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]

exists, the backward trajectory, mirrored with respect to the xz-plane, x2(t) = [x(−t),

−y(−t), z(−t), ẋ(−t),−ẏ(−t), ż(−t)], also satisfies Eq. (2.5).

3) Backward image of the x-axis: if a trajectory x1(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)] exists,

the backward trajectory x2(t) = [x(−t), −y(−t),−z(−t), ẋ(−t),−ẏ(−t),−ż(−t)] mirrored

with respect to the x-axis, also satisfies Eq. (2.5)

These known symmetries can be leveraged in trajectory design scenarios to extend the investigated

solution space, without the actual computation of symmetric arcs [71].

2.1.1 Jacobi Constant

The system in Eq. (2.5) allows the existence of a constant of motion, called the Jacobi

constant. To compute this constant of motion, a pseudo-potential function can be expressed as:

U(x, y, z) =
x2 + y2

2
+

1− µ
r1

+
µ

r2
(2.6)

The system in Eq. (2.5) can be expressed in a compact notation using the pseudo-potential function:

ẍ− 2ẏ = Ux,

ÿ + 2ẋ = Uy

z̈ = Uz

(2.7)
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where the subscripts (·)i indicates the partial derivative with respect to the generic component i,

with i ∈ {x, y, z}. To obtain the expression of the Jacobi constant, the scalar product between the

system in Eq. (2.7) and the velocity (ẋ, ẏ, ż) is computed, generating:

ẍẋ+ ÿẏ + z̈ż = ẋUx + ẏUy + żUz (2.8)

This equation can be integrated, obtaining:

v2

2
=

∫
dU − U̇ (2.9)

where the term U̇ cancels since the pseudo-potential does not explicitly depends on the nondimen-

sional time, and the magnitude of the velocity v =
√
ẋ2 + ẏ2 + ż2. Additionally, Eq. (2.9) can be

rearranged to generate the Jacobi constant as:

CJ = 2U − v2 = x2 + y2 +
2(1− µ)

r1
+

2µ

r2
− ẋ2 − ẏ2 − ż2 (2.10)

Large and low values of Jacobi constant are associated with low and high energy, respectively.

Moreover, the expression in Eq. (2.10) remains constant along a spacecraft trajectory propagated

in a CR3BP model.

2.1.2 Equilibrium Points

The equations of motion for the CR3BP admits the existence of five equilibrium points in

the rotating frame, called the Lagrangian points Li, with i ∈ {1, 2, . . . , 5} and defined as L = {x ∈

R6| ẋ = 0}. The location of these points can be derived from the system in Eq. (2.7), generating:

Ux = x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
= 0

Uy = y − (1− µ)y

r31
− µy

r32
= 0

Uz = −(1− µ)z

r31
− µz

r32
= 0

(2.11)

The third equation is satisfied when z = 0, therefore locating the Lagrangian points on the plane

defined by the motion of the primaries. The first three Lagrangian points, also known as Euler-

Lagrange points, or as collinear points, can be obtained by satisfying the second equation with
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y = 0. Three regions exist on the line where an equilibrium point can be found, satisfying the

system in Eq. (2.11), namely:

(x+µ) > 0, (x−1+µ) > 0, (x+µ) > 0, (x−1+µ) < 0, (x+µ) < 0, (x−1+µ) < 0 (2.12)

The equibilibrium points in each of these three regions can be located for example with numerical

root-solving algorithms to identify a value of x that satisfies Ux = 0. The location of the remaining

two equilibrium points, also called triangular points, can be computed by setting r1 = r2 = 1 in

Eq. (2.11). Figure 2.2 depicts the location of the equilibrium points for the Earth-Moon CR3BP.

Figure 2.2: Location of the five Lagrange points and the primaries for the Earth-Moon CR3BP.

2.1.3 Zero Velocity Surfaces

At a single value of Jacobi constant, the available design space in the CR3BP can be divided

into allowable and forbidden regions. Indeed, Eq. (2.10) allows to express the magnitude of the

velocity as a function of the Jacobi constant and the pseudo-potential. Since imaginary values of

velocity do not generate feasible spacecraft states, a surface called Zero Velocity Surface (ZVS) can

be constructed as: {
(x, y, z) ∈ R3

∣∣∣x2 + y2 +
2(1− µ)

r1
+

2µ

r2
− CJ = 0

}
(2.13)
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This surface separates regions of motion where the velocity is real from regions where the velocity

is imaginary. The spacecraft cannot enter regions where the velocity magnitude takes imaginary

values. The intersection of the ZVS with the hyperplane z = 0 is often referred to as the Zero

Velocity Curve (ZVC). Figures 2.3 and 2.4 present a visualization of the ZVC and ZVS at a variety

of energy levels. In each subfigure, the two primaries and the Lagrangian points are depicted with

grey circles and magenta diamonds, respectively. In particular, Fig. 2.3 presents four subfigures,

reporting the ZVC in black and the forbidden region in cyan, in the Earth-Moon system. From

Fig. 2.3 (a) to (d), the energy level is progressively increased, or alternatively the Jacobi constant is

progressively decreased, starting from a value of CJ > CJ(L1) and ending at a value CJ < CJ(L4/5).

The same levels of energy are leveraged in Fig. 2.4 to depict the equivalent spatial representations

of the ZVS, with semi-transparent blue markers. Figures 2.3 and2.4 allow to visualize the design

space progressively available when increasing the energy level (decreasing CJ). Indeed, the motion

is allowed in three disconnected regions when CJ > CJ(L1), represented by: 1) a region near P1;

2) a region surrounding P2; 3) an external region. When CJ(L1) < CJ < CJ(L2), the bottleneck

at L1 opens, connecting the regions around the primaries. Similarly, when CJ(L2) < CJ < CJ(L3),

the bottleneck at L2 opens, allowing the spacecraft to ballistically transition between the interior

and exterior region. When CJ < CJ(L4/5) the entire z = 0 hyperplane is contained in the allowable

region, although the ZVS still limits the available design space when z 6= 0.

2.2 Elliptic Restricted Three-Body Problem

The Elliptic Restricted Three-Body Problem (ER3BP) is an approximated dynamical model

that represents a higher-fidelity formulation of the CR3BP. In the ER3BP, two primaries are as-

sumed following elliptical orbits about the system barycenter. Therefore, the distance between P1

and P2 is not constant as the primaries follow conics with a nonzero eccentricity. For example, the

eccentricity is assumed equal to eP ≈ 0.0167 in the Sun-Earth system. As a result, the primaries

only appear at fixed locations over time in a pulsating and rotating frame. Moreover, the true

anomaly, f , of the primary system is used as an independent variable, rather than time, with f = 0
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Figure 2.3: Zero-velocity curves for a set of Jacobi constants in the Earth-Moon system.

Figure 2.4: Zero-velocity surfaces for a set of Jacobi constants in the Earth-Moon system.
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associated to an initial configuration with the primaries located at the periapsis [70]. Using this

configuration, the nondimensional equations of motion for a spacecraft in the ER3BP are [70]:

x†† − 2y† = ωx

y†† + 2x† = ωy

z†† = ωz

t† = (1− e2P )3/2/(1 + eP cos (f))2

(2.14)

where the prime (·)† indicates in Eq. (2.14) a derivative with respect to the true anomaly f , and

the pseudo-potential function is:

ω(x, f) =
U(x)− z2eP cos (f)/2

1 + eP cos (f)
(2.15)

Due to the explicit dependence of Eq. (2.14) on the time-like quantity f , an integral of motion does

not exist [72].

2.3 Point Mass Ephemeris Model

A point mass ephemeris model is often used in trajectory design to generate a higher-fidelity

representation of the dynamical model, and obtain a verification of the trajectory constructed with

the restricted model. In the point mass ephemeris model used in this investigation, a spacecraft

is assumed having a negligible mass with respect to the considered celestial bodies. The motion

of the spacecraft is influenced by the gravitational attraction of Ne bodies, that are assumed to

be spherically symmetric, therefore modeled as point masses. In an inertial orthogonal frame

(X̂, Ŷ , Ẑ) with inertially-fixed origin O, the nondimensional spacecraft state is expressed as X =

[X̃, Ỹ , Z̃, ˙̃X, ˙̃Y, ˙̃Z]T . A conceptual visualization of the system configuration in the inertial frame,

supporting the point mass ephemeris model description in this section, is presented in Fig. 2.5. It

may be more convenient to express the spacecraft state and the associated dynamics with respect

to a central body Pj . Recall that in this case the relative spacecraft state is expressed as R̃j3 =(
X̃ − X̃j

)
X̂ +

(
Ỹ − Ỹj

)
Ŷ +

(
Z̃ − Z̃j

)
Ẑ, with `2-norm R̃j3 = ‖R̃j3‖. A set of second-order
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differential equations governing the dynamics of P3 in a Pj-centered J2000 inertial coordinate

frame, relative to an inertial observer, takes the form [52,73]:

R̃′′j,3 = f̃g + f̃p (2.16)

where fg represents the sum of the gravitational forces associated with the considered celestial

bodies, assumed as point masses, while fp represents the perturbative forces. If only gravitational

forces are considered in the dynamical representation, Eq. (2.16) is expressed as:

R̃′′j,3 = −G̃M̃j

R̃3
j,3

R̃j,3 + G̃

Ne∑
i=1
i6=j,3

M̃i

(
R̃3,i

R̃3
3,i

− R̃j,i

R̃3
j,i

)
(2.17)

Equations of motion of the other Ne − 1 bodies are not included in the system of equations: the

states of the considered celestial bodies are available via the JPL’s DE421 ephemeris files [52,74].

Figure 2.5: Geometry of the Ne-body problem (celestial bodies not to scale).

Additional perturbing forces, like solar radiation pressure (SRP) and spherical harmonics, can

be straightforwardly incorporated into the right-hand side of Eq. (2.17). In this work, only SRP is

included to augment the fidelity of the leveraged dynamical model. The dynamical impact of SRP
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can be included in the perturbative term fp, in the right-hand side of Eq. (2.16). In particular, the

SRP acceleration is modeled as:

fp =
kAS0
cM3

R2
0

R3
Sun,3

RSun,3 (2.18)

where M3 is the mass of the spacecraft, k is a constant reflectivity index, A is the cross-sectional

area, S0 = 1.358 × 103 W/m2 is the solar flux at R0 = 149597870 km and c = 299792.458 m/s is

the speed of light [38].

2.4 Coordinate Frame Transformations

In multi-body trajectory design, the investigated arc is often visualized in different coordinate

frames to generate useful insights into the geometrical features of the designed trajectory. Moreover,

coordinate frame transormations are employed when refining a trajectory obtained in the CR3BP

into a higher-fidelity model centered at an arbitrary body Pj . For these reasons, the methodologies

to transition a trajectory between rotating and inertial frames are highlighted in this section.

2.4.1 Transforming from Rotating to Inertial Frame in the CR3BP

Transforming a state expressed in the rotating coordinate frame into an inertial frame fixed

at an arbitrary body Pj is accomplished with a rotation matrix. Indeed, by inverting Eq. (2.4),

the spacecraft position in the inertial frame (X,Y, Z) can be retrieved from the spacecraft position

expressed in the rotating frame (x, y, z) with a rotation of θ about the Ẑ-axis as:

X

Y

Z


=



cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1





x

y

z


(2.19)

The transport theorem allows to construct the matrix for the full-state rotation. Indeed, the

time derivative of the position vector as seen by an observer in the inertial frame can be expressed

as a function of the time derivative of the position vector as seen by an observer in the rotating
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frame as:
I dr

dt
=

Rdr

dt
+ ωIR × r (2.20)

where the prescripts I(·) and R(·) are associated with the observers in the inertial and rotating

frames, and ωIR = ωẑ is the rotation rate of the rotating frame with respect to the inertial one,

with ω = 1 following the assumption of the CR3BP. Equation 2.20 can be used to express the

components of the velocity of the inertial frame as a function of the rotating state. The compact

state transformation is formulated in matrix form as:

X

Y

Z

Ẋ

Ẏ

Ż


=



cos (θ) − sin (θ) 0 0 0 0

sin (θ) cos (θ) 0 0 0 0

0 0 1 0 0 0

− sin (θ) − cos (θ) 0 cos (θ) − sin (θ) 0

cos (θ) − sin (θ) 0 sin (θ) cos (θ) 0

0 0 0 0 0 1





x

y

z

ẋ

ẏ

ż


(2.21)

To transform a spacecraft state defined in an inertial frame into a spacecraft state expressed

in the rotating frame, Eq. (2.21) is multiplied on the left-side by the inverse of the rotational matrix.

Moreover, it is often convenient to express the spacecraft state in a rotating frame centered on the

generic body Pj . For this reason, prior to applying the transformation in Eq. (2.21), the state is

translated to be centered at the required central body Pj .

2.4.2 Transforming from Rotating to ICRF Inertial Frame in Ephemeris Model

A spacecraft state defined in the rotating frame in the CR3BP can be transformed into a

spacecraft state expressed in a Pj-centered inertial frame that uses the axes of the ICRF with

a similar procedure to what detailed in Sec. 2.4.1. Specifically, at any given time, or epoch, t,

the spacecraft state in the nondimensional rotating frame is scaled in dimensional quantities using

the instantaneous characteristic quantities. The latter are obtained using Eq. (2.2), although

leveraging the instantaneous characteristic distance l?(t). Positional quantities are scaled with

l?(t), while velocities by l?(t)/t?(t). Moreover, the spacecraft state is translated to be either P1-
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or P2-centered. To help readability, this section assumes the spacecraft state is rotated in a P1-

centered inertial frame using axes from the ICRF. However, minor modifications to the detailed

procedure can be incorporated to rotate the spacecraft in a P2-centered inertial frame with axes

form the ICRF. The dimensional state in the rotating frame, centered at P1 at epoch t, is defined

as x̃1,3 ∈ R6, while the dimensional P1-centered state in the inertial frame is defined as X̃1,3 ∈ R6.

The explicit dependence of the instantaneous quantities computed in this sections is dropped to

ease readability [52].

To retrieve the instantaneous rotating matrix at epoch t, the relative position and velocity

vector of the P2 with respect to P1 are retrieved from an ephemeris file as R̃2,1 and Ṽ2,1 and are

expressed using axes from the ICRF. Three unit vectors can be defined as [52]:

ˆ̃x =
R̃2,1

R̃2,1

, ˆ̃z =
R̃2,1 × Ṽ2,1

‖R̃2,1 × Ṽ2,1‖
, ˆ̃y = ˆ̃z × ˆ̃x (2.22)

These three unit vectors, defined at t, are used to populate a first rotational matrix, allowing to

express a dimensional position vector in the P1-centered inertial frame as a function of a position

vector defined in the rotating frame as:
X̃1,3

Ỹ1,3

Z̃1,3

 =

[
ˆ̃x ˆ̃y ˆ̃z

]

x̃1,3

ỹ1,3

z̃1,3

 =


ˆ̃xx ˆ̃yx ˆ̃zx

ˆ̃xy ˆ̃yy ˆ̃zy

ˆ̃xz ˆ̃yz ˆ̃zz




x̃1,3

ỹ1,3

z̃1,3

 (2.23)

The transport theorem in Eq. (2.20) is again used to compute the rotation matrix and obtain

the velocity vector in the P1-centered inertial frame, given the state defined in the rotating frame

centered at P1. When transitioning to an inertial frame in a point mass ephemeris model, the

angular rate is not constant and equal to unity, therefore it must be computed at each epoch as:

ωIR =
‖R̃2,1 × Ṽ2,1‖

R̃2
2,1

ˆ̃z = ω ˆ̃z (2.24)

where it is noted how each quantity is instantaneously retrieved, given the current epoch t. Then,
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the full state transformation is:

X̃1,3

Ỹ1,3

Z̃1,3

˙̃X1,3

˙̃Y1,3

˙̃Z1,3


=



ˆ̃xx ˆ̃yx ˆ̃zx 0 0 0

ˆ̃xy ˆ̃yy ˆ̃zy 0 0 0

ˆ̃xz ˆ̃yz ˆ̃zz 0 0 0

ω ˆ̃yx −ω ˆ̃xx 0 ˆ̃xx ˆ̃yx ˆ̃zx

ω ˆ̃yy −ω ˆ̃xy 0 ˆ̃xy ˆ̃yy ˆ̃zy

ω ˆ̃yz −ω ˆ̃xz 0 ˆ̃xz ˆ̃yz ˆ̃zz





x̃1,3

ỹ1,3

z̃1,3

˙̃x1,3

˙̃y1,3

˙̃z1,3


(2.25)

To summarize, the procedure to transform a state in the rotational frame at a generic epoch

t into the inertial frame with axes from the ICRF, centered at P1, can be divided into three phases:

1) Translate the rotational state from the barycenter of the P1−P2 system to P1, and dimen-

sionalize it with the instantaneous characteristic quantities.

2) Generate the instantaneous unit vectors in Eq. (2.22), and the instantaneous angular rate

from Eq. (2.24).

3) Populate the rotational matrix in Eq. (2.25) and rotate the state.

To obtain a state in the rotating frame, centered at the P1-P2 barycenter, from a P1-centered state

defined in the inertial frame with axes from the ICRF, the previous steps are inverted and slighlty

modified to generate the following sequence, repeated at each epoch [52]:

1) Generate the instantaneous unit vectors in Eq. (2.22), and the instantaneous angular rate

from Eq. (2.24).

2) Populate the inverse of the rotational matrix in Eq. (2.25) and rotate the state to obtain

the dimensional state, defined in the P1-centered rotational frame (in the right-hand side

of Eq. (2.25)).

3) Translate the state from the P1-centered frame to the barycenter of the system, and scale

it to generate a nondimensional representation.
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Particular Solutions

The dynamics of the circular restricted three-body problem allows the existence of a variety

of particular solutions, including equilibrium points, periodic orbits, and quasi-periodic trajectories.

With a fixed mass ratio µ, the equilibrium solutions appear at fixed locations in the rotating frame.

Periodic and quasi-periodic solutions exist in families, some possessing unstable members that gen-

erate stable and unstable invariant manifolds. The particular solutions obtained by periodic orbits

and quasi-periodic trajectories are studied, during the early phases of the trajectory design process,

to generate insights in the available trajectory design space. Among the techniques astrodynam-

icists often leverage to investigate the solution space, Poincaré maps represent a widespread tool

to study the characteristics of higher-dimensional dynamical flows. After generating these partic-

ular solutions in low-fidelity dynamics, trajectories are often corrected in higher-fidelity models to

provide solutions retaining similar geometrical features. The refined trajectories are leveraged at

the later stages of the trajectory design process to provide an end-to-end solution that fulfills the

mission requirements. For all these reasons, this chapter provides an overview of the generation

process and the salient dynamical characteristics of the particular solutions in the CR3BP. In par-

ticular, the characteristics of the periodic solutions and the numerical correction schemes adopted

in this investigation to generate families or periodic orbits are presented in Secs. 3.1 and 3.2. Then,

a particular family of periodic orbits existing in the CR3BP, the orbits near resonances, are detailed

in Sec. 3.4. Quasi-periodic trajectories are outlined in Sec. 3.5, followed by an overview of the stable

and unstable manifolds generated from unstable periodic and quasi-periodic solutions in Sec. 3.6.
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The Poincaré maps are introduced in Sec. 3.7, before presenting an outline of the techniques used

to transition a trajectory from a low- to a higher-fidelity dynamical model in Sec. 3.8.

3.1 Periodic Orbits

The autonomous CR3BP allows the existence of a variety of periodic orbits, distributed in

continuous families. A trajectory x(t) represents a periodic orbit if:

∃T ∈ R : x(t) = x(t+ T ),∀t ∈ R (3.1)

If T exists, an infinite set of periods can satisfy the Eq. (3.1), as nT, ∀n ∈ N+. However, only the

condition n = 1 is leveraged to identify a T−periodic orbit in this investigation. In the CR3BP, the

stability of the underlying solution largely affects the nearby dynamical flows, generating nearby

structures that are often employed in trajectory design.

The stability of a periodic orbit in the CR3BP influences nearby trajectories. General insights

concerning the stability of a periodic orbit in the CR3BP can be generated by observing the

dynamical characteristics of the flow nearby the analyzed orbit. A generic periodic orbit in the

CR3BP can be defined as a sequence of points in time xR(t) ∈ R6, with an initial condition

xR(t0). From an initial perturbation δx(t0) 6= 0, a trajectory near the periodic orbit starting

from xR(t0) + δx(t0) can be generated as x(t) = xR(t) + δx(t). The equations of motion for the

perturbed trajectory can be linearized with respect to the reference solution as:

ẋ(t) = ẋR(t) + δẋ(t) = f(xR(t0) + δx(t0)) (3.2)

where f(·) is the vector field expressing the dynamics from Eq. (2.5). Equation 3.2 can be linearized

in a neighborhood of the periodic orbit xR(t) as:

ẋ(t) ≈ f(xR(t0)) +
df

dx

∣∣∣∣
x(t)

δx(t) (3.3)

This equation can be manipulated to express the dynamics of the perturbation from the reference:

ẋ(t)− f(xR(t0)) = δẋ(t) ≈ df

dx

∣∣∣∣
xR(t)

δx(t) (3.4)
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with solution that takes the form:

δx(t) = Φ(t, t0)δx(t0) (3.5)

Equation 3.5 introduces the state transition matrix (STM) as Φ(t, t0) ∈ R6×6, which linearly maps

initial state deviations δx(t0) into future state deviations δx(t), assuming linearized motion. To

retrieve the state transition matrix, Eqs. (3.4) and (3.5) are used to obtain:

Φ̇(t, t0) =
df

dx

∣∣∣∣
xR(t)

Φ(t, t0), Φ(t0, t0) = I6×6 (3.6)

where I6×6 ∈ R6×6 is the identity matrix. Equation 3.6 is usually appended to the system of six

differential equations in Eq. (2.5), defining a system of 42 ordinary differential equations. The

appended system of equations is propagated to generate the sequence of spacecraft states and state

transition matrix in time.

The stability of the underlying orbit can be assessed by leveraging Lyapunov theory. Indeed,

given a reference solution xR(t) (the periodic orbit) with an initial state xR(t0), a trajectory

x(t) can be generated with a perturbed initial condition x(t0) = xR(t0) + δx(t0). The reference

trajectory can be labeled as stable, unstable or asymptotically stable, according to:

• Stable, if ∃ δ > 0 : ‖x(t)− xR(t)‖ ≤ δ ∀t.

• Unstable, if the nearby solution x(t) naturally departs from xR(t).

• Asymptotically stable, if limt→∞ ‖x(t)− xR(t)‖ = 0.

A particular form of the propagated STM is leveraged to retrieve information concerning the

stability of the underlying orbit. The monodromy matrix, representing the STM propagated for

one period M = Φ(t0 + T, t0) , ∀ t0 ∈ R, contains information on how an initial state deviation

from the underlying periodic orbit is mapped by the linearized dynamical flow nearby the periodic

orbit after one period. Moreover, the final perturbation of the state from the reference orbit after

a number of periods l ∈ N can be decomposed leveraging the chain rule of the STM as [75]:

δx(T l) = Φ(t0 + T l, t0)δx(t0) = M lδx(t0) (3.7)
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Therefore, M scales the initial perturbation from the reference solution to obtain the final devi-

ation after one period. According to the Lyapunov stability definition, if the scaling effect of M

is such that ‖δx(T l)‖ remains contained within a small number δ, the reference orbit is stable.

Analogously, if ‖δx(T l)‖ → 0 the reference orbit is asymptotically stable, while it is unstable if

‖δx(T l)‖ is unbounded. To investigate the scaling effect ofM on the final deviation, Floquet theory

is leveraged. The STM can be decomposed as a product of two T -periodic matrices and a diagonal

matrix reporting the Floquet multipliers. For the monodromy matrix, the multiplicative T -periodic

matrices are equivalent, therefore the Floquet multipliers are associated with the eigenvalues M .

For this reason, the stability characteristic of the flow nearby a periodic orbit is studied through

the eigenvalues of the associated monodromy matrix [73,75].

Due to the sympletic nature of the CR3BP, theM matrix has three distinct pair of eigenvalues

λ. It can be demonstrated that one pair is represented by the trivial λ1,2 = ±1, associated with the

motion along the direction of the periodic orbit. The remaining two nontrivial pairs of eigenvalues

are therefore investigated to generate insights into the stability of the underlying periodic orbit. The

nontrivial pairs can be represented as either reciprocal, where λ1 = 1/λ2, or as complex conjugate,

where λ1,2 = a± ib, with a, b ∈ R. If a nontrivial pair of eigenvalues with modulus larger than unity

exists, stable and unstable modes near the periodic orbit are present, while if a nontrivial complex

conjugate pair exists with modulus equal to unity, a nearby oscillatory mode exists. The stable

and unstable modes are associated with nearby stable and unstable invariant manifolds, while the

unitary complex conjugate pair is associated with nearby quasi-periodic trajectories [70,73].

3.2 Differential Correction

A variety of techniques can be used to numerically recover a trajectory with specific charac-

teristics [73,75]. In particular, the combination of Netwon’s method and multiple shooting is used

in this manuscript to retrieve end-to-end trajectories that satisfy a predefined set of constraints.

Multiple shooting is a numerical method used for the solution of boundary value problems over

large intervals. With multiple shooting, a defined interval is divided into smaller steps: an initial
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value problem is solved at each step, and matching conditions are enforced between contiguous

steps. To implement multiple shooting, a free variable vector Vi ∈ Rn , and a constraint vector

F (Vi) ∈ Rm, are defined, with n,m ∈ R. The free variable vector of a solution to the boundary

value problem represents a zero of the constraint vector. However, an initial guess does not usually

satisfy F (Vi) = 0. For this reason, Newton’s method can be used to correct the free variable

vector Vi at the i-th iteration to obtain an updated estimate of the free variable vector, Vi+1. In

particular, the constraint vector can be expanded via Taylor series in a neighborhood of the first

guess solution as:

F (Vi+1) = F (Vi) +DF (Vi)(Vi+1 − Vi) (3.8)

where the Jacobian DF (Vi) represents the derivative of the constraint vector with respect to the

free variable vector, evaluated at the current free variable vector Vi. Assuming the new solution

satisfies F (Vi+1) = 0, a mathematical formulation for Vi+1 can be obtained inverting Eq. (3.8) as:
Vi+1 = Vi − [DF (Vi)]

−1 F (Vi) if n = m

Vi+1 = Vi −DF (Vi)
T
[
DF (Vi)DF (Vi)

T
]−1

F (Vi) if n 6= m

(3.9)

Newton’s method provides an option for updating the free variable vector, with demonstrated

quadratic convergence property when the initial guess is sufficiently near the zero of F (·) [73].

However, due to the inherent errors in solving a dynamical system using numerical integration, a

free variable vector is sufficiently close to a solution when ‖F (Vi)‖L ≤ δ, with δ ∈ R a small positive

number. The operator ‖ · ‖L represents the generic L-norm: for relatively small problems the `2-

norm is used, while for the relatively large problems the `∞-norm is preferred in this investigation.

This difference enables relatively large problems to numerically converge with small values of δ.

In a typical multiple shooting approach, the free variable vector is populated as a discrete

representation of a trajectory of interest. Consider a periodic orbit x(t), discretized into a sequence

of states, each defined as x(ti). If the states are equally spaced in time, a unique propagation time

is included in the free variable vector. All the discretized states are appended, together with the
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time separating each pair of states, to form the free variable vector as:

V = [x(t0),x(t1), . . . ,x(tn), tint]
T ∈ R6n+1 (3.10)

Then, each state is propagated for a propagation time tint to encounter the subsequent state. When

the multiple shooting framework is applied to retrieve a periodic orbit in the CR3BP, continuity

is required between neighboring arcs. However, the Jacobi constant is preserved throughout a

periodic orbit, forming an implicit constraint in this particular problem formulation. For this

reason, a component of the state periodicity constraint can be removed, and a new constraint can

be added to aid the convergence process. For example, the initial y-component can be fixed at 0, if

the underlying periodic orbit crosses the x-axis. These conditions translate into a constraint vector

taking the following form:

F (V ) =



x(t0; tint)− x(t1)

x(t1; tint)− x(t2)

...

x(tn−1; tint)− x(tn)

[x(tn; tint)− x(t0)]
∣∣
s

y(t0)


∈ R6n (3.11)

where x(t0; tint) represents the final state generated by propagating the initial state x(t0) for a time

tint. The symbol ·|s expresses that only the rows in the sequence s = {1, 2, 3, 4, 6} are used. To

retrieve a periodic orbit in the CR3BP, the system in Eq. (2.5) is used to propagate the spacecraft

states. The constraint vector is differentiated to populate the Jacobian matrix as:

DF (Vi) =



∂x(t0; tint)

∂x(t0)
−I6×6 06×6 . . . 06×6

∂x(t0; tint)

∂tint

06×6
∂x(t1; tint)

∂x(t1)
−I6×6 . . . 06×6

∂x(t1; tint)

∂tint
...

...
...

...
...

...

−I6×6
∣∣
s

05×6 05×6 . . .
∂x(tn; tint)

∂x(tn)

∣∣∣∣
s

∂x(tn; tint)

∂tint

∣∣∣∣
s

[0 1 0 0 0 0] 01×6 01×6 . . . 01×6 0


∈ R6n×6n+1

(3.12)



33

where ·|s symbolizes only the rows in the sequence s = {1, 2, 3, 4, 6} are preserved. Moreover, the

derivative of the final states with respect to the initial ones can be expressed in terms of the STM

using Eq. (3.5), while the derivatives of the propagated state with respect to the propagation time

(last column of Eq. (3.12)) represent the derivative of the state at the final time of each arc as:

∂x(ti; tint)

∂x(ti)
= Φ(ti + tint, ti),

∂x(ti; tint)

∂tint
= ẋ(ti; tint) (3.13)

The number of arcs n used to discretize the trajectory encapsulates a trade-off between accuracy

and computational efficiency. Indeed, relatively large values of n correspond to a larger dimensional

problem that requires larger computational resources, although a large system reduces the numerical

error intrinsic in the computation of the state transition matrices. In the limit case where n = 1, the

algorithm reduces to single shooting [52]. Note that if the constraint vector and the Jacobian matrix

defined in Eqs. (3.11) and (3.12) are used to retrieve a feasible orbit in the CR3BP, the second row

in Eq. (3.9) is used, since the dimension of the free variable vector V and the constraint vector

F (V ) are different. For this reason, the algorithm can potentially compute a unique member of a

1-parameter family of solutions. To construct a specific solution with prescribed characteristics, the

dimensions of the free variable vector and the constraint vector can be set as equal by introducing an

additional constraint. This strategy is also leveraged in continuation methods to retrieve elements

of the same family of solutions, as explained in Sec. 3.3.

3.3 Continuation Methods

After computing a single trajectory via a correction scheme, numerical continuation tech-

niques can be used to retrieve different members from the associated family of solutions. A variety

of numerical continuation techniques exist to retrieve elements from a family of solutions. Specifi-

cally, a more intuitive method called single-parameter continuation is first introduced in Sec. 3.3.1,

followed by the more robust pseudo-arclength approach in Sec. 3.3.2.
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3.3.1 Natural-Parameter Continuation

Natural-parameter continuation is often used in trajectory design to retrieve a finite set

of members from a family, or set, of solutions. Prior to starting the continuation scheme, an

initial solution is computed, using for example a combination of a multiple shooting scheme and

Newton’s method as presented in Sec. 3.2. To calculate another nearby solution via natural-

parameter continuation, a new solution with a generic parameter p(V ) ∈ R, is desired to possess a

value p̄, captured in the following constraint:

p(V )− p̄ = 0 (3.14)

When calculating a periodic orbit in the CR3BP, common choices for the parameter of interest are

represented, but not limited to: coordinates x, y, z, ẋ, ẏ, ż; period of the orbit T ; Jacobi constant

of the orbit CJ ; mass ratio µ. The vector F (V ) is updated to accommodate this additional con-

straint. The differential correction scheme is then applied, leveraging a previously known solution

V0 as an initial guess for a nearby solution. For convergence using Newton’s method, V0 must be

relatively close to the sought solution: this is generally achieved by using a relatively small per-

turbation δp. After converging to a second solution, the approach is repeated to generate a family

of solutions, usually maintaining the sign of δp as constant throughout the continuation process.

Although straightforward to implement and intuitive to understand, the natural-parameter contin-

uation scheme might not be capable to fully extend the family at particular values of the selected

parameter p, as for families of solutions that are non-monotonically increasing in p.

3.3.2 Pseudo-Arclength Continuation

Differently from single-parameter continuation, pseudo-arclength steps along a direction given

by the tangent to the recovered family of trajectories. The tangent direction to the family is usually

not aligned with any quantity of the family associated with a physical meaning [52]. With a previous

solution Vi−1 ∈ R6n , the tangent to the family is computed by identifying the null space of the
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Jacobian matrix evaluated at the previous solution as:

V ?
i−1 = Null(DF (Vi−1)) ∈ R6n (3.15)

with Jacobian matrix defined in Eq. (3.12) as DF (Vi−1) ∈ R6n×6n+1. Note that the tangent to

the family of solution is parallel to the null space vector V ?
i−1. Then, a new constraint is included

in the constraint vector F (V ), requiring that the difference between the new solution Vi and Vi−1

when projected onto the tangent direction equals a specified value, ∆s ∈ R. The new constraint

takes the form:

(Vi − Vi−1)TV ?
i−1 −∆s = 0 (3.16)

where (Vi − Vi−1) represents the step taken in the solution space. The dot product between the

step and the null space V ?
i−1 represents the component of the step in the solution space along the

direction of the null space. With equal dimensions of V and F (V ), Newton’s method can be

leveraged to iteratively compute a single solution that satisfies Eq. (3.12). In this investigation,

pseudo-arclength is employed to generate families of periodic orbits in the CR3BP. Members of

L1 Lyapunov and L2 halo families in the Earth-Moon CR3BP are depicted in Fig. 3.1. Pseudo-

arclength continuation is also applied to compute members of families of quasi-periodic trajectories.

Figure 3.1: Example of periodic orbits in the families of (a) planar Lyapunov orbits near L1 and
(b) northern halo orbits near L2, in the Earth-Moon CR3BP.
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3.4 Periodic Orbits Near Orbital Resonances

Orbits near resonance represent a particular type of periodic orbits that is often leveraged in

mission design in a variety of planetary systems [20–22,76]. In particular, this investigation focuses

on mean-motion or orbital resonance, shortly addressed as resonance throughout the presented

investigation. The definition of a mean-motion orbital resonance is derived from the two-body

dynamics. According to this definition, two massless bodies, B and C, are influenced in their

motion only by the gravitational influence of a point-mass central body, A. Bodies B and C are in

resonance if B completes exactly p orbits about A in the same time that C completes q revolutions

about A, with p, q ∈ N+ [3, 24]. With the definition of mean motion ñ = 2π/T̃ from the two-body

dynamical model, the resonance condition translates in a ratio between the periods of bodies B and

C in their motion around A as:

p

q
=
ñp
ñq

=
2π/T̃p

2π/T̃q
=
T̃q

T̃p
(3.17)

where the p : q resonance is classified as interior when p > q, and exterior when p < q. Often,

body B can be modeled as a spacecraft, while body C can represent another body of the considered

system: for example, for resonant orbits about the Earth, the Moon can represent body C.

In this investigation, the method highlighted by Vaquero is used to compute a resonant orbit

[24]. According to this method, the spacecraft is assumed to be initialized at the periapsis or

apoapsis of a planar resonant orbit around body A. The generic inertial state of the spacecraft

with respect to body A is X̃ = [X̃0, Ỹ0, 0, ˙̃X0,
˙̃Y0, 0]. Moreover, the initial state of the spacecraft

is assumed to lie along the x-axis. Together with the constraint of the apsis initial location, the

initial state of body B with respect to A is formulated as X̃ = [X̃0, 0, 0, 0, ˙̃Y0, 0]. To retrieve X̃0

and ˙̃y0, a set of input is identifies, comprising: the resonance integers, p and q; the mass parameter

of body A, µ̃A = G̃M̃A; the semi-major axis of body C in its motion around A, ãC ; the eccentricity

of the orbit of the spacecraft around body A, eB; the initial true anomaly of the spacecraft in its

orbit around body A, θB = kπ with k ∈ N. This set of input allows to retrieve the periods of the
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orbits followed by body C and the spacecraft around body A as:

T̃q = 2π

√
ã3C
µ̃A

, T̃p = T̃q
q

p
(3.18)

The period of body B around A, together with the input eccentricity and the initial true anomaly,

are used to generate the inertial distance and velocity. Indeed, the semi-major axis of the orbit

followed by the spacecraft is:

ãB =
3

√√√√(µ̃A T̃p
2π

)2

(3.19)

and the inertial position and velocity, corresponding to X̃0 and ˙̃Y0, are

X̃0 =
ãB(1− e2B)

1 + eB cos (θB)

˙̃Y0 =

√
2µ̃A

(
1

X̃0

− 1

2ãB

) (3.20)

To transition a resonant orbit retrieved in the two-body problem into a T -periodic orbit in the

CR3BP, bodies A and C are assigned to P1 and P2, respectively. However, body C has a non-

negligible mass in the CR3BP formulation, differently from the assumption of the two-body prob-

lem. For this reason, the ratio between the periods of the spacecraft and P2 in their motion around

P1 in the CR3BP is only approximately equal to the p : q ratio. Moreover, the resonant orbit com-

puted in the two-body dynamics is not anymore a periodic orbit when transitioned to the higher

fidelity CR3BP dynamical model. However, the original resonant orbit retrieved with the assump-

tion of the two-body problem can be used as a first guess to obtain an orbit near resonance in the

associated CR3BP. The nondimensional first guess, obtained in the inertial P1-centered frame, is

initially rotated in the P1-P2 rotating frame, centered at the P1-P2 barycenter. After rotation, the

state produces an initial guess for a periodic orbit in the rotating frame.

A variety of approaches can be leveraged to obtain an orbit near resonance in the CR3BP,

starting from a solution obtained in the two-body problem [24]. For this investigation, the contin-

uous first guess trajectory is initially split in different nodes, using a multiple shooting technique

to numerically correct for periodicity. However, converging to a periodic orbit in the CR3BP with

similar geometrical features often represents a numerically challenging task. Therefore, if the first
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attempt to obtain the orbit near resonance in the analyzed system fails, a sequence of two contin-

uation schemes is adopted to construct the orbit in the CR3BP. These two continuation schemes

can be described as:

1) Continuation in the eccentricity eB: although the required eccentricity for the spacecraft

orbit in the two-body problem assumption is specified, a close approach to one of the

primaries can significantly challenge the converge process. Therefore, the eccentricity is

varied by defining the pericenter radius of the orbit followed by the spacecraft in its orbit

about body A as:

r̃p =
ãC
ki

eB = 1− r̃p
ãB

(3.21)

with ki = {1.1, 1.2, . . . } progressively increasing until computing a periodic orbit. This

continuation scheme modifies the shape of the orbit in the two-body problem framework,

leading to a different first guess used by the multiple shooting scheme.

2) Continuation in the mass ratio µ: the resonant orbit retrieved with the two-body problem

assumption with the original eccentricity eB is utilized as an initial solution to retrieve

members of a family of orbits. In particular, natural-parameter continuation scheme is

used, and the mass ratio µ is varied from 0 till the prescribed mass ratio of the analyzed

CR3BP system.

This approach is leveraged to retrieve a variety of different orbits near selected resonances in the

CR3BP. Figure 3.2 presents a tabular visual overview of the different geometrical features of 16

members from different families of planar orbits near resonance in the Earth-Moon CR3BP. Each

row and column are associated with a specific value of p and q, respectively. In each frame, the

Earth and the Moon are reported with gray circles, the Lagrangian points as magenta diamonds,

and the periodic orbits in blue. When an orbit near resonance is retrieved in the analyzed CR3BP

system, pseudo-arclength continuation is used to generate additional members of the same family

of resonant orbits [77–79].
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Figure 3.2: Representative members of 16 families of orbits near resonance in the Earth-Moon
CR3BP. Rows and columns are associated with the p and q index, respectively.

3.5 Quasi-Periodic Trajectories

Quasi-periodic trajectories are bounded solutions that can exist in low-fidelity dynamical

models nearby periodic orbits. In their bounded motion near a periodic orbit, quasi-periodic

trajectories foliate the surface of invariant structures called n-tori, with n ∈ N+. The invariant tori

are defined by n incommensurate frequencies. In particular, this investigation focuses on planar

and spatial invariant tori governed by two fundamental frequencies: the 2-tori. Therefore, a point

on a 2-torus is defined by two angular quantities (θ1(t), θ2(t)), associated with the longitudinal

and transverse directions, with constant frequencies ω1 = θ̇1, ω2 = θ̇2. Moreover, quasi-periodic

trajectories are only retrieved in the low-fidelity CR3BP throughout this investigation, although
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they can be obtained also in higher-fidelity dynamical models [80, 81]. Quasi-periodic trajectories

exist nearby a periodic solution with a monodromy matrix possessing a pair of complex conjugate

eigenvalues with unitary modulus.

Different strategies exist to compute an approximation of an invariant torus [26]. Specifically,

the implementation developed by Jorba [27] and Gomez and Mondelo [28], later refined by Olikara

and Scheeres [29], is used in this investigation. This method can generate accurate approximations

of invariant tori with relatively small computational effort [26]. This strategy approximates an

invariant torus at multiple locations by a discrete number of states along its invariant curves v(·).

An invariant curve represents an equilibrium solution of the mapping under the flow governed by

the dynamics of the CR3BP. Specifically, when the invariant curve is propagated by the dynamical

model for a stroboscopic mapping time TS = 2π/ω1, the same invariant curve is retrieved. However,

each point along the invariant curve experiences a rotation: a state x(θ1, θ2) that initially lies on

the invariant curve experiences a rotation along the curve by an angle ρ = 2πω2/ω1 after being

propagated for the stroboscopic mapping time. The invariance condition for the single point is

mathematically written as:

R−ρv (x(θ1, θ2))− x(θ1, θ2) = 0 ∈ R6 (3.22)

where R−ρ is a rotational operator. The invariant condition in Eq. (3.22) can be extended to a set

of NQ points along the same invariant curve, improving the torus approximation. The points used

to approximate the same invariant curve are initialized with a constant relative angular distance

δθ2 along the curve, and are approximated via a truncated Fourier series. As a result, Eq. (3.22)

is extended to the set of NQ points: the operator R−ρ is transformed into a combined sequence of

matrices, R(−ρ), and the points approximating the invariant curve are aggregated into a matrix

U ∈ RNQ×6. The numerical equivalent of the invariance condition for the set of NQ points is

expressed as:

S = vec(R(−ρ)v (U(θ1, θ2))−U(θ1, θ2)) = 0 ∈ R6NQ (3.23)

where the condition is vectorized by the vec(·) operator.
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To retrieve a 2-torus existing near a periodic orbit with a pair of complex conjugate eigen-

values with unitary modulus, a location x0 along the periodic orbit is defined, corresponding to a

longitudinal angle θ1 = 0. The eigenvector vC ∈ C6 that is associated with the complex unitary

eigenvalue λC ∈ C of the monodromy matrix starting at x0 is leveraged to generate an initial guess

of the invariant curve near x0. Indeed, vC defines NQ points along an initial guess for the invariant

curve as:

x(θ1, θ2,i) = x0 + ε(Re[vC ] cos (θ2,i) + Im[vC ] sin (θ2,i)) (3.24)

where ε ∈ R is a small value, and an odd number of equally spaced values of the transverse angle θ2

are used. Moreover, the period of the underlying periodic orbit is used as an approximation for the

stroboscopic mapping time TS , while the rotational angle is approximated as ρ = Re[−i lnλC ] [75].

An initial guess is therefore constructed by appending: the approximated states along the invariant

curve x(θ1, θ2,i); the stroboscopic time TS ; and the rotational angle ρ. This initial guess can be

corrected employing a differential correction scheme [30, 75]. When applying multiple shooting to

correct for a invariant torus near a periodic orbit, a number of MQ equally-spaced locations along

θ1 can be identified. From each of these locations, an approximated invariant curve is computed,

leveraging Eq. (3.24). The states approximating the invariant curves at multiple instances along

the torus are appended, together with the rotational angle ρ and a fraction of the stroboscopic

mapping time TS/MQ, forming a free variable vector that is corrected for trajectory continuity and

to satisfy the invariance condition [30,75,82].

