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Abstract Local toroidal coordinate systems are introduced to characterize relative motion
near a periodic orbit with an oscillatory mode in the circular restricted three-body problem.
These coordinate systems are derived from a first-order approximation of invariant tori
relative to a periodic orbit and supply a geometric interpretation that is consistent across
distinct periodic orbits. First, the local toroidal coordinate sets are used to rapidly generate
first-order approximations of quasi-periodic relative motion. Then, geometric properties of
these first-order approximations are used to predict the minimum and maximum separation
distances between a spacecraft following quasi-periodic motion relative to another spacecraft
located on a periodic orbit. Implementation of the local toroidal coordinate systems and
associated geometric analyses are demonstrated in the context of spacecraft formations
operating near members of the Earth-Moon !2 southern halo orbit family.

Keywords Relative motion · Quasi-periodic orbits · Toroidal coordinates · Circular
restricted three-body problem

1 Introduction

Missions that involve spacecraft operating in multi-body gravitational environments and
beyond the primary gravitational influence of the Earth have been of increasing interest for
scientific, technological, and exploration purposes. For instance, space telescopes have been
and will continue to operate near the libration points in the Sun-Earth system (Burt and Smith
2012; Gardner et al. 2009; Spergel et al. 2015). In-space assembly within the Earth-Moon and
Sun-Earth systems has also been identified as a key technology for new scientific missions and
extending the lifetime of space assets (Belvin et al. 2016). Notably, NASA’s Artemis program
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includes the near-future in-space assembly of Gateway, a space station that is currently
expected to closely follow an Earth-Moon !2 near-rectilinear halo orbit (Crusan et al. 2018).
Future constellations of spacecraft may also operate in multi-body systems as space-based
interferometers (Kasper et al. 2019). When designing trajectories for these applications,
spacecraft often follow bounded trajectories resembling periodic orbits that exist in a low-
fidelity dynamical model labeled the Circular Restricted Three-Body Problem (CR3BP)
(Dunham and Roberts 2001). Additional assets such as servicing modules, components, or
starshades may rendezvous with or maintain a desired path relative to the primary spacecraft
(Farres et al. 2018; Le Moigne 2018). In these scenarios, generalized and geometrically-
interpretable insight into the characteristics of relative motion between spacecraft in complex,
multi-body gravitational systems is necessary to support the development of proximity
operation guidelines and formation flying guidance and control schemes.

Spacecraft formations have been operating near circular (Clohessy and Wiltshire 1960)
and elliptical orbits (Sengupta and Vadali 2007; Tschauner and Hempel 1965) near the Earth
for decades. In this regime, the relative motion between two spacecraft is well-understood
using equations of relative motion expressed in a local coordinate system defined by the
target spacecraft (Alfriend et al. 2009). Relative orbital element sets and geometry-based
coordinate sets may also be used to introduce geometric insight into the description of
spacecraft relative motion in two-body systems (Bennett and Schaub 2016; Schaub and
Junkins 2014). For instance, Keplerian orbital element di�erences between spacecraft within
a formation admit relative state representations that vary slowly with time in perturbed two-
body environments (Schaub 2004). These slowly-varying state descriptions are useful for
formation flying control schemes and have been successfully applied in the guidance and
control of previous spacecraft missions (Gill et al. 2007; Montenbruck et al. 2008). Carter
(1998) and Sullivan et al. (2017) also present comprehensive surveys of spacecraft relative
motion dynamics models, including orbital element di�erence models, to capture the state-
of-the-art of spacecraft relative motion models in predominantly two-body environments.

Relative motion in multi-body systems is significantly more complex to examine than in
Keplerian regimes due to the chaotic nature of the underlying solution space; as a result, there
is currently limited heuristic insight into relative motion in multi-body systems. Investigations
into the impact of third-body gravitational perturbations on spacecraft formations have been
examined via conic-based di�erential orbital elements (Roscoe et al. 2013) and hybrid
orbital element systems (Bakhtiari et al. 2017). However, as general trajectories in multi-
body systems are not well-approximated by conics, they are often analyzed in a rotating frame
defined by two celestial bodies using approximated dynamical models such as the CR3BP
(Gurfil and Kasdin 2004). One approach to studying relative motion in the CR3BP begins
with constructing nonlinear and linearized equations of relative motion formulated in a local-
vertical, local-horizontal frame, such as those recently presented by Franzini and Innocenti
(2019). Additional studies have focused on identifying spacecraft formation configurations
that exhibit low natural relative drift relative to a periodic orbit in the CR3BP (Ferrari and
Lavagna 2018; Héritier and Howell 2014). However, the sensitivity and variety of the solution
space for relative trajectory design still presents challenges for the extraction of meaningful
heuristics. This paper seeks to contribute to addressing the challenges by describing relative
motion near periodic orbits and leveraging insight gained via dynamical systems theory.