A variety of constraints can also been considered to retrieve a torus with particular physical or

geometrical characteristics. Indeed, with a set of NQ points along each invariant curve, and a set of

MQ invariant curves along the original orbit, the free variable vector has dimensionX ∈ R6NQMQ+2.

However, the constraint vector leveraged in this investigation uniquely solves for continuity and

invariance condition, therefore representing F (X) ∈ R6MQNQ . For this reason, two more conditions

can be defined to retrieve a unique torus. Candidate adjunct conditions comprise: defining a fixed

stroboscopic mapping time TS ; identifying a required rotational angle ρ; identifying an average
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fixed level of Jacobi constant for one invariant curve CJ . When the generated first guess converges

to a torus, the latter can be used as a first solution to retrieve other members of the family.

Indeed, thanks to the nature of the CR3BP and the dimensionality of the problem, 2-tori appear

in 2-parameter families. To populate a family with different members, methodologies like pseudo-

arclength can be leveraged [75]. This approach is applied throughout this investigation to retrieve

elements of the families of QPTs near L1 and L2 in the Sun-Earth system, as depicted in Fig. 3.3(a-

b), respectively, and to obtain members of QPTs foliating tori near resonances in the Earth-Moon

system, as visualized in Fig. 3.4.

Figure 3.3: Representative members of families of QPTs near (a) L1 and (b) L2 at CJ = 3.00088
in the Sun-Earth CR3BP.

Figure 3.4: Representative of families of QPTs near the (a) 3:2 and (b) 1:2 resonances in the
Earth-Moon system at CJ = 2.73.

Information concerning the dynamical flow near a 2-torus represents an important asset

for mission design. To generate a 2-torus in the CR3BP, the invariance condition in Eq. (3.23)

is leveraged to generate an approximation of the invariant curve. Then, the differential of the

invariance condition DS ∈ R6NQ×6NQ is used to infer the stability characteristics of the analyzed
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torus. The differential is expressed as:

DS =
(
R(−ρ)⊗ I6NQ×6NQ

)
Φ̂(t0 + TS , t0) ∈ R6NQ×6NQ (3.25)

where ⊗ is the Kronecker product operator, I6NQ×6NQ
is the identity matrix, and Φ̂(t0 + TS , t0) =

diag(Φ1(t0 + TS , t0), Φ2(t0 + TS , t0), . . . ,ΦNQ
(t0 + TS , t0)) is a block diagonal STM of the NQ

points approximating the initial invariant curve [82]. However, the approximation of the converged

invariant curve relies on the obtained transverse angles sequence θ̄2, separating each point along the

same invariant curve. The converged sequence significantly depends on the initial guess. Therefore,

a different initial placement of the states approximating the invariant curve can likely generate a

different converged solution. Likewise, a rotation by a fixed angle along the longitudinal direction

of each state of the converged invariant curve can still satisfy Eq. (3.23). These different solutions

might lead to distinct differentials of the invariance condition DS, and therefore distinct spectral

decomposition ofDS. However, Jorba demonstrates that tori in the CR3BP are reducible, therefore

the differential of the invariance condition does not depend on the sequence of transverse angles θ̄2

used to approximate the invariant curve [27,75].

Since the 2-tori in the CR3BP are reducible, the eigenvalues of the differential of the invariance

condition are placed in concentric circles on the Gauss plane [27, 75]. Each of these circles is

associated with a radius Ri equal to the modulus of a specific eigenvalue [82]. Thanks to the

symplectic nature of the CR3BP, and analogously to the periodic orbit scenario, pairs of circles with

reciprocal radii exist: if a circle with radius Ri exists in the Gauss plane reporting the eigenvalues

of the DS, then another circle with radius 1/Ri is present on the same plane. Also, similarly

to the periodic orbit case, the trivial circle with radius Ri = 1 is always present in the Gauss

plane. Ultimately, if a collection of eigenvalues of DS is located along a radius with Ri > 1, the

investigated invariant torus is unstable [27,82].
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3.6 Hyperbolic Invariant Manifolds

When the investigated periodic or quasi-periodic solution is unstable, structures called hy-

perbolic invariant manifolds exist, that are populated by trajectories that flow into or depart from

the originating solution. When the solution under investigation is unstable, both a stable and an

unstable invariant manifold exist. The stable (unstable) manifold represents a set of solutions x(t)

in the available space that approach (departs) the originating solution as t→ +∞.

To produce a subset of trajectories lying on the stable or unstable manifold of a periodic

orbit, the spectral decomposition of the monodromy matrix is leveraged. In particular, to generate a

trajectory within the stable manifold that approaches a location xPO along the investigated periodic

orbit, the stable eigenvector νs, associated with a stable eigenvalue |λs| < 1 of the monodromy

matrix, is selected. With a small displacement ε > 0, the initial state of the trajectory along the

stable manifold is retrieved as:

x = xPO ± ενs (3.26)

where the ± defines the direction of the manifold arc. To generate an arc x(t) that approaches the

investigated periodic orbit for t→ +∞, the initial state x is propagated backward in time. Similarly,

to retrieve a trajectory lying on the unstable manifold of the investigated orbit, the unstable

eigenvector νu, associated with an unstable eigenvalue |λu| > 1 of the monodromy matrix, is used.

A small number ε > 0 is then employed to perturb the state along the periodic orbit in the direction

of νu. The perturbed state is then propagated forward in time to generate a trajectory arc that

approaches the periodic orbit for t→ −∞ [3,70]. A subset of the trajectories lying on the hyperbolic

stable (unstable) manifold is obtained by perturbing multiple locations of the same periodic orbit

along the direction of the local stable (unstable) eigenvalue, and propagating backward (forward) in

time. The generated trajectories lying on numerically-generated approximation of the hyperbolic

stable or unstable manifold likely have a slightly different Jacobi constant with respect to the

originating orbit. The different energy level is due to the perturbation imparted to the state along

the orbit in the direction of the stable or unstable eigenvalue.
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Quasi-periodic trajectories foliating the surface of invariant 2-tori in the CR3BP can also

present nearby hyperbolic stable and unstable manifolds. Indeed an invariant 2-torus in the CR3BP

is unstable if the differential of the invariance condition DS presents a circle of eigenvalues with

Ri > 1 in the Gauss plane. Similarly to the periodic orbit case, a subset of trajectories lying on

the stable manifold can be computed by leveraging the spectral decomposition of the local DS. A

set of states that approximates an invariant curve along the investigated torus is defined as:

XQPT = vec(U(θ1, θ2)) ∈ R6NQ (3.27)

At the same location, the differential of the invariance condition DS is computed. To compute arcs

lying on the stable manifold on the set of points XQPT , the eigenvector Ns associated with the

real eigenvalue lying on the circle with Rs < 1 is selected. Then, a small perturbation ε is applied

on the states included into XQPT along the direction of Ns, obtaining [75]:

X = XQPT ± εNs ∈ R6NQ (3.28)

Ultimately, arcs lying on the stable manifold of the 2-tori can be retrieved by propagating X

backward in time. Similarly, the eigenvector Nu associated with the real eigenvalue of the local

DS which lies on the circle with Ru = 1/Rs > 1 is used to obtain initial states for a set of

trajectories lying on the unstable manifolds and originating near XQPT . These states are then

propagated forward in time to generate arcs lying on the local unstable manifolds. The procedure

is repeated at different locations along the investigated 2-torus to obtain a set of trajectories lying

on the stable or unstable hyperbolic manifold. Figure 3.5 provides a visual example of stable and

unstable manifolds for a quasi-halo in the Earth-Moon system.

Stable and unstable manifolds of periodic orbits and invariant tori are often used in trajectory

design to generate arcs that naturally approach or depart from a solution of interest. Moreover,

when arcs from the stable and unstable manifolds of different periodic or quasi-periodic solutions

intersect in the solution space, a heteroclinic transfer exists [83]. Heteroclinic connections naturally

transfer a spacecraft between the investigated solutions in infinite time. Perfect heteroclinic con-

nections between two solutions cannot be generated in the CR3BP due to the required infinite time
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Figure 3.5: Examples of trajectories from the (a) stable and (b) unstable manifolds of a quasi-halo
at CJ = 3.1 in the Earth-Moon system.

to construct a stable and unstable manifold arc. However, approximations of heteroclinic transfers

that naturally connect periodic orbits have been studied in a variety of systems [3, 24]. The study

of natural connections between two invariant tori represents a challenging task, due to the higher

dimensionality of the solution. Nevertheless, initial efforts from Olikara and Scheeres have already

shed lights into feasible natural connections between invariant tori, in specific scenarios [30].

3.7 Poincaré Map

Poincaré maps are a tool from dynamical system theory, often leveraged at different phases

of the trajectory design process to investigate the available solution space [3, 38]. A Poincaré map

is constructed using two elements: a dynamical flow and a surface of section. A general nonlinear

dynamical system models the dynamics governing the spacecraft motion as:

ẋ = f(x) (3.29)

with the spacecraft state x ∈ R6. From a general initial condition x0 = [x0, y0, z0, ẋ0, ẏ0, ż0] at time

t0, the spacecraft state can be integrated to a time t using the system of differential equations in

Eq. (3.29), generating a new solution x(t; t−t0), or equivalently a flow φt(x0) [83]. The propagation

is forward in time if t > t0, or backward in time when t < t0. Then, a surface of section Σ is defined
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to be everywhere transverse to the flow [83]. Assuming x0 ∈ Σ, the first intersection of the flow

φt(x0) with the same surface Σ represents the Poincaré mapping P (x0). Subsequent intersections

of the mapping with the same surface Σ reflect recursive applications of the mapping operator.

For example, the third intersection of the flow with the surface of section Σ is P (P (P (x0))),

shortly addressed in this investigation as P 3(x0). Moreover, a two-sided Poincaré map records the

intersections of the dynamical flow in both the positive and negative direction, while a one-sided

map only in one predefined direction. A conceptual representation of the Poincaré mapping is

represented in Fig. 3.6. Often, the term Poincaré map is used to refer to the set of intersections

of the investigated dynamical flow with the considered surface of section. Practically, the surface

of section Σ is chosen to possess a lower dimension with respect to the available solution space:

therefore, the discrete mapping generates a lower dimensional representation of the investigated

flow, by sampling the flow at specific locations. The reduction of dimensionality of the investigated

flow performed by the Poincaré mapping preserves the dynamical features of the original flow with

an appropriate definition of the associated hyperplane [83]. For this reason, Poincaré maps can be

used to reduce the dimensionality of a dynamical flow, simplifying the visualization process, and

enabling a simpler analysis of the dynamical characteristics of the analyzed flow.

Figure 3.6: Conceptual visualization of a Poincaré mapping.
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A surface of section Σ is usually defined through a mathematical formulation, used by the

trajectory designer for a desired application. For example, a hyperplane can be initialized as a

surface of section by fixing a coordinate in the available space. A hyperplane defined by y = 0 is

often leveraged in the planar CR3BP to investigate the solution space near periodic orbits inter-

secting the x-axis [73]. Other representations of the hyperplane comprise: stroboscopic mapping,

where the flow is sampled at locations that are equally-separated in time; apses; occurrence of a

certain event, represented by a mathematical formulation g(x) [3, 6, 84]. In particular, this work

often leverages surface of sections defined by the apse condition. In the CR3BP, an apse is defined

by the orthogonality condition between the position and velocity vector with respect to one of the

primaries. In the rotating frame, the apse condition is mathematically formulated as:

(x− xPi)ẋ+ yẏ + zż = 0 (3.30)

where xP1 = µ and xP2 = 1− µ, representing the location of the primaries along the x-axis in the

rotating frame. The sign of the time derivative of the apse condition, presented in Eq. (3.30), is

used to classify the apse as a periapsis or an apopsis. Mathematically, the definition of an apse as

a periapsis or an apoapsis is formulated as:
ẋ2 + ẏ2 + ż2 + (x− xPi)ẍ+ yÿ + zz̈ ≥ 0 if periapsis

ẋ2 + ẏ2 + ż2 + (x− xPi)ẍ+ yÿ + zz̈ ≤ 0 if apoapsis

(3.31)

Periapsis and apoapsis Poincaré maps are often leveraged for informed trajectory design in a variety

of applications [3, 84]. However, investigating a periapsis map can represent a challenging task,

especially when the available space becomes higher-dimensional, as for three-dimensional motion.

To present an overview of a Poincaré map generation process, and the challenge represented

by visualizing a higher-dimensional Poincaré map, two periapsis maps are constructed in the Sun-

Earth CR3BP. A first periapsis map is generated by seeding trajectories in a neighborhood of the

Earth at CJ = 3.00088. The set of trajectories is constructed from a grid of initial states initialized

on a periapsis map in the planar Sun-Earth CR3BP [13, 85]. Therefore, an initial state takes the
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general form x = [x0, y0, 0, ẋ0, ẏ0, 0]. The position coordinates (x, y) are selected to lie within the

zero velocity curve near the Earth, and in the region delimited by the L1 and L2 gateways. In

this region, the initial conditions are generated from a grid of 200 equally-spaced x-coordinates

between L1 and L2, and 200 equally-spaced y-coordinates in the range [−0.01, 0.01]. For each (x, y)

combination, the apse condition in Eq. (3.30) is used to retrieve the magnitude of the velocity as:

v =
√

2U − CJ (3.32)

For each (x, y) that generates a real value number for v, a velocity unit vector is initialized to

satisfy the periapsis condition in Eqs. (3.30) and (3.31). The velocity unit vector is constructed

to produce an initial prograde periapsis, generating an angular momentum vector with respect to

the Earth with a positive component along the z-axis. Each initial perigee is then propagated

for a maximum of 20 successive intersections with the periapsis map. Moreover, a trajectory is

prematurely terminated if it impacts with the Earth or it escapes from the L1 or L2 gateways. The

set of the intersections of the analyzed trajectories with the common periapsis hyperplane populates

a Poincaré map, projected in the configuration space in Fig. 3.7(a). In this map, each crossing is

reported with a black dot, the Earth as a gray central circle, and the ZVC as a blue area. In this

representation, each perigee is associated with a unique planar trajectory since the energy level is

constrained. Moreover, patterns on the map representation allow to identify dynamical features of

the investigated set of trajectories.

To demonstrate the inherent challenge of analyzing a higher-dimensional map, a periapsis

map is constructed in the spatial Sun-Earth CR3BP at CJ = 3.00088 [85]. This map is constructed

with a similar procedure as for the planar map represented in Fig. 3.7(a). However, the grid

of initial location is expanded along the z-axis to generate initial perigees in the six-dimensional

space. Therefore, an initial state takes the general form x = [x0, y0, z0, ẋ0, ẏ0, ż0] in this example.

In particular the position coordinates are selected from a grid of: 50 equally-spaced x-coordinates

between L1 and L2; 50 equally-spaced y-coordinates in the range [−0.01, 0.01]; 50 equally-spaced

z-coordinates in the range [−0.01, 0.01]. For each (x, y, z) combination, the magnitude of the
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velocity vector is generated leveraging Eq. (3.32). Solving for the velocity unit-vector, satisfying

the periapsis condition in Eqs. (3.30) and (3.31), requires enforcing a fourth constraint. For this

example, 50 equally-spaced values of ż are considered in the range [−v, v]. Then, each initial state

generating a prograde periapsis is propagated forward in time for a maximum of 5 intersections with

the periapsis surface of section. Impact with the Earth and natural escape through the L1 and L2

gateways are also considered as termination criteria. The recorded intersections with the hyperplane

are projected in the configuration space and visualized with black markers in Fig. 3.7(b). In this

figure, the boundary of the ZVS is represented with a semi-transparent blue surface. Differently

from the planar map in Fig. 3.7(a), the three-dimensional visualization does not supply a bijective

representation of the analyzed set of trajectories, due to the higher-dimensionality of the considered

scenario. Moreover, the three-dimensional representation does not allow to identify patterns in the

map representation due to data obscuration.

Figure 3.7: Example Poincaré maps reporting prograde perigees in the Sun-Earth system at CJ =
3.00088 for (a) planar and (b) spatial trajectories.

3.8 Recovering Trajectories in Higher Fidelity Models

Paths generated in low-fidelity dynamical models, such as the CR3BP, often represent valid

approximations of trajectories retrieved in higher-fidelity models, offering a rapid and reliable so-
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lution for investigating the solution space during the early stages of the trajectory design process.

After identification of arcs satisfying mission-specific requirements, trajectories generated in the

low-fidelity CR3BP are often transformed in end-to-end trajectories propagated in higher-fidelity

models. This transformation enables to incorporate secondary perturbations within the dynamical

model, as well as epoch-depending events in the trajectory path, enhancing the fidelity of the final

generated solution [86].

In this investigation, the transformation process is designed to convert a trajectory gener-

ated in the CR3BP, and represented in the nondimensional rotating frame centered at the P1-P2

barycenter, into a path propagated in a perturbed point mass ephemeris model expressed in an

inertial frame and centered at P1. A similar algorithm can be applied to generate a final trajectory

centered at P2. The transformation process is divided into two major parts, forming a nested

structure: an internal multiple-shooting and an external optimization scheme. The optimization is

leveraged in this investigation to enforce desired features on a previously converged trajectory. For

the multiple-shooting, the trajectory in the CR3BP is converted into a first guess solution for the

leveraged point mass ephemeris model. The procedure can be structured according to the following

phases, following the approach presented in Sec. 2.4.2 [86]:

1) Trajectory discretization: the path is discretized into multiple arcs, each corresponding to

a specified initial epoch. In this implementation, only the initial epoch of the original path

is selected by the user. The epochs at the beginning of the subsequent arcs are computed

leveraging the temporal separation between the different states: for example, the epoch

at the beginning of the second arc is equivalent to the initial epoch of the trajectory,

augmented by the propagation time of the first arc.

2) Translation to P1: the states at the beginning of each arc are translated into the P1-centered

rotating frame by augmenting the x-coordinate by the system-depending parameter µ.

3) State dimensionalization: the states at the beginning of each arc are dimensionalized by

multiplying the instantaneous characteristic length and time. Since the instantaneous char-
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acteristic quantities are used at this step, each initial state is likely scaled with slightly

different quantities, depending on the corresponding epoch.

4) State rotation: the dimensional states are rotated from the rotating frame to the inertial

frame, centered at P1.

5) State nondimensionalization: the states at the beginning of each arc are nondimensional-

ized, using the average characteristic quantities. This step helps construct states that have

components in relatively similar ranges, reducing numerical sensitivity and aiding the sub-

sequent correction schemes. Moreover, leveraging average characteristic quantities prevent

the introduction of epoch-dependent terms in the transformation.

6) Initial guess construction: the initial guess vector V is constructed by appending the

nondimensional states at each node, together with the associated epochs.

The generated first guess can be straightforwardly corrected leveraging a differential corrector

scheme, as presented in Sec. 3.2. In this case, the scheme introduces a constraint vector F (V ),

enforcing state and time continuity at each node. Additional constraints can also be appended to

the constraint vector, for example enforcing the initial state or the initial epoch to specified values

[52, 86]. Direct application of rapid differential corrector schemes to the problem of trajectory

refinement generally produces valid end-to-end trajectory in higher-fidelity models. However, the

problem formulation does not enforce any geometrical similarity between the original trajectory in

the CR3BP and the corrected path in the high-fidelity model. Thus, the corrected trajectory may

present slight geometrical discrepancies with respect to the originating solution, especially when

considering longer arcs near gravitationally sensitive areas. Therefore, it is sometimes preferable

to generate an end-to-end solution in the higher-fidelity model that is geometrically similar to the

starting trajectory retrieved in the CR3BP.

Among the variety of feasible approaches, this investigation leverages an optimization scheme

to generate trajectories in a higher-fidelity models that minimize the geometrical distance between
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the low- and the higher-fidelity representations of the trajectory. In particular, the optimization

scheme is designed in the traditional form:

V = arg min
V

f(V ) subject to F (V ) = 0 (3.33)

In this formulation, V incorporates the spacecraft states at each node and the associated epochs,

and it is iteratively corrected to minimize the cost function f(V ), simultaneously satisfying the

equality constraint F (V ). For this formulation, the equality constraint vector is composed the

state and time continuity constraints at each node, following a similar approach to what detailed

for the orbit correction scheme in Sec. 3.2. To generate a solution in the higher-fidelity dynamical

model that minimizes the distance from the original trajectory in the CR3BP, the cost function

f(V ) is mathematically formulated as:

f(V ) =

N∑
i=1

‖xi − x̄i(ti)‖2 (3.34)

where xi ∈ R6 represents the nondimensional spacecraft state at the i-th node with i = {1, . . . , N},

ti is the associated epoch, and ‖ · ‖ is the `2-norm. In Eq. (3.34), x̄i(ti) represents the spacecraft

state along the original solution in the CR3BP that possesses the closest distance from xi. To

compute x̄i(ti), the original trajectory in the CR3BP is first dimensionalized, leveraging the in-

stantaneous characteristic quantities at ti. Then, the entire trajectory is rotated in the P1-centered

inertial frame, and ultimately nondimensionalized using the average system-dependent character-

istic quantities, as the ones presented in Table 2.1. Then, x̄i(ti) is computed as the state from the

scaled trajectory in the inertial frame with minimum distance from xi.

Leveraging the optimization scheme in the trajectory transfer process generally produces arcs

in higher-fidelity models that closely match the geometry of the originating solution in the CR3BP,

although requiring a larger computational cost. The nested approach with multiple shooting and

optimization is leveraged throughout this work to generate trajectories in a higher-fidelity point

mass ephemeris model.



Chapter 4

Machine Learning

Machine learning (ML) refers to a set of data-driven techniques that leverage algorithms to

perform tasks for decision-making or prediction. One of the most popular definition of ML was

given by Tom Mitchell as [87–89]:

”A computer program is said to learn from experience E with respect to some
class of tasks T, and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

Techniques from machine learning are usually divided into three categories, depending on

the nature of the task T, the selected performance metric P and the leveraged experience E [88].

These three areas are unsupervised learning, supervised learning and reinforcement learning:

• Unsupervised learning corresponds to a set of techniques used to extract latent information

from an unlabeled dataset. Therefore, the dataset D = {xi}Ni=1 is constituted only by

datapoints. From a probabilistic perspective, methods from unsupervised learning try to

fit an unconditioned distribution on datapoints p(x). Examples of unsupervised learning

methods comprise clustering, manifold learning, and semi-supervised learning [88].

• Supervised learning represents the extended set of techniques that learns a mapping between

input and output f : X → Y from a dataset D = {(xi, yi)}Ni=1. From a probabilistic

perspective, supervised learning can be considered as the set of techniques that try to

fit the conditional distribution p(y|x). Examples of supervised learning methods include

classification and regression techniques [88].
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• Reinforcement learning represents a class of algorithms where an agent is trained to learn

an optimal policy by continuous interaction with an environment. A policy π(·) can be

expressed as a deterministic or stochastic process, used to generate an action a = π(x).

After every interaction with the environment, the agent can receive a reward. The role

of the agent is then to maximize the cumulative reward received during a sequence of

interactions with the environment. Different from supervised learning, the process of agent

training can be considered as learning with a critic rather than learning with a teacher

[88]. Moreover, the input-output pairs that populate the dataset D are generated through

continuous interactions between the agent and the environment during the training, and

are therefore not readily available at the beginning of the training.

This dissertation approaches different challenges of trajectory design with the aid of techniques

from each of these three categories. In particular, techniques from unsupervised and reinforce-

ment learning finds significantly more applications throughout this investigation, and are therefore

detailed in Secs. 4.1 and 4.2.

4.1 Unsupervised Learning

Unsupervised learning techniques learn latent information contained within an unlabeled

dataset without any external guidance. These techniques prevent the expensive process of labeling,

often time-consuming for large datasets, and avoid the need of dataset pre-partition, that often

introduces bias if the task is not well-defined. However, since the process is unsupervised, these

techniques might generate unpredictable behavior [88]. Example of techniques from unsupervised

learning include clustering and manifold learning, presented in Secs. 4.1.1 and 4.1.2.

4.1.1 Clustering

Clustering algorithms partition an unlabeled dataset into a finite number of groups, such

that data in the same cluster are considered similar, while data in different clusters are deemed

dissimilar [90]. Each of the N datapoints in the dataset is associated with a set of features, expressed
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by an M -dimensional feature vector, generating a dataset D ∈ RN×M . The generated clustering

result, corresponding to the constructed partitioning of the dataset D, is governed by the feature

set used to represent each datapoint. The selected features represent an application-specific task,

that needs to be engineered to grant useful information from the clustering result. Moreover, the

selected clustering algorithm influences the quality of the generated results. The wide array of

existing clustering methods is commonly classified in partitioning, density-based and hierarchical

techniques [10,12]:

• Partitioning methods: for these techniques, a prescribed number of clusters k, with k ≤ N ,

is selected prior to the clustering processing. Initially, a number of cluster centers is as-

signed leveraging algorithm-specific techniques, and then iteratively corrected based on a

distance-based metric. This class of clustering algorithms is generally effective for small-

to medium-size datasets, often generating spherical-shaped clusters in the M -dimensional

space. Examples of partitioning clustering methods include k-means, k-medoids (also

known as Partitioning Around Medoids, or PAM) and Clustering LARge Applications

(CLARA) [90–92].

• Density-based methods: these algorithms associate each datapoint in the dataset D to a

local density information, based on proximity with other datapoints. Clusters are then

constructed in each region of large density, and are separated by other clusters by the low-

density areas. Using density instead of distance allows the generation of clusters of any

shape, and the identification of outliers as noise. Examples of density-based clustering are

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Ordering

Points to Identify the Clustering Structure Although (OPTICS) [90,93,94].

• Hierarchical methods: this set of techniques structure the dataset D into a hierarchy or tree,

using a bottom-up (agglomerative) or top-down (divisive) approach. Hierarchical methods

can leverage distance or density to generate similarities between datapoints. Example of

hierarchical clustering algorithms include the Balanced Iterative Reducing and Clustering
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using Hierarchies (BIRCH) and Chameleon [90,95,96].

The Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is em-

ployed in this investigation, and falls under both the density-based and the hierarchical categories;

this algorithm is summarized in Sec. 4.1.1.1. The generated clustering result from HDBSCAN

heavily depends on the input parameters and the characteristics of the dataset. Cluster validity

indices can be used to validate the clustering result, aiding the user in the parameters selection

process, and are therefore presented in Sec. 4.1.1.2. After generating a clustering result, each group

can be summarized with a unique solution, called the representative, and presented in Sec. 4.1.1.3.

Additionally, the representative solutions can aid the user to improve the visualization of higher-

dimensional map. Eventually, an overview of distributed clustering, used to improve the computa-

tional efficiency of processing very large datasets, is highlighted in Sec. 4.1.1.4.

4.1.1.1 HDBSCAN

The Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is

a clustering algorithm that uses a density-based and hierarchical structure to group datapoints into

clusters. The algorithm is introduced by Campello et al., and converts DBSCAN into a hierarchical

method, also preventing the user selection of unintuitive parameters [14]. Once a dataset is input

to HDBSCAN, a set of labels is generated that assigns each datapoint to a distinct cluster, or label

it as noise.

In the formulation leveraged in this work, clustering with HDBSCAN is governed by two

parameters and a distance metric. Indeed, although the algorithm is a density-based approach, it

necessitates the introduction of a distance metric d : RM × RM → R to generate a definition of

density. Examples of suitable distance metrics comprise the `2-norm, the Hausdorff distance and

the Manhattan distance. The first input parameter is denoted as mpts ∈ N+, and corresponds to

the number of datapoints used to define the core distance dcore : RM → R. This is defined as the

distance of the analyzed datapoint from the (mpts - 1)-th nearest neighbor in the M -dimensional

feature vector space, computed using the selected metric d(·, ·). A large core distance is associated
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with a datapoint residing in a low-density region, while a small core distance is typical of datapoints

located in a highly dense regions. The core distance of each datapoint in the analyzed dataset allows

the computation of a mutual reachability distance, obtained for each pair of datapoints as:

dreach(xi,xj) = max {dcore(xi), dcore(xj), d(xi,xj)} (4.1)

where xi,xj ∈ D. A conceptual visualization of the core distance between two datapoints in a

planar Euclidean space is presented in Fig. 4.1, using the `2-norm as distance metric and mpts = 6.

Figure 4.1: Example of core distance used by HDBSCAN (reproduced from McInnes et al. [97]).

The mutual reachability distance between each pair of datapoints is leveraged to infer infor-

mation on the areas where the dataset possesses a large density of samples. The computed mutual

reachability distances are used to construct a tree, where each node is represented by a datapoint

and the weight connecting a pair of nodes is the associated mutual reachability distance. To provide

a computationally efficient mechanism to construct the tree, a minimum spanning tree is selected.

This tree represents a subset of the fully-connected tree, where: all nodes are connected; there

is no cycle in the structure; only the edges between nodes generating the minimum total sum of

weights are retained [90]. Then, the constructed minimum spanning tree is leveraged to generate

a hierarchical structure of the dataset with a bottom-up approach: starting from the edge with
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minimum weight, corresponding to the minimum mutual reachability distance, a dendrogram is

built by iteratively increasing the weights, until all the datapoints are collected.

HDBSCAN selects clusters based on their stability along the dendrogram. To compute the

stability associated with each cluster, the dendrogram is processed in a top-down approach. At the

top of the dendrogram, a single structure exists grouping the entire analyzed dataset. However,

by progressively decreasing the mutual reachability distance, corresponding to stepping towards

the bottom of the dendrogram, two different outcomes can be generated: a collection of points

falls off from the parent structure; the parent structure splits into more children structures. The

distinction between these two outcomes is decided by the user, through the specification of the

second input parameter: the minimum cluster size mclSize ∈ N+. If the number of points falling

from the structure is lower than the input mclSize, these points are regarded as leaving the structure,

and the parent structure is preserved in the tree. However, if at least mclSize points fall from the

parent structure or the parent structure is split into two children structures. Iterating this approach

through the dendrogram generates a condensed tree, used to obtain stability information of each

cluster [97]. Indeed, within the condensed tree, each structure is associated with a value of mutual

reachability distance of birth and death: these are related to the threshold values along the tree

where the analyzed structure started existing and where it either reached the minimum mutual

reachability of the hierarchy, or it split into two or more children structures. A stability value

for each structure is then computed from the associated mutual reachability values of birth and

death. With the condensed tree and the stability for each structure, the tree is ultimately crossed

in a bottom-up approach. Initially, all the leaf nodes are selected clusters. If the sum of the

stabilities of the children clusters is lower than the stability of the parent, the parent becomes

a selected cluster, and the previous children are unselected. The approach is continued until

reaching the root of the condensed tree, eventually returning the generated cluster differentiation

[97]. According to Campello et al., the HDBSCAN algorithm is ∼ O(MN2) in time and ∼ O(MN)

in memory storage, when the clustering is performed on an (N ×M)-dimensional dataset [14]. In

this work, the HDBSCAN algorithm is accessed through the hdbscan library in Python, with a
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computational complexity that approaches ∼ O(N log(N)) [15].

4.1.1.2 Cluster Validity Index

Tuning the input parameters used by HDBSCAN poses a challenging task on the users,

especially when possessing little to no a-priori knowledge of the underlying structure of the processed

dataset. To verify the quality of the clustering result, the user can employ different validation

criteria, often based on inspecting a single validation index. The existing validation criteria can be

generally divided into two broad categories: external and internal. An external validation criteria

is leveraged when a ground-truth solution of a dataset exists. Direct comparison with ground-truth

clustering results is however of very limited use in real-world applications, since clustering is by

definition an unsupervised learning task [16]. Conversely, internal validation criteria only leverage

the available dataset to assess the quality of the clustering result. Among the internal methods,

relative criteria seek to validate the clustering result by comparing two clustering structures and

assess which one performs better. A variety of relative criteria are available, including the Davies-

Bouldin index, the Dunn’s index and the silhoutte width criterion (SWC) [98]. Although extremely

efficient, these validation criteria are not suitable for validating density-based clustering results,

because they are specifically tailored towards globular clusters. Other researchers incorporate

graph theory or density-based concepts into cluster validation: however, these approaches struggle

with arbitrarily shaped clusters, or present unintuitive selection criteria to evaluate the quality of

the clustering result [98–101].

In an effort to define a relative validation criteria to evaluate the performance of density-

based clustering, Moulavi et al. introduce the density based clustering validation (DBCV ) index

[16]. The DBCV is governed by the maximum internal sparseness of each cluster and the highest

density regions between pairs of clusters. To compute the DBCV , assume the dataset D is divided

into l clusters Ci, with i ∈ {1, 2, . . . , l}. Then, Moulavi et al. introduce a parameterless metric,

called the all-points core distance apts,core : RM → R to represent the density information associated

with each datapoint. The selected metric reflects the density in a neighborhood of each datapoing



61

since: it considers all the points within each cluster; it is comparable to the metric distance d(·, ·)

used in the definition of the core distance in Eq. (4.1); it approximates the distance from a k-th

nearest neighbor, with k not too large [16]. Then, to compute the distance between two points in a

cluster, the same definition of mutual reachability distance detailed in Eq. (4.1) is used, although

replacing the core distance with the all-points core distance. With the generated all-points mutual

reachability distances between each pair of datapoints in each cluster, a minimum spanning tree is

generated. Note the all-points mutual reachability distances are computed only among members

of the same clusters, and each cluster is associated with a unique minimum spanning tree [15,16].

The minimum spanning trees of each cluster enclose the required information to compute the

sparseness of the clusters and the separation between clusters. Indeed, the maximum edge of the

minimum spanning tree defines the density sparseness of a cluster DSC(Ci), since it is associated

with the lowest density region. The density separation between clusters DSPC(Ci, Cj) is computed

using the minimum all-points mutual reachability distance between the minimum spanning trees

associated with two distinct clusters. Using the DSC and the DSPC, the validity index of each

cluster can be computed as [16]:

VC(Cj) =
mink∈{1,...,l},j 6=k(DSPC(Cj , Ck))−DSC(Cj)

max
[
mink∈{1,...,l},j 6=k(DSPC(Cj , Ck)), DSC(Cj)

] (4.2)

The validity index of the generated clusters are leveraged to compute the DBCV as:

DBCV =

l∑
j=1

|Cj |
|D|

VC(Cj) (4.3)

where the cardinality of a set |·| represents the total amount of points in the considered set. From the

mathematical definition in Eq. (4.3), it can be verified that −1 ≤ DBCV ≤ 1. A computationally

efficient approximations of the validity indices and the DBCV , available in the hdbscan library in

Python, are leveraged in this investigation [15].

4.1.1.3 Cluster Representative

Simultaneous visualization of the clustering result often represents a challenging task, par-

ticularly for higher-dimensional datasets. However, each cluster can be summarized by a unique
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solution, representing the features of the associated cluster. Visualizing a set of representative

solutions can significantly improve the visualization of the generated differentiation of a dataset,

aiding in the analysis of the investigated dataset. Different criteria can be leveraged to identify a

representative solution for each cluster. In this investigation, the definition of medoid of a cluster

is used to compute a representative solution for each cluster. The medoid is a member of a cluster

that is most similar to all the other members in the same cluster. This definition is particularly

advantageous to generate representative solutions of density-based clustering results [12, 90]. In

particular, the medoid for the j-th cluster Cj is computed as:

x
(j)
med = arg min

x
(j)
k ∈ Cj

|Cj |∑
i=1, i6=k

d
(
x

(j)
i , x

(j)
k

)
(4.4)

where d(·, ·) corresponds to the same metric used in the HDBSCAN algorithm [12,90].

4.1.1.4 Distributed Clustering

Clustering an entire dataset in a single step can sometimes represent a challenging or impos-

sible task. For example, an entire dataset might be unavailable on a unique machine or at a single

time, due to technical, security, or economic issues. Moreover, the dataset might be too large to

be processed in a single batch. In these situations, techniques from distributed clustering can be

used to efficiently and accurately process singular subsets of the original dataset in a distributed

approach across different computational machines and times, eventually generating a similar or

improved clustering result with respect to the centralized approach [102].

In this investigation, distributed clustering is used to aid the computational burden of clus-

tering a very large dataset. Different machines can cooperate to cluster partitions of the dataset,

at different times, later sharing their output to obtain a unique partitioning. A distributed data

mining approach usually consists of four fundamental phases [102]. In the first step, the dataset

is split into different groups which are locally clustered by different machines, generating the local

models. Then, information about the local models is shared among the different machines. This

step is designed to enhance rapid data sharing, low storage requirements, and sufficient preservation
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of the structure in each local model. For the third step, the local models are aggregated to generate

a global clustering result of the entire dataset, also called the global model. In the fourth and final

phase, the global model is returned to each machine, that assigns each datapoints to one of the

generated global cluster. Bendechache et al. demonstrate that distributed clustering scales well

with large dataset, minimizes communications between machines, and can outperform centralized

clustering in both result quality and computational time [17].

4.1.2 Dimensionality Reduction

Dimensionality reduction represents a form of unsupervised learning that tries to learn a

mapping from a high-dimensional space RM onto a low-dimensional representation f : RM → RL,

with L < M . If the learned mapping is parametric, the embedded representation z can be generated

from the high-dimensional datapoint x leveraging a set of parameters as z = f(x;θ). Parametric

embeddings are often leveraged at the early phases of deep learning pipelines for data pre-processing

[103–105]. When the mapping is not parameteric, the dimensionality reduction algorithm tries to

directly learn the embedding z for each of the high-dimensional input x: this version is often

leveraged to visualize high-dimensional datasets, representing a rapid dimensionality reduction

approach [88].

Different algorithms exist to project a high-dimensional dataset onto a lower-dimensional

representation. These algorithms are often grouped in two main categories: linear and nonlinear

dimensionality reduction techniques. Principal component analysis (PCA) represents one of the

most widely used linear dimensionality reduction algorithms [88]. In PCA, an orthogonal projection

of the high dimensional dataset is sought, using the largest eigenvectors of the empirical covariance

matrix, computed with the available dataset [88]. PCA and other linear dimensionality reduc-

tion techniques are computationally lightweight, but struggle to generate embeddings for highly

nonlinear high-dimensional datasets.

Algorithms for nonlinear dimensionality reduction are often separated in two families: au-

toencoders and manifold learning. Autoencoders comprise a wide array of solutions, including
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basic, de-noising, variational and contractive autoencoders [88,106–108] . They represent paramet-

ric dimensionality reduction techniques that learn mappings between the high- and low-dimensional

representation: they can also be employed to generate embeddings of samples that are not included

in the training set. Neural networks can be used to incorporate nonlinearities in the learned map-

ping. Autoencoders represent powerful dimensionality reduction techniques, that often require

large dataset and intensive computational resources to learn the mapping [88].

Manifold learning techniques represent nonlinear dimensionality reduction algorithm that

assume the high-dimensional dataset lies on a curved and low-dimensional manifold. A manifold

is a topological space X where each point x ∈ X has a neighborhood that is equivalent to an

M -dimensional Euclidean space. When a differentiable manifold allows an inner product opera-

tor the space is called a Reimannian manifold. Manifold learning techniques are nonparameteric

dimensionality reduction algorithms, therefore they cannot generally construct embeddings for out-

of-the-dataset samples [109]. However, they are often easier to train, and more flexible with respect

to autoencoders [88]. A variety of algorithms for manifold learning exists, distinguished by the

structure of the assumed manifold, and the associated computational strategies [88]. The most

widely used techniques include: Isomap, local linear embedding, Laplacian eigenmaps or spectral

embedding, and t-SNE [110–113]. Among the state-of-the-art solutions for nonlinear dimensionality

reduction, the Uniform Manifold Approximation and Projection (UMAP) represents a computa-

tionally lightweight solution to find a nonparameteric mapping from the high-dimensional to the

low-dimensional representation [32]. Recently, a parameteric version of UMAP has also been de-

veloped [114]. UMAP is engineered to minimize the difference in global structure between the

low-dimensional embedding and the higher-dimensional dataset. An overview of the UMAP algo-

rithm is presented in Sec. 4.1.2.1 [32].

4.1.2.1 UMAP

UMAP is a dimensionality reduction algorithm based on manifold learning. It uses topology

theory to construct a fuzzy representation of an input high-dimensional dataset. Then, UMAP
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optimizes a low-dimensional representation to minimize the topological distance from the high-

dimensional representation. With this approach, UMAP generates a bijective mapping between

the high- and low-dimensional representation. Leveraging topology in the algorithm provides a

mathematical framework that motivates the underlying approach, also aiding to solve potential

issues. In the presented investigation, three parameters govern the UMAP algorithm: nn, nc, and

mdist [32, 115].

The first step of the UMAP algorithm is the construction of a topological representation

of the high-dimensional dataset. The algorithm initially assumes the high-dimensional dataset is

uniformly distributed: the latter represents a strong assumption that can be violated on a variety

of datasets. However, UMAP also assumes the distance metric varies on the higher-dimensional

representation: regions where the high-dimensional datapoints are sparse are associated to stretched

areas, while highly dense regions are related to compressed areas. Enforcing a varying distance

metric over the dataset validates the application of the uniform distribution assumption. With these

assumptions, a local distance can be computed using Reimannian geometry, allowing each point

to be associated with its own local metric. Practically, a unit-radius hyper-sphere centered at an

isolated datapoint would look like a large sphere in an Euclidean space, while the same unit-radius

hyper-sphere would shrink for datapoints in highly dense regions. This approach generates the same

result of using an nn-neighbor graph, where the choice of nn determines the degree of estimation of

the local Reimannian metric: a small nn is associated with a very local approximation that more

accurately captures the local structure, while a large nn is associated with a broader approximation,

capturing the global structure of the dataset. The number of datapoints used by UMAP to locally

approximate the manifold, nn ∈ N+, represents a user-selected parameter. Then, UMAP converts

the graph into a fuzzy representation, decreasing the likelihood of connections between datapoints

as the radius grows. The fuzzy graph representation might generate a large number of isolated

samples for applications in high-dimensional dataset. Therefore, UMAP assumes the graph is also

locally connected. Then, fuzzy union set theory is used to generate the final weighted graph, used

as a fuzzy topological representation of the high-dimensional dataset [32,115].
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The constructed fuzzy topological representation of the dataset is leveraged in the second

phase of the UMAP algorithm to generate a similar fuzzy topological structure of a low-dimensional

representation. To uncover this representation, UMAP needs to identify the underlying low-

dimensional manifold. However, the algorithm assumes the low-dimensional manifold is the nc-

dimensional Euclidean space, where the distance metric is already defined as the Euclidean norm.

The dimensionality of the projected manifold, nc ∈ N+, represents a user-selected parameter.

Moreover, the minimum distance between two datapoints in the low-dimensional representation,

mdist ∈ N+, is selected by the user: lower values generate more compact representations, used

for example in a clustering pipeline. The low-dimensional representation is then initialized using

spectral embedding, and iteratively corrected using stochastic gradient descent by minimizing the

cross-entropy between the weights of the high- and low-dimensional graphs. The overall compu-

tational complexity of UMAP is driven by the nn-neighbor search, empirically approximated as

∼ O(N1.14), and the stochastic gradient descent step, ∼ O(nnN) [32]. In this investigation, UMAP

is accessed via the umap-learn library in Python [32].

4.2 Reinforcement Learning

Reinforcement learning comprises a set of techniques where an agent interacts with an envi-

ronment to generate a sequence of actions that optimize a final task. The actor iteratively interacts

with the environment to improve its performance in the designed task. After the training, the

agent is deployed in a scenario to actively leverage the learned decision mechanisms. The learning

and inference phases are often referred to as training and testing, respectively. During these two

phases, the agent and the environment exchange information. In particular, Fig. 4.2 depicts a con-

ceptual visualization of the agent-environment interaction: the agent receives a representation of

the environment state s ∈ S from the environment, and consequently generates an action a ∈ A(s).

Then, the obtained action is leveraged by the environment, together with the current state s, to

generate a new representation of the state s∗. The information associated with the tuple (s,a, s∗)

is used by the environment to generate a reward r ∈ R. The reward is used by the agent at the
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next iterate to measure the quality of the state-action pair (s,a) in contribution to the ultimate

task of the agent. The entire process of generating an action and a subsequent reward from a

starting state is often referred to as step, and corresponds to a single complete interaction between

the agent and the environment. The criteria used by the agent to select the current action, given

the current state representation of the environment, is called the policy π(a|s). The policy can be

represented by a deterministic function mapping the state to an action, or as a distribution over

the space of the action A(s). A stochastic policy can be used during training to allow exploration

of the action space. The same stochastic policy can then be converted into a deterministic function

at test time, where exploitation of the trained policy is preferred to generate an optimal action.