Thorough analyses of the CR3BP and the solution space admitted by this autonomous
dynamical model have been conducted in the astrodynamics community (Koon et al. 2006;
Szebehely 1967). The CR3BP admits several fundamental solutions, including five equilib-
rium points, and infinite families of periodic and quasi-periodic orbits. Periodic orbits near
libration points have been identified as advantageous locations for long-term placement of
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single spacecraft in multi-body environments in early studies by Farquhar (1971), Breakwell
and Brown (1979), and Howell (1984). Furthermore, quasi-periodic orbits, which naturally
trace invariant tori that envelope a nearby periodic orbit, have been identified as a useful ref-
erence for natural formations of spacecraft in multi-body environments (Barden and Howell
1998b; Gómez et al. 1998; Lo 1999). Early investigations by Barden and Howell (1998a,b)
and Gómez et al. (1998) demonstrate that spacecraft following quasi-periodic orbits in the
CR3BP remain naturally bounded and exhibit quasi-periodic motion relative to an associated
periodic orbit. Building upon these works, additional investigations into relative trajectory
design have used invariant tori in a variety of nonlinear gravitational models and scenarios
(Baresi and Scheeres 2017; Baresi et al. 2016; Henry and Scheeres 2021; McCarthy and
Howell 2021). Furthermore, quasi-periodic trajectories have been identified and examined
as a useful reference for spacecraft formation control (Howell and Marchand 2005).

As demonstrated by Gómez et al. (1998), Kolemen et al. (2012) and Olikara and Scheeres
(2012), the computation of quasi-periodic orbits in the nonlinear CR3BP is an expensive
numerical process. Analyzing first-order approximations of invariant tori relative to periodic
orbits in the CR3BP, Howell and Marchand (2005) determine that they supply su�cient
representations of solutions that exist in the local neighborhood of a periodic orbit in the
nonlinear CR3BP, as well as in higher fidelity ephemeris models. Additionally, using insight
from Kolmogorov–Arnold–Moser (KAM) theory, Barden and Howell (1999) demonstrate
that first-order approximations of invariant tori relative to periodic orbits in the CR3BP
may be captured in point-mass ephemeris models with conservative perturbations. These
results motivate leveraging approximations of quasi-periodic motion as computationally-
inexpensive mechanisms for studying bounded relative motion for formation flying near
periodic orbits in multi-body systems.

Quasi-periodic motions possess complex, time-varying descriptions relative to periodic
orbits when expressed using Cartesian coordinates. In Hamiltonian systems, action-angle
coordinates are a fundamental method for describing states that lie on the surface of a torus
(Meiss 2007). However, in multi-body gravitational environments, numerically computing
these coordinates via normal form expansions tends to be computationally intensive (Jorba
and Masdemont 1999). Alternatively, Floquet analysis of periodic orbits in the CR3BP, as
analyzed by Wiesel and Shelton (1983), Simó et al. (1987), and Barden and Howell (1998b),
enables decomposition of the state of a spacecraft relative to a periodic orbit, regardless of the
stability, using the Floquet modes of the orbit. Because Floquet modes are periodic, and do
not exponentially grow or decay over time, using Floquet modes as a basis introduces insight
into the state of a spacecraft relative to a periodic orbit as a combination of the associated
eigenspaces (Calico and Wiesel 1984). Additionally, Hsiao and Scheeres (2002) introduce
a set of linearized relative orbital elements to describe oscillatory motion stabilized relative
to a periodic orbit via feedback control formulated using eigenspace information, producing
solutions with similar characteristics to motion within a natural center eigenspace (Scheeres
et al. 2003). The current work in this paper builds upon these approaches that incorporate
information about the local eigenspaces of a periodic orbit, via eigendecomposition or Floquet
mode analysis.

In this paper, local toroidal coordinate systems are introduced to describe motion relative
to a periodic orbit with oscillatory modes in the CR3BP. The presented coordinate systems
leverage the geometric characteristics of a nearby invariant 2-torus and are applicable to
periodic orbits in the CR3BP that possess at least one oscillatory mode, regardless of the
overall stability of the orbit. First, nonlinear and linear equations of relative motion are
presented, assuming that the dynamics of each spacecraft are modeled via the CR3BP.
Then, the procedure for calculating a first-order approximation of an invariant 2-torus in the
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linearized equations of relative motion is summarized. This fundamental structure is used as
a reference for defining the two local coordinate systems for periodic orbits: a nonsingular set
and a geometrically-defined set. Mappings between Cartesian states, defined in the rotating
frame of the CR3BP and relative to a periodic orbit, and the local toroidal coordinates
and coordinate rates are presented. In both of these local toroidal coordinate systems, first-
order approximations of invariant 2-tori exist as equilibrium solutions to the linearized
equations of relative motion. The local toroidal coordinates, combined with insight into the
geometric structure of the first-order approximation of an invariant 2-torus, also facilitate
rapid prediction of the minimum and maximum possible separation between a spacecraft
located along an approximated 2-torus and another spacecraft located on the periodic orbit;
information that is useful in applications such as formation design, proximity operations, and
safe trajectory design for rendezvous and docking. Implementation of the introduced local
toroidal coordinate systems is demonstrated in the context of relative motion near various
members of the Earth-Moon southern !2 halo orbit family in the CR3BP. This analysis
includes examining the errors associated with the coordinate set description and predicting
the separation envelopes of quasi-periodic relative motion.