The action selection process of a policy generally continues until certain termination conditions are

met. When a termination criteria is met, the environment resets the current state representation

to a state sampled from an initial set S0. The sequence of agent-environment interactions, from

the starting step till termination criteria are met, is often referred to as an episode.

Figure 4.2: Conceptual visualization of the agent-environment interaction in reinforcement learning
(reproduced from Sutton and Barto, Fig. 3.1 [116]).

To allow a rigorous mathematical description, a reinforcement learning framework is often

formulated as a Markov Decision Process (MDP) [116]. An MDP benefits from the Markov property,

stating that the future state of the system uniquely depends on the current state and selected

action. In an MDP, the state might be considered as fully observable. Conversely, the agent cannot
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observe the full state representation in partially observable MDPs. In this investigation, each state

is assumed as fully observable, such that observation and state are used interchangeably. The

future state s∗ ∈ S and reward r ∈ R possess a well-defined continuous distribution, depending on

the current state and action, described as p(s∗, r|s,a). This distribution can be marginalized to

generate a state-transition distribution for the state s∗ as:

p(s∗|s,a) =

∫
r
p(s∗, r|s,a) (4.5)

or an expected reward, as:

r(s,a) = E [rt|st = s,at = a] =

∫
r
r

∫
s∗
p(s∗, r|s,a) (4.6)

where the subscript (·)t indicates a random variable associated with the current sample t. The

goal of an agent is to select an action that leads to the maximization of the cumulative return over

the episode. At the t-th step along an episode with total number of steps N , the return can be

represented through a weighted sum of rewards as:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γN−t−1rN =

∞∑
i=0

γirt+i+1 (4.7)

The discount factor γ ∈ [0, 1) reflects the importance of future rewards with respect to the current

step. Indeed, a discount factor γ → 0 generates a return that assigns more importance to the

immediate reward, while if γ → 1 future rewards gain more importance in the return formulation

[116]. The return in Eq. (4.7) can be represented in a recursive formulation as

Gt = rt+1 + γGt+1 (4.8)

To have a mathematical representation of the expected return, Eq. (4.7) is used to generate the

definition of the value. Two value functions are usually defined in the literature to generate infor-

mation on the expected return. The first value function, often referred to as state-value function,

corresponds to an expectation of the return conditioned on the current state. Its mathematical
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formulation for the state at time t is:

vπ(s) =E[Gt|st = s]

=E[rt+1 + γGt+1|st = s]

=

∫
a
π(a|s)

∫
s∗,r

p(s∗, r|s,a) [r + γvπ(s∗)]

(4.9)

where the subscript (·)π indicates the sequence of actions for each state of the episode is generated

from the same policy π(a|s), and the expectation is over the action, reward and future state.

Equation 4.9 expresses the recursive nature of the state-value function, and encodes the Bellman

equation for vπ. Solving the Bellman equation is at the foundation of a variety of reinforcement

learning algorithms. A second function, called the action-value function or q-value function, can

be expressed as:

qπ(s,a) = E[Gt|st = s,at = a] (4.10)

where the expectation is over the reward and future state. Differently from the state-value function,

the q-value function is conditioned on both current state and action. The practical difference is

that, for the state-value function vπ(·), the policy π(a|s) is leveraged to retrieve the actions for the

entire sequence of states in the episode, starting from st. Conversely, the q-value function might

potentially follow a different policy for the immediate action selection at; however, starting from

the subsequent state st+1, the q-value function follows the actions sampled from π(a|s). For this

reason, the relation between the state- and action-value function is:

vπ(s) =

∫
a
π(a|s)qπ(s,a)

qπ(s,a) =

∫
s∗,r

p(s∗, r|s,a) [r + γvπ(s∗)]

(4.11)

Correct estimation of the return by the value function forms the foundation of a variety of algorithms

in reinforcement learning. For problems with continuous state and action space, the value function

can be approximated with neural networks, detailed in Sec. 4.2.1. The value network can therefore

be trained through repeated interactions between the agent and the environment. However, the

agent might not possess perfect knowledge of the model governing the state transition p(s∗, r|s,a):
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in this situation the agent cannot actively leverage this information for its prediction, and the al-

gorithm used for training are referred to as model-free learning. Value-based, policy-gradient and

actor-critic approaches constitute three of the main classes of model-free learning algorithms, and

are outlined in Sec. 4.2.1. Among the state-of-the-art algorithms for training policies in continuous

state and action spaces, trust region policy optimization and the family of proximal policy opti-

mization, introduced in Sec. 4.2.3, represent alternatives to balance exploration and exploitation

during training. Eventually, a brief introduction of transfer learning in machine learning, used in

this investigation to accelerate the training in challenging environments, is introduced in Sec. 4.2.4.

4.2.1 Feedforward Neural Networks

Neural networks serve as function approximators f̂ : Rn → Rm, mapping a generic input

x ∈ Rn into an output ŷ ∈ Rm, and modeled as ŷ = f̂(x). Neural networks are constructed to

closely reproduce the authentic and unmodeled relation between input and ground truth y = f(x).

Among the different architectures of neural networks, this investigation leverages deep feedforward

networks, also called multi-layer perceptrons (MLP). Differently from recurrent architectures, feed-

forward networks do not present feedback connections, where the output is fed back as part of

the input; instead, the information flows in a single direction in feedforward networks, from the

input to the output [89]. A feedforward network, shortly referred to as neural network or network

in this investigation, is typically represented by a composition (or network) of layers, each act-

ing as a function. Given a generic input x, each layer can be associated to a mapping fi(·), with

i ∈ {1, 2, . . . , Nl}. For example, in a network with three layers, the entire mapping can be expressed

as f̂(x) = f1(f2(f3(x))). The amount of layers Nl used to approximate the mapping determines

the depth of the network. Among the different layers fi(·) of a deep network, the first and last

layers are called input and output layer. The input of the input layer represents the input of the

network x, while the output of the output layer represents the output of the network ŷ. Hidden

layers can be introduced between the input and output layer. A hidden layer receives as input the

output of the previous layer, and its output corresponds to the input of the next layer [89].
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The layers of a deep network can also be considered as a set of units, called neurons or

perceptrons, that act in parallel on the same input. Different layers can have distinct number of

neurons, each describing the width of the associated layer. The units are called neurons since they

act like neuron cells: they receive inputs from a set of neurons but they only generate a single

output. In a fully-connected feedforward network, each neuron receives as input: the output of the

neurons of the previous layer of the same network if the neuron is not part of the input layer; the

input vector x if the neuron resides in the input layer. A conceptual visualization of a multi-layer

feedforward neural network, depicted as a collection of neurons, is presented in Fig. 4.3.

Figure 4.3: Conceptual visualization of a feedforward fully-connected neural network.

Each perceptron in every layer of the neural network receives an input and generates an

output. For a unit of the initial layer, the perceptron takes the network input x and generates

the output h1 ∈ Rl. The perceptron is a deterministic version of the logistic regression, with the

following mathematical formulation:

h1 = H(h̃1) = H(Wx+ b) (4.12)

where b ∈ Rl is a bias vector, the weight matrix is W ∈ Rl×n, and H : R → {0, 1} represents

the Heaviside step function [88]. With the formulation presented in Eq. (4.12), the input is first

linearly mapped into a temporary vector h̃1 = Wx + b , leveraging the weight and bias vectors
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W and b, and then transformed in a value within the range {0, 1} by the Heaviside function

[88]. The Heaviside function can be replaced with an arbitrary differentiable activation function

φ : Rl → R. The selection of an optimal activation function is often problem-dependent, although

common representations include: sigmoid, arc tangent, rectified linear unit, softmax. With the

activation function, the mathematical manipulation performed by a perceptron becomes:

h1 = φ(wx+ b) (4.13)

Different neurons can have distinct activation functions, although neurons joining the same layer

are often associated to the same φ(·). To aid readability and compactness of the representation,

the parameters of a neural network, composed by the weights and biases of each neuron, are often

included in a single representation θ, and the associated network can be expressed as f̂(· ;θ).

Two common characteristics for activation functions used in many networks are nonlinearity

and differentiability. Nonlinearity allows to generate a mapping f̂(· ;θ) that can approximate a

nonlinear relation between input and output in a network. Differentiability allows to iteratively

train the network parameters through the definition of a loss function, expressed as:

l(y,x;θ) = l(y, ŷ) = l(y, f(x;θ)) (4.14)

The loss function l : Rm × Rm → R is a problem-dependent mapping that converts the output of

the network ŷ, and the ground truth y associated with the same input x, to a real number. Loss

functions can be characterized by assuming a defined distribution for the likelihood p(y|x), often

used in probabilistic approaches for machine learning to express a model. For neural networks used

in linear regression tasks, the likelihood can be assumed as a Gaussian distribution, generating a

loss equivalent to the mean squared error when using maximum likelihood estimation to retrieve

the parameters θ [88]. When a certain loss function is initialized, the parameters θ can be updated

in order to minimize the losses li ∈ {l(y1, ŷ1), l(y2, ŷ2), . . . , l(yN , ŷN )} over a batch of input and

output {(x1, y1), (x2, y2), . . . , (xN , yN )}. Stochastic gradient descent can be used to update θ in
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the opposite direction of maximum growth of the loss with respect to the parameters as:

θ = θ − α∂li
∂θ

(4.15)

where α is the learning rate, used to stabilize the update process and avoid large steps along the

direction of the gradient. The gradient is subtracted from the parameters to minimize the loss. The

derivative of the loss function with respect to the network parameters can be computed because of

the linear mapping of the input inside the formulation of the perceptrons, and the differentiability

of the leveraged activation functions. The process of retrieving the gradient of the loss with respect

to the network parameters, involving chains of partial derivatives, is often called backpropagation.

4.2.2 Value-Based, Policy-Gradient and Actor-Critic Methods

Reinforcement learning methods are generally categorized as: value-based, policy-gradient,

and actor-critic. This section outlines the fundamental structure and mathematical background of

these methodologies.

Value-based methods:

Value-based algorithms try to estimate the value function, usually corresponding to qπ(s,a).

The value function is often initialized at the beginning of the training process, and then iteratively

adjusted. The optimal policy at a given state si can be obtained by selecting the action that max-

imizes the value. In reinforcement learning scenarios with continuous observation space, the value

function can be approximated via a neural network qπ(s,a;χ), with parameters χ. The parame-

ters are iteratively adjusted according to a user-designed and problem-dependent loss. Usually, the

mean squared error over the considered batch of experience between the approximated value from

qπ(s,a;χ) and the true value is set to:

l =
1

N

∑
ai,si

(qπ(si,ai;χ)− qtrue(si,ai;χ)) (4.16)

where N represents the dimension of the dataset D = {(ai, si)}Ni=1. Various techniques exist to

compute the true value qtrue(si,ai;χ). If the episode associated with the pair (si,ai) is completely
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recorded in the batch D, the true value qtrue(si,ai;χ) can be computed according to Eq. (4.7)

by the cumulative reward starting at (si,ai) and following the recorded episode. If the episode

associated with the pair (si,ai) is not concluded in the batch D, or if termination criteria of

episodes are difficult to meet, the cumulative reward can be approximated as the sum of the

immediate reward at the end of each step, augmented by the value obtained from a value function

q(·) at the subsequent step. Alternative formulations of value-based approaches can simultaneously

train multiple and distinct value functions to reduce the maximization biases [56, 116]. However,

these approaches can generally be leveraged when the action space is discrete and the observation

space is extremely vast. Prior training with supervised learning or mechanisms like replay-buffer

can be used to improve the quality of the training process [57,58]

Policy-gradient methods:

Unlike value-based mechanisms, policy-gradient algorithms directly learn a policy π(a|s).

The policy is often represented as a stochastic distribution, that encourages exploration early on

in the training process and it never becomes deterministic. For policy-gradient methods with con-

tinuous action and state space, the policy can be approximated with a neural network π(a|s;θ),

with parameters θ. Approximating with a neural network structure allows the policy to be dif-

ferentiable. The parameters are usually initialized at the beginning of the learning process and

iteratively updated when a sufficient batch of experiences is available. A loss function used to

update a policy-gradient method is based on the value at each state as:

lP (si,θ) = vπ(si) (4.17)

Differently from the value-based approach where the loss function is minimized, in the case of

Eq. (4.17) the policy parameters are iteratively adjusted to maximize the cost. Gradient ascent

can be used to adjust θ when a sufficient batch of experiences is available. It can be demonstrated

through the policy gradient theorem that the gradient of the loss in Eq. (4.17) is [116]:

∂lP
∂θ

=
∂vπ(si)

∂θ
= E

[
Gt

1

π(at|st;θ)

∂π(at|st;θ)

∂θ

]
(4.18)
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This expression enables the practical generation of an approximation of the gradient by sampling

the argument of the expectation. Indeed, the single parameter update can be executed as:

θi+1 = θi + αGt
1

π(at|st;θ)

∂π(at|st;θ)

∂θ
(4.19)

where α is the learning rate. The update algorithm in Eq. (4.19) is often called REINFORCE,

and represents a basic policy-based algorithm [116]. Policy-gradient algorithms are generally more

sample-efficient than value-based methods, since they are often implemented in an on-policy con-

figuration, where the experiences are retrieved by leveraging the current policy to determine the

action at given the state st. Conversely, value-based approaches are more stable since they encour-

age larger exploration of the state and action space and are generally more data efficient [117].

Actor-critic methods:

Different variations of the basic policy-gradient formulation for parametrized policies in

Eq. (4.19) exist. For example, it can be demonstrated that any function that is not dependent

on the action can be leveraged as a baseline for the return Gt in Eq. (4.19). If an approximation

of the value vπ(s;χ) is leveraged as a baseline, the update can be formulated as:

θi+1 = θi + α(Gt − vπ(st;χ))
1

π(at|st;θ)

∂π(at|st;θ)

∂θ
(4.20)

which corresponds to an algorithm called REINFORCE with baseline [116]. Equation 4.20 typically

improves the performance of the trained policy with respect to the basic formulation in Eq. (4.19),

by lowering the variance of the gradient [57]. Moreover, the difference between return and value

used to scale the gradient of the policy in Eq. (4.20) can also be interpreted as the advantage of

taking the action at at the state st. Indeed, Gt represents the estimate of qπ(at, st), defining the

advantage as:

A(at, st) = qπ(at, st)− vπ(st) (4.21)

The update rule in Eq. (4.20) requires the definition and training of an approximation of the

value function vπ(s;χ). The latter can be simultaneously updated with the policy, using for example

the loss function in Eq. (4.16), reformulated for the state-value function. The update rule of the
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REINFORCE with baseline requires the definition and storage of a stochastic policy π(at|st;θ),

together with a value function vπ(s;χ). In literature, this approach is still considered as a policy-

gradient approach: a stochastic policy is directly stored and iteratively corrected, eliminating the

need to retrieve the policy from the maximization of the value function [116]. A third category

of reinforcement learning algorithms is generated when the formulation in Eq. (4.20) is slightly

modified. Indeed, the return Gt can also be approximated, using a first-order truncation as:

Gt = rt+1 + γrt+2 + · · ·+ γN−t−1rN ≈ rt+1 + γvπ(st+1;χ) (4.22)

The approximation in Eq. (4.22) generates a new family of algorithms known as actor-critic meth-

ods. The difference between an actor-critic formulation and a policy-gradient approach lies in the

formulation of Eqs. (4.20) and (4.22). Indeed, an actor-critic method learns an approximation of

the value function, similar to what a policy-gradient method can do. However, the approximated

value function is also used in actor-critic methods for bootstrapping: the return is formulated in

part from an existing approximation of the value. Actor-critic formulations are often preferred in

state-of-the-art applications of reinforcement learning to a variety of problems, thanks to their wide

applicability and convergence properties [118,119]. State-of-the art actor-critic algorithms also in-

corporate additional features for improving policy convergence properties and performance. For ex-

ample, multiple agents can be simultaneously leveraged to generate experiences in an asynchronous

approach following either identical, or distinct policies. With an asynchronous implementation,

the policy can then be corrected by sampling from the generated experiences, typically generat-

ing improved performances and convergence properties. When combined with a formulation using

advantage function in the update rule, as in Eq. (4.20), these algorithms are called asynchronous

advantage actor-critic (A3C) [57,120].

4.2.3 Trust Region and Proximal Policy Optimization

Basic policy-gradient or actor-critic methods based on policy update rules generally allow to

train policies with good performances. However, the update rule might lead to unstable behavior
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for on-policy methods. Indeed, the formulation of the update in Eq. (4.20) cannot prevent from

large variations of the policy parameters θ, especially when the same experiences are reused in

multiple batches. Two state-of-the-art solutions have been recently presented that counteract the

destabilizing behavior of regular policy gradient approaches.

Trust Region Policy Optimization

Trust region policy optimization (TRPO) is an approach presented by Schulman et al. that

reformulates the optimization problem for the policy parameters θ as a constrained optimization.

TRPO is an on-policy method, that can be used in either discrete or continuous action spaces. In

particular, the problem is outlined as:

θ = arg max
θ

LTRPO(θ,θold) subject to D̃KL(θ,θold) ≤ δ (4.23)

where θ and θold represent the current and old values of the parameters of the policy, δ ∈ R is a

small boundary number defining the trust region, L(θ,θold) is a surrogate advantage cost function,

and D̃KL(θ,θold) represents an average KL-divergence. In particular, the surrogate cost function

in Eq. (4.23) is expressed as [121,122]:

LTRPO(θ,θold) = Ê
[
π(at|st;θ)

π(at|st;θold)
Ât

]
(4.24)

representing the estimated expectation over a ratio of two policies, scaled by an estimated advantage

function. The estimated expectation Ê[·] is leveraged in a stochastic gradient descent approach to

approximate the real expectation E[·] with the sampled experiences. The two policies appearing

in the objective function formulation in Eq. (4.24) are associated with distinct iterations of the

same parametrization, θ and θold. Ultimately, the advantage function is approximated with the

term Ât ≈ A(at, st), since the estimated value-function is leveraged. The surrogate cost function

represents a measure of how the current policy performs with respect to the old policy.

The constraint in the optimization problem formulation in Eq. (4.23) is expressed as:

D̃KL(θ,θold) = Ê [DKL(π(·|st;θold), π(·|st;θ))] (4.25)
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where DKL represents the Kullback-Leibler divergence, a measure of the difference between dis-

tributions based on the entropy. The nonlinear inequality constraint provides a boundary on the

possible update of the parameters θ, by constraining the distance between the policy before and

after the update. The constrained optimization in Eq. (4.23) is solved by Schulman et al. lever-

aging a first order expansion of the surrogate cost function and a quadratic approximation of the

constraint in a neighborhood of θold. It can be demonstrated that the gradient of the surrogate

cost function is identical to the policy gradient in Eq. (4.18). Using the Lagrange form of the opti-

mization problem in Eq. (4.23), and the conjugate gradient algorithm, TRPO provides an update

rule for the parameters θ that prevents from destabilization of the policy [122].

Proximal Policy Optimization

Algorithms from the proximal policy optimization family are introduced by Schulman et al.

to overcome the hurdle of defining the trust region value δ [117]. Among the proximal policy

optimization algorithms, this investigation focuses on the clipped version, which is referred to

as PPO throughout the manuscript. Specifically, the selected objective function overcomes the

necessity of predefining a trust region by clipping the surrogate cost function as [123]:

LCLIP(θ,θold) = Ê
[
min

(
π(at|st;θ)

π(at|st;θold)
Ât, g(ε, Ât)

)]
(4.26)

where ε represents the clipping factor and the function g(ε, Ât) is [123]:

g(ε, Ât) =


(1 + ε)Ât if Ât ≥ 0

(1− ε)Ât if Ât < 0

(4.27)

With the formulation in Eqs. (4.26) and (4.27), the potential step along the gradient is clipped by

g(ε, Ât): if the advantage is positive (Ât ≥ 0), the policy ratio is clipped by the upper boundary

(1 + ε); if the advantage is negative (Ât < 0), the policy ratio is clipped by the lower boundary

(1− ε). In both cases the clipping formulation prevents the new policy to step too far from the old

policy, eliminating dramatic changes in the parameters [123]. To aid convergence of the policy, PPO

is implemented in this investigation in an A3C configuration, using an unconstrained maximization



79

scheme. In particular, a composite loss function is constructed by adding three loss terms as:

LPPO(θ,χ,θold) = LCLIP(θ,χ,θold)− c1LVF(χ) + c2L
S(θ) (4.28)

where c1 and c2 represent two relative scaling factors, weighting the impact of each loss term.

In particular, LCLIP(θ,χ,θold) represents the PPO loss function in Eq. (4.26), with the explicit

dependence on the value network’s parameters χ from the estimated advantage, since an actor-

critic configuration is used. The second loss term serves to improve the approximation of the value

function throughout the learning process as:

LVF(χ) = Ê
[
(vπ(st;χ)− rt)2

]
(4.29)

The last term in the composite loss used in this investigation for PPO is:

LS(θ) = Ê [S[π(·|· ;θ)](st)] (4.30)

corresponding to the average sampled entropy computed on the experienced steps. This loss term

encourages exploration of the policy. Ultimately, the generalized advantage estimation (GAE)

formulation is leveraged in this investigation to compute the estimated advantage in Eq. (4.26) as:

A(st,at) ≈ Âπt (st,at) =

N∑
`=0

(γλ)`δt+` (4.31)

where δt is the temporal difference, defined as δt = rt − vπ(st) + γvπ(st+1), and λ is the GAE

factor. The generalized advantage estimation allows to considerably decrease variance, maintaining

a sufficient level of bias [124].

4.2.4 Transfer Learning

Transfer learning is leveraged to learn an optimal policy in a target environment, using the

combined information associated with the same target environment, and a source environment

[125]. Regular reinforcement learning can be conceived as a form of transfer learning without a

source environment. Transfer learning is generally used for both supervised and reinforcement

learning tasks [58,125]. During the transfer learning process, the difference between the target and
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the source environments can be associated to any of the defining features of an MDP, comprising:

state; action; reward; transition dynamics of the environment; and initial state set. In this investi-

gation, two examples of transfer learning are outlined, where the target and source environments

differ for: the dynamical model governing the state transition p(s∗, r|s,a); the reward formulation

r(s,a). Moreover, different knowledge can be transferred from the source to the target environ-

ments, including: the dynamics, the policy, the value. In this investigation, the approximations

generated by the neural networks associated with the policy and the value are transferred between

environments. This approach is often referred to as policy transfer, where the target agent initially

follows a teacher policy that is pretrained with the source environment [125].



Chapter 5

Unsupervised Learning for Higher-Dimensional Poincaré Maps

Poincaré maps represent a fundamental tool leveraged during different phases of the trajec-

tory design process [2,3,126]. A well-constructed Poincaré map can reduce the dimensionality of the

problem, aiding the visualization of large trajectory design spaces. However, Poincaré maps can be

challenging to investigate when the generating dynamical flow is high-dimensional. In these cases,

a two-dimensional representation of the map might not capture the entire design space, therefore

generating potential loss of information. Additionally, a spatial representation of the crossings of

a higher-dimensional Poincaré map can suffer from phenomenon as data obscuration, that com-

plicate the analysis process. Previous contributions to the problem of analysis and visualization

of higher-dimensional Poincaré maps have focused on incorporating additional dimensions in the

map visualization process, including analytical and user-defined separation criteria, and introducing

constraints to reduce the dimensionality of the map [3, 7]. These approaches address the problem

of trajectory uniqueness, although some datasets may still be challenging to analyze.

An alternative solution for visualization of a high-dimensional Poincaré map has been re-

cently introduced by Bosanac, using a technique from unsupervised learning [13]. This method

uses clustering to group trajectories generating crossings on a planar periapsis Poincaré map in

a completely unsupervised approach. This technique is used to generate autonomous partition-

ing of trajectories based on geometrical similarity, without introducing additional constraints or

augmenting the dimensionality of the visualization. Moreover, clustering allows the generation of

representative solutions that can additionally reduce the visualization burden of high-dimensional
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spaces. This chapter builds upon the approach demonstrated by Bosanac, with a focus on using

the unsupervised learning approach to autonomously partition high-dimensional Poincaré maps.

Specifically, three distinct examples are presented, introducing different techniques for clustering

very large datasets in a distributed data mining approach. First, an example of distributed clus-

tering, leveraging cluster proximity in the phase space, is presented and analyzed in Sec. 5.1. The

approach is refined in Sec. 5.2, using a technique from manifold learning to group similar trajectories

and clusters across different dynamical models. Eventually, Sec. 5.3 focuses on using a clustering

summary to demonstrate the capability of data-driven approaches to visually investigate natural

transport mechanisms.

5.1 Distributed Clustering for Spatial Poincaré Maps

In this section, a methodology is presented to cluster a set of spatial trajectories based on

geometrical similarity. A distributed clustering technique, inspired by tomography, is presented in

Sec. 5.1.1 to reduce the required computational resources associated with clustering a large dataset.

This procedure is demonstrated in Sec. 5.1.2 in the context of a spatial Poincaré map generated in

the spatial autonomous Sun-Earth CR3BP. Eventually, the generated results are compared with a

partitioned large dataset, clustered in a single batch.

5.1.1 Method Overview

To efficiently cluster a set of spatial trajectories based on geometrical similarity, a distributed

clustering approach that is inspired by tomography is presented. First, distinct sets of initial con-

ditions are defined on multiple hyperplanes, and the crossings of these trajectories with a Poincaré

map are grouped into datasets. Each dataset of crossings is separately processed in a distributed

approach to generate local models. Then, clusters across distinct partitions are compared, and

aggregated based on their regions of existence in the phase space. The technical approach for

implementing this clustering procedure is summarized as follows:

Partitioning the available design space: different sets of initial conditions are defined within
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the available design space, as a means to reduce the computational efforts of clustering a large

dataset. Among the variety of existing approaches, initial conditions can be seeded at the inter-

section between a surface of section, defining a Poincaré map, and a set of additional hyperplanes.

For trajectories exhibiting spatial motion in the CR3BP, possible definitions of these additional

hyperplanes comprise sets of mutually orthogonal hyperplanes passing through the location of

the smaller primary, such as z = 0, y = 0 and x = 1 − µ. Alternative examples include a set of

parallel but distinct hyperplanes.

Seeding initial conditions in each partition: sets of initial conditions are seeded on the

intersections between a user-defined surface of section, leveraged to define the Poincaré map, and

each of the additional hyperplanes corresponding to the different partitions. These initial condi-

tions represent spacecraft states, leveraged in the next phases of this method to generate a set of

trajectories. Additional constraints can be incorporated to facilitate the partitioning, reducing

the dimensionality of the design space. For example, candidate surface of sections can correspond

to perigee maps, defined as in Eqs. (3.30) and (3.31). Also, valid constraints can be introduced

to limit the available design space: for trajectories in the Earth vicinity in the spatial CR3BP,

initial conditions can be seeded between the L1 and L2 gateways using a similar procedure to the

approach outlined in Sec. 3.7 for a planar map, with initial conditions at a fixed value of Jacobi

constant, and with initial ż = 0. In the example presented in this investigation, a grid in the

position space is defined to initialize a set of spacecraft states populating a periapsis map with

initial ż = 0: when the initial conditions are seeded on a x = 1−µ hyperplane, the grid is popu-

lated using Ny equally-spaced values in [ymin, ymax] and Nz equally-spaced values in [zmin, zmax];

analogously, when a hyperplane y = 0 is used, Nx equally-spaced values in [xmin, xmax] and Nz

equally-spaced values in [zmin, zmax] are used to seed the initial conditions. For each initial condi-

tion defined in configuration space, the magnitude of the velocity is generated as v =
√

2U − CJ .

If v possesses a real value, the considered spacecraft location is associated to a point in configu-

ration space residing within the limits of the zero velocity surface, at the specified energy value.



84

Eventually, the direction of the velocity vector is computed by leveraging the periapsis condition.

Generating the datasets: for the set of initial conditions populating the i-th partition, the as-

sociated trajectories are propagated in the Sun-Earth CR3BP until satisfying one of the following

termination criteria: completing a total of Nret apses with respect to the Earth, corresponding

to Nret/2 subsequent perigees; passing within a distance of 10−5 from the Earth in dimensionless

units; or passing through either the L1 or L2 gateways. Each trajectory generated from the i-th

set and performing at least two apses is then converted to an M -dimensional feature vectors. To

facilitate a geometrical comparison between arcs, the feature vectors are designed to approximate

each trajectory by sampling the arc at specific locations. The designed sampling has to suffi-

ciently retain the geometrical characteristics of the summarized arc, simultaneously allowing a

computationally efficient processing of a dataset of feature vectors. Different approaches exist to

extract information from trajectories and generate a dissimilarity measure between two sample

arcs [127]: to enhance computational efficiency, this investigation samples trajectories at the apse

locations, and a straightforward `2-norm is used to obtain a measure of geometrical difference

between feature vectors. This approach is preferred for its computational efficiency, and the

already confirmed applicability to a similar scenario in the planar Sun-Earth CR3BP by Bosanac

[13]. Alternative and traditional approaches for spatiotemporal trajectory comparison might

also encode the geometric difference between the summarized arcs, although requiring larger

computational effort [127]. Alternative representations are the scope of future research. For the

presented implementation, the trajectories are summarized via a feature vector that reflects a

sequence of perigees and apogees, as outlined in Sec. 3.7. Inspired by the approach presented

by Bosanac, each trajectory arc is encoded into a feature vector tj , including successive returns

of the trajectory to an apsis Poincaré map about the secondary in the Sun-Earth CR3BP. Each

feature vector is constructed as a sequence of scaled sub-feature vectors, each incorporating the

information of a crossed apsis. In particular, a sample feature vector, encoding the information
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of a specific arc, is mathematically described as:

tj = [sj,0, sj,1, . . . , sj,Nret+1]
T ∈ R14Nret (5.1)

where the vector sj,k encodes the information about the k-th apsis of the j-th trajectory relative

to the Earth [13]. Each apsis vector sj,k incorporates spatiotemporal information of the recorded

apsis, and it is mathematically formulated as:

sj,k =
[
t̃j,k, x̃j,k, ỹj,k, z̃j,k, ˙̃xj,k, ˙̃yj,k, ˙̃zj,k

]T ∈ R7 (5.2)

where the tilde operator (̃·) indicates the use of normalization, used to reduce ill-conditioning

between the components of the feature vector, that are scaled within the range [−1, 1]. In

particular, t̃j,k refers to the time of the recorded apsis from the start of the trajectory, and

normalized by the total propagation time along the trajectory. Then, x̃j,k, ỹj,k, z̃j,k, ˙̃xj,k, ˙̃yj,k,

and ˙̃zj,k are the position and velocity components of the recorded apsis in the rotating frame and

with respect to the Earth, normalized using the minimum and maximum value for each column.

If an arc is prematurely terminated at the k-th apsis, a placeholder si,o = ± [0, 10, 0, 0, 0, 0, 0]T

is used for each k ≤ o ≤ Nret + 1, with positive sign if o mod 2 = 1. This placeholder is inspired

by the work from Bosanac on the planar map in the Sun-Earth system, and it is used to generate

sufficient differentiation from trajectories that do not present premature termination, and to

maintain a constant feature vector length across the dataset [13]. Then, the set of trajectories

converted in feature vectors is grouped to form a collection of datasets Ti, i ∈ {1, 2, . . . , p}, each

associated with one partition and corresponding to a hyperplane.

Clustering each partition: each of the p generated partitions is individually clustered using

HDBSCAN. The selected clustering algorithm provides an ideal approach for differentiating tra-

jectories based on similarity due to the small to no a-priori knowledge of the trajectory space.

However, the HDBSCAN algorithm is governed by two input parameters: the number of data-

points used to define the core distance, mpts, and the minimum cluster size mclSize. Moreover,

the `2-norm is selected as a similarity measure between feature vectors. For this investigation, an
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optimal choice of parameters is assumed to generate a clustering result with: large DBCV , the

validity index detailed in Sec. 4.1.1.2, and introduced by Moulavi et al. [16]; a low percentage

of trajectories identified as noise; a moderate amount of clusters, avoiding either an excessively

large or small amount of groups. The selection criteria are inspired by the work from Bosanac

[13]. To reduce the user workload, the designed method seeks an optimal combination of input

parameters for only one partition. Then, to ensure consistency across the dataset, the same

combination is leveraged to cluster the remaining p− 1 partitions.

Aggregate clusters across partitioned datasets: the clusters associated with each partition

are used to identify a minimal set of unique clusters across the partitions. Aggregation of clusters

across distinct partitions is performed by locating intersections between clusters in the phase

space. If a cluster from one partition does not intersect a cluster of another partition, it is

considered a standalone cluster. Noise points across partitions are merged into a single set.

The presented procedure is demonstrated in the context of a prograde periapsis Poincaré map

describing spatial motion in the Sun-Earth CR3BP at a value of Jacobi constant CJ = 3.00088.

The initial conditions are seeded in the Earth proximity, with initial ż = 0 to aid visualization and

allow uniqueness of the representation for a three-dimensional projection. Eventually, the clustering

result is validated through a visual comparison with a more computationally-intensive clustering

result of the full dataset associated with the Poincaré map.

5.1.2 Clustering Spatial Maps in the Sun-Earth CR3BP at CJ = 3.00088

To demonstrate the presented approach, an example is investigated for clustering a set of

trajectories initialized on a prograde periapsis map, and propagated in the Sun-Earth CR3BP at a

value of Jacobi constant CJ = 3.00088. Three partitions of the dataset are generated by initializing

spacecraft states at the intersections of the surface of section, used to define the map, with three

additional hyperplanes. The first dataset corresponds to a set of perigees that are initialized on

the plane of the primaries, mathematically formulated as z = 0: the trajectories propagated from
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perigees on this hyperplane remain in the plane of the primaries due to leveraged dynamical model.

The second dataset is populated with initial perigees lying on the y = 0 hyperplane. The last dataset

is populated with initial perigees located on the x = 1 − µ hyperplane. Moreover, the spacecraft

states constructed on each hyperplane are constrained with an initial ż = 0. The initial perigees are

seeded using: a number Nx = 301 of equally-spaced x-coordinates between the locations of L1 and

L2; a number Ny = 301 of equally-spaced y-coordinates in the range [−0.01, 0.01]; and a number

Nz = 301 of equally-spaced y-coordinates in the range [−0.01, 0.01].

Dataset Constraint [mpts, mclSize] |Ti| Nclusters DBCV Noise level %

1 z = 0 [50, 100] 31544 14 0.20177 6.21

2 y = 0 [50, 100] 26108 25 0.10868 3.99

3 x = 1− µ [50, 100] 18639 8 0.18575 0.22

Table 5.1: HDBSCAN parameters and results for each partition of the dataset used to generate a
prograde periapsis map.

Trajectories in each partition are generated by propagating the associated initial perigees

forward in time for up to six subsequent apses with respect to the Earth, in the Sun-Earth CR3BP.

The intersections of the propagated trajectories with a periapsis map centered at the Earth are

recorded, and used to populate the feature vectors. The feature vectors, summarizing the geome-

try of the different arcs, are grouped for each partition and form a collection of datasets Ti, with

i ∈ {1, 2, 3}. Next, HDBSCAN is used along with the input parameters listed in Table 5.1 to

perform clustering on each of the individual partitions of dataset. The input parameters selected

in Table 5.1 reflect relatively large values of DBCV , a moderate number of clusters, and a reduced

percentage of datapoints evaluated as noise for each partition: these parameters are selected accord-

ing to a clustering result of a similar planar periapsis map processed by Bosanac, and constructed

in the Sun-Earth CR3BP at CJ = 3.00088 [13]. An extended parameter exploration may be per-

formed in future research [13]. The cluster aggregation process is then applied to identify clusters

across multiple partitions that mutually intersect in the phase space. After the cluster aggregation
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process, the initial perigees of the three distinct datasets are projected onto the configuration space

and reported in Fig. 5.1. In this figure, perigees are colored in shades of blue and red depending

on the assigned clusters: if two perigees are colored with the same hue, the associated trajectories

are deemed geometrically similar by the presented approach leveraging HDBSCAN; analogously,

if two perigees are represented with distinct colors, the associated trajectories are considered as

geometrically dissimilar by the clustering aggregation approach. In the figure, the Earth is colored

as a central gray circle, while the L1 and L2 equilibrium points are reported as magenta diamonds.

Figure 5.1 supplies the trajectory analyst with valuable information on the regions of existence

associated with solutions with similar geometries. Moreover, the figure highlights the variety of

distinct geometries existing in a region near the Earth, in the Sun-Earth system at CJ = 3.00088.

Note that the visualized representation is governed by the limited set of identified hyperplanes, the

selected HDBSCAN input parameters, and the utilized grids for the initial conditions seeding. Dif-

ferent sets of selected parameters can result in distinct partitioning of the datasets and a dissimilar

final clustering result. However, the clustering result would still summarize the solution space, and

aid the human analyst.

The fidelity of the prograde periapsis map constructed in the Sun-Earth CR3BP at a value

of Jacobi constant CJ = 3.00088, presented in Fig. 5.1, is increased by introducing several addi-

tional hyperplanes. Specifically, sets of initial conditions are initialized to lie on a set of planes

that are identified on the configuration space by a fixed value of the y-coordinate. These hyper-

planes are defined in the range y ∈ {−4, −3.5, −3, . . . , 3, 4} × 10−3 in dimensionless units. The

cluster aggregation process detailed in Sec. 5.1.1 is then iterated for this new sets of datapoints:

trajectories are propagated from the generated initial conditions, converted into feature vectors,

and used to construct datasets that are clustered with HDBSCAN, using the same values of input

parameters presented in Table 5.1. After clustering the different datasets, the cluster aggregation

step is applied to merge clusters mutually intersecting in the phase space. The initial perigees

populating the resulting higher-fidelity Poincaré map are projected onto the configuration space,

and displayed in Fig. 5.2. To mitigate the effect of data obscuration, only a fraction of the ag-
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Figure 5.1: Poincaré map reflecting prograde periapses in the Sun-Earth CR3BP at a Jacobi
constant CJ = 3.00088 and ż = 0 following the identified dataset partitioning and clustering
aggregation process.

gregated clusters are visualized, reporting the initial perigees with markers colored in shades of

blue and red, corresponding to the assigned cluster and consistent with Fig. 5.1. In the figure,

the Earth is reported as a gray central circle, while the L1 and L2 equilibrium points are depicted

with magenta diamonds. The presented cluster aggregation approach demonstrates the capability

of aggregating clusters that intersect in the phase space, generating three-dimensional skeletons

of groups of initial perigees, as displayed in Fig. 5.2. In the figure, four aggregated clusters are

identified with numbers in the set {0, 1, 2, 3}, and the associated representative solutions, corre-

sponding to the medoid computed according to Eq. (4.4), are displayed in Fig. 5.3 in the Sun-Earth

rotating frame. In each frame populating the figure, green circles locate the initial conditions of

each medoid, the Earth is identified by a gray central circle and red diamonds correspond to the

L1 and L2 equilibrium points. The semi-transparent blue surface corresponds to the zero velocity
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surface. The representative solutions displayed in Fig. 5.3 exhibit different geometries, illustrating

the capability of the clustering approach to group crossings of a map based on the geometry of the

associated trajectories.

Figure 5.2: Poincaré map reflecting prograde periapses in the Sun-Earth CR3BP at a Jacobi
constant CJ = 3.00088 and ż = 0 following the partitioning and cluster aggregation procedure,
constructed using a large number of partitions. Four selected clusters are labeled.

Figure 5.3: Representatives of the clusters labeled on the map in Fig. 5.2, plotted in the Sun-Earth
rotating frame.



91

Ultimately, the clustering result generated with the distributed approach, presented in Fig. 5.2,

is visually compared for validation with a clustering result processed over a single large dataset

of feature vectors, composed by the entire large data associated with all initial conditions. For

this large dataset, initial conditions, corresponding to prograde perigees, are defined by seeding

301 equally-spaced x-coordinates between L1 and L2, 301 equally-spaced y-coordinates in the range

[−0.01, 0.01], and 301 equally-spaced z−coordinates in the range [−0.01, 0.01], with ż = 0. Using

this grid, a complete dataset of |T | = 542, 446 spatial trajectories is generated, and clustered via

HDBSCAN in a single batch. Using as input parameters for HDBSCAN [mpts, mclSize] = [200, 500],

the clustering result presents 13 distinct groups of a trajectories, and a noise level of 0.2481%. Larger

values of the input parameters for HDBSCAN are selected to balance the larger cardinality of the

processed dataset. The clustering result is displayed in Fig. 5.4, with only a subset of the initial

conditions plotted to prevent data obscuration, and colored by their cluster assignment. The same

subsets of clusters identified in Fig. 5.2 are also labeled in Fig. 5.4. The overall structure of the

clusters displayed in Fig. 5.4 is consistent with the results presented for the clustering aggregation

process in Figs. 5.1 and 5.2, aside from the color differences due to the use of different coloring

schemes. However, the amount of initialized spacecraft states of each partition for the distributed

clustering approach is generally one order of magnitude lower than the single large batch of trajec-

tories displayed in Fig. 5.4, with significant ramifications on the required computational resources.

Furthermore, comparison of Figs. 5.2 and 5.4 reveals that both approaches recover clusters with

perigees that cover similar regions of existence in the configuration space. However, the two ap-

proaches may not result in exactly the same amount of total clusters, since the clustering result is

influenced by the input parameters selection and the properties of the dataset.

5.2 Clustering Maps across Different Dynamical Models

This general approach is extended to cluster a set of trajectories based on geometrical sim-

ilarity across distinct dynamical models or at different values of the independent values, to assess

cluster persistence. Associating clusters across distinct models can help a trajectory designer in
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Figure 5.4: Poincaré map reflecting prograde periapses in the Sun-Earth system at a Jacobi constant
CJ = 3.00088 and ż = 0 constructed by clustering the full dataset in a single step. The same four
clusters identified in Fig. 5.2 are labeled.

understanding the evolution of the design space throughout the different model refinements of

an end-to-end trajectory. Moreover, correlating clusters across distinct values of the independent

variable can generate fundamental insights on the time evolution of the design space. First, the

method is introduced in Sec. 5.2.1. The procedure is then demonstrated on a variety of examples

in Sec. 5.2.2.

5.2.1 Method Overview

To aggregate clusters across different partitions and track the persistence of trajectories

across distinct dynamical models and values of the independent time-like variable, distributed data

mining is again useful. First, a collection of perigee maps is constructed, and clustered individually

using HDBSCAN to reduce the computational complexity of processing a large dataset. Then,

UMAP is used to re-assign datapoints classified as noise to a nearby cluster in the projected
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space. A number of datapoints is sampled from the clusters of each dataset, and used in a cluster

aggregation process to generate a global summary result. Aggregated clusters across distinct maps

correspond to trajectories that persist in their general geometry across various dynamical models,

or across different independent variables. The procedure is structured in three steps, examined in

the remaining of this section.

5.2.1.1 Constructing and Clustering Individual Perigee Maps

The investigation of cluster persistence across distinct dynamical models begins with the

construction of a set of perigee maps across each model and for various parameters. To prevent

the construction of very large datasets and provide an initial demonstration of cluster persistence

across distinct models, a unique set of initial conditions is constructed: this set is defined using

planar prograde perigees, presenting a value of the Jacobi constant CJ = 3.00088 in the Sun-Earth

CR3BP [13, 128]. Once this set of initial conditions is constructed in the Sun-Earth CR3BP, the

same spacecraft states are leveraged to generate trajectory arcs higher-fidelity dynamical models.

Specifically, the set of initial conditions is populated with planar position vectors, seeded within

the vicinity of the Earth in the Sun-Earth CR3BP: this investigation uses up to 401 equally-spaced

x-coordinates between the locations of the Sun-Earth L1 and L2 equilibrium points, a total of 401

equally-spaced locations of the y−coordinate in the range [−0.01, 0.01], and a constant value of the

z-coordinate equal to 0. Once a position vector is identified, the magnitude of the velocity vector

is computed similarly to the method presented in Sec. 5.1.1, and the periapsis map construction

example described in Sec. 3.7.

With the constructed set of initial conditions, multiple datasets are generated for distinct

dynamical model and different values of independent variables, where appropriate. For the dataset

populated by trajectories generated in the CR3BP, the set of initial conditions, corresponding to

prograde perigee, is propagated using the Sun-Earth CR3BP model. Each trajectory terminates

when one of the termination criteria discussed in Sec. 5.1 is met. The propagated trajectories are

then summarized in feature vectors, constructed to retain the geometrical features of the associated
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arc. Specifically, each arc is modeled as a feature vector composed as:

ti = [si,0, si,1, . . . , si,k, . . . , si,Na ]T ∈ R5(Nret+1) (5.3)

where each apse vector is formulated as:

si,k =
[
t̃i,k, x̃i,k, ỹi,k, ˙̃xi,k, ˙̃yi,k

]T ∈ R5 (5.4)

where the tilde operator (̃·) indicates the use of normalization, used to reduce ill-conditioning

between the components of the feature vector, that are scaled within the range [−1, 1]. In particular,

t̃j,k refers to the time of the recorded apsis from the start of the trajectory, and normalized by the

total propagation time along the trajectory. Then, x̃j,k, ỹj,k, ˙̃xj,k, and ˙̃yj,k are a subset of the

position and velocity components of the recorded apsis in the rotating frame and with respect to

the Earth, scaled by the distance between the Earth and L2 and the maximum velocity within the

dataset. Note that trajectories starting on the z = 0 plane do not exhibit out-of-plane motion

in the low-fidelity model. However, for higher-fidelity models such as the point mass ephemeris,

trajectories initialized on the plane of the primaries can exhibit a non negligible z-component along

the propagated arc. For the majority of trajectories used in this investigation, the out-of-plane

component is negligible, motivating the reduction of the apsis vector in Eq. (5.4). If an arc is

prematurely terminated at the k-th apsis, a placeholder si,o = ± [0, 10, 0, 0, 0]T is used for each

k ≤ o ≤ Nret + 1, with positive sign if o mod 2 = 1 [13].

This procedure is leveraged to populate various datasets of trajectories constructed in higher-

fidelity dynamical models. The complete dataset generated in the Sun-Earth CR3BP is composed of

|T | = 31544 map crossings, each associated with a 35-dimensional feature vector. A similar dataset

of trajectories is populated in the Sun-Earth ER3BP, leveraging the same set of initial conditions,

although propagated using the ER3BP equations of motions. This procedure is repeated multiple

times for various initial values of the independent variable f0, representing the initial true anomaly

of the system. For datasets generated in the point mass ephemeris model, each initial condition that

is originally expressed in the nondimensional rotating frame, centered at the Earth, is transformed
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into the GCRF, given a specified initial modified Julian date (MJD). After propagating the apses

with the dynamics defined by the point mass ephemeris model, the apsis sequence calculated with

respect to the Earth are recorded, and the spacecraft state at each apsis location is transformed

into the rotating frame at the associated epoch, and scaled consistent with the formulations in

Eqs. (5.3) and (5.4). This procedure is repeated multiple times for various values of the initial

modified Julian date, governing the relative configuration in the Sun-Earth system.

After constructing each dataset, HDBSCAN is used to generate distinct clustering results.

Each set Ti is clustered using a set of input parameters [mpts, mclSize] = [200, 100]: these parameters

are maintained constant across distinct datasets to generate consistent partitioning. Larger values

of input parameters for HDBSCAN are selected with respect to the previous approach detailed

in Sec. 5.1.1 due to the more refined grid leveraged for the example discussed in this section.

To demonstrate the results obtained with HDBSCAN, the dataset associated with trajectories

generated in the Sun-Earth CR3BP at a Jacobi constant of CJ = 3.00088 is clustered and presented

in Fig. 5.5(a). The clustering results in 13 distinct groups, projected onto the configuration space

in dimensional coordinates and in the rotating Sun-Earth frame. In the figure, each cluster is

identified by perigees that are colored in shades of blue and red, depending on the assigned cluster:

if two perigees are colored with the same hue, the associated trajectories are deemed geometrically

similar by HDBSCAN. The equilibrium points are displayed as red diamonds in this figure, while

the zero velocity curves outline the gray shaded forbidden regions. For the dataset generated in

the Sun-Earth CR3BP, HDBSCAN identifies 6.23% of the dataset as noise, indicated via black

points in Fig. 5.5(a). Note that alternate feature vector formulations, or input parameters used

by HDBSCAN, might generate distinct clustering results. The same set of initial perigees are

utilized to construct a second dataset of trajectories, propagate in the Sun-Earth ER3BP and with

an initial system anomaly of f0 = π/2. After populating the dataset with the associated feature

vectors, HDBSCAN is leveraged to generate a clustering result, depicted in Fig. 5.5(b). Note that,

in this figure and similar maps constructed in higher-fidelity models, the equilibrium points and

ZVCs calculated in the CR3BP are overlaid only to supply perspective. Analysis of Fig. 5.5(b)
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Figure 5.5: Clustered perigee maps near the Earth, constructed for the same set of initial conditions
in: (a) the Sun-Earth CR3BP at CJ = 3.00088 and (b) the Sun-Earth ER3BP with f0 = π/2.

reveals that this map, constructed with initial true anomaly f0 = π/2 in the Sun-Earth ER3BP,

admits clusters with similar regions of existence in the configuration space to those obtained for the

CR3BP in Fig. 5.5(a), with some slight shifts and distortion. Note that perigees in Fig. 5.5(a-b)

that are reported with identical hue are not associated with the same cluster. However, it is possible

that some of the clusters in Fig. 5.5(b) correspond to trajectories with a similar geometry to those

captured on the clustered map in Fig. 5.5(a).

5.2.1.2 Noise Reassignment with UMAP

Although HDBSCAN represents a valid algorithm for discovering clusters of distinct densities

within a dataset, it may assign datapoints near the boundaries of clusters or in the sensitive regions

close to the Earth as noise. Manifold learning algorithms as UMAP can be used to assign these

noise points, after the clustering process, to nearby groups of geometrically similar solutions. For

this step, the entire dataset of future vectors is projected by UMAP onto a lower-dimensional

representation: noise points that join large areas on the projected space with datapoints assigned

to clusters are relabeled. To provide an example of the noise reassignment procedure, consider

the same perigee map constructed using the Sun-Earth ER3BP model with initial true anomaly
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f0 = π/2, as displayed in Fig. 5.5(b). The associated high-dimensional dataset T , populated by the

feature vectors extracted from the trajectories associated with each map crossing in this dynamical

model, are projected onto a three-dimensional representation using UMAP. The input parameters

are selected as nn = 200 and mdist = 0.0, producing a lower-dimensional representation that focuses

on the global structure of the dataset. The projected dataset is then displayed in Fig. 5.6(a)

in its three-dimensional representation, with each datapoint colored according to the associated

cluster, consistent with Fig. 5.5(b). Moreover, group of projected points are identified with the

same labels used in Fig. 5.5(b). Inspecting the three-dimensional projection, UMAP demonstrates

a successful separation of the higher-dimensional dataset in a similar manner to the groupings

discovered by HDBSCAN, despite not being provided with the labels generated by the clustering

algorithm. However, the colored projection of UMAP presents a few significant differences. First,

some clusters, as the group assigned to number 8, are split by UMAP and appear into distinct

sub-groups in the projected embedding. Second, some larger clusters, such as clusters 12 and 14,

appear bounded by a large set of points assigned as noise, and colored in the representation in black.

Since the lower dimensional embedding constructed by UMAP preserves the global structure of the

data, but not necessarily the density, the generated projection is leveraged to refine the clustering

result, by reassigning those noise points appearing at the boundaries of a cluster to coincide with

the nearby group. The reassignment procedure used in this investigation computes the distance

of each point identified by HDBSCAN as noise to a maximum of 2000 randomly-selected points

from each cluster in the lower-dimensional representation. Then, a noise point is reassigned to

a specific cluster if the distance to any member in that cluster is lower than 0.5. Of course,

this distance represents a user-selected parameter, depending on the used dataset and the final

embedding by UMAP; however, using the distance computed in the embedded space generates a

more robust approach than performing it in the original M -dimensional feature vector space. This

approach is applied to the map generated with the Sun-Earth ER3BP model, and displayed in

Fig. 5.6(b) with a consistent coloring scheme to what adopted in Fig. 5.5(b). Comparison between

the maps in Fig. 5.5(b) and Fig. 5.6(b) reveal the fraction of noise within the dataset decreases from
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Figure 5.6: Noise reassignment applied to the map in Fig. 5.5(b), composed of trajectories generated
in the ER3BP with f0 = π/2: (a) UMAP projection of the pre-processed map and (b) post-
processed map.

11.46% following application of HDBSCAN to 2.18% after noise reassignment. Visual inspection of

Fig. 5.6(b) suggests that this result is reasonable: the noise points are reassigned to nearby clusters

in the original M -dimensional dataset. Therefore, this approach is applied to each clustered map.

The resulting maps are then used to perform cluster correlation and associate clusters of similar

solutions across distinct dynamical models and values of the independent variable.

5.2.1.3 Cluster Aggregation Process

After partitioning each dataset of trajectories and reassigning boundary datapoints labeled as

noise, a cluster aggregation procedure using UMAP is designed to correlate clusters of geometrically

similar solutions across distinct maps. These maps can be generated leveraging different dynamical

models, or using the same model but at different initial values of the independent variable. UMAP is

used in the method to perform cluster correlation in the low-dimensional representation, preventing

a less robust and challenging investigation in the full M -dimensional space due to the curse of

dimensionality and the sensitivity of states within distinct regions of the phase space. Moreover, the

projected representation constructed by UMAP preserves the relative distances between datapoints,

placing members with similar feature vectors in nearby regions while separating dissimilar members.
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Since the minimum distance between two datapoints mpts on the UMAP projection represents a

user-defined parameter, a distance-based cluster correlation procedure that is implemented in the

lower-dimensional space is relatively straightforward to construct. This procedure is implemented

as follows:

Generate, cluster, and reassign noise for each map: a collection of D distinct datasets,

{T1,T2, . . . ,TD} is constructed for each perigee map, as detailed in Sec. 5.2.1.1. These datasets

can be generated using distinct dynamical models, or different sets of initial independent vari-

ables. Then, each dataset is clustered with HDBSCAN, using input parameters mpts = 200 and

mclSize = 100, and resulting with a number of clusters Gi for each map, with i ∈ {1, 2, . . . , D}.

Eventually, the datasets are projected onto a three-dimensional manifold via UMAP, and noise

points are reassigned, as discussed in Sec. 5.2.1.2.

Produce a global cluster summary: each cluster Sji , with j ∈ N+, generated from each

dataset Ti of feature vectors is sampled to produce a representation of the cluster with up to

nsub = 300 datapoints. The sampled feature vectors from the clusters of the considered maps

are used to populate a single reduced global dataset P . The sampled datapoints are identified

from each cluster by leveraging the soft-clustering modification of HDBSCAN, available in the

Python hdbscan clustering library. With soft-clustering, each datapoint is associated with a

probability to join a certain cluster. In this investigation, soft-clustering is used to select up to

nsub datapoints that represent the associated cluster. A threshold probability p > 0.8 is used to

sample datapoints of Sji and populate P . For a generic cluster Sji , if the amount of members

satisfying this condition is larger than nsub, these points are uniformly sampled, and a total of

nsub is used to populate P . After sampling each cluster Sji , the reduced dataset P is populated

with a total of
∑D

i=1Gi clusters Qj , each represented by up to nsub members.

Construct a lower-dimensional embedding of the global dataset: UMAP is leveraged to

process the generated global dataset P , obtaining a three-dimensional projection of the higher-

dimensional dataset. The input parameters for the embedding are selected as nn = 100 and
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mdist = 0.0 to construct a low-dimensional representation that preserves the global structure of

the original dataset.

Aggregate clusters across distinct maps: the embedding generated from the global dataset

P is automatically processed to correlate clusters of trajectories exhibiting geometrical similarity

across distinct maps. The distance on the projected space of each members of Qj from the

members of all clusters in P is calculated, excluding points sampled from the same original map

Ti. For each point, the minimum constructed distance is recorded, and used to compute an

average minimum distance between two distinct clusters Qj and Qk of the embedding of P . If

two clusters Qj and Qk possess a minimum average distance lower than a user-defined threshold

value tavg, the two clusters are correlated and are assigned the same cluster ID.

If two clusters are correlated, the associated trajectories are assumed to be geometrically similar,

although generated in different dynamical models or at different values of the associated independent

variable. Indeed, UMAP processes the input global cluster summary P with no knowledge of

the different labels, but only using a summary of the geometries associated with the investigated

trajectories. For this reason, fundamental knowledge on the evolution and persistence of trajectories

of a specific geometry across distinct models can be inferred in a robust, data-driven approach. The

devised method is applied to three different examples in the next sections, associated with cluster

persistence across multiple dynamical models and values of the independent variable.

5.2.2 Cluster Persistence Across Dynamical Models

The designed data-driven procedure, leveraging distributed clustering for correlating trajec-

tories exhibiting similar geometries across maps generated in distinct dynamical models, is demon-

strated in this section in the Sun-Earth system. Using the same set of initial conditions generated

in the CR3BP, several perigee maps are constructed using as dynamical models the Sun-Earth

CR3BP, the Sun-Earth ER3BP and point mass ephemeris models. Each map is first associated to

a dataset of feature vectors Ti, clustered with HDBSCAN and processed to reduce the percentage
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of points assigned as noise via UMAP. Then, the cluster aggregation process detailed in Sec. 5.2.1

is applied to correlate clusters from distinct maps. Maps with correlated clusters are eventually

visualized to investigate cluster persistence across distinct models and values of the independent

variables. The approach is demonstrated with three examples studying the evolution of arcs, de-

scribed by their geometry, across: 1) various values of the initial true anomaly f0 in the ER3BP;

2) distinct initial epochs in the point mass ephemeris model; and 3) across dynamical models.

5.2.2.1 Cluster Persistence Across Initial True Anomalies in the Sun-Earth ER3BP

The set of initial perigees is leveraged to generate distinct sets of trajectories in the Sun-

Earth ER3BP, each initialize at distinct values of the initial true anomaly f0, and then combined

in a data-driven approach to assess cluster persistence. Specifically, 10 different sets of trajectories

are constructed using the following distinct values of the initial true anomaly of the primaries:

f0 = [0, π/6, 5π/24, π/4, 7π/24, π/3, π/2, 13π/24, 7π/12, 2π/3]. After propagating the trajectories

and populating the distinct datasets, the maps are clustered individually using HDBSCAN with

the selected input parameters, as described in Sec. 5.2.1.1. Then, the noise reassignment technique

presented in Sec. 5.2.1.2 is used to reduce the amount of noise for each partition. The clusters

formed from these processed datasets are then sampled to form a reduced global dataset, projected

onto a three-dimensional embedding via UMAP to form a global cluster summary, as described in

Sec. 5.2.1.3. To automatically correlate clusters across distinct maps, a minimum average distance

of tavg = 1.5 is considered for clusters in the three-dimensional embedding: this value represents

a user-defined and iteratively selected quantity, that can influence the cluster aggregation process.

The adopted minimum distance threshold results in a global cluster summary composed of 26 unique

clusters across the perigee maps constructed at the specified values of the initial true anomaly in

the ER3BP. The aggregated clusters are presented in Fig. 5.7 for a subset of the leveraged maps

in this example, each labeled in the top-left corner by the associated initial true anomaly for the

primaries. In each frame of the presented figure, the maps are projected onto configuration space,

and perigees are colored in shades of blue and red, depending on the assigned cluster: when two
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perigees are marked with the same hue, the associated trajectories are deemed as geometrically

similar by the proposed clustering aggregation approach. Figure 5.7 also reports a gray arrow,

indicating the increasing value of f0 used to generate the trajectories associated with each map

crossing. Moreover, each map reports the L1 and L2 equilibrium points and the ZVCs at a value of

the Jacobi constant CJ = 3.00088: these features are displayed only for reference. Each frame in

Fig. 5.7 reports labels on each of the generated clusters. To supply insights onto the geometrical

distinction between arcs joining distinct clusters, the representative solutions of clusters 4 to 7

and 17 to 20 are plotted in Fig. 5.8, colored in shades of blue based on the originating initial

system anomaly: darker shades are associated with lower values of f0. In each frame of Fig. 5.8

the displayed trajectories start from the associated green markers, and are propagated for up to six

subsequent apsides, the Earth is represented as a central gray circle, while L1 and L2 are indicated

with magenta diamonds.

The maps in Fig. 5.7 are analyzed to assess the cluster persistence and evolution across

distinct values of initial true anomaly in the Sun-Earth ER3BP. Specifically, the first two maps,

corresponding to initial anomalies of f0 = 0 and f0 = π/4, admit a total of 12 clusters labeled

from 0 to 11. The clusters populating these two maps present regions of existence that do not shift

or distort significantly as the true anomaly is set equal to these two values. Among the identified

clusters, the groups labeled from 0 to 9 exist within narrow regions of the configuration space,

while clusters 10 and 11 encompass large regions. Recall that different feature vectors and input

parameters may result in a distinct clustering result. In these analyzed frames, two small white

lobes appear close to the Earth: these are associated with initial perigees that present trajectories

that naturally escape the Earth vicinity before completing at least one apse and for this reason are

excluded from the analyzed datasets.

The investigation progresses with the perigee map labeled with an initial true anomalies

f0 = π/2. In this map new clusters emerge in the regions of the configuration space previously

occupied by clusters 10 and 11 at f0 = 0 and f0 = π/2. Some of the clusters, including groups

17, 19 and 20 are populated by trajectories that naturally escape the Earth vicinity through the
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Figure 5.7: Clustered perigee maps for various values of the initial true anomaly in the Sun-Earth
ER3BP. Clusters of similar solutions are correlated across maps.

x-coordinates corresponding to the L1 and L2 gateways in the Sun-Earth CR3BP, before completing

a sequence of seven apses with respect to the Earth. As discussed in Sec. 5.1.2, the trajectories in

these clusters, presented for some initial perigee in Fig. 5.8, are governed by the invariant manifolds

from tori near L1 and L2 in the Sun-Earth CR3BP, as demonstrated in Sec. 5.4. Other subsets of

clusters, such as groups 4 to 7, maintain their overall shape and size between these first three perigee

maps. Similarly, the size of the small white lobes near the Earth presents no evident distortion
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Figure 5.8: Selected cluster representatives from the maps in Fig. 5.7; darker trajectories are
associated with maps constructed at lower values of the initial true anomaly.

with respect to the first two maps.

Rapid change in groups of solutions appear in the presented maps when the initial true

anomaly increases beyond f0 = π/2. Specifically, the map associated with initial true anomaly

f0 = 13π/24 presents larger region of clusters that are formed by trajectories naturally departing

the Earth vicinity after 5 apses, such as clusters 17 and 20. Moreover, a new group of trajectories

naturally transiting through the L1 and L2 bottlenecks appear in the map, labeled as cluster 18

and reported for some map in Fig. 5.8. This cluster presents an anti-symmetric configuration to

cluster 19. Clusters 18 and 19, as depicted in Fig. 5.8, represent trajectories that resemble the stable

manifold associated with the L1 and L2 Lyapunov orbits in the Sun-Earth CR3BP, as demonstrated

by Bosanac [13]. However, cluster 18 emerges at a value of the true anomaly larger than π/2. For

the remaining clusters, groups 10 and 11 continue to shrink across progressively increasing value

of the true anomaly, while clusters 2 to 7 remain relatively unchanged. The white small lobes near

the Earth encompass larger regions of the design space. This result reflects a larger amount of

trajectories naturally departing from the Earth region as the true anomaly progresses.

The last two maps, presented at the bottom of Fig. 5.7, possess a significantly different cluster

partitioning with respect to the maps constructed at lower values of the initial true anomaly. First,

clusters 17 to 20, associated with trajectories naturally escaping the Earth region before recording

seven apsides, encompass a larger region of the configuration space in the f0 = 7π/12 map. When
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the initial true anomaly is increased further to f0 = 2π/3, clusters 18 and 19 each split clusters 23

and 24, respectively, into two regions on the map. After the split, the cluster aggregation process

identifies the emergence of new clusters, assigned to labels 22 and 25. Conversely, clusters 2 to 7

remain relatively unchanged throughout the different values of initial true anomaly. In addition, the

central white lobes, corresponding to trajectories that naturally depart the Earth vicinity before

completing one additional apsis, encompass progressively larger portions of the design space for

these last two maps in Fig. 5.7.

From a global perspective, the presented data-driven approach enables the assessment of the

persistence of groups of geometrically similar trajectories across various values of the initial true

anomaly, supplying valuable insights into the evolution of the solution space. Throughout the

maps presented in Fig. 5.8, distinct behaviors are evident. First, the initial true anomaly severely

impact the size and shape of the clusters associated with escaping trajectories, for the set of initial

conditions examined in this section. Similarly, regions of the design space associated with rapidly

escaping trajectories increases. However, other groups of trajectories, as the clusters labeled with

identifiers from 2 to 7, remain relatively unaffected by the changes in the independent variable

presented in this example. Extending the presented example to encompass a wider range of initial

true anomalies and a three-dimensional design space would likely result in a deeper understanding

of the persistence of trajectories with a specific geometry in the ER3BP as this quantity is changed,

and it is therefore left for future research.

5.2.2.2 Cluster Persistence Across Epochs in the Point Mass Ephemeris Model

A collection of perigee maps, constructed in a point mass ephemeris model of the Sun-Earth

system, is generated for various values of initial epoch, clustered, and processed to assess cluster per-

sistence. For this example, only the gravitational influence of the Sun and the Earth are considered

within the point mass ephemeris equations of motion. The considered perigee maps are initialized at

8 distinct initial epochs, corresponding to t0 = [29020, 29023, 29025, 29028, 29030, 29033, 29035, 2940]

MJD. The initial dates span a total timeframe of 20 days, from Jun 19, 2020 at 12:00 pm to Jul
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9, 2020 at 12:00 pm UTC. The used discretization in initial epochs is selected consistent with

the sensitivity of the solution space in the point mass ephemeris model to changes in the initial

epoch. After selecting the initial epochs, the datasets are populated: the same initial condition set

employed in the CR3BP and ER3BP, corresponding to prograde perigees, is propagated forward

in time in the point mass ephemeris model of the Sun-Earth system. Recall that this dynamical

model includes the ephemerides of the Sun and Earth in their true orbits: thus, an initial condition

with initial z = ż = 0 results in a propagated arc that exhibits small components of motion out

of the plane of the primaries. Thus, the [z, ż] components are neglected according to the feature

vector formulation in Eq. (5.4), and are not considered in the presented implementation.

After the dataset construction, HDBSCAN is leveraged to cluster the different maps, while

UMAP is used to reassign noise points populating the boundaries of each cluster in the three-

dimensional projected space, as described in Secs. 5.2.1.1 and 5.2.1.2. Then, the cluster aggregation

process described in Sec. 5.2.1.3 is implemented with a threshold distance of tavg = 1 on a reduced

global dataset in the point mass ephemeris model, selected via visual inspection of the generated

representation. A subset of the generated maps is presented in Fig. 5.9, in a framework consistent

with Fig. 5.7: six of the processed 8 maps are presented in distinct frames, labeled with their

associated initial epoch, in the point mass ephemeris model of the Sun-Earth system. The gray

arrow indicates the increasing initial epoch throughout the image. In each frame, perigees assigned

to an identical cluster are reported with the same shade of blue or red, reflecting geometrical

similarity of the associated trajectories. Moreover, the equilibrium points are displayed as magenta

diamonds, while the ZVCs bounds the gray forbidden regions. Recall that the equilibrium points

and the ZVC exist only in the CR3BP and reported in the figure to provide reference. Different

perigees across distinct maps in Fig. 5.9 are reported in the same color, identifying solutions with

a similar geometries at different initial epochs. To supply the cluster persistence, Fig. 5.10 displays

the representative solutions for several clusters at each initial epoch over which the cluster exists,

colored in shades of blue based on the initial date: darker shades are associated with low values of

the initial epoch. In each frame of Fig. 5.10, the presented trajectories begin at the green markers,
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Figure 5.9: Clustered perigee maps for various values of initial epoch in the Sun-Earth point mass
ephemeris model. Clusters of similar solutions are correlated across maps.

the Earth is represented as a gray circle, while L1 and L2 are indicated by magenta diamonds.

The collection of maps in Fig. 5.9 reports various clusters that exist across the entire range

of initial epochs. These clusters appear to distort their shape when considering the epoch evolution

determined by the gray arrow. For example, clusters 13 and 14 encompass large regions of the

design space near the center of each perigee map. Clusters 7 to 10, located at the boundaries of
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Figure 5.10: Selected cluster representatives from the maps in Fig. 5.9, propagated in a point mass
ephemeris model; darker trajectories are associated with maps constructed at lower values of the
initial epoch.

these clusters, tend to persist throughout the investigated range of epochs. The groups assigned

with identifier 1 and 2 occupy a significant region of the perigee map at lower initial epochs,

but they gradually shrink as the epoch increases: these clusters are composed by trajectories

exhibiting natural departure from the Earth region after completing 5 apses, as reported in Fig. 5.10,

resembling trajectories influenced by the invariant tori near L1 and L2 in the Sun-Earth CR3BP.

Other clusters only appear at specific ranges of the initial epochs, assuming identical sets

of initial conditions for each depicted map. For example, cluster 21 emerges for an initial epoch

of t0 = 29028 MJD, persisting until t0 = 29040 MJD. However, trajectories presenting similar

geometry are already identifiable in the map with t0 = 29025 MJD, although labeled as noise since

their number is lower than the selected threshold of mclSize = 200. Cluster 21 is composed of

those trajectories naturally departing the Earth region before performing three apsides through the

gateway at L1. A similar example is presented by cluster 22, appearing at t0 = 29033 MJD until

the end of the investigated time frame. This cluster is composed by trajectories that naturally

depart through the L2 gateway. The regions of existence associated with clusters 21 and 22 expand

with progressing the initial epoch t0, resulting in a wider array of trajectories departing through

the L1 and L2 gateways.

The set of perigee maps presented in Fig. 5.9 demonstrates the existence of regions of existence

associated with distinct geometries in a point mass ephemeris model, and the persistence of such
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regions across different epochs. The generated clusters present different shapes and sizes across

the investigated time frame: clusters 7 to 10, corresponding to bounded prograde motion, present

relatively unchanged shapes; clusters associated with trajectories naturally departing the Earth

region, as for clusters 1, 2, 21, and 22, present significant distortions, and their existence depends

strongly on the initial epoch. Some trajectories pose significant challenge for HDBSCAN and the

clustering aggregation process, under the selected initial condition discretization, input parameters,

and feature vector definition. This is especially relevant for arcs associated with the map crossings

near the Earth, at the boundaries of the central oval-shaped map, and near the Sun-Earth L1 and

L2 points. Indeed, clusters 0, 5, 6, 9, 18, 17 and 23 are formed by a low number of trajectories, and

rapidly change their shape throughout the different map representations. Note that the existence

and time evolution of these clusters is governed by the employed discretization for the grid used to

initialize the spacecraft states, and the subsequent UMAP correlation. A finer grid could improve

the generated partitioning and better correlate this structures, at the expense of a significant

adjunct computational effort.

5.2.2.3 Cluster Persistence Across Distinct Dynamical Models

The cluster aggregation process can also be employed to investigate cluster persistence across

perigee maps generated in distinct dynamical models from the same initial condition set. This

section demonstrates this approach by analysis the aggregation process across three datasets: a

perigee map generated and clustered in the Sun-Earth CR3BP at CJ = 3.00088; a map constructed

in the Sun-Earth ER3BP; and a map generated in the Sun-Earth point mass ephemeris model.

These maps use the same set of initial conditions, constructed in the Sun-Earth CR3BP according

to Sec. 5.2.1. Then, the cluster aggregation process is implemented with tavg = 1, and the resulting

partitioning are displayed in Fig. 5.11, each labeled by the dynamical model and the value of

the independent variable. Specifically, the map presented in the bottom left is generated in the

Sun-Earth ER3BP, using f0 = 7π/12, while the map presented in the bottom right is constructed

using the point mass ephemeris model, at an initial epoch t0 = 29035 MJD. Figure 5.11 reveals
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useful insights concerning the geometry of trajectories propagated in distinct dynamical models.

For example, clusters populated with trajectories naturally escaping from the Earth vicinity in

forward time are successfully correlated across distinct maps. Specifically, clusters 0 and 1 group

trajectories naturally departing the Earth vicinity before 3 apses, while clusters 4 and 5 group

trajectories naturally escaping the L1 and L2 gateways after 5 apses. Other groups of trajectories,

existing across each of the three dynamical models, are successfully correlated and numbered, for

example clusters 2 and 3, 6 and 8, and 10 and 11.

Figure 5.11: Clustered perigee maps for the same initial conditions in the: (top) CR3BP, (bottom-
left) ER3BP at f0 = 7π/12, (bottom-right) Sun-Earth point mass ephemeris model at t0 = 29035
MJD. Clusters of similar solutions are correlated across maps.

Figure 5.11 provides relevant insights for trajectories that are correlated only for a subset of

the generated maps. In particular, for negative values of y, some solution geometries persist between

the CR3BP and ER3BP, but not in the ephemeris model. Consider clusters 12 and 13, existing

in the CR3BP and ER3BP. In the ephemeris map, the same region onto configuration space that

accommodates cluster 12 and 13 in the CR3BP and ER3BP maps, is instead occupied by cluster 17.
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To analyze this aspect, Fig. 5.12 reports the UMAP projections of the reduced dataset P , obtained

from the three non-aggregated maps. In the projection, the sampled datapoints are colored and

labeled according to the final clustering, consistent with Fig. 5.11. While many sampled datapoints

appear as condensed and well-grouped cluster in the projected space, cluster 17 appear split in two

halves. Two zoomed-in regions in the neighborhood of clusters 12 and 13 are displayed in the right

part of the figure, highlighting the splitting of cluster 17 onto the projected space. The adopted

color scheme reports the datapoints associated with cluster 12 in light-blue, the darker red shade

to cluster 13, and the lighter red shade to cluster 17. From the zoom-in views, cluster 17 appears in

regions of the projected space nearby datapoints within clusters 12 and 13. Therefore, clusters 12,

13 and 17 might reasonably be considered as composed of either 1 or 2 distinct clusters. However,

the designed cluster correlation approach does not make this decision, likely due to the selected

value of tavg. A larger threshold distance value could potentially produce a different result, and

address this issue.

Figure 5.12: UMAP projection of the global reduced dataset presented in Fig. 5.11.
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5.3 Examining Fundamental Transport Mechanisms

In this section, the data-driven clustering result is used to investigate the natural transport

mechanisms governing spacecraft motion near the Earth. Indeed, the design space near the Earth

in the Sun-Earth CR3BP at a value of Jacobi constant CJ = 3.00088 is governed by the stable and

unstable manifolds of periodic and quasi-periodic solutions near the L1 and L2 gateways [1, 129].

Trajectories residing inside the boundaries of the stable and unstable manifolds of these solutions

are associated with arcs naturally escaping from the Earth region. Likewise, arcs near the stable and

unstable manifolds, that are not propagated for the needed time to experience natural departure,

represent a valuable asset to generate insights into the dynamical characteristics of the flow near the

Earth in the Sun-Earth system. These solutions are also leveraged in a variety of transfer scenarios

in multi-body systems [5]. However, the representation of the four-dimensional crossings of stable

and unstable manifolds with a well-defined Poincaré map can represent a challenging task. This

issue might be mitigated by analyzing groups of trajectories along these hyperbolic manifolds.

One approach to rapidly evaluate the governing nature of the hyperbolic invariant manifolds

emanated from the invariant tori near L1 and L2 is to project the arcs onto a data-driven summary

of the solution space. This approach is demonstrated by Bonasera and Bosanac [130]. First, a

global clustering result is formed that summarizes the available geometries in the design space near

the Earth in the Sun-Earth CR3BP at CJ = 3.00088. This global clustering result is constructed

using an alternative method that represents a more robust generalization of the approach presented

in Sec. 5.1.1, and it is primarily developed by Bosanac within a collaboration between Bonasera

and Bosanac [130]. This global clustering result is leveraged in this investigation to generate

insights on the hyperbolic invariant manifolds emanated by the tori near the L1 and L2 gateways.

Specifically, trajectories along the stable manifolds of tori near the gateways in the Sun-Earth

CR3BP are constructed and projected onto the global clustering result, as presented in Sec. 5.3.1.

Ultimately, the projected manifold arcs are compared with clusters contained in the global clustering

result in Sec. 5.3.2. This example serves as an additional demonstration of the benefit of data-
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driven approaches to autonomously group trajectories from unseen datasets based on geometrical

similarity, aiding a trajectory designer to understand natural transport mechanisms and to support

initial guess construction. The results presented in this section are first published in Celestial

Mechanics and Dynamical Astronomy, 133, 51 (2021) by Springer Nature [130].

5.3.1 Projecting Hyperbolic Manifold Arcs onto the Global Clustering Result

To exploit the clustering result to summarize trajectories in an unseen dataset, a k-weighted

nearest neighbor classifier is trained to learn a mapping from a dataset of trajectories to a cluster

identifier. In particular, the M -dimensional feature vectors of a global clustering result generated in

the paper by Bonasera and Bosanac are used as input to the classifier, while the associated cluster,

identified with an integer number, corresponds to the label or ground truth [130]. It is assumed

that the final dataset, generated by an iterative sampling process, is sufficiently representative of

the entire dataset of trajectories over the initial partitions. The classifier is configured to compare

each datapoint to its 10 neighbor solutions, using the Euclidean norm to generate a dissimilarity

measure between inputs, and weighted by the square of the distance. A five-fold cross-validation is

applied to improve the performance of the classifier, given the potentially low amount of samples

in the final dataset. Ultimately, the classifier is used to assign each of the feature vectors in the

original partitions to one of the groups in the global clustering result.

A dataset of trajectories along the hyperbolic stable manifold arcs is generated and assigned

to distinct clusters using a global clustering result obtained with spatial trajectories sampled in a

neighborhood of the Earth, in the Sun-Earth CR3BP at a value of Jacobi constant CJ = 3.00088.

The generation of the dataset begins with the computation of the periodic orbits near the L1 and

the L2 gateway. Specifically, at a Jacobi constant value CJ = 3.00088, the Lyapunov and vertical

periodic orbits near the gateways are computed using the approach detailed in Sec. 3.2: at the

selected level of energy, members from the halo and axial orbit families do not exist. The selected

orbits are depicted in Fig. 5.13. In the central subfigure, the Earth is depicted with a gray circle,

while the L1 and L2 points are presented with magenta diamonds. The constructed Lyapunov
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and vertical orbits are visualized in the Sun-Earth rotating frame with black and copper lines,

respectively, and zoomed-in in two frames located at the margins of the figure. Segments of the

zero velocity surface in a neighborhood of the L1 and L2 equilibrium points are depicted using semi-

transparent blue surfaces, surrounding the depicted periodic orbits at the bottlenecks. The orbits

present non-empty hyperbolic and central manifolds, indicating the existence of near quasi-periodic

trajectories foliating unstable 2-tori. Dynamical characteristics of the periodic orbits are listed in

Table 5.2, reporting: periods and initial conditions in nondimensional units, and the eigenvalues

associated with the stable and unstable manifolds of the monodromy matrices.

Figure 5.13: Periodic orbits near L1 and L2 in the Sun-Earth CR3BP at CJ = 3.00088.

Orbit Period [-] x0 [-] Eigenvalue

L1

Lyap 3.0189495 [0.9895177, 0, 0, 0, 0.0036028, 0] λS = 5.00× 10−4, λU = 2004

Vert 3.1247260 [0.990063, 0, 0, 0, 0.000073, 0.003271] λS = 3.81× 10−4, λU = 2626

L2

Lyap 3.0588881 [1.0095682, 0, 0, 0, 0.0029462, 0] λS = 5.14× 10−4, λU = 1946

Vert 3.1691039 [1.010011, 0, 0, 0,−0.000047, 0.002587] λS = 3.90× 10−4, λU = 2563

Table 5.2: Period, initial state and stable and unstable eigenvalues, λS and λU , respectively, of the

monodromy matrix for the Lyapunov and vertical orbits at L1 and L2 in the Sun-Earth CR3BP at

CJ = 3.00088.

One-parameter families of invariant 2-tori near the Lyapunov and vertical orbits are generated

following the approach detailed in Sec. 3.5. Specifically, the Lyapunov orbit is initially leveraged

to generate a near invariant 2-torus, enforcing the value of the Jacobi constant to CJ = 3.00088

across each point of the approximation of the first invariant curve. Then, the generated torus is
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used in a continuation approach with pseudo-arclength to retrieve more members of the families

of invariant 2-tori near L1 and L2. The computed families of tori are bounded by the Lyapunov

and the vertical orbits [25]. Both families are approximated using 50 members, leveraged in the

later steps of the approach to generate arcs along the stable hyperbolic manifolds. A subset of the

selected 50 members of invariant tori is depicted in Fig. 5.14 in the Sun-Earth rotating frame and

with colors consistent with Fig. 5.13 and associated with the maximum z-excursion of the solution:

invariant tori associated with small out-of-plane displacement resembles Lyapunov orbit, and are

therefore colored in shades of black, while tori presenting large out-of-plane amplitude lie close to

the vertical orbits and are therefore colored in shades of copper. In the same figure, segments of

the ZVS are displayed using semi-transparent blue curves to provide a dimensional reference.

Figure 5.14: Representative members of families of invariant 2-tori near (a) L1 and (b) L2 at
CJ = 3.00088 in the Sun-Earth CR3BP.

Application of the stability analysis detailed in Sec. 3.5 confirms the generated families of

tori inherit the unstable nature of the bounding Lyapunov and vertical orbits. Therefore, arcs can

be generated from these structures to approximate the stable hyperbolic manifolds. To generate an

approximation of the global stable manifolds, 12,525 states along each torus are perturbed along

the direction of the local stable eigenvalue of the differential of the torus invariance condition.

These perturbed states populate a set of initial conditions that are propagated backward in time

to generate arcs lying along the hyperbolic stable manifolds of the constructed tori. Up to four

consecutive perigees per each manifold arc are recorded, all presenting values of θ in the approximate

range [−22.2◦, 22.2◦]. These perigees are used as initial conditions for trajectories lying on the stable
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manifold arcs: indeed, propagating forward in time the recovered perigees, stable manifold arcs are

generated that asymptotically converge towards the originating invariant 2-torus. Propagating

forward in time these perigees along the stable manifold allows to generate a dataset of trajectories

that is consistent with the analyzed dataset detailed in the collaborative work of Bonasera and

Bosanac [130]: indeed, these trajectories are propagated for up to three subsequent perigees, using

the same set of termination criteria. The constructed set of trajectories propagated forward in

time is used to populate a dataset of 35-dimensional feature vectors, reflecting the geometry of the

associated arcs via the sequence of apse [130].

Eventually, the generated dataset of feature vectors, representing arcs along the hyperbolic

stable manifolds of the tori near L1 and L2, are assigned to distinct clusters. The classifier is

then used to process the constructed feature vectors of the manifold arcs, and generate a set

of labels for each arc [130]. Autonomous cluster identification using the classifier prevents the

trajectory designer from a challenging and time-consuming manual classification of a large set of

manifold trajectories based on geometrical similarities. The classified set of trajectories is used in

the following subsections to investigate the geometry of the manifold arcs, and generate insights on

the governing nature of the invariant manifolds near L1 and L2.

5.3.2 Analyzing Clusters Governed by Stable Manifolds near L1 and L2

The characteristics of arcs along the stable manifolds of invariant 2-tori at L1 and L2 in the

Sun-Earth system at CJ = 3.00088 is investigated in a data-driven approach to generate insights

on the governing nature of these structures onto the design space near the Earth. Specifically, the

generated stable manifold arcs are divided into two subsets, corresponding to trajectories experi-

encing natural escape through the L1 and L2 regions within three revolutions around the Earth,

and arcs presenting bounded motion in the Earth region.

Figure 5.15 reflects the first subset of stable manifold arcs. Specifically, the center of the

figure presents the projections onto the three-dimensional configuration space of a subset of four-

dimensional groups of perigees from the global clustering result: these are composed of the clusters
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that the considered perigees of the stable manifold are assigned to by the classifier, colored in shades

of blue and red. In the central figure, the map populated with perigees presenting z = θ = 0 is

overlaid with semi-transparent markers to provide visual reference. Insets are located at the four

corners of Fig. 5.15, reporting the collection of perigees along the stable manifold arcs associated

with trajectories that are assigned to the indicated clusters in the central figure. Each inset is

labeled using the nomenclature SLi
p,q: S indicates that the perigees in the inset are associated

to stable manifold arcs originating at the invariant tori near L1 or L2; the superscript Li, with

i ∈ {1, 2} specifies the location of the tori generating the stable manifold arcs; the first subscript

p indicates the number of returns to the perigee map experienced by the arcs originating at the

perigees depicted in the inset, before approaching the torus in forward time; the second subscript

q is used to differentiate the subsets of perigees that are associated to the same number of returns

to the map, but are assigned by the classifier to distinct clusters. Moreover, each of the depicted

insets reports: the collection of initial perigees of the stable manifold arcs that are assigned to the

indicated cluster in the central figure, in shades from black to copper consistent with the originating

tori in Fig. 5.14; a subset of the originating invariant 2-tori at the L1 or L2 bottleneck; a single arc

along the stable manifolds, depicted in a shade from black to copper, consistent with the out-of-

plane deviation of the originating invariant torus; the medoid of the indicated cluster, depicted in

a shade of blue or red, consistent with the central figure; the Earth as a gray central circle and a

portion of the ZVS centered at the tori structure near the L1 or L2 bottleneck, for reference.

The results depicted in Fig. 5.15 confirm the expected association between arcs experiencing

early departure from the Earth region and stable manifold arcs originating from the governing

invariant tori near the L1 and L2 equilibrium points. The initial perigees depicted in the insets in

Fig. 5.15 are associated to the first and second returns to the perigee map of the stable manifold

arcs emanated from the investigated tori, when propagated backward in time. The stable manifold

arcs are located in almost identical regions of these structures, and are classified in the same clusters

of trajectories experiencing early departure, highlighting the governing nature of the investigated

invariant tori. Moreover, these observations are consistent with previous contributions from other
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Figure 5.15: Collection of perigees along the stable manifolds emanated from invariant tori near L1

and L2 in the Sun-Earth CR3BP at CJ = 3.00088 that experience approach to the gateway regions
before completing three revolutions. Central figure visualizes the projections of the perigees of the
global clustering result associated with trajectories naturally escaping the Earth region, colored in
shades of blue and red. The insets report the perigees along the stable manifold arcs and associated
with trajectories presenting geometrical similarity, depicted consistently with the approached torus.
Reproduced with permission from Springer Nature.

researchers on the governing nature of periodic and linearized quasi-periodic solutions in the CR3BP

[1, 131]. However, the result in this section visually confirms the association between departing

trajectories and manifold arcs emanated from invariant 2-tori near L1 and L2, in a data-driven

approach that allows reduced human intervention and enhanced visualization.

Stable manifolds arcs emanating from the invariant tori near L1 and L2 that present associ-

ation with trajectories that remain in a bounded region near the Earth for three revolutions are

also examined. Figure 5.16 visualizes the initial perigees of arcs along the stable manifold that are

assigned by the trained classifier to specific groups from the global clustering result, in a config-

uration consistent with Fig. 5.15. However, the depicted insets also report: the continuation of

the manifold arcs for a subsequent crossing with the periapsis map with a gray line, to highlight

natural approach of the arcs towards the associated torus; the collection of perigees of the global

clustering result assigned to the same cluster, overlaid in shades of blue and red semi-transparent

markers consistent with the indicated cluster in the central figure, to highlight that the perigees of
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the stable manifold overlap only a portion of the associated clusters.

Figure 5.16: Collection of perigees along the stable manifolds emanated from invariant tori near
L1 and L2 in the Sun-Earth CR3BP at CJ = 3.00088 that experience temporary capture in the
Earth region for three revolutions. Central figure visualizes the projections of these perigees on the
configuration space, colored in shades of blue and red. Insets reporting the perigees of the stable
manifold arcs presenting geometrical similarity, colored consistently with the approached torus.
Reproduced with permission from Springer Nature.

Stable manifold arcs emanated from tori near the L1 and L2 gateway regions also demonstrate

direct influence on subsets of trajectories that experience temporary capture in the Earth region.

Indeed, sets of perigees contained in specific clusters obtained from the global clustering result

appear in the same region of perigees along the stable manifold arcs, and generate trajectories that

are geometrically similar to a subset of stable manifold arcs. Therefore, these trajectories likely

experience natural departure from the Earth region if propagated for more than three returns to the

periapsis map. However, during the short propagation time used to construct the global clustering

result discussed by Bonasera and Bosanac, the trajectories associated with the perigees visualized

in the center of Fig. 5.16 inherit the geometrical features of the spatial stable manifold arcs from
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tori near the L1 and L2 gateway regions [130]. This result demonstrates the additional benefit of

leveraging the presented data-driven approach to infer significant insight on the governing nature

of the unstable invariant tori. The latter allows to investigate and visualize natural transport

mechanisms in higher-dimensional design spaces that can be used for actual trajectory design,

without requiring the challenging generation of analytic separation criteria and removing substantial

burden from the human analyst.