2 The circular restricted three-body problem

The CR3BP is employed to model the natural motion of a spacecraft in a multi-body system. In
this dynamical model, a spacecraft is assumed to be influenced by point-mass gravitational
interactions with two constant mass primary bodies (Szebehely 1967); in this paper, the
Earth and Moon. These two primaries, labeled as %1 and %2, are assumed to follow circular
orbits about their mutual barycenter. The two primaries are labeled with %1 possessing a
mass <1 that is greater than or equal to <2, the mass of %2. The mass of the spacecraft,
%3, and its gravitational e�ect on the two primary bodies are assumed to be negligible.
A nondimensionalization scheme is also often employed: length quantities are normalized
by the distance between the two primary bodies, time quantities are normalized such that
the mean motion of the two primaries about their barycenter is equal to unity, and mass
quantities are normalized using the total mass of the system (Szebehely 1967). A system
mass ratio, `, is then defined as ` = <2/(<1 + <2) (Szebehely 1967); in the Earth-Moon
CR3BP, ` ⇡ 0.01215. This nondimensionalization scheme facilitates extrapolation between
systems with similar mass ratios and to reduce the potential for ill-conditioning in numerical
integration. However, dimensional quantities are used for reporting results in this paper.

To describe the state of a spacecraft in the CR3BP, two coordinate frames are defined: an
inertial frame and a rotating frame. The rotating frame, R, is defined with axes {x̂, ŷ, ẑ}: x̂ is
directed from %1 to %2, ẑ is parallel to the orbital angular momentum vector of the primary
system, h, and ŷ completes the right-handed triad. Next, an inertial frame, N , is defined
using axes { ˆ̂ , _̂ , ˆ̀ }. The third axis of the rotating frame ẑ is always aligned with the third
axis of the inertial frame, ˆ̀ . Accordingly, the transformation from the inertial to the rotating
frame is a counter-clockwise rotation about ˆ̀ . Under the assumption that the primary bodies
follow circular orbits, the nondimensional angular velocity vector of the rotating frame with
respect to the inertial reference frame is 8'# = 1ẑ.

The equations of motion for the CR3BP are formulated relative to the system barycenter
and in the rotating frame. First, the nondimensional state vector of the spacecraft relative
to the system barycenter is defined in the rotating frame as x = [G, H, I, §G, §H, §I]) . The
first three components of this vector form the position vector of the spacecraft, denoted as
r3 = [G, H, I]) . The equations of motion for a spacecraft in the CR3BP are then written using
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the nondimensional acceleration of the spacecraft with respect to the system barycenter,
formulated in the rotating frame as

r
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3 = •r3 � 2
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8'# ⇥ r

0
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� 8'# ⇥ (8'# ⇥ r3) (1)

where ( ) 0 indicates a time derivative of a vector for an observer fixed in the rotating frame
and §( ) indicates a time derivative of a vector for an observer fixed in the inertial frame. In
addition, the time derivative of a scalar quantity is indicated using the §( ) notation for brevity.
In this expression, the nondimensional inertial acceleration of the spacecraft in the CR3BP
is equal to (Vallado and McClain 2013)
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where A13 and A23 are the distances of the spacecraft from %1 and %2, respectively. To
calculate these quantities, note that the position vectors of the two primary bodies are equal
to r1 = �`x̂ and r2 = (1 � `)x̂ in the rotating frame and relative to the barycenter. Finally,
the equations of motion of the CR3BP are commonly expressed as
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where *⇤ is a pseudo-potential function, defined as (Breakwell and Brown 1979)
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Because time does not explicitly appear in the equations of motion, the CR3BP supplies
an autonomous dynamical model for approximating the natural motion of a spacecraft in
a three-body system when formulated in the rotating frame. Furthermore, a wide variety
of fundamental solutions exist including equilibrium points, periodic orbits, quasi-periodic
orbits, and hyperbolic invariant manifolds.

3 Relative dynamics in a three-body system

The CR3BP is used in this section as a foundation for formulating the equations of relative
motion between two spacecraft in a system with two massive primary bodies. Specifically,
the target spacecraft, denoted by the subscript C, and the chaser spacecraft, denoted by the
subscript 2, are both assumed to follow uncontrolled natural reference paths in the CR3BP,
assuming that the spacecraft do not gravitationally interact with each other. Nonlinear and
linearized equations of relative motion are then presented for an observer in the rotating
frame. The resulting equations of relative motion are autonomous, enabling an analysis of
relative motion in the CR3BP independent of a specific epoch.

3.1 Nonlinear equations of relative motion in the CR3BP

An expression for the relative acceleration between two spacecraft, given an observer that is
fixed in the rotating frame, is derived via a Newtonian approach. The position vector of the
chaser spacecraft relative to the target spacecraft is denoted as 1, defined as 1 = r2�rC , where
rC and r2 are the position vectors of the target and chaser spacecraft, respectively, measured
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from the %1-%2 barycenter. When expressed in the rotating frame, the components of this
relative position vector are expressed as 1 = [XG, XH, XI]) . The inertial and nondimensional
relative acceleration, •1, is then calculated as the di�erence between the inertial accelerations
of the target and chaser spacecraft, each governed by Eq. (2), expressed as
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The relative acceleration, 100, between the two spacecraft for an observer fixed in the rotating
frame is then calculated as
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This second-order vector di�erential equation supplies the nonlinear equations of relative
motion for the chaser spacecraft.

In the nonlinear system, the relative path of the chaser spacecraft is generated by si-
multaneously integrating the relative state of the chaser spacecraft and the absolute state of
the target spacecraft; this approach straightforwardly supplies the information required to
compute the presented local toroidal coordinate systems. A six-dimensional state vector, q,
is defined as the di�erence between the state vector of the chaser spacecraft, x2, and the state
vector of the target spacecraft, xC , both formulated in the rotating frame, as q = x2 � xC . This
relative state vector may be expressed as q = [XG, XH, XI, X §G, X §H, X §I]) . When the state of the
target spacecraft is integrated via the equations of motion for the CR3BP in Eq. (1), and the
relative state of the chaser spacecraft from the target spacecraft is simultaneously integrated
via the equations of relative motion in Eq. (6), the paths of the two spacecraft are generated
using a system of 12 scalar and autonomous first-order di�erential equations.

3.2 Linearized equations of relative motion

In this section, a first-order approximation of relative motion formulated in the rotating frame
is presented for a target spacecraft located along a general reference trajectory in the CR3BP.
However, in this paper, these expressions for the linearized equations of motion are applied
to a target spacecraft that follows a periodic orbit in the CR3BP. These equations of relative
motion that are linearized about a target spacecraft are written in the form

q
0 ⇡ G

��
Cq =

mq
0

mq

����
C

q (7)

where the Jacobian, G, is evaluated at the state of the target spacecraft. This Jacobian is equal
to the following matrix:
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The lower-left quadrant of the Jacobian corresponds to the partial derivative of the relative
acceleration for an observer in the rotating frame, expressed in Eq. (6), with respect to the
relative position vector, written in nondimensional quantities as
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where 8̃'# is the skew-symmetric matrix representation of the cross product of 8'# and O=

denotes the = ⇥ = identity matrix. Finally, the partial derivative of the relative acceleration
for an observer in the rotating frame with respect to the relative velocity vector is equal to

m1
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C

= �28̃'# (10)

This vector partial derivative forms the lower-right quadrant of the Jacobian. Together, these
quantities supply the components of the equations of relative motion that are linearized about
a target spacecraft.

The first-order approximation of the relative path of a chaser spacecraft is generated
by simultaneously integrating the relative state of the chaser spacecraft and absolute state
of target spacecraft. A 12 ⇥ 1 system of equations is formed by the nonlinear equations of
motion governing the target spacecraft state in the CR3BP, as expressed by Eq. (1), and the
linearized equations of relative motion governing the relative state of the chaser spacecraft,
as expressed in Eq. (7). The result is a system of 12 scalar and autonomous first-order
di�erential equations where the motion of the target spacecraft is recovered to within the
accuracy of numerical integration in the CR3BP and the motion of the chaser spacecraft is
approximated via linearization about the target spacecraft.

4 Quasi-periodic relative motion

The coordinate systems introduced in this paper leverage a first-order approximation of an
invariant 2-torus that exists in the linearized model of relative motion. This fundamental
solution is used because a chaser spacecraft following the surface of a reference invariant
2-torus follows a quasi-periodic path relative to a target spacecraft on a nearby periodic orbit
that admits an oscillatory mode. However, numerically calculating an invariant torus that
exists in the nonlinear model is significantly more computationally intensive than calculating
a periodic orbit. Thus, a first-order approximation of a torus, i.e., a torus that exists in the
linearized model of relative motion, is used in this paper. As a result, the coordinate systems
supply a straightforward and time-invariant state representation of motion on a first-order
invariant torus and facilitate interpretation of motion in the nonlinear model. This approach
of leveraging linearization has been used throughout the literature, including in support
of analytical investigations for formation flying where the distance between spacecraft is
su�ciently small (Carter 1998).

This section supplies an overview of the mathematical background for calculating a first-
order approximation of quasi-periodic motion relative to a periodic orbit. First, a stability
analysis of a periodic orbit is performed to supply basis vectors that span the center eigenspace
associated with a single fixed point along a periodic orbit. These basis vectors are used to
generate a first-order approximation of a nearby invariant 2-torus, i.e., a torus that is governed
by two fundamental frequencies. The intersection of this torus with a hyperplane defines an
invariant curve relative to a single fixed point. This section then presents a procedure for
normalizing the basis vectors of the center eigenspace associated with a fixed point to align
with the principal axes of a reference invariant curve. The resulting basis vectors supply the
fundamental axes used to define the toroidal coordinate frames presented in this paper.
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4.1 Stability analysis of a periodic orbit

A stability analysis is performed to recover basis vectors in the rotating frame for the
eigenspaces associated with a periodic orbit in the CR3BP. Consistent with dynamical
systems theory, stability analysis of a periodic orbit begins by numerically integrating the
state transition matrix, �, from a specified fixed point, i.e., a state along a periodic orbit, that
exists in the CR3BP (Breakwell and Brown 1979). The state transition matrix is governed
by the matrix di�erential equation 3�/3C = G

��
C�, using the initial conditions �0 = O6,

When this state transition matrix is propagated for precisely one period along a periodic
orbit, it is denoted as the monodromy matrix. The eigenvalues of the monodromy matrix
exist in three reciprocal or complex conjugate pairs, with one trivial pair of unity eigenvalues
corresponding to periodicity of the reference solution (Howell 1984). The two nontrivial
eigenvalue pairs then reflect the local stability characteristics of the periodic orbit (Koon et al.
2006): a pair of real eigenvalues that do not equal unity indicate stable and unstable modes,
while a pair of complex conjugate eigenvalues on the unit circle indicates an oscillatory
mode. The eigenvectors of the monodromy matrix then supply the span of the eigenspaces
associated with a fixed point.

The stability of a periodic orbit is typically summarized using two stability indices. In
this paper, a stability index is defined as the sum of a pair of two nontrivial eigenvalues of the
monodromy matrix of the periodic orbit (Howell 1984). Because a trivial pair of eigenvalues
of the monodromy matrix always exists, each orbit possesses two stability indices, denoted
as B1 and B2. Oscillatory modes produce a value of the stability index between -2 and 2
(Gómez et al. 1998). Of course, a pair of complex eigenvalues that lie o� the unit circle may
also produce a value of the stability index between -2 and 2. However, this type of eigenvalue
pair is not admitted by any of the periodic orbits examined in this investigation.