5.4 Summary of Contributions

This chapter presents the use of data-driven approaches for an unsupervised differentiation

of trajectory arcs on higher-dimensional Poincaré maps based on geometrical similarity [13]. The

devised method, leveraging HDBSCAN in a distributed clustering approach, is used to correlate

groups of similar geometries across partitions of the same spatial map, or maps generated from

different dynamical models and values of the independent variable. First, a method to correlate

clusters based on mutual intersections in the phase space is presented, and demonstrated to reduce

the computational and visualization efforts of clustering a three-dimensional periapsis map in the

Sun-Earth CR3BP at CJ = 3.00088. This approach is expanded by using UMAP to automatically

correlate clusters of distinct maps, and demonstrating cluster persistence across model of increasing

fidelity, as the CR3BP, the ER3BP and a point mass ephemeris model. This approach assists the

trajectory designer by: enhancing visualization of arcs generated in higher-dimensional design

spaces; assessing the evolution of groups of geometrically similar trajectories across models of

increasing fidelity; understanding the geometries of arcs that are often leveraged during trajectory

design, such as stable manifold trajectories. This section concludes the chapter by discussing the

scientific contributions of the presented approach, the benefits of leveraging unsupervised learning

for analyzing a higher-dimensional Poincaré map, and potential avenues for future research.
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5.4.1 Scientific Contributions of the Approach

A data-driven approach is used to autonomously differentiate datasets of trajectories gener-

ated in models of increasing fidelity, including the CR3BP, the ER3BP, and a point mass ephemeris

model. The main scientific contributions of this approach include:

1) Unsupervised learning for high-dimensional Poincaré maps: tools from unsupervised learn-

ing as HDBSCAN, UMAP, and distributed clustering are used to autonomously partition

a dataset of trajectories captured by higher-dimensional Poincaré maps. The result is a

summary of the solution space.

2) Cluster aggregation: distributed clustering is used to enable clustering of a very large

dataset of trajectories. Mutual intersection in phase space is used to aggregate clusters on

a map in the Sun-Earth CR3BP. The lower-dimensional projections of a subset of crossings

from different Poincaré maps is also used to identify cluster persistence across distinct

dynamical models, or different values of the independent variable.

3) Governing structures in the spatial CR3BP: the global clustering result is applied to classify

a set of arcs along the stable manifold of tori near the L1 and L2 gateways in the Sun-Earth

CR3BP at CJ = 3.00088. The classified stable manifold arcs possess similar geometrical

features to a set of groups retrieved from the clustering results, demonstrating the governing

nature of the investigated stable manifold arcs on the solution space near the Earth in a

data-driven approach.

The presented data-driven approach can facilitate analysis of high-dimensional Poincaré maps, en-

abling enhanced visualization and reducing the burden of a human analyst on a variety of tasks,

comprising the construction of trajectory segments, and analysis of structures governing the avail-

able design space.
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5.4.2 The Value of Unsupervised Learning for Higher-Dimensional Poincaré Maps

To enable the autonomous differentiation of trajectories based on geometrical similarity,

HDBSCAN, distributed clustering, and UMAP are used to construct a global clustering result,

or assess cluster persistence across models of increasing fidelity, given as input a dataset of feature

vectors. These techniques generate multiple benefits for investigating a high-dimensional Poincaré

map. The main benefits of unsupervised learning a higher-dimensional Poincaré map include:

1) Autonomous differentiation: in the provided examples, trajectories are grouped based on

their geometric characteristics. The partitioning is performed in an unsupervised approach,

that mitigates the need for a priori identification of analytical and problem-dependent

separation criteria, that are often cumbersome to formulate for a human analyst.

2) Enhanced visualization: the partitioning divides the design space in regions of trajectories

with similar geometrical features, and allows the analyst to summarize the solution space

with a reduced set of representative solutions. The trajectory designer can then focus on

arcs with specific geometries and potentially remove trajectories that are not of interest.

3) Knowledge discovery: the global clustering result can potentially highlight the existence

of regions of the solutions space that are influenced by known dynamical structures in the

model. For example, regions of the design space that are governed by the stable manifolds of

tori near L1 and L2 are visualized and analyzed in Sec. 5.3.2. Likewise, cluster aggregation

enables the assessment of cluster persistence across distinct models, and cluster evolution

across values of the independent variable in higher-fidelity regimes. Such insight informs

model selection during the trajectory design process.

5.4.3 Avenues for Future Work

The application of unsupervised learning techniques on Poincaré maps may benefit from

ongoing work:
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1) An expert trajectory designer might find unintuitive the selection process associated with:

the input parameters for HDBSCAN; the amount of subdivisions used to partition the

dataset; the input parameters used to process the dataset with UMAP; or the number of

nearest neighbors used to train the k-nearest neighbor classifier. For the selection of a sub-

set of these parameters, the presented investigation provides a robust approach, leveraging

different clustering performance criteria. However, other parameters are often heuristically

selected, and heavily depending on the nature of the problem. Different parameters and

a distinct selection of the trained classifier might result in different global clustering re-

sults. Future work may include devising meaningful heuristics or automated approaches to

selecting these quantities.

2) The computational complexity of the devised approach warrants further improvement. In-

deed, rapid result generation represents an important asset during the fast-paced phases

of the trajectory design process. For the scenario presented in this chapter, HDBSCAN

represents a computationally lightweight solution, clustering a single partition in a few

seconds on the same Intel Core i7-2600K @ 3.40GHz. UMAP is applied in the devised

method at different instances, and it generally requires a few minutes for each application

on an identical computational machine. The classifier is trained on the same machine in a

few minutes. Future versions of the devised method might replace UMAP and the selected

classifier with a different algorithm to more rapidly generate a global clustering result.



Chapter 6

Constructing Natural Transfers between Quasi-Periodic Trajectories

Hyperbolic invariant manifolds are dynamical structures that asymptotically depart and ap-

proach unstable periodic and quasi-periodic solutions. These structures are of great interest to

understand natural transport mechanisms in the solar system and to aid in the construction of

trajectories with reduced propellant consumption. Among the variety of existing periodic and

quasi-periodic trajectories, solutions near resonances are often investigated in celestial mechanics

to understand natural transport mechanisms of small bodies, like Kuiper Belt Objects (KBOs), and

to investigate the feasibility of interesting trajectory arcs for space missions, like the Transiting Ex-

oplanet Survey Satellite (TESS) and the Interstellar Boundary Explorer (IBEX) [5,20,21,23]. The

study of natural connection mechanisms between two different periodic orbits near resonances in the

CR3BP has been the subject of different studies. These investigations highlight a rich design space

for natural connections between pairs of orbits near resonance in the CR3BP [3,5,24]. However, the

solution space can be exponentially expanded by incorporating bounded quasi-periodic solutions

nearby orbits near resonance in the available solution space. These quasi-periodic trajectories foliate

the surface of invariant tori, which can present hyperbolic invariant manifolds, therefore allowing

the existence of departing and approaching natural flows. Olikara examines two approaches to

leverage the hyperbolic dynamical flow near invariant tori and design natural connections between

two different tori. In a first approach, a trajectory is constrained to depart from an invariant torus

with fixed geometrical characteristics, while the characteristics of the arrival torus are retrieved

after generating the natural connection. This approach is demonstrated to generate a transfer in
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a neighborhood of the secondary in the CR3BP, and its feasibility relies on the definition of a very

limited solution space, where trajectories are excluded if trespassing one of the two bottlenecks.

In the second approach, Olikara leverages a planar solution connecting two fully defined periodic

orbits, to retrieve a natural connection between two invariant tori using numerical continuation

[30]. This section extends the finding of Olikara, by presenting a flexible technique that enables

the construction of natural connections between two unstable invariant tori in the CR3BP. The

presented methodology, outlined in Sec. 6.1, does not require any constraint applied on the solu-

tion space, and does not necessitate the existence of a planar solution between two nearby periodic

orbits. The devised methodology is demonstrated in a scenario connecting two invariant tori near

resonances in the CR3BP, presented in Sec. 6.2, and subsequently extended to generate families

of geometrically similar transfers in Sec. 6.3. However, the presented technique provides a general

and flexible framework, that can be applied to other pairs of invariant tori presenting the same

level of energy and unstable hyperbolic invariant manifolds. Ultimately, the main findings of the

chapter are summarized in Sec. 6.4. The presented approach and demonstrated examples appear

in a conference paper by Bonasera and Bosanac [132]

6.1 Method Overview

This section presents a methodology leveraging a technique from manifold learning to con-

struct initial guesses for natural transitions between two invariant 2-tori. The analyzed tori are

unstable and are generated by constraining the average energy level of the first invariant curve to

an identical value, following the techniques presented in Sec. 3.5. This methodology is comprised

of two fundamental phases:

1) Initial guess construction: a discontinuous initial guess for a natural transfer between two

spatial invariant tori is constructed. Initially, two families of invariant tori, with non-

empty hyperbolic manifolds, are generated by enforcing an identical value of average Jacobi

constant for the initial approximating invariant curve as a constraint in the formulation of
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the differential corrector, as outlined in Sec. 3.5. Constructing families of quasi-periodic

trajectories enables the generation of families of geometrically similar transfers connecting

families of tori, performed at the end of the second phase. However, during the initial

guess construction only one member per family is necessary. To aid the correction process

during the second phase, one invariant torus per family is selected with comparable out-of-

plane displacements. The selected invariant tori are leveraged to construct the transfer: the

crossings of the hyperbolic manifolds emanating from the selected members of these families

with a common surface of section are used to generate a higher-dimensional Poincaré map.

Then, UMAP is used to project the higher-dimensional crossings onto a lower dimensional

representation. The alternative representation of a Poincaré map constructed by UMAP

supports the identification of an initial guess for a natural connection between the analyzed

invariant tori. Regions of the projected space with nearby crossings of the two manifolds

are visually identified to select a pair of crossings constituted by a stable and unstable arc

intersection. The pair of crossings is propagated to generate an initial guess for a natural

transfer between the investigated tori near distinct resonances.

2) Trajectory correction and continuation: the initial guess is corrected with an optimizer.

The constrained optimization problem is formulated to enforce a continuous trajectory,

simultaneously minimizing the distance of the initial and final states of the transfer from

the considered two tori. Then, the corrected natural connection is used in a continuation

scheme to construct a family of transfers with similar geometry, connecting other members

of the families of invariant tori.

These phases are further elaborated in the remaining part of this section.

6.1.1 Phase 1: Initial Guess Construction

The first phase in the process of constructing a natural connection between two invariant

2-tori corresponds to the identification of an initial guess for a finite time approximation of the
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transfer. The process used in this investigation is summarized as follows:

1) Construct two families of invariant 2-tori : two planar periodic orbits at the same value of

Jacobi constant, are identified. Both orbits present: a nontrivial pair of stable/unstable hy-

perbolic manifolds, to exhibit nearby dynamical flows naturally departing and approaching

the orbit; a nonempty center manifold, indicating that a nearby family of quasi-periodic

trajectory exists. The step enforces the existence of a nontrivial nearby hyperbolic mani-

fold because the nearby invariant tori, originated from the considered periodic orbit at the

same energy level, tend to inherit the stability characteristics of the originating orbit. The

numerical approach described in Sec. 3.5 is used to calculate these two families of invariant

tori. Moreover, the constraint vector of the problem formulation is augmented with the

average value of the Jacobi constant over the set of states approximating the first invariant

curve. This step produces two families of unstable quasi-periodic trajectories that possess

a similar Jacobi constant.

2) Identify the surface of section: a surface of section is defined to generate insights on the flow

associated with the hyperbolic invariant manifolds of the selected families of invariant tori.

For the examples discussed in this investigation, a y = 0 hyperplane is employed with no

additional constraints on the sign of the velocity component at each crossing of the surface

of section, producing a two-sided map. Constraining the sign of a velocity component is a

traditional approach when leveraging a Poincaré map to visually investigate the existence

of connecting trajectories between two periodic orbits [3, 5, 24]. However, constraining

a component of the spacecraft state might remove feasible candidates from the available

solution space. Using UMAP to project the crossings, as described at the later steps of

the presented methodology, eliminates the necessity of constraining the trajectory space,

potentially allowing the investigation of a wider solution space.

3) Record the crossings on the map: one invariant torus is selected from each family and the

crossings of the emanated hyperbolic manifolds with the selected hyperplane are recorded.
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Both selected tori possess a similar maximum out-of-plane displacement: this step is em-

pirically demonstrated to aid the subsequent correction mechanism, performed during the

second phase, for invariant tori near resonances; however, this step might not be required for

different pairs of quasi-periodic trajectories. Subsets of the stable and unstable manifolds

associated with each of the selected invariant tori are generated using a small displacement

ε along the eigenvectors associated with the real stable and unstable eigenvalue of DS,

respectively, as outlined in Sec. 3.6. Up to NC crossings of each manifold arc are recorded

with the defined surface of section. Often, the hyperbolic invariant manifolds associated

with the selected invariant tori tend to remain in the vicinity of the originating solution

for a few revolutions. These crossings do not present great diversity and are generally not

useful for generating natural connections between the investigated tori. Therefore, the first

NI intersections of each manifold arc with the common surface of section are removed from

the analyzed dataset. Removing a subset of the solution space improves the computational

efficiency and visual investigation of the later steps of the presented methodology.

4) Project the crossings onto a lower-dimensional space: a single dataset is populated with

the recorded map crossings associated with the hyperbolic manifolds from the investigated

tori. Each five-dimensional datapoint in this dataset corresponds to a crossing with the de-

fined surface of section. UMAP is leveraged to project the dataset onto a two-dimensional

Euclidean space: the dimensionality of the embedding is selected to prevent data obscu-

ration from representations with more than two dimensions, and reflects the dimension-

ality of states along the surface of a torus that are identified by two angular quantities

[θ1(t), θ2(t)]. The two input parameters used for the projection performed by UMAP are

selected as nn = 100 and mdist = 0.0. This parameter selection supplies a representation

that emphasizes compactness and retains the global structure of the Poincaré map cross-

ings. Moreover, a low value selected for nn enables a relatively rapid construction of the

embedding from UMAP.
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5) Construct an initial guess from the UMAP embedding : the projected lower-dimensional

representation preserves the structure of the original dataset of five-dimensional crossings.

For this reason, areas of the projected space where the crossings of the hyperbolic manifolds

have a low relative distance are investigated as candidate regions for locating natural trans-

fers between the investigated tori. In these areas, two crossings (one from each of the stable

and unstable manifolds) that lie nearby in the lower-dimensional representation are selected

to construct an initial guess. Recall that UMAP generates a bijective mapping between

the low- and high-dimensional dataset: each solution in the planar embedding corresponds

to a unique spacecraft state in the five-dimensional phase space. Thus, two points in the

low-dimensional embedding correspond to two unique crossings in the higher-dimensional

phase space. Once a pair of crossings is identified in the low-dimensional representation,

the associated map crossings in the five-dimensional phase space are propagated backward

and forward in time to generate the associated unstable and stable manifold arcs, respec-

tively. Then, a number of revolutions Nr of the associated quasi-periodic trajectories is

concatenated to the beginning and to the end of the transfer to form a suitable initial guess.

Appending multiple arcs along the invariant tori facilitates the convergence to a natural

transfer, despite the discontinuity generated by the steps along the stable and unstable

eigenvalues during the initialization of the manifold arcs.

The presented procedure for generating an initial guess is demonstrated in this investigation for

a variety of transfers between different invariant tori near resonances in the Earth-Moon CR3BP.

After generation of an initial guess, the constructed arc is corrected with a constrained optimization

scheme, and continued across the generated members of the families of quasi-periodic trajectories

to generate a family of geometrically similar transfers.

6.1.2 Phase 2: Transfer Correction and Numerical Continuation

In the second phase of the proposed method, the initial guess is employed to first recover a

single continuous solution connecting the analyzed invariant tori near resonances. Consequently, the
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retrieved end-to-end solution is continued across the family of invariant tori to construct a family

of transfers with similar geometry connecting two families of invariant tori in the CR3BP. In this

investigation, the correction is implemented with a multiple shooting algorithm and a constrained

optimization scheme, designed to: enforce continuity between the hyperbolic invariant manifold

arcs; ensure the transfer is bounded by the selected tori; enforce the energy level. The correction

is formulated as an optimization problem, solved with Matlab’s fmincon function [133].

In the problem formulation, the objective function is designed to minimize the full-state dis-

placement between the transfer’s initial state and the departing torus, and the transfer’s final state

and the arrival torus. The constraint vector is represented by the set of continuity constraints that

are enforced at each node along the transfer, excluding the initial and final states of the trajectory.

Moreover, the energy of the initial state along the initial guess is constrained to have the same Ja-

cobi constant of the state along the departing torus that originated the unstable manifold arc. The

formulation is presented as an optimization problem because difficulties in the convergence process

are observed when leveraging Newton’s method to recover the continuous end-to-end trajectory

connecting the analyzed tori. Optimization addresses this challenge by providing a more robust

approach for the trajectory correction. Nevertheless, the presented approach supplies solutions that

correspond to natural connections, within a numerical tolerance. To characterize the optimization

problem for the generation of a continuous transfer between two invariant 2-tori in the CR3BP,

mathematical definitions of the free variable vector, constraint vector, and the objective function

are presented.

Free variable vector: First, the initial guess, constructed through the first phase of this

approach, is discretized into N arcs. The states at the beginning of each arc form the free variable

vector as:

V = [x1, x2, . . . , xN , t1, 2, t2, 3, . . . , tN−1, N ]T ∈ R7N−1 (6.1)

with xi for i ∈ {1, 2, . . . , N} representing the six-dimensional states at the beginning of each arc

and tj, j+1 for j ∈ {1, 2, . . . , N − 1} denoting the propagation time from node j to node j + 1. The
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free variable vector is iteratively corrected to optimize the generic minimization problem

V = arg min
V

f(V ) subject to F (V ) = 0 (6.2)

Constraint vector: In the formulation proposed in Eq. (6.2), the equality constraint

vector F (V ) contains the energy and continuity constraints as:

F (V ) =



CJ(x1)− C̄J

x1(t1; t1, 2)− x2

x2(t2; t2, 3)− x3

...

xN−1(tN−1; tN−1, N )− xN


∈ R6N+5 (6.3)

where C̄J is the Jacobi constant associated with the state of the departing torus where the unstable

manifold arc starts from, while xj(tj ; tj, j+1) represents the spacecraft state propagated from xj(tj)

for a time tj, j+1, for j ∈ {1, 2, . . . , N−1}. Recall that both families of invariant tori are constructed

with a constrained average Jacobi constant enforced over the states along the associated first

invariant curves. This constraint often generates families of invariant tori with similar energy

levels, and with extended out-of-plane displacement. However, the sequence of states along a

unique invariant curve of a generated torus can exhibit different values of Jacobi constant, since only

the average value of the Jacobi constant is enforced. Although two families of tori are generated

with the same value of constrained average Jacobi constant, the manifold arcs originated from

two members of these families can be associated with states at slightly different energy levels.

The largest variations of Jacobi constant across states of the same invariant curve is generally

observed for invariant tori with relatively wide out-of-plane displacements within each family, often

representing the last members of the generated families. In these scenarios, the stable and unstable

manifold arcs that form the first and last portion of the initial guess solution, respectively, can

present a slightly different energy level. Therefore, the transfer can converge to a trajectory that

approximately represents a natural connection between the analyzed tori.

Objective function: The objective function f(V ) highlighted in Eq. (6.2) is designed
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to reflect the discontinuity between the terminal and starting states along the transfer and the

associated tori; conceptually, the objective function reflects the requirement that the beginning of

the transfer naturally flows away from the departing torus and the end of the transfer naturally

flows into the arrival torus. This definition is mathematical formulated as:

f(V ) = ‖x1 − xT1‖2 + ‖xN − xT2‖2 (6.4)

where xT1 and xT2 represent the closest states along the associated tori to the initial and final states

x1 and xN along the transfer, respectively. The first part of the objective function, ‖x1−xT1‖2, is

here leveraged to detail an overview of the process for the computation of xT1. The same procedure

can be repeated to compute xT2. Recall that a torus is approximated by a finite set of invariant

curves, each approximated by a finite set of points. Therefore, the state on the surface of the torus

with the smallest distance from x1, and the point of the set of states used to approximate the

torus with the smallest distance from x1 likely correspond to two distinct solutions. The latter is

just an approximation of xT1, and cannot be used to compute the first term in f(V ). However,

the available set of points used to approximate the torus can be used to find xT1. In particular,

the problem of finding a state lying on the torus surface and with the lowest distance from x1 is

recast into the problem of finding two relative angular quantities, (τ1, τ2). These relative angular

quantities are each associated with the two fundamental angular coordinates that describe each

state on a 2-torus, (θ1, θ2), respectively. To compute the pair (τ1, τ2), a reference invariant curve

U(θ1, θ2) along the analyzed torus is identified. To help the procedure, this reference invariant

curve is selected as the curve containing the closest state from x1, given the finite set of invariant

curves used to approximate the torus. Recall again that this state is not xT1, due to the inherent

approximation of the invariant curve. The rotation of the set of points along the selected reference

curve U(θ1, θ2) by two angles (τ1, τ2) generates a new invariant curve U(θ1+τ1, θ2+τ2). Practically,

a rotation along the longitudinal coordinate θ1 is performed by propagating each state along the

invariant curve U(θ1, θ2) for a propagation time that is associated to the angular quantity τ1,

ultimately generating U(θ1 + τ1, θ2). Moreover, the invariance condition of a torus applied to
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an approximated invariant curve, introduced in Eq. (3.23), presents the definition of a rotational

matrix R(·). This operator can be used to perform the second rotation τ2 along the transversal

angular coordinate θ2. The second rotation can be written as:

U(θ1 + τ1, θ2 + τ2) = R(τ2)U(θ1 + τ1, θ2) (6.5)

If U(θ1 + τ1, θ2 + τ2) contains xT1 and x1 lies on the torus surface, then:

x1 − U(θ1 + τ1, θ2 + τ2)|1 = 0 (6.6)

where the subscript ·|1 indicates that only the first element of the set of points approximating

U(θ1 + τ1, θ2 + τ2) is used. However, U(θ1 + τ1, θ2 + τ2) likely does not contain xT1, therefore

(τ1, τ2) are iteratively corrected leveraging a single-shooting approach. Empirically, the method

tends to quickly converge from a general initial guess (τ1, τ2) = (0.01, 0.01), if the torus contains

enough invariant curves. A minimum of M = 25 invariant curves per torus is selected in this

investigation. After obtaining the set of angles (τ1, τ2) that enables to retrieve xT1, the same

procedure is repeated to evaluate the second term in the objective function using the arrival torus.

The optimization problem in Eq. (6.2) is solved using interior point in the MATLAB routine

fmincon. Since the average Jacobi constant over the first invariant curve is used as a constraint

to construct both families of invariant tori, a transfer is considered a natural connection if it

corresponds to an objective f(V ) ≤ 10−12 and a constraint ‖F (V )‖2 ≤ 5 × 10−14. The threshold

in the objective function corresponds to a cumulative approximate displacement of 400 m and 1

mm/s in the Earth-Moon system from the departing and arrival torus, and it is deemed reasonable

given the impact of the difference in the Jacobi constants between states of the invariant curves

associated with the connected tori. Recall that the original departing and arrival states that

correspond to the stable and unstable manifold arcs may potentially have a slightly different Jacobi

constant; thus, an exact natural connection would be impossible to generate.

After the optimization strategy recovers a single point transfer between the selected pair of

invariant tori, a continuation scheme is used to generate a family of transfers with similar geometries
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between different pairs of members of the two families of invariant tori. The continuation approach

is designed to follow a nested iteration structure with an external and an internal loop. In the

internal loop, when a first transfer is found, the continuation scheme maintains fixed the departing

torus, but steps along the contiguous members of the arrival family of invariant tori. To perform the

correction of the natural transfer for the new pair of invariant tori with the optimization scheme in

Eq. (6.2), the previously obtained solution is employed as an initial guess. Then, if the optimization

converges to a transfer connecting the two members of the families of tori with the defined thresholds

in the objective and constraint vector, the converged transfer is used as an initial guess for the next

step of the internal iteration when a new step along the family of arrival tori is performed. The

internal iteration terminates when there are either no more members along the arrival torus family

or a feasible transfer cannot be computed. Then, the process returns to the external loop: the

first solution obtained in the inner loop is used as an initial guess to obtain a new transfer. To

generate this new transfer, the continuation scheme steps along the departing family of invariant

tori. After convergence, a new inner loop is started. This procedure enables the computation of

transfers with similar geometries to the initial guess, connecting spatial quasi-periodic trajectories

along the two selected families. Note that this investigation only searches for the existence of one

transfer between each combination of the available invariant tori and within the neighborhood of

the initial guess. Similar solutions may also appear by varying the departure and arrival locations

along each torus. Nevertheless, the implemented approach enables a preliminary analysis of the

natural transitions between invariant tori.

6.2 Recovering Natural Transfers between Prescribed Invariant 2-Tori near

Resonances

The methodology described in Sec. 6.1 is leveraged to construct and analyze different natural

transfers between two families of quasi-periodic trajectories near resonances in the Earth-Moon

CR3BP. Specifically, the methodology is demonstrated to generate transfers departing an invariant

torus near the 3:2 resonance and approaching an invariant torus near the 1:2 resonance. A point
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solution is constructed using a Poincaré map and dimensionality reduction, in combination. After

recovering a natural transfer connecting two tori near the 3:2 and 1:2 resonances, the design space

is analyzed and additional transfers with different geometries are generated. This section concludes

by demonstrating the approach to connect invariant tori near different combinations of resonances

in the Earth-Moon CR3BP.

Families of invariant tori near the 3:2 and 1:2 resonances are generated in the Earth-Moon

CR3BP. The planar resonant orbits depicted in the center of Fig. 6.1 are employed to compute

members of the nearby families of invariant tori. These planar orbits near the 3:2 and 1:2 resonances

exist at a energy level of CJ = 2.73 with a period of T3:2 ≈ 55.92 days and T1:2 ≈ 50.54 days,

respectively. Both generated orbits have nonempty spatial central and hyperbolic manifolds at

this energy level. Families of invariant tori are generated, enforcing the average Jacobi constant

over the first invariant curve to a value CJ = 2.73. To construct an initial guess for generating a

torus, a perturbation of ε = 5× 10−5 in Eq. (3.24) is used to step along the eigenvector associated

with the oscillatory mode of the periodic orbits. Each torus is computed using NQ = 25 states

along an invariant curve and MQ = 25 nodes along the orbit. The initial guess of the invariant

torus is corrected according to the approach presented in Sec. 3.5. After generating an initial

torus near the 3:2 and 1:2 resonances, pseudo-arclength continuation is applied to generate up to a

total of 20 members per family. Each member in the family also satisfies the average value of the

Jacobi constant over the first invariant curve constraint, set equal to CJ = 2.73. The continuation

scheme generates two families of invariant 2-tori near resonances. The members with the largest

out-of-plane components in configuration space are visualized on the sides of Fig. 6.1.

Figure 6.1: Example orbits and invariant tori near the 3:2 and 1:2 resonances in the Earth-Moon
CR3BP at CJ = 2.73.
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The methodology presented in Sec. 6.1 is demonstrated by constructing a natural connection

departing the 3:2 torus and approaching the 1:2 torus visualized in Fig. 6.1. The unstable manifold

of the torus near the 3:2 resonance and the stable manifolds of the torus near the 1:2 resonance

are sampled using a grid of 101 locations over the longitudinal angular coordinate θ1 and 25 points

over the transversal angular coordinate θ2. Therefore, the manifold of each torus is approximated

with 2525 manifold arcs. The hyperbolic manifold arcs associated with each torus are calculated

using an initial displacement of 100 km along the eigenvectors associated with the real unstable

and stable eigenvalues, respectively, of the DS matrix, used during the construction of the tori.

Each manifold arc is propagated for up to NC = 12 returns to the y = 0 surface of section, in

any direction. However, the first NI = 7 map crossings for each manifold trajectory are excluded

from this analysis, since they tend to remain close to the generating invariant tori. The selected

intersections of the manifold arcs with the common surface of section produce a total of 15,114 and

14,925 crossings for the 3:2 and the 1:2 resonances, respectively. Often, to identify an intersection

between an unstable and a stable manifold arc, the associated crossings are visualized on a projected

space, where each coordinate has a physical meaning [1]. In particular, the crossings of the unstable

and stable manifolds of the analyzed tori with the y = 0 surface of section are projected on the (x, ẋ)

plane and the (x, ẋ, z) space, and are visualized in Fig. 6.2(a-b), respectively. Both representations

highlight the complexity and richness of the solution space, with a large set of crossings been

placed in the same regions. However, two crossings that appear on the same location in Fig. 6.2(a-

b) are not often associated with a feasible natural connection between the investigated invariant

tori. Indeed, both the two- and three-dimensional representations do not completely represent

the higher-dimensional intersections of the invariant manifolds with the surface of section. Thus,

two map crossings that are located nearby in either of these two- or three-dimensional projections

may not be close in the full six-dimensional phase space. Including a fourth dimension in the

map visualization, for example augmenting with color information or glyphs at every crossing, as

well as introducing further constraints in the representation could mitigate this problem [3,24,28].

However, including more dimensions in the representation could complicate the visualization and
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analysis of the Poincaré map, while the design space could significantly shrink with additional

constraints, potentially eliminating feasible solutions from the map.

Figure 6.2: Poincaré map of the intersections of the hyperbolic invariant manifolds with the y = 0
plane emanated from the invariant tori near the 1:2 (blue) and 3:2 (magenta) resonances at CJ =
2.73 in the Earth-Moon system: (a) projection onto the (x, ẋ) plane and (b) projection onto the
(x, ẋ, z) space.

To alleviate the visualization burden of higher-dimensional Poincaré maps representation,

UMAP is employed to project the six-dimensional crossings onto a two-dimensional Euclidean

space. The reduced dimensionality of the projection allows to straightforwardly identify potential

connections between the manifold arcs, avoiding cumbersome representations of the Poincaré map

or the application of constraints to the solution space. In particular, the map crossings associated

with both the stable and unstable manifolds are combined to form the complete dataset that is

input to UMAP. The input parameters for UMAP are selected as nn = 100, mdist = 0.0, and nc = 2,

enabling a compact final representation onto a two-dimensional projected space. After processing

the dataset with UMAP, the projected crossings are visualized in Fig. 6.3. The projection of the

entire dataset is depicted in the center of this figure. The projected crossings associated with the

stable manifold arcs, naturally approaching the 1:2 torus, are depicted with blue markers, while

magenta markers are used to visualize the projected crossings associated with the unstable manifold

arcs that naturally departs the 3:2 torus. Note that the coordinates of the projected space, labeled

U1 and U2 in Fig. 6.3, do not retain any physical meaning. However, UMAP projects the dataset
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in order to maintain a topological similarity between the original dataset, constituted by the five-

dimensional crossings with the y = 0 plane, and the projected crossings in the two-dimensional

representation. This procedure preserves the global structure of the dataset. As a result, two

map crossings that are close in the full phase space are expected to be located nearby in the

two-dimensional projection. Analysis of the projected representation, visualized at the center of

Fig. 6.3, reveals that there are a variety of regions where both blue and magenta points are nearby.

In these regions the associated crossings of the stable and unstable manifolds may potentially cross

the y = 0 surface of section with similar six-dimensional state vectors. Four of these regions are

zoomed-in and framed on the sides of the central map representation. Each frame is identified by

a label Ti, with i = {1, 2, 3, 4} and it is used to generate a single transfer with a distinct geometry.

However, the same region can host transfers with different geometries: indeed, the dataset of five-

dimensional datapoints incorporates information on the crossings, without additional information

on the geometrical characteristics of the generating manifold arc; therefore, geometrically different

arcs emanated from the same torus can intersect the surface of section in similar points, and are

projected in a nearby region by UMAP. Moreover, additional regions of overlapping magenta and

blue point clouds appear in the center of Fig. 6.3, but are not analyzed in the remaining part of

this section. These items represent additional explorations left for future investigations.

Each framed region on the two-dimensional projection calculated by UMAP is used to gen-

erate a point solution for a natural transition between quasi-periodic trajectories associated with

tori near the 3:2 and 1:2 resonances in the Earth-Moon CR3BP. A pair of nearby crossings on the

projected space is selected in each of the framed regions displayed at the boundaries of Fig. 6.3.

Each pair is populated by one crossing from the unstable manifold associated with the invariant

torus near the 3:2 resonance, and one crossing from the stable manifold associated with the in-

variant torus near the 1:2 resonance. The selected pair for each frame corresponds to the pair

presenting the closest distance in the two-dimensional space. Besides the visualization advantage,

using UMAP to select subregions of the embedding for searching feasible solutions generates two

computational benefits: 1) a brute-force search over every available pair, each composed by a cross-



139

Figure 6.3: Center: projection of the crossing dataset in Fig. 6.2 onto a two-dimensional Euclidean
space calculated by UMAP. Boundaries: zoomed-in perspectives of four regions of intersections
between the stable and unstable manifolds of each invariant torus.

ing from the stable manifold and a crossing of the unstable manifold, is avoided; 2) the distances

between crossings are processed on the two-dimensional solution space, rather than the original

six-dimensional space. After selecting a pair of crossings for each frame in Fig. 6.3, an initial guess

for a natural transfer is constructed by propagating towards the originating invariant tori. Four

revolutions along each torus are appended to the beginning and the end of the initial guess to aid

the subsequent correction process. The numerical corrections procedure described in Sec. 6.1 is

implemented to recover a nearby natural transfer for each frame, displayed in Fig. 6.4.

In this figure, each transfer is labeled to correspond to the associated zoomed-in view in

Fig. 6.3, marked by the labels T1 to T4. Each depicted transfer converges to a solution with an

objective f(V ) ≤ 10−12, and satisfying the constraint with ‖F (V )‖2 ≤ 5×10−14 in a computational

time of approximately 15 seconds per trajectory on an i7-2600K @ 3.40GHz. Furthermore, each

transfer lies close to the initial guess. The retrieved natural transfers begin at the magenta circle

marker on the invariant torus associated with the 3:2 resonance, and terminate at the blue circle

marker on the invariant torus near the 1:2 resonance. Each transfer is colored in magenta for the

portion associated with the unstable manifold emanated from the departing torus; the remaining
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Figure 6.4: Selected natural transfers between invariant tori near the 1:2 and 3:2 resonances. The
transfers are labeled by the region in Fig. 6.3 used to identify suitable map crossings.

part of each trajectory, associated with the approaching to the arrival torus, is colored in blue.

These transfers each present a distinct geometry due to the different manifold arcs used to generate

the initial guess. The intersections of these trajectories with the surface of section at y = 0 are

displayed in the planar Poincaré map representation on the (x, ẋ) plane and the (x, ẋ, z) space in

Fig. 6.5(a-b). In this figure, the crossings of the 3:2 unstable manifold and the 1:2 stable manifold

are displayed with magenta and blue transparent markers, respectively, while the intersections of

the transfers depicted in Fig. 6.4 with the y = 0 plane appear as gray circles. These figures confirm

that the crossings associated with the constructed transfers lie near the intersections of two manifold

crossings on the surface of section in the traditional planar representation of a Poincaré map.

The same approach demonstrated in this section can be applied to construct transfers between
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Figure 6.5: Crossings of the transfers (gray) in Fig. 6.4 overlaid on the Poincaré map of the
hyperbolic invariant manifolds from the selected invariant tori near the 1:2 (blue) and 3:2 (magenta)
resonances at CJ = 2.73, using a surface of section at y = 0: (a) projection onto the (x, ẋ) plane
and (b) projection onto the (x, ẋ, z) space.

tori near different resonances in the Earth-Moon system. Figure 6.6(a) visualizes the projected

crossings of arcs from the unstable manifold emanated from a torus near the 3:1 resonance and

the projected crossings of stable manifold arcs approaching a torus near the 1:3 resonance. The

manifold crossings are constructed with invariant tori with a fixed average Jacobi constant over the

first invariant curve of CJ = 3, and are propagated for up to NC = 18 crossings, although removing

the first NI = 10 intersections. To construct an initial guess for a transfer departing the torus near

the 3:1 resonance and naturally approaching the torus near the 1:3 resonance, a framed region from

the UMAP projection in Fig. 6.6(a) is investigated. From this region, an initial guess is selected and

corrected with the methodology highlighted in Sec. 6.1. The generated natural transfer is depicted

in Fig. 6.6(b), using the a coloring scheme consistent with Fig. 6.4. The same procedure is repeated

to construct a transfer departing a torus near the 2:3 resonance and naturally approaching a torus

near the 1:5 resonance in the Earth-Moon system at CJ = 2.6. The UMAP projections associated

with the manifolds emanated from the analyzed tori, and the constructed transfer, are visualized in

Fig. 6.7(a-b), respectively. The transfers visualized in Figs. 6.6 and 6.7 represent only one solution

among the variety of feasible natural transfers visualized in the associated UMAP representations.
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Figure 6.6: (a) UMAP projections of the crossings from the hyperbolic manifolds of two invariant
tori near the 1:3 (blue) and the 3:1 (magenta) resonances with the y = 0 plane; (b) natural transfer
departing the torus near the 3:1 resonance and naturally approaching the 1:3 torus near resonance,
initialized by leveraging the UMAP projection, in the Earth-Moon system at CJ = 3.

Figure 6.7: (a) UMAP projections of the crossings from the hyperbolic manifolds of two invariant
tori near the 1:5 (blue) and the 2:3 (magenta) resonances with the y = 0 plane; (b) natural transfer
departing the torus near the 2:3 resonance and naturally approaching the 1:5 torus near resonance,
initialized by leveraging the UMAP projection, in the Earth-Moon system at CJ = 2.6

6.3 Generating Transfers Between Families of Invariant Tori near Resonances

In this section, continuation is used to generate families of transfers with similar geometry

across multiple invariant 2-tori near resonance in the Earth-Moon system. To demonstrate the



143

continuation approach detailed in Sec. 6.1, the families of tori near the 3:2 and 1:2 resonances

at CJ = 2.73 are used. In particular, the natural transfer T1 in Fig. 6.4(a) is considered in a

first investigation. Continuation is applied to compute transfers with a similar geometry between

unique pairs of invariant tori. However, the continuation scheme is not used to find similar transfers

connecting the tori at various longitudinal and transverse angles. Following the application of the

continuation procedure to transfer T1 in Fig. 6.4(a), Fig. 6.8 presents a summary of the converged

family of natural transfers for this particular transfer geometry, naturally departing members from

the family of invariant tori near the 3:2 resonance and naturally approaching members from the

family of invariant tori near the 1:2 resonance.

In the top-right inset of Fig. 6.8, a grid-like representation summarizes the obtained transfers.

The horizontal and vertical axes depict the maximum out-of-plane component of the position vector

at apogee along the departure and arrival tori, respectively. Each black circle in this plot indicates

the existence of a feasible natural transfer, computed with the optimization problem summarized in

Eq. (6.2) and satisfying the requirements f(V ) ≤ 10−12 and ‖F (V )‖2 ≤ 5× 10−14. From the grid-

like representation, four feasible transfers are highlighted with red circles, labeled as A1 to A4, and

depicted in four insets in Fig. 6.8. In each inset depicting a transfer in black, the Earth and the Moon

appear as gray circles, together with the Earth-Moon Lagrange points as magenta diamonds. The

xy-projections in each inset demonstrate that the overall transfer geometry is consistent throughout

the family. However, as observed in the gray lateral xz- and yz-projections, each transfer connects

invariant tori with different out-of-plane displacements. For example, transfer A1 connects the

last members of the 3:2 and 1:2 families of invariant tori, which present the largest out-of-plane

displacement at the apoapses. Therefore, the A1 transfer exhibits the largest out-of-plane motion.

Conversely, transfer A3 presents almost a planar transfer, since it connects the members of the two

families with relatively small out-of-plane component at apoapsis. The remaining two transfers,

labeled as A2 and A4, connect invariant tori with large relative difference in the maximum out-

of-plane displacement at apoapsis. In particular, transfer A2 naturally connects a member of

the family of tori near the 3:2 resonance with a relatively low out-of-plane displacement at the
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Figure 6.8: Summary of the continuation scheme for natural transfers continued from Fig. 6.4(a).
Black markers reflect a natural transfer from a departing 3:2 invariant torus to an arrival 1:2
invariant torus, identified by the maximum out-of-plane displacement at apoapsis. Four sample
transfers are visualized in the boundaries and indicated with red circles in the top-right grid.

apoapsis, with a member of the family of tori near the 1:2 resonance with a relatively large out-

of-plane displacement at the apoapsis. Conversely, transfer A4 exhibits an initial large out-of-

plane displacement, culminating with almost planar motion. Note that transfers A1 and A4 are

localized in the same column in Fig. 6.8, therefore they are associated to the same departing torus:
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although presenting solutions departing the same structure, the initial spacecraft states of these

transfers along the departing torus differs to accommodate trajectories with distinct out-of-plane

displacements. Likewise, transfers A1 and A2 share the same row in the grid-like representation,

thus presenting transfers approaching the same arrival torus, although culminating at different

locations. Analysis of Fig. 6.8 reveals useful insights into the existence of natural transitions

between invariant tori within each family. Specifically, given a fixed initial invariant torus near the

3:2 resonance, a transition only exists to selected arrival tori near the 1:2 resonance and vice versa.

For this particular transfer geometry, the existence of these transitions appears to be linked to the

relative difference in the maximum out-of-plane component along each invariant torus. Moreover,

for initial invariant tori near the 3:2 resonance with a small out-of-plane deviation at apoapsis,

only tori near the 1:2 resonance with a small out-of-plane component are naturally accessible. As

the tori evolve along each family, expanding their maximum out-of-plane displacement at apoapsis,

natural transitions occur at a larger range of differences in the maximum out-of-plane components.

Analysis of the existence of natural transfers with a similar geometry to the T4 transfer

in Fig. 6.4(d) is performed for the families of invariant tori near the 3:2 and 1:2 resonances at

CJ = 2.73. The T4 transfer presented in Fig. 6.4(d), naturally connects the last computed members

of the investigated families of tori. However, there is an evident geometric difference between

transfer T1 and T4, in Fig. 6.4(a) and (d) respectively. Indeed, the transfer labeled as T4 presents

a transient with multiple loops in the configuration space around L4 prior to a final flyby with the

Moon that directs the spacecraft towards a natural approach to the torus near the 1:2 resonance. To

investigate the associated family of transfers, transfer T4 is leveraged as an initial guess to start the

continuation scheme outlined in Sec. 6.1. The results of the continuation scheme are summarized in

Fig. 6.9 using a configuration consistent with Fig. 6.8. A top-right grid-like visualization represents

each constructed natural transfer presenting a similar geometry to Fig. 6.4(d). Moreover, the

phase space representation of four natural transfers is highlighted in four insets at the boundaries

of the figure, connected by red arrows to the associated red-circled dots in the grid. The transfer

appearing on the top-left, and labeled with the identifier B1, naturally connects the invariant
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tori with the largest out-of-plane displacement at apoapsis, while transfer B3 presents almost a

planar transfer, since it connects the members of the two families with a relatively small out-of-

plane component at apoapsis. Transfers B2 and B4 complete the figure, and present trajectories

naturally connecting tori with relatively large differences for the out-of-plane displacement. Analysis

of Fig. 6.9 reveals that this family of transfers accounts for a larger number of feasible solutions

satisfying the optimization requirements. In particular, more solutions appear on the second and

third row and columns of Fig. 6.9 with respect to the analogous of Fig. 6.8. These solutions connect

tori with relative large difference in out-of-plane displacement. Such a result is likely motivated

by the multiple close flybys performed by transfer T4 with respect to transfer T1 in Fig. 6.4. For

this reason, the existence of natural transitions between spatial invariant tori near two distinct

resonances appears to be influenced by the transfer geometry.

Ultimately, each family of continuous and natural transfers presented in Figs. 6.8 and 6.9

can be straightforwardly expanded by leveraging known symmetries of the CR3BP and the sym-

metry of the investigated families of invariant tori. Indeed, as outlined in Sec. 2.1, if a trajectory

x(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)] exists, then also x̄(t) = [x(t), y(t),−z(t), ẋ(t), ẏ(t),−ż(t)] sat-

isfies the dynamics in Eq. (2.5) [71]. Note how the existence of one family and the associated

mirrored counterpart can be interpreted as two different branches bifurcating from the planar so-

lution connecting the associated periodic orbits.