4.2 First-order approximation of an invariant 2-torus

A first-order approximation of an invariant 2-torus is calculated using the eigenvectors
associated with an oscillatory mode of the monodromy matrix for a selected state along
a periodic orbit. At this fixed point, a complex eigenvector associated with the oscillatory
mode, w, is used to generate a set of states > that lie along a first-order approximation of an
invariant 2-torus via the following expression:

> = Y (Re(w) cos \ + Im(w) sin \) (11)

where \ 2 [0, 2c] radians and Y is a scaling term that influences the size of the first-
order approximation of the nearby torus relative to the periodic orbit (Olikara and Scheeres
2012). For a constant value of Y, the real and imaginary vector components of the complex
eigenvector associated with the oscillatory mode, labeled wA and w8 such that w = wA + 8 w8 ,
are the directions of two conjugate diameters for the unique ellipse formed by the states within
> (McCartin 2013). This set of states > is labeled a first-order approximation of an invariant
curve: each state in this set returns to the same curve when propagated for one revolution
around the torus (Barden and Howell 1999). o construct a first-order approximation of an
invariant 2-torus relative to a periodic orbit, the complex eigenvector may be calculated at
various states along one revolution of the periodic orbit by either integrating the eigenvector
using the linear equations of relative motion or using mappings of the state transition matrix
(Koon et al. 2006). Using this information, the set > is computed at a constant value of Y at
multiple locations along the periodic orbit. The resulting ellipses formed by the set > for a
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constant value of Y may vary in size, eccentricity, and orientation over time, corresponding
to an evolving geometry of the first-order approximation of the invariant torus relative to the
periodic orbit (Barden and Howell 1999).

States in the set > and, therefore, the center eigenspace associated with a specific fixed
point lie within a two-dimensional plane in the six-dimensional phase space (Barden and
Howell 1998b, 1999). The projection of the center eigenspace onto the configuration space
forms a reference plane that is used to define the coordinate systems presented in this paper.
Calculating this plane begins by writing the real and imaginary components of the complex
eigenvector, wA and w8 , in terms of four 3 ⇥ 1 vectors corresponding to their position and
velocity components as wA = [r)A , v)A ]) and w8 = [r)8 , v)8 ]) , respectively. The complex
eigenvector may then be written as

w =

rA

vA

�
+


r8

v8

�
8 (12)

For a single fixed point, rA and r8 span the plane formed by the projection of the center
eigenspace onto the configuration space. The unit vector perpendicular to this plane is
defined as

n̂ =
n

=

=
rA ⇥ r8

|rA ⇥ r8 |
(13)

The orientation of the plane normal to n̂ is periodic in the rotating frame with the same
period as the reference periodic orbit.

4.3 Normalization of the complex eigenvector

The real and imaginary vector components of the complex eigenvector of the monodromy
matrix that is associated with the oscillatory mode supply a useful set of basis vectors
for the center eigenspace. However, for consistent implementation when defining the local
toroidal coordinate systems, a normalization scheme is applied to the complex eigenvector
to remove ambiguity. The presented normalization process aligns the eigenvector with the
principal axes of the first-order invariant curve approximation; constrains the magnitude
of the real, position components of the eigenvector; and applies a series of sign checks to
remove ambiguity in the sign of the real and imaginary components of the eigenvector at a
specific fixed point along the periodic orbit.

The principal axes of the ellipse formed by the first-order approximation of the invariant
curve are computed via a singular value decomposition (SVD) of a matrix containing columns
that span the center eigenspace in the phase space. The mathematical concept of an SVD has
been used in a variety of applications to gain geometric insight into flow properties, linear
transformations, and data that exist within a hyperellipse; one example in astrodynamics is
examining stretching distances between nearby trajectories using an SVD of the Cauchy-
Green tensor (Short et al. 2015). In this paper, consider a fixed point of a periodic orbit
that admits at least one oscillatory mode as indicated by the eigendecomposition of the
monodromy matrix. One complex eigenvector from a complex conjugate pair that lies on the
unit circle is selected, denoted asw⇤. Then, a 6⇥2 matrix is defined as K = [Re(w⇤), Im(w⇤)].
The SVD of K is used to compute the lengths and directions of the principal axes of the
ellipse formed by the invariant curve in terms of w⇤ (McCartin 2013). First, the matrix K

is decomposed as K = [⌃\) (Noble and Daniel 1969). In this expression, the matrix [ is
a 6 ⇥ 2 semi-orthogonal matrix that contains basis vectors that are aligned with nonunique
principal semi-axes of the ellipse formed by the invariant curve. Specifically, the columns of
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[ are ordered with the basis vector aligned with a semi-major axis of the ellipse formed by the
invariant curve in the left column and the basis vector aligned with a semi-minor axis of the
same ellipse in the right column. Note that in this context, the terminology semi-major axis
is not related to the Keplerian orbital element; rather, the semi-major axis is associated with
the ellipse formed by the invariant curve. The matrix ⌃ is a 2⇥ 2 diagonal matrix containing
the magnitudes of the semi-major and semi-minor axes of the ellipse formed by the invariant
curve in the upper-left and lower-right quadrants, respectively. Finally, the matrix\ is a 2⇥2
orthogonal matrix, which may be expressed as a rotation matrix as (Noble and Daniel 1969)

\ =

cos⇥ � sin⇥
sin⇥ cos⇥

�
(14)

where ⇥ is the angle between the axes defined by the input eigenvector and the principal axes
of the ellipse.

A complex scaling factor is applied to the complex eigenvector to recover basis vectors
of the center eigenspace that are aligned with the principal axes of the ellipse formed by the
invariant curve. Rearranging the SVD of K produces the relationship K\ = [⌃. The right
hand side of this expression, [⌃, is equivalent to a 6 ⇥ 2 matrix containing a vector a in
the left column that is measured from the center of the ellipse formed by the invariant curve
and directed along the major axis, as well as a vector b in the right column that is directed
along the minor axis. This analysis reveals that the matrix K, right multiplied by \, is equal
to the matrix [⌃ containing an orthogonal set of principal axes of the ellipse formed by
the invariant curve. Accordingly, an eigenvector with real and imaginary components that
are aligned with the principal axes of the ellipse formed by the invariant curve is computed
by multiplying w

⇤ by the complex scalar quantity 2 = 4
�8⇥, where ⇥ is extracted from

\. Scaling the complex eigenvector by 2 produces another complex eigenvector labeled w

that forms a conjugate diameter description of the same ellipse described by w
⇤. However,

the real vector component of this eigenvector is aligned with the semi-major axis of the
elliptical approximation of the invariant curve and the imaginary vector component is directed
along the semi-minor axis, both measured from the fixed point at the center of the ellipse.
This relationship between real and imaginary components of the complex eigenvector and
the principal axes of the approximated invariant curve in the phase space is conceptually
illustrated in the left subfigure of Fig. 1.

Fig. 1 Conceptual illustration of the normalization process applied to a complex eigenvector for consistent
implementation of local toroidal coordinates: (left) alignment of real and imaginary components of the
complex eigenvector with the principal axes of the approximated invariant curve and (right) orientation of the
basis vectors in the three-dimensional configuration space

The real and imaginary components of the scaled complex eigenvector describe nonunique,
principal semi-axes of an ellipse formed by an invariant curve of unspecified size relative
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to a fixed point. To capture the size of the ellipse formed by the first-order approximation
of the invariant curve in configuration space, the complex eigenvector is scaled such that
the magnitude of the projection of the semi-major axis of the ellipse onto the configuration
space is equal to unity. Thus, the complex eigenvector is normalized such that the magnitude
of rA is equal to unity. As a result, the vector rA forms a unit vector in configuration space
and r8 possesses a magnitude of less than unity, consistent with the semi-minor axis of an
ellipse possessing a smaller length than the semi-major axis. These two vectors, rA and r8 ,
are illustrated conceptually in the right subfigure of Fig. 1, along with the normal unit vector,
n̂. This normalization step is useful within the definition of the local toroidal coordinate sets
to aid interpretation of the size of an approximated invariant torus in the configuration space.

Finally, the sign ambiguities that occur within an SVD must be addressed via a series
of sign checks to ensure a consistent definition for w. However, because of the variety
of geometries of periodic orbits that admit oscillatory modes, a single set of sign checks
may not be e�ectively defined for general application across periodic orbits in the CR3BP.
Rather, sign checks may be defined on a case-by-case basis. For example, for the analysis
of the Earth-Moon southern !2 halo orbit family included in Section 7, two sign checks
are applied to the complex eigenvector calculated at apolune. First, if the perpendicular unit
vector, n̂, computed via Eq. 13, is anti-parallel to the orbital angular momentum vector of
the %1-%2 system (i.e., n̂) ẑ < 0), w is replaced with its complex conjugate. In addition,
when evaluated at apolune along members of the Earth-Moon !2 halo orbit family, rA is
observed to align with either x̂ or ŷ depending on the exact region of the orbit family. To
define rA along the positive direction of either axis, if [1, 1, 0]) rA < 0, �w is used as the
normalized eigenvector. The resulting components of the normalized complex eigenvector
possess a unique and consistent description that is used within the mappings between relative
Cartesian states and local toroidal coordinates. Note that the initial state along the periodic
orbit where the complex eigenvector is computed and normalized must always be specified
when using the toroidal coordinates systems presented in the following section to ensure
consistent and repeatable implementation. Once normalized, this eigenvector is integrated
via the Jacobian evaluated at states along the periodic orbit, or determined at a future fixed
point via the state transition matrix.

5 Local toroidal coordinate systems

In this section, local toroidal coordinate systems are introduced to describe motion relative
to a periodic orbit that admits an oscillatory mode in the CR3BP. These non-orthogonal
coordinate systems are formulated using information about the center eigenspace to supply
geometric insight into the relative state of a chaser spacecraft, while also possessing a
consistent interpretation across various reference orbits. Specifically, for each coordinate
system, three coordinates are used to decompose a relative position vector into its components
within and normal to the plane of an instantaneously approximated invariant curve along
a first-order approximation of a 2-torus. The time derivatives of these coordinates then
supply further intuition into the deviation of the chaser spacecraft from motion tracing this
reference 2-torus, which is described by constant values of the toroidal coordinates. The first
coordinate set, denoted as the nonsingular local toroidal coordinates, possesses an oblique
basis and maps linearly with Cartesian coordinates relative to a fixed point as a function of
the complex eigenvector associated with an oscillatory mode. The second coordinate set,
denoted as the geometric local toroidal coordinates, is a curvilinear system that expresses
the state of the chaser spacecraft relative to a state along a periodic orbit using the amplitude
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and poloidal angle components of a reference 2-torus; this description is comparable to
toroidal coordinates that are used to study magnetic fields and plasma physics (Hazeltine and
Meiss 2003; Schnizer et al. 2014). However, in contrast to toroidal coordinate systems that
describe a state measured from an origin on the revolution axis of the torus, the presented
local toroidal coordinates are formulated to describe a state relative to a reference along the
center ring of the torus, i.e., a state along the nearby periodic orbit in the CR3BP.