6.4 Summary of Contributions

This chapter presents an approach for generating natural connections between unstable in-

variant 2-tori in the CR3BP. The presented methodology first generates two families of unstable

invariant tori, and records the crossings of the hyperbolic invariant manifolds emanated from two

members of the families with a common surface of section. The crossings are then projected on a

lower dimensional representation using UMAP, and visually investigated to retrieve a discontinuous

initial guess solution. The initial guess is then corrected into a continuous trajectory that minimizes

the distance of the first and last states of the transfer from the investigated tori. This solution is
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Figure 6.9: Summary of the continuation scheme for natural transfers continued from Fig. 6.4(d).
Black markers reflect a natural transfer from a departing 3:2 invariant torus to an arrival 1:2
invariant torus, identified by the maximum out-of-plane displacement at apoapsis. Four sample
transfers are visualized in the boundaries and indicated with red circles in the top-right grid.

continued across members of the family of invariant tori, obtaining a family of natural transfers

with similar geometry. The method is demonstrated to construct transfers between tori near or-

bital resonances in the Earth-Moon CR3BP. This section concludes the chapter by discussing the

scientific contributions of the presented results, the benefit of leveraging UMAP for projecting a
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higher-dimensional Poincaré map, and potential avenues for future research.

6.4.1 Scientific Contributions of the Presented Results

The presented methodology is demonstrated on a specific scenario where connections between

two families of tori near orbital resonances in the Earth-Moon system are generated. The proposed

technique provides four main scientific contributions:

1) Flexibility of the devised approach: the method is specifically designed to be torus-, system-

and model-agnostic. Although it is demonstrated for specific scenarios in the Earth-Moon

CR3BP, the technique can be adapted to connect: invariant tori near orbits that do not lie

near resonances, for example quasi-halo trajectories; invariant tori in different dynamical

systems and models, for example in the Sun-Earth CR3BP, as well as in more complex

models; an invariant torus with a trajectory arc departing or approaching another periodic

orbit. Moreover, the proposed methodology eliminates the necessity of constraining the

location or the shape of the tori.

2) A-priori definition of the connected tori: both departing and arrival structures must be de-

termined before initializing the method. This enables a trajectory designer to specify both

the departing and arrival structure, aiding for the construction of end-to-end trajectories.

3) Use of UMAP for higher-dimensional Poincaré maps: UMAP is leveraged to reduce the

dimensionality of the dataset of manifold crossings, enhancing visualization. The projected

dataset can aid the trajectory designer in the identification of multiple natural connections

between distinct invariant tori.

4) Generation of a family of natural connections between invariant tori: this work presents a

technique for generating families of natural connections between families of invariant tori

near orbital resonances.
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6.4.2 Benefits of Manifold Learning for Higher-Dimensional Poincaré Maps

Manifold learning is employed in this chapter to reduce the dimensionality of a dataset,

populated by five-dimensional crossings of manifold arcs with a surface of section. The generated

projection aids an astrodynamicist to investigate areas of a Poincaré map where a natural connection

between tori might exist. The application of manifold learning to the problem of visualization of a

Poincaré map presents a variety of benefits, including:

1) Enhanced visualization: the information contained in a dataset populated by five-dimensional

datapoints is projected and visualized through a two-dimensional representation, preserv-

ing the original global structure of the higher dimensional dataset. This process allows an

astrodynamicist to obtain an understanding of the global structure of the available solution

space with a simple planar representation.

2) Improved computational efficiency: the computational complexity of UMAP is O(n1.14)

[32]. The enhanced visualization allows to investigate only specific regions of the dataset,

reducing the overall computational effort of the searching algorithm. If a brute-force ap-

proach is selected, the searching on the selected regions has a computational complexity

of O(n2sub), while the same algorithm on the original dataset is O(n2), with nsub � n.

In general, including UMAP may benefit the computational cost if the complexity of the

searching algorithm is larger than O(n1.14). Additionally, the lower-dimensional represen-

tation reduces the computational complexity associated with the distance metric used to

compare two points in the dataset: instead of computing distances that employ the orig-

inal higher-dimensional solution space, the method can use the coordinates of the lower

dimensional representation.

6.4.3 Avenues for Future Work

The approach presented in this chapter may benefit from ongoing work, including:

1) According to the definition of UMAP in Sec. 4.1.2, the higher- and lower-dimensional
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datasets have a similar, yet not identical, topological configuration. Therefore, the distance

between two datapoints in the lower-dimensional representation might be distorted when

compared to the distance between the same crossings in the higher-dimensional dataset.

In the extreme case, if the original dataset contains two identical datapoints, their lower-

dimensional representations might be placed in two distinct, yet nearby, configurations in

the lower-dimensional representation. This challenge can potentially be solved by leverag-

ing the parametric version of UMAP, that trains a neural network for learning the embed-

ding [32]. Investigation of alternative approaches or further analysis of this phenomenon

represents the scope of future research.

2) Using UMAP to reduce the dimensionality of a dataset requires a new set of expertise

from what usually possessed by a trajectory designer. Specifically, the selection criteria

for the leveraged input parameters are dataset- and problem-dependent. A correct final

selection requires the trajectory designer to understand the intrinsic mechanism behind

UMAP, and to iteratively explore different input parameter sets. Thus, future work might

include a thorough parameter exploration to aid a trajectory designer in the projection of

high-dimensional crossings of interesting trajectories.



Chapter 7

Autonomous Maneuver Design with Reinforcement Learning

Maneuvers are often implemented to alter a trajectory path and enable a spacecraft to fulfill

the mission requirements. Among the variety of scenarios where maneuvers represent a fundamental

asset for a mission, this chapter focuses on station-keeping and orbital transfer maneuver design.

Specifically, sequences of station-keeping maneuvers are designed to enforce bounded motion with

respect to a reference trajectory. The sequence of maneuvers is necessary to avoid the spacecraft

natural departure due to the underlying governing dynamics. Conversely, maneuvers for an orbital

transfer scenario are leveraged to transition a spacecraft from a starting orbit to an arrival path.

Different approaches have been designed to identify sequence of maneuvers for station-keeping

and orbital transfer scenario, especially leveraging techniques from traditional optimization and

dynamical systems theory [38, 53]. However, these approaches often require significant human

involvement throughout each phase of the trajectory generation process, and large computational

resources to compute the required sequence of maneuvers. In this chapter, reinforcement learning

is leveraged to train policies for autonomous generation of station-keeping and orbital transfer

maneuvers. The trained policies allow to reduce human workload and computational requirements

during the fast-paced phases of trajectory design process. In particular, policies for autonomous

station-keeping maneuver design in a higher-fidelity point mass ephemeris model are investigated in

Sec. 7.1, followed by the main results on an initial exploration of reinforcement learning to different

orbit transfer scenarios in the Earth-Moon CR3BP in Secs. 7.2 and 7.3. Ultimately, a summary of

this chapter, and a thorough description of the potential impact of the demonstrated approach for
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autonomous maneuvering in multi-body systems is presented in Sec. 7.4.

7.1 Station-Keeping Maneuver Design in the Sun-Earth System

In this section, a reinforcement learning algorithm is leveraged to train and evaluate a

policy for station-keeping maneuver design in a point mass ephemeris model. First, a baseline

station-keeping scenario, modeled after the Nancy Grace Roman Space Telescope, is introduced

in Sec. 7.1.1. The station-keeping problem is then translated into a reinforcement learning envi-

ronment in Sec. 7.1.2, identifying a step, an episode, an action and a state vector, and a reward

formulation. To favor a comparison with traditional optimization, a constrained optimization sce-

nario is formulated and presented in Sec. 7.1.3. Ultimately, the defined reinforcement learning

scenario is used to train and evaluate a policy in a point mass ephemeris model in Sec. 7.1.4,

compared with the performances of the constrained optimization in Sec. 7.1.5.

7.1.1 Scenario Overview

A scenario modeled after the Nancy Grace Roman Space Telescope is used as a framework

for a spacecraft operating near a Sun-Earth L2 southern quasi-halo trajectory. In this framework,

the spacecraft is assumed possessing a cross-sectional area of 49.6 m2, a dry mass of 6877 kg and

full reflectivity k = 2 [38]. The modeled scenario requires the spacecraft to exhibit bounded motion

with respect to a southern halo orbit nearby L2 in the Sun-Earth system, with a period of Tr ≈ 180

days, corresponding to a periodic orbit with a value of Jacobi constant CJ = 3.00078, displayed

in Fig. 7.1(a) in the Sun-Earth rotating frame using dimensionless coordinates relative to the

Earth. When a point mass ephemeris model is used to generate a reference path for the spacecraft,

the correction scheme summarized in Sec. 3.8 is leveraged. The orbit displayed in Fig. 7.1(a) is

employed as a first guess to construct a nearby continuous trajectory in a point mass ephemeris

model, incorporating the gravitational influence of the Sun, the Earth, and the Moon, augmented

by SRP. The reference trajectory is defined for a time span [e0, ef ] = [29390.308, 37066.086] MJD,

corresponding to the period between 24 Jun 2021 19:22:22 and 30 Jun 2042 14:02:41 UTC, and it
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is visualized in Fig. 7.1(b) in the dimensionless Sun-Earth rotating frame, with the Earth at the

origin. Thanks to the leveraged correction scheme, the corrected trajectory represents a continuous

arc in a higher-fidelity dynamical model, with minimized state deviation from the generating halo

orbit near L2 in the Sun-Earth CR3BP of Fig. 7.1(a).

Figure 7.1: Reference trajectories near the Sun-Earth L2: (a) southern halo orbit in the CR3BP and
(b) nearby quasi-halo bounded trajectory in a Sun-Earth-Moon ephemeris model, with minimized
state-wise distance from (a) and spanning a period [e0, ef ] = [29390.308, 37066.086] MJD.

Typically, impulsive station-keeping maneuvers are used to mitigate the impact of uncertain-

ties, momentum unloads, and off-nominal maneuvers on the spacecraft trajectory. These motivate

the design of robust maneuver planners. This investigation only considers regular momentum

unloads, modeled as instantaneous changes in velocity, denoted ∆vMU. Moreover, the modeled sce-

nario assumes full state knowledge and nominal maneuver performance. According to the Nancy

Grace Roman Space Telescope scenario, each momentum unload maneuver is defined as a three-

dimensional instantaneous change in velocity, with magnitude of 8.7 mm/s and a random direction.

A sequence starting with one station-keeping maneuver and continuing with three consecutive mo-

mentum unload maneuvers and coast arcs corresponds to a momentum unload cycle. In this cycle,

a coasting arc of tMU = 130 hours is assumed between two consecutive maneuvers, therefore ob-

taining a single momentum unload cycle in 520 hours [38]. Differently from the momentum unload

maneuvers, no constraint is applied to the magnitude of the station-keeping maneuvers.
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7.1.2 Reinforcement Learning Problem

Translating a problem into an RL scenario requires the definition of various components that

are leveraged to train a policy. Specifically, an RL scenario is characterized by the definition of:

observation and action vectors, a reward, a step and an episode, and an environment. In this

investigation, the RL environment for the station-keeping scenario is formulated to be agnostic of

the leveraged dynamical model. Therefore, the environment can be used to train policies in both

low- and high-fidelity dynamical models. In the designed environment, a single episode constitutes

up to τ steps, as indicated by the blue arcs in Fig. 7.2. At the beginning of each step, the

spacecraft state, marked with a gray circle in Fig. 7.2, is corrected by an impulsive maneuver ∆v.

Each maneuver is generated by the actor policy, and it is marked by a violet arrow in Fig. 7.2.

During training, the corrected spacecraft state is then propagated for a time ∆t = 520 hours,

corresponding to one momentum unload cycle. During the testing phase of the learned policy

in the long-term station-keeping scenario, the spacecraft path in each step is perturbed by three

consecutive momentum unload maneuvers. The information concerning the state of the spacecraft

and the current epoch is accessed at the beginning of each step through the continuous environment

state vector s. This state vector for the station-keeping environment is defined as:

s = [x̃ref , δx̃, t̃E , s̃] ∈ R14 (7.1)

and it is composed of the spacecraft state along the reference trajectory x̃ref that is associated to

the current epoch, depicted as a black dot along the reference path in Fig. 7.2, the isochronous

deviation of the spacecraft state from the reference state, δx̃, marked by black arrows in Fig. 7.2,

the current epoch t̃E , and a cardinal identifier of the maneuver number along the current episode s̃.

The tilde operator leveraged in Eq. (7.1) indicates a scaled quantity, used to generate components

of the environment state vector that generally present values in the range [−1, 1] during training.

Each non-terminal step begins with an environment state vector corresponding to the current state

and epoch of the spacecraft. The environment and spacecraft configuration at the beginning of each

step is computed at termination of the preceding step. The initial step for each episode initializes
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the environment state vector with a model-dependent approach. If the dynamical model used for

propagating the spacecraft state is the low-fidelity CR3BP, an initial state along the reference orbit

x̃ref is randomly selected and the initial epoch randomly assigned from the range [e0, ef ] MJD.

If the point mass ephemeris model is employed for the propagation of the spacecraft state in the

environment, each episode is initialized by randomly selecting the initial epoch, tE to produce the

corresponding spacecraft state vector, x̃ref along the reference trajectory. A relative state vector,

δx̃, is then randomly generated in both approaches to initialize the spacecraft state within an

hypersphere of the reference state x̃ref . In particular, each component of the relative state vector

is randomly sampled from a continuous uniform distribution in the range [−1, 1]. The order of

magnitude of the perturbation is selected from a triangular distribution between -5 and 0.2 and

centered at 0, multiplied by a scaling factor of 300 km and 5.96 mm/s in each position and velocity

component to obtain the final perturbation. This triangular distribution is designed to encourage

episode initialization near the reference path, representing a fundamental asset for the long-term

station-keeping scenario with dynamical perturbations. Ultimately, the step number identifier is

computed at each step as s̃ = 2i/τ −1, where i ∈ {τ, τ −1, . . . , 0} is the current step number across

the generated episode. The step number identifier is initialized with a value s̃ = 1 at the beginning

of the initial step of an episode, and culminates at a value s̃ = −1 at the end of the τ -th step. The

quantity s̃ largely affects the training process, because it helps the critic to distinguish between

similar spacecraft states that occur at different time steps along different episodes.

The environment state vector is leveraged at the beginning of each step to generate an action

a ∈ R3. The state is input to the policy, generating as a output a three-dimensional mean and a

three-dimensional standard deviation. During training, the action is sampled from a multi-variate

Gaussian constructed with the obtained three-dimensional mean and standard deviation. During

testing, the action is defined only using the mean of the distribution. This approach enables

exploration during training, and exploitation at testing time. The generated continuous action,

a, is formulated as a three-dimensional vector that reflects an impulsive maneuver, ∆v = νa in

the Sun-Earth rotating frame. The scaling parameter ν ≈ 0.14 m/s is selected according to the



156

Figure 7.2: Conceptual representation of the regions separating different reward formulations.

investigate system, and favors the generation of actions within [−1, 1]. Then, the spacecraft state

is augmented with the constructed ∆v. At the end of the step, the current state and epoch of the

spacecraft is used to update the environment state s, used at the beginning of the subsequent state

of the current episode.

Lastly, the reward is formulated to simultaneously consider the information associated with

the state of the spacecraft at the beginning and the end of the step. In this investigation, reward

shaping is applied to aid the policy learn a behavior that favors: bounded motion with respect to

the reference trajectory; and reduced maneuver magnitude. The reward is then composed of three

formulations, each associated with a specific spatial region nearby the reference state.

1) Exterior region: when at the end of the considered step the spacecraft position exceeds

a relative threshold value ‖δr(t0 + ∆t)‖ > δ2, the spacecraft is considered in the exterior

relative region. In this work, the threshold is selected as δ2 ≈ 1.67×10−5, corresponding to

a position error magnitude of up to 2499 km. The external region is represented by the area

above the orange section in Fig. 7.2. When the spacecraft is in the exterior region, a large

negative reward is assigned to the analyzed state-action pair. The value of the assigned

reward reflects a heavy penalization due to the significant departure from the reference

trajectory. After assigning the reward to the state-action pair, the associated episode is

also terminated.
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2) Central region: when the spacecraft position at the end of the considered step is within

the thresholds δ1 ≤ ‖δr(t0 + ∆t)‖ ≤ δ2, the spacecraft is considered in a central relative

region. A value δ1 ≈ 6.68 × 10−7, corresponding to a relative distance of 100 km, is used

in this work. In this configuration, the spacecraft is considered in an acceptable bounded

region near the reference path, but not within a desired region. The reward in the central

region is formulated as a weighted sum of two terms: a quantity associated with the relative

distance of the spacecraft from the reference trajectory, measured isochronously; a value

associated with the amount of propellant consumed for the maneuver at the beginning of

the step. The central region is represented as an orange area in Fig. 7.2.

3) Internal region: when the spacecraft position is within a threshold ‖δr(t0 + ∆t)‖ ≤ δ1,

the spacecraft is considered in the internal relative region. The reward is formulated to

reduce the maneuver magnitude and maintain the spacecraft within the internal region.

The mathematical definition of the reward follows the description used for the middle

region, since it is composed by the weighted sum of two terms. However, two modifications

are included for the term associated with the displacement from the reference trajectory.

Independently from the actual full-state relative distance, the positional distance from the

reference is fixed to δ1. Moreover, the term associated with the spacecraft displacement

from the reference trajectory is scaled by a value B = ln (δ1/2)/ ln (δ1) ≈ 1.05. Empirically,

it is observed that larger values for the scaling parameter, B, result in policies that rapidly

drive the spacecraft within the internal region. The internal region is represented by the

gray area in Fig. 7.2.

Based on the distinction of three fundamental regions of motion, the mathematical formula-
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tion of the piece-wise reward is:

r =



−B ln (δ1) +K (1− ‖a‖) if ‖δr(∆t)‖ ≤ δ1

− ln (‖δr(∆t)‖) +K (1− ‖a‖) if ‖δr(∆t)‖ ≤ δ2 ∧ ‖δr(∆t)‖ > δ1

−100 otherwise

(7.2)

In this formulation, a relative weighting factor K = 15 is selected to balance the effects of the

isochronous state deviation of the perturbed path at the end of the time step relative to the

reference, δr(t0 + ∆t), and the maneuver magnitude. In the piece-wise reward formulation of the

internal and central region, the isochronous spacecraft displacement is processed through a natural

logarithm. A formulation with a negative natural logarithm is selected due to the continuous and

unbounded characteristic of the function for an argument converging towards zero. Processing the

full-state displacement through the natural logarithm generates progressively larger rewards when

the state deviation converges to zero. Ultimately, a linear formulation is selected for the action

contribution within the reward to provide an upper positive limit. Unbounded formulations might

generate policies that prefer to not act in the considered scenario. A conceptual overview of the

training process for the environment leveraging the point mass ephemeris model, composed by

episode initialization, interaction between the environment and the policy, and step execution, is

summarized in Fig. 7.3.

7.1.2.1 Hyperparameters and Neural Network Structure Selection

The performance of the trained policy is governed by a set of training parameters and the

designed structure of the neural networks, forming together a set of hyperparameters that must be

selected. The training parameters govern the training process, and are often selected to balance

the trade-off between exploration and exploitation, allowing the generation of a final and converged

policy that maximizes the value. The structure of the neural networks heavily impacts the range

and the quality of the network outputs: the width and depth of the networks are crafted to

balance the bias-variance trade-off, preventing potential overfitting of wider and deeper network
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Figure 7.3: Flowchart of the station-keeping point mass ephemeris RL environment.

and the underfitting of more shallow and smaller configurations. Different strategies exist for tuning

these hyperparameters, including: random search, grid search, Bayesian optimization, and using

an outer RL-based implementation [134, 135]. This investigation optimizes these hyperparameters

through Bayesian optimization: this optimization scheme is selected due to its demonstrated sample

efficiency for problems requiring large computational resources for the cost function evaluation,

such as those that learn an efficient RL policy operating in chaotic environments. Moreover, in

the computation of the associated objective function, Bayesian optimization does not compute

the derivatives of the objective with respect to the input hyperparameters, and represents an
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advantageous optimization scheme for problems with unknown closed-form expression of the cost

function and with less than 20 dimensions [134,135].

Bayesian Optimization: an Overview

In Bayesian optimization, an unknown cost function f : T→ R over a compact hyperparam-

eter set T, is considered as a random function with a set prior p(f). The prior represents the belief

on the space of possible cost functions. When a new sample of the input ϑi ∈ T is drawn, the

function evaluation is obtained as f(ϑi). Accumulated knowledge on observations, corresponding

to sampled inputs and associated function evaluations Di = {(ϑ0, f(ϑ0)), . . . , (ϑi, f(ϑi))}, allows

the definition of a likelihood of the observations given the cost function p(Di|f). The prior on

the function space and the likelihood can be combined leveraging Bayes’ theorem to retrieve the

posterior as:

p(f |Di) ∝ p(Di|f)p(f) (7.3)

The posterior represents an updated belief about the unknown cost function, and it is used to

construct an acquisition function. The latter is leveraged to obtain the next sampled input ϑi+1,

balancing exploration of areas with large uncertainty with the exploitation of regions where the

expected cost function is large. Among the variety of feasible models used for defining the prior

p(f), Gaussian processes (GP) priors represent an often selected alternative due to their favorable

characteristics [134, 136]. A GP assumes the distribution on the cost function is a jointly multi-

variate Gaussian, allowing to express the posterior mean and covariance function as a function of

the observed Di. Different kernels can be used to express the covariance function, with popular

examples including the squared exponential functions and the Matérn kernel [134, 136]. When a

new input set ϑi is sampled and explored to generate the associated objective value, the algorithm

increases its confidence in a neighborhood of the visited set. In the proposed investigation, new

samples are drawn from the acquisition function until a specified termination condition is satisfied.

Bayesian Optimization Strategy

In this work, Bayesian optimization is used to guide the selection of a suitable set of hyper-
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parameters ϑi governing: the objective function of PPO; the training process; and the width and

depth of the neural networks used in the RL-based maneuver planner to model the actor and the

critic. In this formulation, each cost function evaluation f(ϑi) is associated with the performances

of the associated converged actor neural network, and it is therefore evaluated at the end of a full

training process. The environment used to train an RL-policy during the Bayesian optimization

leverages the Sun-Earth CR3BP dynamical model to propagate the spacecraft state, reducing the

overall computational effort. During optimization, a first set of N1 hyperparameters are selected

randomly from T. This allows an initial exploration of the parameter space. Then, a second set

of N2 hyperparameters are drawn according to the acquisition function, balancing exploration and

exploitation of the already partially explored parameter set T. After a total of N1+N2 cost function

evaluations, a set of hyperparameters and neural network structures is selected from the explored

collection, and employed to train policies in an environment leveraging the point mass ephemeris

model to propagate the spacecraft state. This single set of hyperparameters, retrieved in an envi-

ronment leveraging a low-fidelity dynamical model for the spacecraft state propagation, does not

necessarily represent an optimal set for an environment employing a higher-fidelity model. How-

ever, the CR3BP represents a good approximation of a point mass ephemeris model. Therefore,

this investigation assumes that the hyperparameter set selected from the optimization will result in

a training process that learns policies with sufficient performances in a higher-fidelity scenario. In

this work, the python toolbox BayesianOptimization, using the Matérn kernel and the upper confi-

dence bound acquisition function is used to perform Bayesian optimization and guide the selection

of an optimal hyperparameters set [137].

Hyperparameters and cost function design

In this investigation, the set of hyperparameters ϑ, representing the input of the cost function

f(·), includes the parameters governing PPO, the training process and the network structures.

Specifically, the parameters governing PPO and the training process are: discount factor, clipping

rate, number of epochs and batches, value and entropy coefficients, and GAE factor. Moreover,

to aid the training process honing in a locally optimal policy, the learning rate is modeled as a
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sequence of progressively decreasing steps as:

α(u) = α0 +

⌊
unsteps
nupd

⌋
αf − α0

nsteps
(7.4)

where nupd is the total number of updates performed on the networks’ parameters θ over one

complete training, u = {1, 2, . . . , nupd} is the current update number, α0 and αf are the values of

learning rate at the beginning and end of the training process, respectively, and nsteps is the total

number of steps for the learning rate over one complete training [138]. The parameters governing

the selected learning rate scheduling identified in Eq. (7.4), α0, αf , and nsteps, are also included

in the hyperparameter space. Eventually, the width and the depth of the neural networks used to

approximate the actor and the critic are appended to the hyperparameters list. Based on the work

by Andrychowicz et al. and Sullivan and Bosanac, the remaining features of the neural networks

are held fixed. In particular, the nonlinearities in the neural networks are modeled with tanh(·)

activation functions, and orthogonal initialization is used to setup the networks’ parameters at the

beginning of each training [61,139].

After sampling a set of hyperparameters ϑi, the objective function is computed at the end of

each training process. The cost function is defined as the sum of two terms: the average discounted

cumulative reward of the last training epoch and the mean derivative of the value with respect to the

epoch over the last 10 epochs. This formulation favors the selection of set of hyperparameters that

train effective policies with large average value at convergence, and exhibit potential improvements

at the end of the training process.

Selected Hyperparameters

For this work, a total of N1 + N2 = 130 samples are leveraged for the optimization: the

first N1 = 50 simulations correspond to evaluations of random sets of input parameters, while the

subsequent N2 = 80 runs reflect iterations where the hyperparameters sets ϑi are selected according

to the acquisition function. During optimization, each training process accumulates a maximum of

2×106 time steps. The number of steps used per training process during the Bayesian optimization

is set to a lower value with respect to the training process of the final policies evaluated in the next
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sections. This allows to reduce the computational complexity of the optimization process. However,

the lower number of steps used during a single training process of the optimization process can be

slightly different from the optimal hyperparameter set of an optimization performed with a larger

number of steps per training. For this reason, three criteria are considered for the ultimate choice

of an optimal set of hyperparameters:

1. Large objective function evaluation in the Bayesian optimization: a large objective function

is associated with sets of hyperparameters that produce converged policies presenting a

combination of final large average reward and potential growth for extended training.

2. Persistence of selected regions in the hyperparameters space: the acquisition function might

heavily prefer exploiting regions of the hyperparameter space with reduced uncertainty,

instead of exploring different regions associated with larger uncertainty. This behavior can

be interpreted as a sign of near-optimum found by the optimizer in the regions of lower

uncertainty.

3. General recommendations: a variety of authors apply PPO to different and complex dy-

namical environments. Their works also include general recommendations on optimal hy-

perparameters for training effective policies [61,117,124,139,140].

As an example illustrating the hyperparameter selection process, a subset of two searched hyper-

parameters associated with the structures of the neural networks, is presented in Fig. 7.4. In this

representation, each subfigure reports two plots: the picture on the top depicts with red circles the

value of the objective function on the x-axis and the associated hyperparameter on the y-axis; the

representation on the bottom reports with cyan circles the iteration of the Bayesian optimization

on the x-axis and the associated value of the hyperparameter on the y-axis, together with a vertical

dashed red line marking the first N1 = 50 simulations. These representations respectively visual-

ize for the presented hyperparameters the first two listed criteria, associated with large objective

function evaluation and persistence of the selected hyperparameter. The actor width and the critic

width are reported in Fig. 7.4(a-b), respectively. In particular, large cost functions are associated
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with small number of neurons per layer for the actor neural network and large number of neurons

for the critic network, as highlighted by the top plots in Fig. 7.4(a-b). Moreover, the associated

representations on the bottom of these two subfigures highlight how the optimizer focuses on a

small actor width and a large critic width for a large portion of the optimized N2 runs. According

to the listed selection criteria, the selected actor and critic width, together with the entire set of

hyperparameters and neural network structures are summarized in Table 7.1, along with the ranges

explored via Bayesian optimization.

Figure 7.4: Cost function and number of the Bayesian optimization run associated with the (a)
actor and (b) critic width hyperparameter exploration.

Table 7.1: Selected hyperparameters for the training and the neural network (NN) structure.

Parameter Value B.O. Ranges Parameter Value B.O. Ranges

Initial learning rate, lr0 5× 10−3 [10−5, 10−1.5] Clipping parameter, ε 0.02 [10−5, 10−2]

Final learning rate, lrf 5× 10−4 - Discount factor, γ 0.99 [0.9, 0.999]

Learning rate schedule 8 steps [2, 8] steps GAE factor, λ 0.99 [0.8, 0.999]

Number of epochs, Ne 5 [2, 10] Actor NN depth, Dact 3 [1, 6]

Number of batches, Nb 6 [2, 10] Actor NN width, Wact 16 [2, 210]

Value coefficient, c1 1× 10−3 [10−4, 10−0.3] Critic NN depth, Dcri 1 [1, 6]

Entropy coefficient, c2 7× 10−3 [10−6, 10−1] Critic NN width, Wcri 1024 [2, 210]
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7.1.3 Translating Station-Keeping Maneuver Design into an Optimization Problem

A constrained optimization scenario is introduced to demonstrate the capability of the policy

trained with PPO to generate locally optimal sequences of station-keeping maneuvers. Constrained

optimization is usually leveraged to generate sequences of station-keeping maneuvers. The optimiza-

tion problem is designed with a multiple shooting based approach, where a sequence of maneuvers

is optimized to minimize the cumulative maneuver magnitude, given an initial fixed spacecraft

state and epoch. The point mass ephemeris model is used to propagate the spacecraft state in the

multiple shooting scheme. A general constrained optimization problem is formulated as:

V = arg min
V

f(V ) subject to F (V ) = 0, G(V ) ≤ 0 (7.5)

where the free variable vector is V , the cost function is f(V ), the equality nonlinear constraint

vector is F (V ) and the inequality nonlinear constraint vector is G(V ). A conceptual visualization

of this optimization problem, supporting the discussion in this section, is reported in Fig. 7.5.

Figure 7.5: Conceptual representation of the optimization scenario.

The equality and inequality nonlinear constraint vectors F (V ) and G(V ) are defined to

generate a converged solution presenting continuity of the trajectory at the nodes and a sequence

of spacecraft states within the internal region, marked by the threshold relative distance δ1 from
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the reference trajectory. The mathematical formulation of the equality constraint vector is:

F (V ) =



x(t1; ∆t)− x2

x(t2; ∆t)− x3

...

x(tτ−1; ∆t)− xτ


∈ R6(τ−1) (7.6)

where x(ti; ∆t) represents the spacecraft state at the end of each arc τ . This spacecraft state is

computed by augmenting the spacecraft state at the beginning of each arc xi with the maneuver

∆vi = νai, and propagating for a time ∆t with the point mass dynamical model. The nonlinear

inequality constraint is formulated to enforce the spacecraft position at the end of each arc to lie

within the internal region, associated with a relative distance δ1 from the reference trajectory. The

mathematical formulation of the inequality constraint is:

G(V ) =



‖r2 − rref,2‖ − δ1

‖r3 − rref,3‖ − δ1
...

‖r(tτ ; ∆t)− rref,τ+1‖ − δ1


∈ Rτ (7.7)

where ‖ · ‖ represents the `2-norm, ri is the nondimensional position vector of the state xi in the

non-pulsating Sun-Earth frame, and r(tτ ; ∆t) is the position vector of the spacecraft at the end of

the τ -th arc. Formulating an inequality constraint to enforce bounded motion with respect to the

reference trajectory, as opposed to incorporating boundedness in the reward formulation as outlined

in Eq. (7.2), produces a different solution between the RL-based and the constrained optimization

approach. However, in a traditional station-keeping maneuver design scheme, boundedness is often

formulated as a constraint [38,52]. A tolerance of 5×10−14 is defined for satisfaction of the equality

constraints.

Eventually, the objective function is formulated to minimize the cumulative maneuver mag-

nitude over the maneuver sequence. The mathematical formulation of the cost function is :

f(V ) =
∑
i

aTi ai (7.8)
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Although different from the reward formulation in the RL problem, the objective is represented by

the sum of the squared `2-norms to provide a globally first-order continuous cost function. This

feature generally aids convergence to a feasible final solution. In a constrained optimization formu-

lation, different initial conditions can lead to disparate final solutions. For this reason, the sequence

of spacecraft states and maneuvers generated by the converged RL-based policy are leveraged as an

initial guess for the optimization problem. Transferring the RL-based solution into a first guess for

the optimization problem also favors a fair comparison between the RL-based and the locally opti-

mal solutions to the constrained optimization problem. The constrained optimization is performed

in this work using sequential quadratic programming in Matlab’s fmincon procedure, employing a

step tolerance of 1× 10−14 and 100 iterations as stopping conditions [133].

7.1.4 Station-Keeping Maneuver Design with Reinforcement Learning in an

Ephemeris Model

In this section, the RL maneuver planner is first trained and then applied to a spacecraft

operating near an L2 quasi-halo trajectory in the higher-fidelity point mass ephemeris model with

SRP perturbation. The policy used to design impulsive station-keeping maneuvers is trained to

follow the quasi-halo trajectory displayed in Fig. 7.1(b). Moreover, the policy is trained without

dynamical perturbations exerted by momentum unload maneuvers, and accounting for a total of

τ = 8 maneuvers per episode. Each maneuver is separated by a coast arc of ∆t = 520 hours.

After training, the policy is first validated using a set of trajectories generated in the environment

with unperturbed dynamical model. Ultimately, the policy is tested on a long-term station-keeping

scenario with dynamical perturbations exerted by momentum unload maneuvers.

7.1.4.1 Policy Training

Two separate approaches for training the policy are presented. In particular, a training

process in the higher-fidelity model without a priori domain knowledge is compared with a training

process leveraging transfer learning. Transfer learning is used to accelerate the computationally
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expensive training, typical of a scenario leveraging high-fidelity dynamical models. In this section,

the process of transfer learning applied to the station-keeping scenario is divided into two parts:

1) First, an actor and a critic are trained using an environment that leverages the autonomous

Sun-Earth CR3BP for a maximum of 5×106 step, using the parameters and neural networks

structure presented in Table 7.1.

2) Second, the previously converged actor and critic are used to initialize the neural networks

for the training in the point mass ephemeris model. To prevent abrupt modifications of

the pre-trained networks, a constant learning rate is set at α = 5 × 10−4 throughout the

5× 106 steps of the second training.

The RL scenario presented in Sec. 7.1.1 is used for both phases without perturbations from the mo-

mentum unloads. However, the halo orbit visualized in Fig. 7.1(a) is used as a reference trajectory

for the first phase, while the quasi-halo trajectory depicted in Fig. 7.1(b) is selected as reference

path in the second phase.

The performance of the policy trained by using transfer learning are compared with a new

policy, trained in the point mass ephemeris model with the same parameters presented in Table 7.1,

for a maximum total of 1 × 107 steps, and without leveraging transfer learning. The trend of the

discounted cumulative reward over the three different training procedures is analyzed in Fig. 7.6. In

particular, Fig. 7.6(a) visualizes the average value, per update, for the policy trained uniquely with

the point mass ephemeris model and without leveraging transfer learning. In this case, the total

training requires 72.76 hours on an Intel Core i7-2600K @ 3.40GHz using 6 logical cores. The value

of the policy reaches a plateau at the end of the training process, visually confirming convergence in

the value. The average value over the last 20 updates is used as a metric to provide a quantitative

representation of the quality of the converged policy: averaging over the last 20 updates removes

the oscillations in the value experienced at the end of the training process. The policy in Fig. 7.6(a)

reaches an average value over the last 20 updates equal to 129.63. Figure 7.6(b) presents the trend

of the value for the policy trained with transfer learning. In particular, the progression of the
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average value for the first phase, associated with training a policy in an environment leveraging

the Sun-Earth CR3BP, and the trend of the average value for the training of the transferred

policy in the point mass ephemeris model are colored in red and blue, respectively. The transfer,

corresponding to the change in dynamical model, is marked by the intersection between the red

and blue lines. The training times are approximately 37 minutes and 36.25 hours for the policies

trained in the CR3BP and the point mass ephemeris model, respectively, on an Intel Core i7-2600K

@ 3.40GHz using 6 logical cores. At the end of the training process, the final average value over

the last 20 updates for the transferred policy is equal to 129.88, slightly larger than the equivalent

obtained for the policy trained without transfer learning, depicted in Fig. 7.6(a). Moreover, the

change in average value experienced by the policy in the transition between the two environment

is equal to -0.0133, confirming the characteristic of the CR3BP in sufficiently-approximating the

point mass ephemeris model, and the geometrical similarity between the reference trajectories

depicted in Fig. 7.1(a-b). Figure 7.6 demonstrates the applicability of transferring a policy from

low- to a higher-fidelity dynamical model to generate a policy with comparable performance with

respect to the policy obtained without transfer learning. Moreover, the transfer learning approach

demonstrates improved computational performance throughout the training process.

7.1.4.2 Policy Validation

A validating experiment is designed to compare the performance of the converged policy

generated with transfer learning, and the converged policy obtained without transfer learning. The

experiment is designed to evaluate both policies on a variety of trajectories, in the same scenario

of the training scenario. A batch of 100 episodes per policy is generated, where each episodes

terminates after a maximum of 8 steps. Each episode starts with an initial environment state

vector: this state vector is employed by both policies to generate the first actions. Due to the

different network parameters, the two policies produce two distinct actions associated with the

first environment state. Therefore, the two converged policies generate two distinct trajectories,

constituted by different sequences of state and action vectors, although starting from identical
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Figure 7.6: Comparison of training value between (a) a policy trained in the point mass ephemeris
model and (b) a policy initially trained in the Sun-Earth CR3BP and later transferred to the point
mass ephemeris model.

initial environment state vectors at the beginning of each episode.

In the experiment, five quantities are recorded for each episode: the sum of the magnitudes of

the station-keeping maneuvers; the total reward, defined as the sum of the rewards after each step

in an episode; the positional displacement from the reference, obtained by averaging over the states

at the beginning of each step; the velocity displacement from the reference, obtained by averaging

over the states at the beginning of each step; and the success of the episode. The latter takes value 0

if the episode is prematurely terminated with a reward r = −100, following the reward formulation

outlined in Eq. (7.2), and it takes a value of 1 if the policy successfully performs the entire set of

steps within the episode. These five quantities, retrieved over a set of 100 trajectories per policy,

are averaged for each policy. The success of the episodes is converted in a percentage value for each

policy, and presented in Table 7.2 with the remaining evaluation quantities. The reported values

highlight that the policy trained with transfer learning can generate sequences of station-keeping

maneuvers leading to a slightly larger average reward and a lower average maneuver magnitude

when compared to the policy generated without transfer learning. Moreover, the average position

and velocity deviations of the policy trained with transfer learning present slightly lower values
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with respect to the policy trained without transfer learning. Ultimately, both policies successfully

design station-keeping maneuvers that enable bounded motion near the reference trajectory in the

experiment.

Table 7.2: Characteristics of sequences of 8 maneuvers and generated trajectories constructed
using policies trained with and without transfer learning (TL) and evaluated using 100 common
initial conditions.

Policy trained: Without TL With TL

Average total ∆v [m/s] 0.050 0.044

Average ‖δr‖ [km] 29.652 26.713

Average ‖δv‖ [m/s] 0.01245 0.01189

Average total reward 233.64 234.23

Success rate [%] 100 100

7.1.4.3 Policy Testing

The policy trained with transfer learning is evaluated to design a sequence of impulsive

station-keeping maneuvers for a spacecraft operating near the selected L2 quasi-halo trajectory

in a point mass ephemeris model incorporating the gravitational influence of the Sun, the Earth,

and the Moon, augmented with SRP perturbation and regular momentum unloads. The policy is

tested with a different dynamical model with respect to the model leveraged during the training

process. This evaluation allows to test the robustness of the retrieved policy with respect to

periodic dynamical disturbances. In this example, one initial state for the spacecraft is defined by

applying a perturbation from the reference path at an initial epoch t0 = 29400 MJD, corresponding

to 24 Jun 2021, 09:42:02 UTC. The first station-keeping maneuver is selected by evaluating the

converged policy with the initial environment state. A momentum unload cycle, corresponding

to the obtained station-keeping maneuver and three consecutive and equally-spaced momentum

unload maneuvers, is applied to the spacecraft state. The environment state vector at the end of

this momentum unload cycle supplies the environment state vector at the beginning of the next
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time step that is used to evaluate the policy again. This process repeats for approximately 10.33

years, approximately corresponding to 175 momentum unload cycles. The cardinal identifier within

the environment state vector in Eq. (7.1) is assigned a constant value s̃ = 1: this corresponds to

designing each station-keeping maneuver with a far-sighted approach, balancing displacement from

the reference trajectory and total maneuver magnitude over a subsequent τ = 8 steps.

The resulting controlled trajectory is displayed in blue in Fig. 7.7(a) in the Sun-Earth rotating

frame with dimensionless coordinates relative to the Earth. This figure reports the station-keeping

maneuvers generated by the policy as scaled purple arrows. Then, Fig. 7.7(b) displays the associated

maneuver magnitudes: the 175 station-keeping maneuvers that occur over these 10.33 years require

a total maneuver magnitude of ∆vtotal = 2.285 m/s; the obtained total maneuver magnitude is

comparable to the 2.2 m/s over approximately 10 years obtained by Bosanac et al. for a similar

mission scenario, although using constrained optimization [38]. To supplement this information,

Fig. 7.8 displays the time history of the magnitudes of the displacements in position and velocity

between the reference and perturbed trajectory. At the beginning of the maneuver sequence,

the spacecraft is relatively far from the reference trajectory and occasionally exceeds the 100 km

boundaries. However, after the early transient, the policy is capable of maintaining the trajectory

within 150 km and 0.06 m/s of the reference, even in the presence of perturbations exerted by

the momentum unloads. Moreover, the trajectory rarely exceeds the 100 km distance threshold

from the reference quasi-halo after the initial phase. Together, these results indicate that the

RL implementation successfully produces a policy that generates station-keeping maneuvers for a

spacecraft to remain near the L2 quasi-halo trajectory in the point mass ephemeris model, with a

low required control effort, even as momentum unloads perturb the path.

7.1.5 Comparing Optimization and Reinforcement Learning for Station-Keeping

Maneuver Design

The constrained optimization scenario introduced in Sec. 7.1.3 is used to analyze the per-

formance of the policy trained by leveraging transfer learning in the point mass ephemeris model.
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Figure 7.7: Station-keeping maneuvers in the point mass ephemeris model with regular momentum
unloads: (a) single controlled trajectory propagated for approximately 10.33 years with maneuvers
and (b) associated maneuver magnitudes.

Figure 7.8: Time history of the magnitude of the position (top) and velocity (bottom) of the
controlled trajectory in Fig. 7.7, relative to the reference quasi-halo trajectory.

First, the constrained optimization and the trained policy are compared on a baseline correspond-

ing to a single trajectory. Then, statistical analysis on a batch of trajectories is pursued to infer

generalized insights into the performances of the RL policy compared to the constrained optimiza-

tion setup. Momentum unloads are not applied to the trajectories analyzed in this section to favor

a fair comparison between the results of the RL policy and the constrained optimization scheme.
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7.1.5.1 Single Trajectory Comparison

A single trajectory is generated in the point mass ephemeris model using the RL policy

trained with transfer learning. The trajectory is then converted into a free variable vector and used

as an initial guess for the constrained optimization scenario, as outlined in Sec. 7.1.3. Following,

the performances of the optimization scenario and the trained policy are compared on this single

trajectory. Fig. 7.9 provides a visual overview of the comparison. In particular, Fig. 7.9(a) depicts

in blue and red the isochronous positional displacements from the reference orbit of the trajectories

obtained from the RL policy and the constrained optimization scheme, respectively. The values of

the displacements at the beginning of each step or at the nodes are marked with colored circles.