The toroidal coordinate sets presented in this paper to describe relative motion are defined
using a single invariant 2-torus as a reference, i.e., a torus governed by two fundamental
frequencies and generated by exciting one oscillatory mode. If a periodic orbit admits two
oscillatory modes and, therefore, two sets of oscillatory modes of the monodromy matrix,
higher-dimensional tori emanate from the periodic orbit. In this case, the approach presented
in this paper requires that only one oscillatory mode is excited to construct the reference
invariant 2-torus used to define the toroidal coordinate systems. This oscillatory mode may
be selected based on its frequency or the size, shape, and evolution of the associated invariant
curve. Further investigation and adaptation of the presented local toroidal coordinates to use
a higher-order invariant torus as a reference represents an interesting avenue for future work.
Furthermore, for some periodic orbits in the CR3BP, the orbit may admit an oscillatory
mode that only spans a single dimension in the configuration space, e.g. the ẑ axis. Motion
exciting this type of mode is rectilinear in the configuration space and is not considered for
analysis within the scope of this paper due to the resulting rank-deficiencies in the definition
of the introduced coordinate systems. Finally, the local toroidal coordinates are presented
via mappings from relative states formulated in the rotating frame; however, it is also valid
to map to the introduced coordinates from other frames where the periodic orbit maintains
periodicity, such as a Hill frame.

5.1 Nonsingular local toroidal coordinates

The nonsingular local toroidal coordinates are defined as three scalar quantities that, along
with their respective time derivatives, describe the state of the chaser spacecraft relative to a
target spacecraft located along a periodic orbit using basis vectors derived from the center
eigenspace. The first and second coordinates, defined as U and V, express part of the relative
position as a linear combination of the real and imaginary position components, rA and r8 ,
respectively, of the normalized complex eigenvector associated with the oscillatory mode
evaluated at the state of the target spacecraft along the periodic orbit. The third coordinate,
⌘, is defined as the distance of the chaser spacecraft from the plane spanning the projection
of the center eigenspace onto the configuration space; a value of ⌘ = 0 indicates the chaser
spacecraft is located within this plane. For a nonzero value of ⌘, the sign reflects whether
the relative position vector of the chaser spacecraft is parallel or anti-parallel to n̂, the unit
vector that is normal to the plane formed by the projection of the center eigenspace onto
the configuration space. Each coordinate is specified with dimensions of length and may
be nondimensionalized using the characteristic length quantity associated with the CR3BP.
Figure 3 displays a conceptual illustration of nonsingular local toroidal coordinates, (U, V, ⌘),
associated with the relative position vector, 1, measured from a target spacecraft, C, located
on a periodic orbit to a chaser spacecraft, 2, along with the basis vectors, {rA , r8 , n̂}.

The nonsingular toroidal coordinate frame is a nonorthogonal reference frame that pos-
sesses basis vectors that do not necessarily possess unit length. The basis vectors are defined
as the real and imaginary position components of the normalized complex eigenvector asso-
ciated with the oscillatory mode of a nearby state along a periodic orbit as well as the unit
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Fig. 2 Illustration of the nonsingular local toroidal coordinates (U,V,⌘) describing the position of the chaser
spacecraft relative to a target spacecraft located on a periodic orbit with an oscillatory mode

vector that is normal to the corresponding plane. These vectors, {rA , r8 , n̂}, form the axes
of the nonsingular toroidal coordinate frame, denoted Z. Because of their definition, these
basis vectors must be carefully and consistently computed over the time interval of interest.
Specifically, recall that as a result of the normalization process detailed in Section 4.3, the
magnitude of rA is equal to unity at a specified initial epoch when calculated using a single
initial state along the periodic orbit. However, the magnitudes of the basis vectors rA and r8

are designed to vary at later instants of time, consistent with the invariant curve associated
with a single invariant torus also evolving in size and shape relative to subsequent states along
the reference periodic orbit. Thus, the normalized complex eigenvector used to compute the
basis vectors within this system is integrated along with the state of the target spacecraft
from a specified initial condition via the Jacobian matrix to capture the natural rotational
frequencies of the center eigenspace.

The position vector locating the chaser spacecraft relative to a state along a periodic orbit
may be expressed using nonsingular coordinates. The relative position vector, 1, is written
in terms of the nonsingular toroidal coordinates as

1 = UrA + Vr8 + ⌘n̂ (15)

The position of the chaser spacecraft relative to a fixed point may also be expressed in
nonsingular toroidal coordinates via the vector z = [U, V, ⌘]) . The time derivative of the
nonsingular coordinates for an observer fixed in the toroidal coordinate frame, indicated
by the notation Z( ) 0, is defined as Z

z
0 = [ §U, §V, §⌘]) whereas the second time derivative is

defined as Z
z
00 = [ •U, •V, •⌘]) .