The δ1 = 100 km threshold positional distance, associated with the internal region in the reward

formulation of Eq. (7.2), is reported as a black dashed line to provide a visual reference. The figure

demonstrates the maneuver sequence generated with the constrained optimization prioritizes an

accelerated entrance of the spacecraft within the 100 km boundary, while the RL policy tends to

delay entering the 100 km threshold. The magnitude of the maneuvers leveraged by the trajectories

obtained through the RL and the optimization approach are reported in Fig. 7.9(b). Moreover, the

rewards computed at the end of each step with Eq. (7.2) are visualized in Fig. 7.9(c). Both figures

use the same coloring scheme introduced in Fig. 7.9(a) to distinguish between the performances of

the RL policy and the constrained optimization scenario. Fig. 7.9(b-c) confirm the same behavior

observed in Fig. 7.9(a), also highlighting the differences between the optimization and the RL

scenario: indeed, the trajectory obtained by leveraging the RL policy presents a lower magnitude

of the initial station-keeping maneuver, corresponding to a slightly larger initial step reward with

respect to the solution obtained via constrained optimization. However, the solution obtained

with the constrained optimization presents lower maneuver magnitudes, as well as slightly higher

rewards, starting from the fourth step of the episode. The trajectory employing the RL policy

slightly exceeds the 100 km boundary approximately after 75 days. This feature is also noted in

the long-term station-keeping scenario depicted in Fig. 7.8 and it is associated with the absence of
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any hard constraints in the RL formulation for the inner region. Indeed, the trained policy might

prefer driving the spacecraft beyond the 100 km threshold for a limited amount of steps, favoring

lower maneuver magnitude, as a result of a relative lower scaling parameter B used in Eq. (7.2).

The total station-keeping maneuver magnitudes for the trajectories obtained with the RL policy

and the constrained optimization scheme are ∆vRL = 0.118 m/s and ∆vfmin = 0.142 m/s, reflecting

the lower initial station-keeping maneuver magnitudes reported in Fig. 7.9(b) significantly weighs

the comparison in favor of the RL policy for the investigated example. The sums of the rewards at

the end of each step, shortly addressed as total reward, are rtot,RL = 228.43 and rtot,fmin = 229.76,

highlighting slightly superior performances of the optimization scheme over the RL policy for the

investigated trajectory.

Figure 7.9: Comparison between the RL policy (blue) and the optimization (red) on a single tra-
jectory: (a) isochronous positional distance; (b) station-keeping maneuver magnitudes; (c) reward
at the end of each step.

7.1.5.2 Comparison on Multiple Trajectories

The comparison between the performance of the trained RL policy and the constrained opti-

mization scheme is extended to a larger dataset of trajectories. A batch of 500 distinct trajectories

is generated in the point mass ephemeris model, with sequences of station-keeping maneuvers ob-

tained from the RL policy trained with transfer learning. Each trajectory is then converted into a
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free variable vector and used as an initial guess for the optimization scenario outlined in Sec. 7.1.3.

This approach generates 500 sequences of environment state vectors and associated actions: each se-

quence represents a unique trajectory, optimized with Matlab’s fmincon procedure [133]. Note that

the sequence of maneuvers for the entire batch of 500 trajectories is generated in approximately

3 minutes with an Intel Core i7-2600K @ 3.40GHz using the converged actor neural network in

python; however, optimizing the same set of trajectories requires approximately 1.5 days on the

same machine with Matlab.

The trajectories obtained using the RL policy and the optimization scheme are compared by

leveraging three metrics: the sum of the station-keeping maneuver magnitudes over each episode;

the sum of the step rewards over each episode, also referred to as total reward; the average positional

isochronous displacement from the reference trajectory. Three histograms are populated with these

quantities, and are reported in Fig. 7.10. The histograms associated with the metrics generated from

the trajecories obtained with the RL policy and the constrained optimization scheme are depicted

in semi-transparent blue and red vertical bars, respectively. The average quantities are reported

with dashed vertical lines, consistently colored. The top histograms in Fig. 7.10 demonstrate the

trajectories obtained with the RL policy and the constrained optimization present, on average,

similar total maneuver magnitude over the analyzed batch of trajectory samples. However, the RL

policy generates a histogram with a longer tail on the right side of the figure, associated with larger

maneuver sequences, while the trajectories obtained with the constrained optimization produce a

histogram presenting a more pronounced tail on the left part of the histogram, associated with

lower total maneuver magnitude. This difference reflects the slightly lower average total maneuver

magnitude for the trajectories retrieved with the constrained optimization, as highlighted by the

dashed vertical red line. The histograms reporting the total rewards are displayed in the center

of Fig. 7.10, extending the result outlined with the single trajectory example in Fig. 7.9 to the

whole analyzed batch. Indeed, the histogram associated with the total reward of the trajectories

obtained with the constrained optimization scheme are slightly shifted to the right with respect to

the histogram generated by the trajectories obtained with the RL policy. The latter observation
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suggests larger rewards, on average, provided by the constrained optimization scheme with respect

to the sequences generated with the RL policy. This observation is confirmed by the third set of

histograms, reporting the average displacements from the reference trajectory in the bottom of

Fig. 7.10. In particular, the majority of the mass of the histogram associated with the trajectories

obtained from the constrained optimization is concentrated around the mean of 69 km, while the

histogram associated with the trajectories obtained with the RL policy generates a much more

spread envelope. This difference is due to absence of any hard constraints in the RL formulation

for the inner region, resulting in a delayed entrance of the spacecraft within the internal region of

Eq. (7.2). For this reason, the trajectories obtained with the constrained optimization produce,

on average, larger total reward. Trajectories placing their contributions in the histograms at the

extrema of the plots are associated with paths having initial conditions relatively far from the 100

km radius of the internal region, and paths having initial conditions well within the same area.

The study presented in Fig. 7.10 is extended to infer statistical insights on the comparison

between the RL policy and the constrained optimization over single trajectories. For each pair

of trajectories, corresponding to one solution generated with the RL policy and the associated

one solution generated with the constrained optimization scheme, three quantities are generated

and presented in three histograms in Fig. 7.10: the difference in total station-keeping maneuver

magnitude; the difference in the total reward; and the difference in isochronous positional displace-

ment averaged over the entire episode. The histograms are obtained by subtracting the analyzed

quantities obtained from the RL policy from the associated quantities obtained by the trajectories

generated with the constrained optimization: a histogram placing the majority of its mass, or its

mean reported as a dashed red line, into the positive region outlines superior performances of the

constrained optimization scenario, while a histogram placing the majority of its mass to the left of

the origin supports superior performances of the RL policy. The top of Fig. 7.10 displays the his-

togram reporting the difference of maneuver magnitude per trajectory. This histogram noticeably

places the majority of its mass, and the average value, to the left of the origin. This feature indicates

average inferior performances of the RL policy with respect to the fmincon optimization scheme,
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Figure 7.10: Histograms of a batch of 500 trajectories generated with the RL policy (blue) and the
constrained optimization (red). Total maneuver magnitude in the top, total reward in the center,
and average positional isochronous displacement in the bottom. Mean values reported via dashed
vertical lines.

for the batch of analyzed 500 trajectories. The center of Fig. 7.10 displays the histogram reporting

the difference of total reward per trajectory. This histogram presents the majority of its mass to

the right of the origin, highlighting average superior performances of the optimization scheme with

respect to the RL policy, for the batch of analyzed 500 trajectories. The last histogram, appearing

in the bottom of Fig. 7.10, reports the difference in average isochronous positional displacement

between the trajectories obtained with the constrained optimization approach and the RL policy.

Almost every sample populating the positive region of the histogram is associated with trajectories

with initial condition inside the internal region. Conversely, almost every sample populating the

negative region is associated with trajectories with initial condition outside the 100 km radius.

The depicted differences in performances between the RL policy with respect to the optimization

scheme are again due to absence of any hard constraints in the RL formulation for the inner region.
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The trained RL policy and the constrained optimization scheme generate distinct sequences

of maneuver magnitudes over each episode. Indeed, the RL policy tends to present a lower initial

station-keeping maneuver magnitude and produce station-keeping maneuver sequences that delay

the entrance of the spacecraft within the internal region. This observation is confirmed in Fig. 7.12:

the difference between the first impulses along each arc and the difference between the last station-

keeping impulses along each arc are reported in the top and the bottom of the figure, respectively,

using a consistent representation to Fig. 7.11. A positive mean value for the histogram reported in

the top demonstrates a larger initial average value of station-keeping maneuver magnitude for the

trajectories retrieved with the constrained optimization scheme. Conversely, a negative mean in the

bottom figure reflects a lower average final station-keeping maneuver magnitude for the trajectories

generated via constrained optimization. Since the total maneuver magnitude is primarily guided

by the maneuvers early on in each episode, as depicted in Fig. 7.9(b), and the optimization scheme

generates sequences of maneuvers that enforce the spacecraft within the 100 km boundary from the

second step in each episode, the RL policy produces an average lower total maneuver magnitude

and an average lower total reward, per trajectory, with respect to the optimization scenario.

7.2 Transfer between Prescribed Orbits in the Earth-Moon System

Proximal policy optimization is leveraged in this section to train a policy for autonomous

generation of sequences of impulsive maneuvers enabling transfers between prescribed orbits in

the Earth-Moon system. The results introduced in this section represent an exploratory study,

assessing the applicability of reinforcement learning to generate policies for challenging transfer

scenarios between prescribed periodic orbits. Additional insights can be generated with extensive

exploration of different parameters governing the training process and the identified RL scenario,

as well as with a thorough comparison with alternative state-of-the-art solutions for generating

transfers between periodic orbits. These aspects are not addressed in the presented investigation,

but represent interesting avenues for future research. For this work, the investigated scenario is

initially presented in Sec. 7.2.1, and converted into a reinforcement learning framework in Sec. 7.2.2.
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Figure 7.11: Histograms of a batch of 500 trajectories generated with the RL policy and the
constrained optimization. Difference of total maneuver magnitude in the top, difference of the
total reward in the center, and difference in the average positional isochronous displacement in the
bottom. Mean values reported via dashed vertical red lines.

Eventually, a policy is trained and validated in a variety of orbit transfer scenarios in Sec. 7.2.3.

7.2.1 Scenario Overview

Motivated by recent interest in cislunar space, an impulsive orbit transfer scenario is presented

in the Earth-Moon system [141,142]. In particular, two distinct members in the family of southern

halo orbits near L2 are utilized to define the boundary conditions of the connecting transfers. The

selected members of the family are visualized in the spatial and the xz-perspective in configuration

space in Fig. 7.13(a-b). The spacecraft is initially assumed to be located along the starting orbit,

and the maneuver sequence is designed to autonomously drive the spacecraft towards the arrival

orbit. In Fig. 7.13, the starting and arrival orbits are visualized in blue and red, respectively, the

Moon is highlighted with a gray circle, while the L2 equilibrium point is reported with a magenta
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Figure 7.12: Histograms of a batch of 500 trajectories generated with the RL policy and the
constrained optimization scheme. Difference of initial (top) and final (bottom) station-keeping
maneuver magnitudes. Mean values reported via dashed vertical red lines.

marker. Moreover, members of the family of southern halo orbits near L2 in the Earth-Moon system

are reported in the configuration space with transparent gray markers. The orbits are reported in

the dimensionless Earth-Moon rotating frame, centered at the Moon. The departing blue orbit

exists at an energy level CJ = 3.146 and has a period T ≈ 14.79 days, while the arrival red orbit

is associated with an energy level of CJ = 3.084 and a period T ≈ 14.07 days. The departing

and arrival orbits depicted in Fig. 7.13 are used as a baseline for the orbit transfer scenario: the

baseline serves as a demonstrating framework for the devised techniques. However, the flexibility of

the designed approach is extended to generate transfers connecting different members of the family

of orbits depicted in semi-transparent gray markers in Fig. 7.13 at the later stages of this section.

In the investigated scenario, a sequence of impulsive maneuvers is designed to transfer the

spacecraft from the departing to the arrival orbit. Each maneuver is modeled as an impulsive three-
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Figure 7.13: Departing (blue) and arrival (red) orbit in the Earth-Moon system for the orbit transfer
scenario in the (a) spatial- and (b) xz-perspective in configuration space.

dimensional vector ∆v, instantaneously modifying the spacecraft velocity components. A total

number of maneuvers τ is applied for each transfer scenario. The total number of maneuvers is fixed

throughout the maneuver sequence generation, and it represents an upper boundary constraint:

indeed, a relative small displacement from the arrival orbit can potentially be obtained by using

a number of maneuvers τ̄ < τ . The spacecraft is propagated in the Earth-Moon CR3BP model

between two consecutive impulsive maneuvers, for a time ∆t ∈ [∆tmin,∆tmax]. Therefore, at each

maneuver location, both the maneuver’s ∆v and the propagation time ∆t need to be determined.

7.2.2 Translating Orbit Transfer into a Reinforcement Learning Problem

The orbit transfer problem is translated into a reinforcement learning scenario by the defini-

tion of: environment state and action vectors, a reward, a step and an episode, and an environment.

The environment is designed to be agnostic of the dynamical system and the leveraged arrival and

departing orbits, allowing the application to different scenarios connecting distinct pairs of orbits.

The environment is constructed by the definition of a step and an episode, and it is conceptually

represented in Fig. 7.14. Each episode is composed of a maximum of τ steps, with the first step

corresponding to the beginning of the episode. At the beginning of each episode, the state of
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the environment is initialized to represent the spacecraft state. In particular, a spacecraft state

x0 ∈ R6 is selected randomly along the departing orbit. Then, a displacement δx0 ∈ R6 from x0 is

computed. Together, the state and displacement information are leveraged by the environment to

populate the environment state, used to generate an action a0 ∈ R4. The action generated by the

policy contains information regarding both the impulsive maneuver executed at the current space-

craft state x0, and the propagation time separating the spacecraft state x0 from the beginning of

the next step. After propagating the spacecraft state with the unperturbed dynamical model of the

Earth-Moon CR3BP, the spacecraft state at the end of the propagation arc is leveraged to compute

the reward for the step. Then, a new step for the episode can start, leveraging the information of

the spacecraft state at the end of the previous step to initialize the environment state. The process

repeats until termination criteria are met at the end of a step.

Mathematical formulations of the environment state and the action are designed to be rep-

resentative of the spacecraft state and the final goal of the policy. The mathematical formulation

of the state in the proposed environment is expressed as:

si = [x̃i, δx̃i, s̃] ∈ R13 (7.9)

where the tilde operator (̃·) represents scaled quantities, used to maintain the elements of the

environment state within the range [−1, 1] throughout the training process, therefore favoring

convergence of the trained networks. The state in Eq. (7.9) comprises the scaled spacecraft state x̃i

in the rotating frame, the scaled displacement δx̃i computed as the six-dimensional state difference

from the closest state of the arrival orbit, and the maneuver number along the current episode

s̃ = 2i/τ − 1, with i ∈ {τ, τ − 1, . . . , 0}. The maneuver number is initialized at s̃ = 1 at the

initial step and it is leveraged to improve convergence properties of the trained networks. The

environment state is used at the beginning of each step as an input to the actor neural network to

generate an action, mathematically formulated as:

ai = [∆ṽi,∆t̃i] ∈ R4 (7.10)

where the tilde operator is leveraged to represent scaled quantities. The action information is
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used to obtain the impulsive maneuver and the propagation time. In particular, the first three

components of the action vector are used to generate the impulsive maneuver, computed in the

nondimensional rotating frame as ∆vi = ν∆ṽi. The scaling factor ν represents a system-dependent

quantity, enabling the first three components of the action vector to generally remain bounded in

[−1, 1] throughout each episode. For the Earth-Moon system investigation presented in this work

the scaling factor is selected as ν = 3×10−3. The last component of the action vector in Eq. (7.10)

is associated with the propagation time between the start of two consecutive steps, used to generate

a propagation time in the interval [∆tmin,∆tmax] for the analyzed step as:

∆ti =
(
tanh (∆t̃i) + 1

) ∆tmax −∆tmin

2
+ ∆tmin (7.11)

where the hyperbolic tangent tanh (·) is used to enforce the time remains in the interval [−1, 1].

With the action formulation presented in Eq. (7.10), the policy governs both the magnitude of the

selected impulse and the propagation time.

Figure 7.14: Conceptual representation of the orbit transfer scenario between prescribed orbits.

At the end of each step, a reward is computed to reflect the benefit of the state-action pair

towards the ultimate goal of the orbit transfer scenario. In particular, the reward is formulated as

a piecewise function, separating the design space in two regions:

1) Internal region: the spacecraft is assumed in the internal region if the position vector is
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contained in a boundary set D⊂ R3. The boundary set D is constructed as a box in the

configuration space that contains both the departing and the arrival orbit. For this reason,

the limiting values of D along each component in the configuration space are retrieved by

using the departing and arrival orbits. In particular, the upper and lower bounds along

each dimension are set proportional to the maximum and minimum values of the associated

dimensions of the departing and arrival orbit. For example, the lower boundary of D along

the x-direction, xl, is computed as:

xl = δ1,x min[min(odep,x),min(oarr,x)] (7.12)

where δ1,x > 0 is a scaling factor, while odep,x and oarr,x represent the x-components of the

states along the departing and arrival orbits, respectively. Similarly, the upper boundary

of D along the x-dimension, xu, is set equal to:

xu = δ2,x max[max(odep,x),max(oarr,x)] (7.13)

where δ2,x > 0. The upper boundary xu corresponds to the scaled maximum between

the maxima of the arrival and departing orbits along the x-dimension. The two scaling

factors δ1,x and δ2,x are leveraged to extend the internal region, empirically leading to

improved convergence properties. The upper and lower bounds of D along the remaining

two positional components are similarly retrieved using the minima and maxima along

the y- and z-coordinates of the arrival and departing orbits, respectively. The reward in

the internal region is formulated as a weighted sum of two terms reflecting: displacement

from the arrival orbit; maneuver magnitude in the associated step. The internal region is

presented in Fig. 7.14 in orange.

2) External region: the spacecraft is considered in the external region if the position vector

of the spacecraft at the end of the step is not contained in D. The external region is

represented by the area beyond the orange region in Fig. 7.14. When the spacecraft is

in the external region, a large negative reward is assigned to the analyzed state-action
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pair. The value of the assigned rewards reflects a heavy penalization, due to the significant

departure from the internal region. After assigning the penalizing reward, the associated

episode is terminated.

Based on the distinction between two fundamental regions of motion, the mathematical formulation

of the piecewise reward is:

ri =


(log (‖δxi‖))2 +K‖∆ṽi‖ if ri ∈ D

−100 otherwise

(7.14)

In this formulation, δxi is computed as the displacement of the current spacecraft state from the

closest state of the arrival orbit. A formulation with the negative logarithm is selected to favor

a continuous and positively unbounded representation for displacements δxi → 0. The square of

the natural logarithm encourages the generation of policies with improved performances for the

approaching phase to the arrival orbit. A linear formulation is selected for the action contribution

within the reward to provide an upper null limit for the action contribution within the reward.

Note that the leveraged scaling factors governing the dimension of the internal region D might

limit the explored transfer geometries. A conceptual overview of the training process for the orbit

transfer scenario is presented in Fig. 7.15.

For this investigation, the majority of the hyperparameters governing the PPO cost function,

the training process, and the neural network structures are inherited from the Bayesian optimiza-

tion approach detailed in Table 7.1 for the station-keeping scenario. In particular, only a subset of

parameters are modified, corresponding to: final learning rate αf = 5×10−5; learning rate schedule

with 6 steps; critic neural network width of 128 nodes. These modifications are empirically demon-

strated to generate policies with optimal performances. Although the orbit transfer environment

differs from the station-keeping scenario, the majority of the hyperparameters is retained due to

the similarity of the leveraged chaotic dynamical model, and the general recommendations of a

variety of authors applying PPO to complex and chaotic dynamical systems [61,117,124,139,140].
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Figure 7.15: Flowchart of the training process for the orbit transfer RL scenario.

7.2.3 Generating Transfers between Prescribed Orbits

In this section, an RL maneuver planner is trained and applied to an orbit transfer scenario

between periodic orbits in the Earth-Moon CR3BP. The policy is trained for the baseline scenario,

constructing a transfer between the orbits depicted in Fig. 7.13. Then, the retrieved policy is

validated on a batch of trajectories transferring the spacecraft from the departing to the arrival

orbits. Ultimately, different policies are trained and demonstrated for orbit transfer scenarios

connecting periodic orbits that differ from the baseline framework visualized in Fig. 7.13.
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7.2.3.1 Training in the Baseline Orbit Transfer Scenario

A policy is trained to autonomously generate sequences of maneuvers enabling transfers that

connect a departing and arrival halo orbit near L2. The connected orbits used for this demonstra-

tive analysis are depicted in blue and red, respectively, in Fig. 7.13. The orbit transfer scenario is

designed to account for a maximum total number of maneuvers τ = 50 per episode, a propagation

time ∆t ∈ [∆tmin,∆tmax] with ∆tmin = 5 hours and ∆tmax = 60 hours, scaling factors for the inter-

nal region D equal to δ1 = [δ1,x, δ1,y, δ1,z] = [0.99, 1.2, 1.2] and δ2 = [δ2,x, δ2,y, δ2,z] = [1.01, 1.2, 1.2],

and a relative weight for the maneuver contribution within the reward K = 15. A conservative

and large number of maneuvers τ = 50 is selected to accommodate transfers requiring a large num-

ber of impulsive maneuvers. The total number of maneuvers is also associated with the selected

boundaries of the propagation time separating two consecutive maneuvers [∆tmin,∆tmax]. Indeed,

the upper limit of the propagation time for an entire episode, equal to 50 steps of 60 hours each, is

∆tepisode, max = 125 days, corresponding to more than 8 periods of the departing and arrival orbits.

A lower boundary ∆tmin is selected to eliminate consecutive steps with short coasting time. The

scaling factors δ1 and δ2 are scenario-dependent quantities impacting the convergence properties

of the training process, and the performance of the obtained policy: a larger internal region D

reflects larger policy exploration, although empirically associated with poor performances of the

generated policy for the investigated scenario due to the close proximity of the investigated orbits

to the Moon. Moreover, the selected components of δ1 and δ2 depend on the investigated orbits:

both the arrival and departing orbits have positive minima and maxima along the x-axis, that are

larger in magnitude with respect to the minima and maxima along the y- and z-dimension, respec-

tively represented by a negative and positive value. Ultimately, recall the presented results serve

as a demonstration of the application of reinforcement learning in the challenging and chaotic orbit

transfer scenario: an optimal selection of parameters governing the investigated scenario might

likely result in a policy with improved performances.

The identified set of scenario-dependent parameters defines the environment for the orbit
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transfer scenario, enabling the training of policies for the autonomous generation of maneuver

sequences. In particular, two separate approaches for training the policy are here presented. In a

first approach, a policy is trained leveraging the described hyperparameters of the selected scenario,

for a maximum of 1.5× 107 steps. The value during training is visualized in Fig. 7.16 (a) in blue.

This figure visualizes a relatively contained improvement of the policy over the learning process,

reaching convergence towards the end. In a second approach, a different policy is trained by

leveraging transfer learning to encourage improved performance. Initially, the policy is trained for

a maximum of 1×107 steps using an identical set of parameters with respect to the policy retrieved

from the first approach. However, for this second training, the relative weight for the maneuver

contribution within the reward is set as K = 0. When the training is terminated, the converged

neural networks are used to initialize the actor and the critic for a subsequent learning. This

second training differs from the precedent on two aspects: 1) the learning parameter is initially set

to α0 = 5×10−4, allowing a reduced early exploration and preventing from network disruption; 2) a

weighting factor K = 15 is used for the maneuver contribution within the reward. The value of the

first and the second training process for the second approach are depicted in Fig. 7.16(b) in blue and

red, respectively. The transfer in the reward formulation is zoomed-in in the figure, and highlights

a sudden loss in performance of the policy. The degraded average value is associated to the negative

impact of the scaled maneuver magnitude in the reward formulation. The approaches presented

in Fig. 7.16 generate distinct policies, with different final values: for the first approach, the policy

obtain a value ravg,20 = 78.862, averaged over the last 20 updates; the second approach constructs

a policy with a value ravg,20 = 1270.457 over the last 20 updates. The difference in value is also

evident from the comparison in Fig. 7.16 (a-b), where the approach employing transfer learning

reaches larger average values at the end of the training process, although using the same cumulative

amount of training experiences. The different values at convergence depicted in Fig. 7.16 (a-b) are

extensively analyzed in the next section, focusing on the performances of the trained policies.
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Figure 7.16: Value of training in the baseline orbit transfer scenario in the Earth-Moon system
depicted in Fig. 7.13 (a) without and (b) with transfer learning in the reward formulation.

7.2.3.2 Validating the Baseline Scenario

After the training, the converged policies are validated on a batch of 1000 episodes. For

each episode, one environment state vector is constructed, corresponding to a specific, yet random,

initial location along the departing orbit. The constructed set of 1000 environment states is used as

a set of initializing environment states for the two converged policies. Due to the different approach

and different training processes, the converged policies likely generate a pair of distinct trajectories

for each identical initial environment state. Five metrics are generated from each trajectory: final

position displacement from the arrival orbit ‖δrend‖; final velocity displacement from the arrival

orbit ‖δvend‖; total maneuver magnitude over an episode ∆vtot; cumulative reward over an episodes

rtot; and number of performed steps per episode τ̄ . Then, the policies are validated and compared

by averaging the five metrics on the validation set of 1000 trajectories. The results are reported in

Table 7.3.

The approach using transfer learning generates a policy with superior performances over

the policy generated without transfer learning, for the examined set of validating trajectories.

Specifically, the policy generated with transfer learning can construct transfers with relatively
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Policy trained ‖δrend‖ [km] ‖δvend‖ [m/s] ∆vtot [m/s] rtot [-] τ̄

Without TL 25026.35 151.94 0.46 200.73 50

With TL 16.37 0.08 237.80 1731.74 50

Table 7.3: Average final position displacement, final velocity displacement, total maneuver mag-
nitude and total reward over an episode and number of maneuvers per episode for policies trained
with and without transfer learning (TL) and evaluated using a set of 1000 initial conditions.

small final position and velocity displacements, relatively larger total maneuver magnitude and

total reward. The final position and velocity deviations of the sampled trajectories generated with

the policy not using transfer learning are relatively large, suggesting with the relatively low total

maneuver magnitude and total reward, that the policy does not actually succeed to transfer the

spacecraft towards the arrival orbit. Extended training with a distinct reward formulation and a

different scheduling for the learning rate might generate a policy with improved performance that

does not require transfer learning. Despite the distinct performance, both investigated policies

generate sequences of maneuvers that maintain bounded motion within the internal region D for

each of the 1000 trajectories per policy.

The distinct performance between the trained policies are analyzed with a trajectory exam-

ple. A single trajectory generated by the two policies is reported in Fig. 7.17(a) in the configuration

space. In both representations, the arrival and departing orbits are reported in red and blue, re-

spectively, and indicated with labels. The transfer generated by the policy trained with transfer

learning is depicted with a straight black line, while the associated transfer of the policy trained

without transfer learning is reported with a black dashed line. Both trajectories are initialized from

the same spacecraft state along the departing orbit, and depicted with a blue circle in the figures.

However, the distinct trajectories reach two distinct final spacecraft states, marked with two red

dots at the end of both arcs. The sampled trajectories visually confirm the superior performance

of the policy trained with transfer learning, and the inability of the policy trained without transfer

learning to transfer the spacecraft to the arrival orbit for this example. The trajectory obtained

with the policy trained with transfer learning is supplemented in Fig. 7.17(a) by a series of ma-
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genta arrows along the path, representing the designed impulsive maneuvers. The magnitudes of

the impulsive maneuvers, and the associated rewards computed at the end of each step, for the

trajectory generated with the policy trained with transfer learning are reported in Fig. 7.17(b-c).

These figures highlight an initial transient towards the arrival orbit, reflected by negative rewards

and large magnitudes of the designed orbit transfer maneuvers. Specifically, the minimum in the

sequence of rewards is recorded approximately at the 10th day of the trajectory, corresponding to

the largest maneuver magnitude along the sequence. After the 13th day, the spacecraft has ap-

proached the arrival orbit, therefore the policy generates a sequence of impulsive maneuvers with

a relatively small magnitude, reflected in large rewards. Overall, the length of the coast arcs sepa-

rating the impulsive maneuvers varies along the transfer and the total maneuver magnitude for the

investigated transfer equals ∆vtot = 239.96 m/s. Alternative approaches applied to transfer design

between different southern halo orbits near L2 in the Earth-Moon system demonstrate similar total

maneuver magnitudes [86,141].

Figure 7.17: Comparison between sampled trajectories in the Earth-Moon system, generated via
policies trained (solid black) with and (dashed black) without transfer learning and visualized in
configuration space. The initial and final states are reported with blue and red circles, respectively.

The batch of 1000 episodes used to validate the trained policies is employed to uncover

potential suboptimal performances of the trained policy. Due to the evident superior performance
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in average value at convergence, only the policy trained with transfer learning is investigated for the

remainder of this section. In particular, this policy is analyzed using four of the metrics analyzed

in Table 7.3 and converted in histograms. The histograms allow to detect edge-cases where the

trained networks can present suboptimal performance. First, the final position displacement from

the arrival orbit ‖δrend‖ and the final velocity displacement from the arrival orbit ‖δvend‖ are

used to populate two histograms, presented in the top and bottom, respectively, of Fig. 7.18.

The dimensional displacements are converted into natural logarithmic scales to visualize compact

representations. The trajectories present a uniform distribution about the mean values, reported in

Table 7.3 for the policy trained with transfer learning. Also, a few solutions present relatively small

and large final displacements from the arrival orbit, with extrema represented by max (‖δrend‖) =

313.96 km, min (‖δrend‖) = 0.48 km, max (‖δvend‖) = 0.91 m/s, min (‖δvend‖) = 2.74× 10−3 m/s.

Moreover, only three trajectories exceed a final displacement larger or equal than 130 km from

the arrival orbit, confirming the efficiency and the robustness of the devised policy in generating

maneuvers to approach the arrival orbit.

Figure 7.18: Histograms of (a) final position displacement and (b) final velocity displacement, over
a batch of 1000 trajectories obtained with a policy trained with transfer learning.

Ultimately, two more distributions of the entire batch of 1000 trajectories are constructed to
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generate further insights on eventual suboptimal performances of the retrieved policy. In partic-

ular, two histograms are populated with the total maneuver magnitude ∆vtot and the cumulative

reward over an episode rtot, and presented in Fig. 7.19. Both histograms present large mass in

a neighborhood of their mean values, reported in Table 7.3 for the policy trained with transfer

learning. A small amount of samples present relatively small and large total maneuver magnitude

and rewards, with extrema represented by max (∆vtot) = 342.57 m/s, min (∆vtot) = 216.50 m/s,

max (rtot) = 2258.79, min (rtot) = −4284.86. Only five trajectories present a total maneuver mag-

nitude of more than 280 m/s, or a reward lower than 50, and the batch contains three trajectories

with a reward lower than -400. These represent the episodes where the policy present the lowest

performance, and are associated with the samples appearing in the right part of the ∆vtot histogram

and the left of the rtot histogram, respectively in the top and bottom part of Fig. 7.19.

Figure 7.19: Histograms of (a) total maneuver magnitude and (b) total reward over an episode,
over a batch of 1000 trajectories obtained with a policy trained with transfer learning.

One sample from the highlighted subset of low-performing arcs is further analyzed, by pro-

jecting the associated trajectory onto the configuration space in Fig. 7.20(a). The arrival and

departing orbits are depicted in blue and red, respectively, while the spacecraft trajectory is pre-
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sented in black. The starting and arrival spacecraft positions are marked using blue and red circles,

respectively, while the sequence of maneuvers is reported with magenta arrows. The visual repre-

sentation of the arc highlights how the trained policy successfully generates a maneuver sequence

to transfer the spacecraft towards the designed arrival orbit. Fig. 7.20(b-c) report the sequences

of rewards and maneuver magnitudes along the analyzed trajectory as a function of the number of

days since the beginning of the transfer. The analyzed transfer generates a sequence of 25 maneu-

vers for the first 23 days of the transfer, corresponding to a sequence of negative rewards. For the

last 8 days of the transfer, the policy generates a sequence of maneuvers with small magnitudes,

corresponding to positive rewards. Moreover, the maneuvers appear more separated in time during

the first 23 days, besides an initial phase of three maneuvers separated by short propagation arcs.

Conversely, the maneuvers present relatively short propagation arcs during the last 8 days of the

transfer, associated with the portion of the trajectory where the spacecraft displacement from the

arrival orbit is relatively small. The sequence of large maneuvers and rewards during the first 23

days of the transfer negatively impacts the total reward of rtot = −428.49 and the total maneuver

magnitude of ∆vtot = 342.57 m/s presented by the sampled transfer, explaining the suboptimal

performance of the policy for the analyzed trajectory. However, alternative approaches applied

to transfer design between different southern halo orbits in the Earth-Moon system demonstrate

similar total maneuver magnitudes [86,141]. Additional analysis on the decision mechanism behind

the maneuver placement and direction along the trajectory, and a comparison of the generated

performance of the policy with distinct approaches for orbit transfer maneuver generation is the

subject of future research.

7.2.3.3 Application to Different Orbit Transfer Scenarios

The orbit transfer scenario is designed to be agnostic of the leveraged arrival or departing

orbits. For this reason, the methodology detailed in this section can be applied with minor or

null modifications to autonomously generate transfers connecting different combinations of orbits.

Three different and progressively more challenging transfer scenarios are here introduced. Recall
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Figure 7.20: Example of suboptimal trajectory generated in the Earth-Moon system by the policy
trained with transfer learning: (a) trajectory arc and associated (b) rewards and (c) maneuver
magnitudes at the end of each step. The initial and final states are reported with blue and red
circles, respectively.

the focus of this section is to demonstrate the capability of the reinforcement learning technique,

combined with the designed scenario, to train policies for the autonomous design of sequences of

impulsive orbit transfer maneuvers: additional efforts to improve the performance of the generated

policies are the subject of future research.

Transfer between halo orbits near L2

A first policy is trained to connect a pair of southern halo orbits near L2 in the Earth-Moon

system, that differs from the baseline scenario presented in Fig. 7.13. In particular, a departing

orbit with CJ = 3.129 and period T = 14.623 days, and an arrival orbit with CJ = 3.016 and period

T = 10.793 days are selected for this first example. The training process and a sample trajectory

are depicted in Fig. 7.21 (a-b). In particular, the training process leverages an identical set of

hyperparameters used for the baseline scenario, employing the same number of updates for the

neural network. A sample trajectory, generated with the trained policy at the end of the training

process, is projected onto the configuration space in Fig. 7.21(b). The arrival and departing orbits

are depicted in red and blue, respectively. The spacecraft path is presented in black, and the

starting and arrival spacecraft states are reported with blue and red circles, respectively. Moreover,
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the direction of the maneuvers is represented by magenta arrows. In particular, the maneuvers

present larger values and general alignment during the approaching phase to the arrival halo orbit.

During the last part of the transfer, the obtained maneuvers present small magnitudes, reflecting

the bounded motion with respect to the arrival orbit. The total maneuver magnitude and total

reward are ∆vtot = 408.17 m/s and rtot = 455.52, respectively: a policy with improved performance

can be generated with scenario-specific refinement, as well as with prolonged training. Alternative

approaches leveraging constrained optimization for transfer designs between southern halo orbits in

the Earth-Moon system demonstrate similar total maneuver magnitudes [86]. However, Fig. 7.21(a-

b) demonstrates the applicability of the trained policy to connect a different pair of orbits in the

same family of the baseline scenario investigated in Sec. 7.2.3.2.

Figure 7.21: Example scenario for a transfer between two southern halo orbits near L2 in the
Earth-Moon CR3BP: (a) value per update and (b) sample trajectory generated by the policy.

Transfer between halo orbits near L2 and L1

A second policy is trained to generate maneuver sequences enabling a spacecraft to transfer

from a southern halo orbit near L2 to a southern halo orbit near L1 in the Earth-Moon system.

In particular, a departing orbit with CJ = 3.102 and period T = 14.320 days, and an arrival orbit

with CJ = 3.001 and period T = 10.539 days are selected for this second example. The average
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value throughout the training process is depicted in Fig. 7.22. The training environment presents

two major modifications with respect to the baseline scenario, comprising a constant learning rate

after the transfer of the policy, marked by a change in color in Fig. 7.22, and adjunct termination

criteria, corresponding to a reward r = −100 for those trajectories presenting a lunar periapsis with

height lower than 400 km. The adjunct termination criteria empirically causes lower average value,

and a relative larger fluctuation after the transfer of the policy, as demonstrated by the trend of the

value colored in blue in Fig. 7.22. Additional training and the incorporation of constraints within

the objective function proposed for PPO might enable training policies that do not exhibit a slight

deterioration of the performance after the transfer. After training, the policy is demonstrated on

a transfer randomly initialized along the investigated departing orbit. The generated trajectory is

visualized in the spatial and xy-perspective in Fig. 7.23(a-b) in the rotating Earth-Moon system

centered at the Moon. The arrival and departing orbits are depicted in red and blue, respectively.

The spacecraft path is presented in black, and the starting and arrival spacecraft states are reported

with blue and red circles, respectively. Moreover, the direction of the maneuvers is represented by

magenta arrows. In particular, the maneuvers in Fig. 7.23(a-b) exhibit large magnitudes at the

beginning of the transfer, allowing the spacecraft to depart from the initial orbit, and during the

approach to the arrival orbit after the lunar flyby. Small impulsive maneuvers are observed prior

to approaching the lunar flyby, and during the last phase of the transfer, exhibiting bounded

motion with respect to the arrival orbit. The total maneuver magnitude and total reward are

∆vtot = 443.36 m/s and rtot = 119.02, respectively. Fig. 7.23(a-b) supports the applicability of the

trained policy to connect two orbits from different families of orbits near the Moon.

Transfer between orbits near orbital resonances

A third and last policy is trained to generate sequences of maneuvers enabling transferring

a spacecraft between two orbits near resonances in Earth-Moon CR3BP. In particular, a spatial

departing orbit near the 2:1 resonance with CJ = 2.160 and period T = 27.319 days, and a spatial

arrival orbit near the 3:2 resonance with CJ = 2.921 and period T = 53.365 days are selected. The

average value throughout the training process and a sample trajectory are depicted in Fig. 7.24(a-
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Figure 7.22: Average value per update for a transfer from a southern halo orbits near L2 to a
southern halo orbit near L1 in the Earth-Moon CR3BP.

Figure 7.23: Sample transfer from a southern halo orbits near L2 to a southern halo orbit near
L1 in the Earth-Moon CR3BP, generated by the converged policy in Fig. 7.22: (a) spatial and (b)
xy-perspective.

c). The training environment for this final example differs from the baseline scenario only for a

selected weighting factor K = 3 in the reward formulation for the second training after the policy

transfer. The adopted relative weight in the reward formulation allows to train a policy with a

positive average value after the transfer, due to the relatively large separation of energy level be-

tween the selected orbits. Additional training might generate a policy with superior performance,

as demonstrated by the absence of a final plateau after the transfer in Fig. 7.24(b). A sample
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trajectory, generated with the trained policy at the end of the training process is presented in

Fig. 7.24(a-c). The arrival and departing orbits are depicted in red and blue, respectively. The

spacecraft path is presented in black, and the starting and arrival spacecraft states are reported

with blue and red circles, respectively. Moreover, the direction of the maneuvers is represented by

magenta arrows. In particular, the maneuvers in Fig. 7.24(a,c) exhibit large magnitudes and small

time separation during the approach to the arrival orbit. Relatively small impulsive maneuvers

and large coasting arcs are observed during the remaining part of the transfer. The total maneuver

magnitude and total reward are ∆vtot = 735.74 m/s and rtot = 406.37, respectively. The total

maneuver magnitude is larger with respect to the previous examples due to the largeer difference

in energy between the investigated periodic orbits. Future research focusing on generating policies

with superior performance might enable transfers with reduced total maneuver magnitude.

Figure 7.24: Training process and sampled trajectory for a scenario of a transfer between two spatial
orbits near resonances in the Earth-Moon CR3BP: (a) xy-perspective of the sampled trajectory,
(b) average value over the training process, and (c) xz-perspective of the sampled trajectory.
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Overall, the designed environment is applicable, with either null or slight modifications,

to a variety of transfer orbit scenarios, here demonstrated only in the Earth-Moon system. The

methodology can also be applied to train policies for autonomous generation of maneuver sequences

in distinct systems.

7.3 Transfer Design in a Family of Orbits in the Earth-Moon System

In this section, an orbit transfer scenario between members of a family of orbits is designed

and investigated. The results introduced in this section represent an exploratory study, assessing

the applicability of reinforcement learning to generate policies for challenging transfer scenarios

in a family of orbits. Additional insights can be generated with extensive exploration of different

parameters governing the training process and the identified RL scenario, as well as with a thorough

comparison with alternative state-of-the-art solutions for generating transfers between periodic

orbits. These aspects are not addressed in the presented investigation, but represent interesting

avenues for future research. For this investigation, the proposed scenario represents a generalization

of the orbit transfer framework between prescribed members, presented in Sec. 7.2. Specifically, a

policy is trained in this section to generate sequences of impulsive maneuvers enabling a spacecraft

to transfer between members of a family of orbits in the Earth-Moon system. The combination

of departing and arrival orbits from the family is selected at the beginning of each episode in the

reinforcement learning formulation: therefore the departing and arrival orbits likely change between

distinct episodes. The orbit transfer scenario is first presented in Sec. 7.3.1, and converted into a

reinforcement learning framework in Sec. 7.3.2. Then, a policy is trained and validated in a variety

of orbit transfer scenarios in Sec. 7.3.3.

7.3.1 Scenario Overview

The orbit transfer between members of a family of orbits is modeled after the scenario pre-

sented in Eq. (7.10) for the transfer design between prescribed orbits in the Earth-Moon CR3BP,

and it is motivated by recent interests in cislunar activities [141, 142]. In particular, the family of
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southern halo orbits near L2 in the Earth-Moon system is used as a baseline to generate transfers

between different orbits. Different combinations of departing and arrival orbits can be selected from

this family. Specifically, Fig. 7.25 visualizes four feasible combinations of orbits in the analyzed

family. In each subfigure, the entire framework of orbits, used in this initial investigation to provide

candidate orbits, is visualized with semi-transparent gray markers. For each frame, the selected

combinations of orbits are represented by a departing and arrival orbit, respectively depicted in blue

and red. In the investigated scenario, the family of southern halo orbits near L2 in the Earth-Moon

CR3BP is approximated by 200 distinct members. The energy levels and the periods associated

with the first member of the family are CJ,1 = 3.1517 and T1 = 14.828 days, while the energy level

and period of the last member of the family is CJ,f = 3.0330 and Tf = 7.474 days.

Figure 7.25: Example of combinations of departing (blue) and arrival (red) orbits from the family
of southern halo orbits near L2 in the Earth-Moon CR3BP.

A sequence of impulsive maneuvers is designed to generate a transfer that departs the initial

orbit and arrives to the final orbit orbit. Both orbits are selected before initializing the transfer.

Each maneuver is modeled as an impulsive three-dimensional vector ∆v, and two consecutive

impulsive maneuvers in the sequence are separated by a propagation time ∆t ∈ [∆tmin,∆tmax].

Therefore, at each maneuver location the devised methodology determines the impulsive three-

dimensional vector ∆v, and the propagation time ∆t separating the current maneuver from the

subsequent maneuver. Eventually, a maximum number of maneuvers τ is applied for each transfer:

this represents an upper boundary constraint since a relative small displacement from the arrival

orbit can potentially be obtained by using a number of maneuvers τ̄ < τ .
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7.3.2 Translating the Scenario into a Reinforcement Learning Problem

The orbit transfer problem between members of a family of orbits is translated into a re-

inforcement learning scenario by the definition of: an action and an environment state vector, a

reward, a step, an episode, and an environment. The environment is designed to be agnostic with

respect to the system and the considered family of orbits, following the orbit transfer scenario be-

tween prescribed orbits in Sec. 7.2.2. The agent interacts with the environment, modeled with the

Earth-Moon dynamical model, to learn a policy for the autonomous maneuver generation. A single

interaction between the agent and the environment is executed within a step. A maximum number

τ of consecutive steps generates an episode. At the beginning of each episode, corresponding to

an initial step, the departing and arrival orbits are randomly selected from the framework of 200

distinct members used to approximate the family of southern halo orbits around L2 in the Earth-

Moon system. To prevent the generation of transfers between two nearby members of the family,

the pair of departing and arrival orbits is enforced to be separated by at least one member of the

leveraged family. Thanks to the randomness of the orbit selection process, two episodes are likely

initialized with distinct combinations of arrival and departing orbits. After the orbit selection, a

nondimensional initial spacecraft state x0 ∈ R6 is randomly initialized along the departing orbit,

in the rotational Earth-Moon frame. Then, the deviation of x0 from the closest state of the arrival

orbit, δx0 ∈ R6, is computed. The information comprising the spacecraft state, the deviation from

the arrival orbit, and the arrival and departing orbits is leveraged by the actor to generate an

action a0 ∈ R4. The action contains information on the impulsive maneuver ∆v and the time ∆t

separating the beginning of the current step from the subsequent one. After augmenting x0 with

the generated maneuver ∆v, the state is propagated with the dynamical model of the Earth-Moon

CR3BP for a time ∆t. The spacecraft state at the end of the current step is then leveraged to

initialize an environment state for the beginning of the subsequent state. The process repeats until

termination criteria are met at the end of a step. A new step is initialized if the training termination

criteria are not met.
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A mathematical formulation of the environment state and the action is proposed to incorpo-

rate information of the spacecraft state and the considered orbit transfer scenario. The environment

state is defined as:

si = [x̃i, δx̃i, s̃i, õd, õa] ∈ R15 (7.15)

where the tilde operator (̃·) is used to indicate quantities scaled within [−1, 1]. The environment

state in Eq. (7.15) comprises: the scaled spacecraft state at the beginning of the step x̃i; the scaled

displacement of xi from the closest state of the arrival orbit, δx̃i; the maneuver number along

the current episode s̃ = 2i/τ − 1, with i ∈ {τ, τ − 1, . . . , 0}; two scaled indices õd, õa ∈ [−1, 1],

reflecting the order of the departing and arrival orbit in the framework of 200 members of the

family, respectively. The environment state is leveraged by the actor at the beginning of each step

to generate an action vector, formulated as:

ai = [∆ṽi,∆t̃i] ∈ R4 (7.16)

The definition of the action is identical to the orbit transfer scenario with prescribed orbits detailed

in Sec. 7.2.2. In particular, the impulsive maneuver is retrieved as ∆vi = ν∆ṽi, with ν = 3× 10−3,

and the propagation time is converted within the time interval ∆t ∈ [∆tmin,∆tmax] using Eq. (7.11).

A reward function is formulated to reflect the benefit of a state-action pair towards the

fulfillment of an efficient orbit transfer. The reward, representing the output of the reward function,

is computed at the end of each step. For this framework, the reward function formulation is

inherited with minor modifications from the orbit transfer scenario between prescribed orbits.

Indeed, a piecewise reward function is designed depending on the spacecraft location. Two regions

are identified as:

1) Internal region: the spacecraft is assumed in the internal region if the position vector is

contained in a boundary set D⊂ R3. The boundary set D is constructed as a box in the

configuration space that contains the investigated family of orbits. In particular, the upper

and lower bounds along each dimension are set proportional to the maximum and minimum
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values of the associated dimensions of the departing and arrival orbit. For example, the

lower boundary of D along the x-direction, xl, is computed as:

xl = δ1,x min[min(o1,x),min(o2,x), . . . ,min(o200,x)] (7.17)

where δ1,x > 0 is a scaling factor, while oi,x represent the x-components of the states along

the i-th orbit in the family. Similarly, the upper boundary of D along the x-dimension, xu,

is set equal to:

xu = δ2,x max[max(o1,x),max(o2,x), . . . ,max(o200,x)] (7.18)

where δ2,x > 0. The upper boundary xu corresponds to the scaled maximum among the

maxima of the family of orbits along the x-dimension. The lower and upper boundaries

of D along the y- and z-components are generated using the minima and maxima along

the second and third position component of the batch of orbits, respectively. An example

of the internal region D for the family of southern halo orbits near L2 in the Earth-Moon

system is represented in the spatial, xy- and xz-projections, in Fig. 7.26(a-c), using a semi-

transparent orange surface. In the internal region, the reward is formulated as a weighted

sum of two terms, reflecting: displacement from the arrival orbit; amount of consumed

propellant at the beginning of the associated step.

2) External region: the spacecraft is considered to reside in the external region when the

position vector is not contained in D. When the spacecraft is in the external region, a

penalizing negative reward is assigned to the associated state-action pair, due to significant

departure from the internal region. After assigning the penalizing reward, the associated

episode is terminated.

The mathematical formulation of the reward for this scenario is identical to the orbit transfer

scheme between prescribed orbit, outlined in Eq. (7.14). Note that the leveraged scaling factors

governing the dimension of the internal region D might limit the explored transfer geometries. A

conceptual overview of the training process for the orbit transfer scenario between members of a
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Figure 7.26: Example of internal region D for the family of L2 southern halo orbits in the Earth-
Moon system, depicted as a semi-transparent orange surface.

family of orbits is presented in Fig. 7.27. Ultimately, the set of hyperparameters governing the PPO

cost function, the training process, and the neural network structures is selected to be identical to

the set used for the orbit transfer scenario between prescribed orbits, and detailed in Sec. 7.2.2

7.3.3 Generating Transfers between Families of Orbits

The RL maneuver planner for the orbit transfer scenario between members of a family of

orbits is trained and validated in this section. The scenario is initially tested to autonomously

generate sequences of maneuvers to connect orbits of the southern halo family near L2 in the

Earth-Moon CR3BP. The designed environment is then tested to connect other families of or-

bits in the Earth-Moon system. Recall this investigation is primarily focused on exploring the

applicability of reinforcement learning to a challenging orbit transfer scenario: policies with supe-

rior performance might be generated with extensive exploration of the involved parameter space

governing the training process and the underlying RL scenario.

7.3.3.1 Training the Baseline Scenario

A policy is trained to generate a sequence of maneuvers connecting two members in the family

of southern halo orbits near L2 in the Earth-Moon system. The orbits are selected randomly at
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Figure 7.27: Flowchart for the orbit transfer RL environment between members of a family of
orbits.

the beginning of each episode, and a maximum number of maneuvers τ = 50 is enforced for each

transfer scenario. Similarly to the orbit transfer between prescribed orbits, the propagation time

at each step is constrained within [∆tmin,∆tmax], with ∆tmin = 5 hours and ∆tmax = 60 hours.

The selected scaling factors for the internal region D are δ1 = [δ1,x, δ1,y, δ1,z] = [1.02, 1.3, 1.3] and

δ2 = [δ2,x, δ2,y, δ2,z] = [0.98, 0.7, 0.7]: the leveraged scaling factors allow larger exploration from the

policy with respect to the prescribed orbits scenario, enabling a wider array of transfer geometries.

Ultimately, the relative weighting factor for the action contribution in the reward formulation is
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set to K = 1: larger weights are empirically linked to policies with worse performances.

The identified set of hyperparameters defines the investigated environment, allowing training

of a policy for the autonomous generation of maneuver sequences for transfers between members of a

family of orbits. Motivated by the results of the simpler environment detailed in Sec. 7.2.3, transfer

learning is again leveraged to generate a policy with the described set of hyperparameters. The

training process is performed with a maximum of 1.5×107 steps, divided in two consecutive phases.

Initially, a maximum set of 1× 107 steps and a weighting factor K = 0 in the reward formulation

are used to train a policy that emphasizes transfers with relatively low final displacements from

the arrival orbit. After completion of the first training, the converged actor and critic networks are

used to initialize the neural networks for a second training, using a maximum of 5×106 steps and a

relative weighting factor K = 1 in the reward formulation. The second part of the training process

allows the policy to generate transfers with reduced total maneuver magnitude. To prevent policy

disruption, and construct a policy that generates transfers towards the final orbit with a relatively

low maneuver magnitude, the learning rate for the second part of the training process is initially set

at α0 = 5× 10−4, and progressively reduced with a sequence of 8 equally distributed step functions

to an ultimate learning rate αf = 5 × 10−7. The trend of the value, averaged over the steps

available at each update, is visualized in Fig. 7.28: the initial training, associated with a weighting

factor K = 0 is reported in red, while the second part of the training, accounting for the maneuver

magnitude within the reward formulation with K = 1 is depicted in blue. Fig. 7.28 demonstrates

the value of pretraining a policy in a simplified scenario to accelerate the training process in a

more challenging scenario, associated with a more convoluted reward formulation. Moreover, the

initial training with K = 0 is empirically necessary to construct a policy that generates transfers

connecting pairs of orbits within the family that are relatively distant in the design space.

7.3.3.2 Validating the Baseline Scenario

After training, the converged policy is validated using a batch of 5000 episodes, corresponding

to distinct transfers between potentially different combinations of departing and arrival orbits. Five
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Figure 7.28: Average value per update for a transfer between members of a family of southern halo
orbits near L2 in the Earth-Moon CR3BP.

metrics are used to evaluate the performance of the generated policy: final position displacement

from the arrival orbit ‖δrend‖; final velocity displacement from the arrival orbit ‖δvend‖; cumulative

reward over an episode rtot; total maneuver magnitude over an episode ∆vtot; and number of

performed steps per episode τ̄ . The analyzed policy is then evaluated by averaging the five metrics

on the validation set of 5000 trajectories. The averaged values are reported in Table 7.4.

‖δrend‖ [km] ‖δvend‖ [m/s] ∆vtot [m/s] rtot [-] τ̄

461.5592 7.6143 289.162 1874.858 49.581

Table 7.4: Average final position displacement, final velocity displacement, total maneuver mag-
nitude and total reward over an episode and number of maneuvers per episode for a policy trained
with transfer learning and evaluated using a set of 5000 initial conditions.

The quantities presented in the table reflect the complexity of the investigated environment.

Indeed, the position and velocity displacements over the batch of 5000 trajectories are one and

two order of magnitudes larger, respectively, than the same metrics evaluated on the batch of 1000

trajectories in the prescribed orbit transfer scenario, reported in Table 7.3. Also, the average total

maneuver magnitude is slightly larger with respect to the transfer scenario between prescribed

orbits, reflecting the higher complexity of the environment and the presence of transfers connecting

relatively distant orbits within the family. However, alternative approaches applied to transfer
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design between different southern halo orbits near L2 in the Earth-Moon system demonstrate similar

total maneuver magnitudes [86,141]. Ultimately, 71 transfers do not complete the maximum of 50

maneuvers per episode, resulting in the 1.42% of trajectories exceeding the internal region D.

Additional insights into the performance of the generated policy can be obtained by visualiz-

ing the distributions of the batch of trajectories over the evaluation metrics. In particular, the values

of the final position and velocity displacements from the arrival orbit, ‖δrend‖ and ‖δvend‖, are con-

verted into histograms and reported in the top and bottom, respectively, of Fig. 7.29. For each

distribution, the trajectories completing 50 maneuvers are represented with blue semi-transparent

columns, while the trajectories exhibiting premature termination are populate semi-transparent red

columns. The average values, indicated in Table 7.4, are highlighted using vertical dashed red lines.

The distributions highlight how the majority of the trajectories in the batch is uniformly located

near the respective means. However, a few samples tend to generate large position and velocity

deviations from the arrival orbit. In particular, trajectories terminating without performing 50

impulsive maneuvers are associated with large final position and velocity deviations because they

exceed the internal region D.

To investigate the characteristics of the transfers exhibiting large final position and velocity

displacements, the validation metrics are evaluated with respect to the combination of arrival and

departing orbits associated with each transfer. Recall that the original framework, leveraged to

randomly assign a departing and arrival orbit at the beginning of each episode, is composed of 200

members of the family of southern halo orbits near L2 in the Earth-Moon system. To distinguish

among the members of the family and generate a monotonic series associated with the family

members, the distance from the Moon at the apolune r2,Apo is selected to represent each member

of the family. Then, each transfer in the batch of 5000 trajectories, associated with a specific

combination of departing and arrival halo orbits, is colored in shades from blue to red, and reported

with circles in the center of Fig. 7.30. The x- and y-axis of the central figure reflect the distance

from the Moon at the apolune of the departing and the arrival orbits, respectively. To generate

additional insights on the variety of possible transfer geometries, four transfers are highlighted in
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Figure 7.29: Histograms of (top) final position displacement and (bottom) final velocity displace-
ment from the arrival orbits. Constructed from a batch 5000 trajectories generated in the Earth-
Moon system, using a trained RL policy for spacecraft transfer between members of the L2 halo
orbits.

the central figure with red circles, and the connected orbits are expanded on the sides of Fig. 7.30.

In each lateral frame, the departing and arrival orbits are colored in blue and red, respectively,

while the framework of 200 members within the family is visualized with transparent gray markers.

The coloring in the central figure suggests that the required total maneuver magnitude ∆vtot is a

function of the relative distance, and therefore the relative energy, between the connected orbits.

In particular, the region near the diagonal, spanning the central frame from the bottom-left region

to the top-right corner, is populated by transfers requiring the lowest amount of total propellant:

in this region, the connected orbits in the transfer exhibit moderate relative distance. The total

maneuver magnitude approximately monotonically increases when moving towards the top-left

and bottom-right corners from the central diagonal. In these regions, the departing and arrival

orbits present large relative distance and energies, therefore increasing the required total maneuver

magnitude for generating the transfer. The 71 transfers corresponding to trajectories prematurely

terminating their episode with τ̄ < 50 are circled in black and are entirely located in the bottom-
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right corner of the central frame in Fig. 7.30. The transfers populating this region present a

challenge for the trained policy due to the close passages with the Moon during the approach phase

to the arrival orbit. Conversely, the trained policy can complete every transfer which is located in

the top-left corner, associated with departing orbits that have a low-altitude apolune. Both the

color and the difficulty presented by the trained policy reflect the general challenging scenarios of

transfers approaching orbits with low perilune. A similar representation is leveraged to visualize

the final position and velocity displacements from the arrival orbit with respect to the combination

of departing and arrival orbits. In particular, Fig. 7.31(a) report the final displacement ‖δrend‖,

while the final velocity deviation ‖δvend‖ is reported in Fig. 7.31(b). These representations confirm

the validity of the insights generated from Fig. 7.30. Moreover, the figure suggests that large final

deviations from the arrival orbit are associated with transfers with a low apolune arrival orbit,

reflecting the sensitivity of the region.

Figure 7.30: Representation of the total maneuver magnitude for the batch of 5000 transfers gen-
erated in the Earth-Moon CR3BP.

Ultimately, a sampled subset of the transfers from the validating batch of 5000 trajectories is

visualized to demonstrate the performance of the trained policy to autonomously generate sequences
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Figure 7.31: Representation of (a) final position deviation and (b) final velocity deviation from the
arrival orbits for the batch of 5000 transfers generated in the Earth-Moon CR3BP.

of impulsive maneuvers and enable transfers between distinct L2 halo orbits in the Earth-Moon

system. Specifically, four transfers are visualized in the configuration space in Fig. 7.32: in the

central row, each transfer is presented in the three-dimensional view, while in the bottom row the

transfers are visualized from the planar xy-perspective. In each frame, the departing and arrival

orbits are reported in blue and red, respectively, while the leveraged framework of southern halo

orbits near L2 is depicted with semi-transparent gray markers. The transfers are visualized with

black arcs, initialized on the blue circle along the departing orbit and terminating on the red circle

along the arrival orbit. Along each transfer, the scaled maneuver directions and magnitudes are

reported using magenta arrows. The maneuvers generally present large magnitudes for the first

part of the transfers, associated with the departing arc from the initial orbit and the approaching

phase to the arrival orbit. The converged policy succeeds to autonomously generate maneuver

sequences that transfer the spacecraft from the departing to the arrival orbit, for the transfers

depicted in Fig. 7.32. The geometry of the transfer is influenced by the selected combination of

orbits, and the total maneuver magnitude, presented in the first row of Fig. 7.32, reflects the

challenge of the transfer scenario, the distance of the connected orbits, and their distinct energy
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levels. The visualized total maneuver magnitudes demonstrate similar values to other studies

leveraging alternative approaches for maneuver design in similar orbit transfer regimes [86,141].

Figure 7.32: Examples of transfers between distinct combination of southern halo orbits near L2 in
the Earth-Moon system.

7.3.3.3 Application to Different Families of Orbits

The orbit transfer design scenario between members of a family of orbits is designed to

be agnostic of the leveraged family. Therefore, the same approach can be applied to generate

sequences of maneuvers between members of multiple families of orbits in the Earth-Moon CR3BP.

Two different and challenging transfer scenarios are here introduced and analyzed. Recall the

scope of this investigation is to assess the feasibility of the presented approach for autonomous

generation of sequences of maneuvers for orbit transfer scenario: additional exploration for policy

improvement, and comparison with distinct state-of-the-art techniques for transfer design represent

avenues for future research.
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Transfers between halo orbits near L1

A first policy is trained to connect members of the family of southern halo orbits near L1 in

the Earth-Moon system. In particular, the family is approximated with 200 members, uniformly

distributed along the family. The energy level and the periods associated with the first and last

members of the considered set of orbits are CJ,1 = 3.174, T1 = 11.911 days and CJ,end = 3.003,

and Tend = 8.294 days. The policy trained for this scenario leverages the same set of training and

scenario-dependent parameters employed for the orbit transfer between members of the family of

orbits near L2, detailed in Sec. 7.3.2. In particular, the training process is separated in two phases:

an initial learning for a maximum number of steps of 1× 107 with K = 0, used to uncover transfer

solutions, is followed by a second learning using a maximum of 5 × 106 steps with K = 1 used to

reduce the total maneuver magnitude over the uncovered solutions. The policy converged at the

termination of the initial learning is employed to initialize the actor and critic networks for the

second phase. The time series of the average value is visualized in Fig. 7.33: the value associated

with the first and second phase is reported in blue and red, respectively, visually demonstrating

the benefit of transfer learning to generate a performing initializing solution for the second part of

the training. Similarly to the scenario detailed in Sec. 7.3.2, an initial training process is necessary

to uncover transfer solutions that connect relatively distant orbits.

The converged policy is used to generate sequences of maneuvers for four distinct transfers,

reported in Fig. 7.34. In the figure, each column is associated to a distinct transfer, transferring

a randomly sampled initial condition to a desired arrival orbit. Each transfer is visualized in the

spatial configuration space and in the xy-projection in the central and bottom row, respectively. In

each frame, the departing and arrival orbits are reported in blue and red, respectively, the transfer is

visualized in black, while the starting location along the departing orbit and the arrival state along

the arrival orbit are reported with blue and red circles. The direction and magnitude of the scaled

maneuvers are represented along each transfer with magenta arrows. The maneuvers generally

present large magnitudes for the first part of the transfers, associated with the departing arc from

the initial orbit and the approaching phase to the arrival orbit. The performance of the visualized
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Figure 7.33: Average value per update for the orbit transfer scenario between members of a family
of southern halo orbits near L1 in the Earth-Moon system.

transfers are highlighted along the first row in Fig. 7.34, reporting the associated total maneuver

magnitude. In particular, transfers associated with combinations of orbits with relative low distance

and energy are accomplished with low to moderate amount of propellant, while transfers between

relatively distant orbits require larger amount of ∆vtot. The visualized total maneuver magnitudes

demonstrate similar values to other studies leveraging alternative approaches for maneuver design

in similar orbit transfer regimes [86].

Transfers between halo orbits near L2 and L1

In the previous examples, the policies are trained to construct sequences of maneuvers for

transfers between members of the same orbit family. However, the flexibility of the investigated

scenario also allows to train policies generating maneuver sequences for transfers between members

of distinct orbit families. Indeed, the environment does not require the arrival and departing family

of orbits to be identical. This feature is demonstrated in a final example, where a policy is trained

to generate sequences of impulsive maneuvers enabling a spacecraft to depart from members of the

southern halo orbits near L2, and approach members of the southern halo orbits near L1 in the

Earth-Moon system. Similarly to the previous examples, the combination of arrival and departing
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Figure 7.34: Examples of transfers between distinct combination of southern halo orbits near L1 in
the Earth-Moon system.

orbits are randomly selected at the beginning of each episode. Moreover, the same set of hyperpa-

rameters leveraged to generate transfers for the L2 and L1 southern halo orbit families is here used.

For this example, the set of 200 southern L2 halo orbits used to generate the transfers in Fig. 7.32

forms the departing orbit family; similarly, the set of 200 southern L1 halo orbits used to generate

the transfers in Fig. 7.34 constitutes the arrival orbit family. Transfer learning is used to train

a policy that prioritizes small final deviations from the arrival orbit, and reduced total maneuver

magnitude over each episode. A first phase of the training process uses a maximum of 1×107 steps

to uncover a wide array of transfers with a weighting factor in the reward formulation of K = 0. The

policy is then transferred to a new training process, accounting for a maximum of 5×106 steps, and

characterized by a weighting factor K = 1. The training procedure is empirically demonstrated to

generate a policy that can uncover transfers between relatively distant orbits. However, alternative

approaches can potentially train policies with similar or improved performances. The time series of
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the averaged value averaged is reported in Fig. 7.35. The transfer of the policy to an environment

with K = 1 demonstrates an immediate degradation of the performance of the policy, eventually

compensated by the second part of the training.

Figure 7.35: Average value per update for the orbit transfer scenario connecting members of the
family of southern halo orbits near L2 to members of the family of southern halo orbits near L1 in
the Earth-Moon system.

The converged policy is leveraged to generate sequences of maneuvers to construct four

transfers that depart from members of the L2 southern halo orbit family and approach members

of the L1 southern halo orbit family in the Earth-Moon CR3BP. The spatial representation in the

position space and the xy-projection of the analyzed transfers are reported in the central and bottom

row, respectively, of Fig. 7.36. In each frame, the departing and arrival trajectories are colored in

blue and red, respectively. Moreover, the families of departing and arrival orbits are visualized

using semi-transparent blue and red markers, respectively. The transfers start from the blue circles

along the departing orbit and terminate at the red circles along the arrival orbit, following the

trajectories depicted in black. Magenta arrows report in the figure the magnitude and direction of

the scaled maneuvers. The maneuvers generally present large magnitudes for the first part of the

transfers, associated with the departing arc from the initial orbit and the approaching phase to the

arrival orbit. The figure demonstrates the capability of the trained policy to generate maneuver



219

sequences to design transfers between members of the considered families of orbits. However, the

visualized transfers are associated with relatively large total maneuver magnitude per episode,

reported for each solution in the top row of Fig. 7.36. Larger values of weighting factor K in the

reward formulation, together with episodes accounting for a larger maximum number of maneuvers,

represent two approaches for potentially improving the performance of the policy.

Figure 7.36: Examples of transfers connecting distinct combinations of southern halo orbits near
L2 and southern halo orbits near L1 in the Earth-Moon system.

7.4 Summary of Contributions

This chapter applies reinforcement learning to the problem of autonomous maneuver gen-

eration in multi-body systems. For each type of maneuver, a scenario is initially identified, and

converted into a reinforcement learning framework, leveraged to train a policy using a method from

the proximal policy optimization family. Eventually, the trained policies are validated to assess the

associated performance.

In a first example, a policy is trained for the generation of impulsive station-keeping maneu-
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vers, enabling bounded motion near a quasi-halo trajectory constructed in a point mass ephemeris

model, but geometrically resembling a halo orbit in the Sun-Earth CR3BP. A scenario is ini-

tially identified after the Nancy Grace Roman Space Telescope, and converted into a reinforcement

learning framework. A set of hyperparameters governing the training process is selected leveraging

Bayesian optimization on a simplified station-keeping RL scenario. Then, a policy is trained using

transfer learning from an environment modeled after the Sun-Earth CR3BP, and validated on a

batch of trajectories to evaluate the associated performance. The converged policy is initially tested

on a long-term station-keeping scenario modeled with a dynamically perturbed higher-fidelity dy-

namical model, and ultimately evaluated against a batch of trajectories corrected with traditional

constrained optimization. The constructed policy successfully generates sequences of impulsive

maneuvers that enable bounded motion with respect to the identified reference quasi-halo trajec-

tory. Moreover, the converged policy generates sequences of impulsive maneuvers with similar

performance with respect to the constrained optimization scheme, although requiring significantly

reduced computational resources for the generation process.

Policies are also trained for autonomous generation of transfers with impulsive maneuvers

between orbits in the Earth-Moon CR3BP. In the first application, a policy is trained to generate

sequences of impulsive maneuvers enabling a spacecraft to transfer between two prescribed orbits.

A baseline scenario is proposed, leveraging two halo orbits near L2 in the Earth-Moon CR3BP.

The scenario is converted into a reinforcement learning framework, and used to train a policy.

Transfer learning is again leveraged to learn a policy that enables the construction of transfers with

small final deviation from the arrival orbit, and reduced maneuver magnitude. The policy is then

validated on a batch of trajectories, demonstrating the capability to transfer a spacecraft between

the prescribed orbits. The reinforcement learning scenario is then leveraged to construct policies

that enable transfers between distinct combinations of orbits, differing from the baseline scenario.

This first orbit transfer scenario is expanded in a generalized orbit transfer framework, where

policies are trained for the generation of sequences of impulsive maneuvers that enable transfer

between members of a family of orbits. For this application, the departing and arrival orbits are
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selected at the beginning of each step, and likely differ between consecutive episodes. The more

challenging scenario is initially demonstrated to construct policies that transfer a spacecraft between

members of the southern L2 halo orbits in the Earth-Moon system. The scenario is transformed

into a reinforcement learning framework, leveraged to train a policy using transfer learning. The

converged policy is validated using a large batch of trajectories, connecting distinct combinations of

departing and arrival orbits within the family of southern L2 halo orbits. The policy does, however,

struggle with transfers to selected arrival orbits with a relative low perilune. After evaluation,

the system-agnostic reinforcement learning framework is demonstrated to train policies connecting

members of the southern halo orbit family near L1 in the Earth-Moon system, and members of the

families of L2 and L1 southern halo orbits in the same system. Overall, policies trained in different

orbit transfer scenarios demonstrate the capability to construct sequences of impulsive maneuvers

enabling transfers of distinct geometries in the Earth-Moon system: these sequences can serve as

initial guesses for trajectories in higher-fidelity dynamical models or with continuous control, as

well as for rapid investigation of available transfer solutions between distinct orbits in low-fidelity

dynamical models.

7.4.1 Scientific Contributions of the Presented Applications

This chapter demonstrates the application of reinforcement learning to constructing policies

that can autonomously generate sequences of impulsive maneuvers for trajectory design. Distinct

examples in different dynamical systems are introduced, corresponding to a variety of scientific

contributions, comprising:

1) Policy training in a point mass ephemeris model: the results presented in Sec. 7.1.4 demon-

strate a successful application of reinforcement learning techniques for designing station-

keeping maneuvers in a higher-fidelity point mass ephemeris model. The obtained policy

successfully generates maneuver sequences that generate bounded motion with respect to

an underlying reference trajectory, in the presence of dynamical perturbations.
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2) Proximal policy optimization for impulsive maneuver design: a member of the family of

proximal policy optimization algorithms is used to construct a policy for rapid station-

keeping and orbit transfer impulsive maneuver design. In the presented cases, the policy

successfully recovers sequence of maneuvers enabling bounded motion with respect to a

reference trajectory, or transfer between distinct combinations of periodic orbits.

3) Transfer learning to reduce complexity of policy training: in the presented examples, trans-

fer learning is leveraged to train policies in complex dynamical models. Specifically, transfer

learning is used in the station-keeping maneuver design scenario to accelerate training in

higher-fidelity models, while it is used for the orbit transfer scenario to enable the construc-

tion of policies that generate a variety of transfers with challenging reward formulations.

4) Comparison with constrained optimization: the policy generated for the station-keeping

maneuver design scenario is compared in Sec. 7.1.5 to solutions generated by a constrained

optimization schemes. The comparison reveals the two approaches generate similar solu-

tions, approximately verifying similar performances between the investigated approaches.

5) Transfers between members of families of orbits: different policies are constructed in Sec. 7.3

to generate sequences of impulsive maneuvers that enable transfers between members of

a family of orbits in the Earth-Moon CR3BP. The approach is subsequently extended to

transfer spacecraft between members of distinct families of orbits in the same system.

7.4.2 Value of Reinforcement Learning for Autonomous Maneuvering in Multi-

Body Systems

An algorithm from the proximal policy optimization family, shortly referred to as PPO,

is used in this chapter to train policies for the autonomous generation of sequences of impulsive

maneuvers in different trajectory design scenarios. The leveraged method presents different benefits

with respect to a more traditional approaches, including:
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1) Reduced computational resources for model evaluation: the trained actor neural network

can be used to generate sequences of maneuvers for rapid trajectory design. The actor’s

model consists of a small number of layers and nodes, that are relatively more efficient

to be evaluated with respect to a traditional constrained optimization scheme. Yet, the

two approaches generate solutions with similar performance. The reduced computational

resources during evaluation might enable future onboard autonomous maneuver design, as

well as rapid Monte Carlo investigations.

2) Evaluation of derivatives: the reinforcement learning implementation does not require the

definition of first or second order derivatives for the reward formulation. Therefore, RL can

leverage discontinuous, or non-differentiable reward formulations.

3) Reduced analyst expertise on the design space: the operator leveraging reinforcement

learning techniques for trajectory design does not need complete expertise of the avail-

able solution space. Indeed, the RL agent may discover feasible paths that maximize the

long-term reward without any instruction from the operator. Moreover, traditional op-

timization schemes often heavily rely on the construction of a good first guess solution,

subsequently refined during the constrained optimization scheme: with a reinforcement

learning approach, the operator does not necessitate to provide a first guess solution.

4) Exploration of the design space: early exploration, granted by the stochastic policy used

during training, enables to experience various state-action pairs, preventing the policy

from honing in on a local optimum. This behavior may not be observed in constrained

optimization schemes that only produce local optima.

5) Importance of the long-term result: an RL agent is trained to maximize the return, generally

corresponding to a weighted sum of the future rewards.

6) Model independence: the trained policy does not heavily depend on the leveraged model,

given the stochastic nature of the leveraged actor and the exploration-exploitation trade-off
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during training. Conversely, a variety of traditional constrained optimization approaches

rely on a perfect knowledge of the model. In trajectory design, the dynamical environment

is never perfectly known, requiring robustness for the trajectory design mechanism. The

robustness of a policy for autonomous generation of station-keeping maneuver sequences is

demonstrated in Sec. 7.1.4.

These summarized benefits can support future autonomous maneuvering in multi-body systems,

that can potentially enable onboard trajectory design with reduced computational resources, and

a significantly reduced human effort in the trajectory design process.

7.4.3 Ongoing Challenges in Applying Reinforcement Learning to Autonomous

Maneuver Design

Challenges in leveraging techniques from reinforcement learning for training policies for au-

tonomous maneuver sequence generation that require further exploration include:

1) Large computational resources for model training: training a reinforcement learning policy

requires a large amount of data, that can be computationally expensive to generate. For

example, in the station-keeping scenario modeled in a point mass ephemeris model and

described in Sec. 7.1.4, the policies are trained in 72 and 36 hours, respectively, with and

without transfer learning on an Intel Core i7-2600K @ 3.40GHz using 6 logical cores. How-

ever, training is performed only once, and the same policy can be used to generate different

trajectory arcs. Policy training might be significantly accelerated with different methods

comprising higher-performance computational machines and transfer learning from envi-

ronments modeled after lower-fidelity dynamical models.

2) Constraint implementation: the preliminary reinforcement learning algorithm prevents the

inclusion of hard and soft constraints in the loss function formulation. Thus, constrains

are incorporated in the environment via early stopping criteria and associated penalizing

rewards. However, implementing constrains with early stopping criteria can negatively
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impact the performance of the trained policy. Constrained MDPs and safe reinforcement

learning might offer an alternative approach to incorporating these constraints.

3) Hyperparameters tuning: the performance of the trained policy is significantly impacted

by a set of tunable hyperparameters, governing the training process, the loss function, and

the designed environment. These hyperparameters are often tuned with a combination

of operator expertise and traditional parameters selection available from similar studies.

However, each reinforcement learning scenario is likely associated with an optimal set of

parameters, potentially generating a policy with superior performances. Therefore, pa-

rameters optimization approaches, leveraging for example Bayesian optimization, can be

adopted to find an optimal set of hyperparameters. These optimization methods rely on

multiple training of reinforcement learning policies, significantly impacting the required

computational resources. Heuristics and systematic approaches to rapidly and efficiently

select these quantities may be useful.

4) Interpretability: whereas results obtained from constrained optimization can be interpreted

by investigating the associated derivatives, an action generated from a reinforcement learn-

ing agent, potentially modeled by a nonlinear neural network, might not be easily inter-

pretable by the operator. Moreover, it is often challenging to interpret the impact of

multiple sets of hyperparameters on the performances of the trained policies. The lack of

interpretability of the obtained results, and the set of hyperparameters governing the policy

training, often impact the trust of practitioners on the generated results from the agents.

Techniques such as explainable machine learning and manifold learning might be leveraged

to enhance the explainability of the generated results.



Chapter 8

Concluding Remarks

Throughout this investigation, techniques from machine learning are leveraged to address

specific challenges in trajectory design in multi-body systems. This chapter summarizes the results

detailed in this manuscript, and presents potential avenues for future research.

8.1 Summary of Results

Constructing an end-to-end trajectory arc that fulfills mission requirements is often a chal-

lenging task that demands large human involvement and computational resources. Traditional

approaches to arc construction in multi-body systems leverage techniques from dynamical system

theory and constrained optimization. These tools can: aid an analyst to investigate the geometry

of existing solutions and patterns in the available design space; help an astrodynamicist generat-

ing transfers that require small maneuver magnitude and target motion near existing solutions in

low-fidelity models; assist a trajectory designer in constructing maneuver sequences that enable a

variety of space missions. These techniques often require large human expertise to investigate the

high-dimensional solution spaces typical of spatial trajectories constructed in low- and high-fidelity

dynamical models, and generally necessitate large computational resources to generate optimal ma-

neuver sequences in very large design space. Methods from machine learning can be leveraged to aid

the astrodynamicist throughout the different phases of the trajectory design process. Techniques

from unsupervised learning can serve to generate an autonomous partition of a high-dimensional

dataset of trajectories, algorithms from manifold learning can improve the identification of spatial
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arcs, while methods from reinforcement learning can train policies for rapid generation of sequences

of maneuvers in both low- and high-fidelity dynamical models.

In this investigation, techniques from unsupervised learning as clustering, manifold learning,

and distributed data mining, are leveraged to design a method for the autonomous partitioning

of large datasets of trajectories based on geometrical similarities. This method can aid a human

analyst to investigate chaotic and vast solution spaces. In an initial approach, datasets of prograde

periapsis are initialized in the Earth region on mutually orthogonal planes and propagated with

the Sun-Earth circular restricted three-body problem (CR3BP) to generate a set of arcs. These are

then transformed into finite-dimensional feature vectors, reflecting the sequences of encountered

apse, and used to populate different datasets to help reduce the required computational resources

of the subsequent steps. The clustering algorithm Hierarchical Density-Based Spatial Clustering of

Application with Noise (HDBSCAN) is used to partition each dataset in distinct clusters. Then,

clusters of distinct partitions that intersect in the phase space are merged into unique solutions,

generating three-dimensional groups of trajectories that are geometrically similar. The approach is

demonstrated to reduce the visualization burden typical of higher-dimensional Poincaré maps. This

method is then expanded to enable cluster correlation across datasets populated with trajectories

generated in dynamical models of increasing fidelity, including the CR3BP, the ER3BP, and a point

mass ephemeris model. Each dataset leverages an identical set of initial conditions, corresponding to

prograde perigees generated at a specific value of energy in the Sun-Earth CR3BP. The datasets are

then clustered using HDBSCAN, and correlated across distinct maps using UMAP to assess cluster

persistence across distinct dynamical models, and cluster evolution across datasets constructed at

different values of the independent variables. These clustering results are also used to demonstrate

the governing nature of arcs along the stable hyperbolic manifolds of invariant tori near L1 and L2 on

the design space near the Earth in the Sun-Earth CR3BP. The presented data-driven methodology

produce a variety of benefits, aiding a human analyst throughout the early phases of the trajectory

design process where large datasets of trajectories are investigated. Specifically, the presented

method allows to: summarize a set of trajectories into a relatively small collection of representative
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solutions, describing the available arc geometries; focus on specific regions of the dataset, reducing

the burden of visualization; visualize regions of existence of each geometry, conferring information

on the sensibility of each arc; avoid the definition of problem-dependent analytic separation criteria;

visualize cluster persistence across distinct dynamical models for trajectory refinement; assess the

evolution of groups of geometrically similar trajectories generated in nonautonomous dynamical

models; highlight groups of trajectories that are governed by natural transport mechanisms existing

in low-fidelity dynamical models.

Manifold learning is also leveraged in this investigation to aid the identification of natural

connections between spatial invariant tori. This method can serve an astrodynamicist to identify

natural paths existing between bounded trajectories near periodic orbits, that are often leveraged

to motivate natural migration of small bodies in the solar system. Likewise, natural transport

mechanisms of invariant tori can be employed for trajectory design to expand the solution space.

A method is presented to construct and correct an initial guess of a transfer naturally departing

and approaching invariant tori. The approach first identifies two invariant tori that possess nearby

stable and unstable manifolds. An approximation of the global hyperbolic manifolds is constructed

by sampling initial locations along the tori. These initial conditions are then perturbed along the

direction of the locally stable or unstable hyperbolic manifold, and propagated in the identified dy-

namical model. Multiple intersections of these arcs with a common hyperplane are recorded, and

a dataset of crossings is populated. The constructed high-dimensional dataset is then processed

with UMAP, to generate a low-dimensional representation of the generated crossings. Stable and

unstable manifolds arc are then selected based on proximity of the projected crossing in the em-

bedded space. Multiple revolutions along the distinct tori are appended to the identified stable

and unstable manifold arc to construct an initial guess solution for a natural transfer between tori.

The solution is then corrected using multiple shooting and constrained optimization, enforcing tra-

jectory continuity at the nodes, and natural departure and arrival from the connected tori. The

retrieved single-point solution is then leveraged in a continuation scheme to construct families of

geometrically similar transfers that connect families of invariant tori. The devised methodology is
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demonstrated to construct a variety of natural transfers between invariant tori near distinct mean-

motion resonances in the Earth-Moon CR3BP. One of the generated natural transfer is utilized to

construct a family of transfer with similar geometries that connect two families of invariant tori

near resonance. The devised methodology can serve a trajectory designer to investigate natural

transfers solutions between invariant tori, expanding the available design space for mission design.

Moreover, the presented method can be leveraged to further analyze transport mechanisms of small

bodies naturally transitioning between different resonances in the solar system.

Reinforcement learning is also used to train different policies for autonomous generation of

sequences of impulsive maneuvers. Two different scenarios are analyzed to demonstrate the capabil-

ity of policies trained via reinforcement learning to autonomously generate sequences of impulsive

maneuvers. In a first example, a policy is trained to generate sequences of impulsive station-keeping

maneuvers near a quasi-halo trajectory in a point mass ephemeris model, minimizing displacement

from the reference trajectory and low control effort. The scenario is initially converted into a rein-

forcement learning environment, and a policy is trained leveraging transfer learning to accelerate

the training process in such a computationally expensive dynamical model. The trained policy is

validated using a batch of generate trajectories, and tested on a long-term station-keeping example,

incorporating dynamical perturbations within the dynamical model. Eventually, the performance

of the trained policy is compared with the results of a constrained optimization scheme. This

first example demonstrates the capability of reinforcement learning to train policies that generate

sequences of impulsive maneuvers for station-keeping: the generated policy exhibits robustness

towards dynamical perturbations, and possess a similar performance with respect to constrained

optimization scheme. In a second exploratory example, a policy is trained to assess the capability

of a reinforcement learning technique to train a policy for autonomous generation of sequences of

maneuvers enabling transfer between orbits in the Earth-Moon CR3BP. Initially, a reinforcement

learning scenario is designed, and utilized to train a policy. Transfer learning is leveraged to enable

training policies that balance small displacement from the arrival orbit and low propellant con-

sumption. The trained policy is validated using a set of trajectories, and for multiple combinations
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of orbits. Eventually, the scenario is expanded to train a policy that can generate transfers between

members of a family of orbits. The trained policy is demonstrated in a variety of examples connect-

ing members of different families of orbits in the Earth-Moon CR3BP. Through different examples,

policies trained via reinforcement learning demonstrate the capability of generating sequences of

impulsive maneuvers that can enable rapid trajectory design in both low- and high-fidelity dy-

namical models. Trained policies can significantly aid a trajectory designer for rapid generation

of end-to-end arcs that fulfill a variety of mission requirements, without leveraging computation-

ally expensive approaches as constrained optimization. Moreover, for computationally lightweight

models, reinforcement learning may enable future autonomous on-board design of maneuvers for a

variety of tasks comprising station-keeping and orbit transfers.

8.2 Recommendations for Future Work

A variety of aspects discussed throughout this manuscript can be further expanded for ad-

ditional development in future research. A list of recommended items is presented, structured into

three main parts and corresponding to the main results of this work, including:

Unsupervised learning for higher-dimensional Poincaré maps

1.1) One of the presented examples is used to assess cluster persistence across distinct dynamical

models. However, the constructed datasets use a unique set of initial conditions, retrieved

in the low-fidelity CR3BP. Additional insights into cluster geometries can be obtained by

leveraging datasets of initial conditions generated directly in the used dynamical models,

enabling the generation of a larger trajectory dataset that better represents the available

solution space. Moreover, the analysis can be expanded to trajectories associated with a

wider variety of initial conditions and model parameters.

1.2) The stable hyperbolic manifolds emanated from invariant tori near L1 and L2 demonstrate

to govern regions of the design space near the Earth in the low-fidelity Sun-Earth CR3BP, for

the presented example. Additionally, clusters associated with trajectories naturally escaping
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the Earth region are identified in higher fidelity models comprising the Sun-Earth ER3BP

and a point mass ephemeris model of the Earth and the Sun. Further analysis can focus on

investigating dynamical equivalents in higher fidelity models of these governing structures

existing in the low-fidelity CR3BP.

Manifold learning for constructing natural transfers between invariant tori

2.1) Recent advancement in astrodynamics indicate the existence of invariant tori in higher-

fidelity models, as the bi-circular restricted four-body problem [80, 81]. The method used

in this investigation to generate natural transfers between tori in the CR3BP can also be

applied, with minor modifications, to verify the existence of natural transport mechanisms

between tori existing in higher-fidelity models. This result would enable the construction of

transfers that more closely resemble end-to-end trajectories in high-fidelity models.

2.2) The devised methodology can be applied to generate families of transfers between invariant

tori that are not analyzed in this investigation. For example, investigating natural arcs

approaching solutions at the Earth-Moon L1 and L2 might inform trajectory design for

future cislunar missions.

2.3) The current implementation of the presented methodology accounts for a constrained opti-

mization scheme to generate single-point solutions. This step is used to numerically correct

long arcs that often present close passage in sensible regions of the design space. However,

the constrained optimization significantly impacts the required computational resources al-

located for correcting the initial guess. Rapid correction mechanisms might be considered

to replace the constrained optimization step.

2.4) UMAP is leveraged in this investigation to project the crossings of a set of trajectories arc

with a common hyperplane. Different approaches, like variational autoencoders and the

parametric UMAP, can also be leveraged to generate parametric mapping. These architec-

tures can be used as generative models, further extending the solution space [88].
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Reinforcement learning for autonomous design of impulsive maneuver sequences

3.1) The station-keeping scenario is applied to a specific example, emulating the Nancy Grace

Roman Space Telescope framework. The RL scenario may be applied to a variety of refer-

ence trajectories in different dynamical models, including trajectories in cislunar space and

invariant tori near periodic orbits. Policies converged in environments leveraging nearby

reference trajectories can be used to initialize the neural networks, accelerating the training

in high-fidelity dynamical models.

3.2) Transfer learning is leveraged in this investigation to accelerate the training of policies

generating impulsive station-keeping maneuvers in a point-mass ephemeris model. Transfer

learning might also be used to reduce the required training time of policies seeking to

generate bounded motion with respect to different reference trajectories in the same, or

different, dynamical system.

3.3) For the second example, a reinforcement learning scenario is formulated to train a policy for

the generation of sequences of impulsive orbit transfer maneuvers. However, the performance

of the trained policy are not compared with other state-of-the-art solutions. A comparison

might enable further verification of the leveraged scenario, leading to the design of a policy

with improved performances.

3.4) A recent investigation of applied reinforcement learning to station-keeping maneuver design

near halo orbits in the Earth-Moon system reveals that off-policy actor-critic formulations

can recover performing sequences of impulsive maneuvers [68]. A wider variety of rein-

forcement learning approaches can similarly be applied to the scenario described in this

investigation, and their performance can be compared to investigate their applicability for

autonomous maneuver design in chaotic environments.

3.5) In both maneuver design scenarios, boundedness and localized spacecraft motion are en-

forced by early termination criteria, that negatively impact the learning process of the

trained policies. The application of algorithms from safe reinforcement learning allows to
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incorporate constraints in the objective function formulation, therefore preventing prema-

ture episode termination.
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