To calculate the nonsingular toroidal coordinates, a transformation is employed between
the non-orthogonal toroidal coordinate frame and Cartesian coordinates in the rotating frame.
The vector, z, is defined as the relative position vector describing the chaser spacecraft
measured from the periodic orbit expressed in the nonsingular local toroidal coordinate
frame. Thus, the nonsingular local toroidal coordinates are computed via a change of basis,
written as

1 = Xz (16)

where X is a 3⇥ 3 matrix containing the basis vectors of the nonsingular toroidal coordinate
system expressed in the rotating frame, defined as X = [rA , r8 , n̂] where rA and r8 are the real
and imaginary position components of the normalized complex eigenvector which has been
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integrated from the specified initial fixed point and evaluated at the current state of the target
spacecraft along the periodic orbit. The nonsingular coordinates are then straightforwardly
determined by inverting X as

z = X
�1
1 (17)

The matrix X is full rank and invertible so long as rA and r8 are not collinear; this condition
is satisfied when the oscillatory mode of a periodic orbit does not produce rectilinear motion
in its associated Cartesian frame. Computing the time derivative of Eq. (16), the relative
velocity of the chaser spacecraft, 10, is written as a function of the coordinates and coordinate
rates as

1
0 = X

⇣
Z
z
0
⌘
+ X

0
z (18)

where X0 is the time derivative of the X matrix for an observer in the rotating frame, written as
X
0 = [vA , v8 , n̂0] where each component is derived from the normalized complex eigenvector

which has been integrated from the specified initial fixed point and evaluated at the current
state of the target spacecraft along the periodic orbit. In this expression, the time derivative
of the normal unit vector for an observer in the rotating frame, n̂0, is calculated as

n̂
0 =

n
0

=

�
⇣
n
)
n
0
⌘
n

=
3

(19)

where n
0 = vA ⇥ r8 + rA ⇥ v8 . The time derivative of the nonsingular coordinate set for an

observer in the Z frame is then computed as a function of relative Cartesian position and
velocity vectors as

Z
z
0 = X

�1
1
0 � X

�1
X
0
X
�1
1 (20)

This expression describes a transformation between the velocity vector for an observer fixed
in the rotating frame to the velocity vector for an observer fixed in the non-orthogonal toroidal
coordinate system.

5.2 Geometric local toroidal coordinates

The geometric local toroidal coordinates modify the nonsingular local toroidal coordinates
to express the state of the chaser spacecraft in terms of geometrically-interpretable quantities.
The first coordinate, Y, indicates the size of the first-order approximation of the invariant
curve that passes through the projection of the relative position vector of the chaser spacecraft
onto the plane instantaneously spanned by rA and r8 . The Y coordinate is always positive and
is expressed using length units. The second coordinate, \, indicates the angular displacement
of the chaser spacecraft about the ellipse formed by the first-order approximation of the
invariant curve in configuration space, measured within the plane spanned by rA and r8 .
Specifically, the angle is measured counterclockwise from rA when viewed from the n̂

direction. The Y and \ coordinates are related to the nonsingular coordinates, U and V, as

U = Y cos \ (21)

V = Y sin \ (22)

The last coordinate, ⌘, possesses the same definition as in the nonsingular coordinate system.
Note that when the eigenvector normalization scheme described in Section 4 is applied, Y is
equal to the maximum separation distance of the first-order approximation of the invariant
curve from a specified initial fixed point along a periodic orbit. In some cases, it may be useful
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to specify this initial condition as a geometrically-meaningful fixed point. For example, if the
normalized eigenvector is defined at an apsis of a periodic orbit, the physical interpretation
of Y is the maximum separation distance of the approximated invariant curve defined by Y

relative to the apsis. A conceptual illustration of these geometric toroidal coordinates (Y, \, ⌘)
that describe the configuration of a chaser spacecraft relative to a target spacecraft located
along a periodic orbit is displayed in Fig. 3.

Fig. 3 Illustration of the geometric local toroidal coordinates (Y,\ ,⌘) describing the position of the chaser
spacecraft relative to a target spacecraft located on a periodic orbit with an oscillatory mode

The geometric toroidal coordinate system is a local, curvilinear coordinate system with
basis vectors that are aligned with the amplitude, angle, and axial components of a refer-
ence invariant 2-torus. The geometric toroidal coordinate frame, E, is defined with axes
{eY , e\ , n̂}, calculated as a function of both the complex eigenvector associated with the
oscillatory mode and geometric coordinates as

eY = rA cos \ + r8 sin \, e\ = Y (�rA sin \ + r8 cos \) (23)

Representations of these axes are also illustrated in Fig. 3. Consistent with the nonsingular
coordinate frame, the basis vectors are nonorthogonal, and the magnitudes of eY and e\ are
generally not equal to unity. Unlike the nonsingular coordinates, the geometric coordinates do
not map to relative position vectors as a linear combination of the basis vectors. However, it is
convenient to express the values of the geometric toroidal coordinates in a 3⇥1 column vector,
e = [Y, \, ⌘]) . The first and second time derivatives of the geometric toroidal coordinates
are similarly grouped in 3 ⇥ 1 column vectors as E

e
0 = [ §Y, §\, §⌘]) and E

e
00 = [ •Y, •\, •⌘]) ,

respectively. Compared to the nonsingular coordinate set, the geometric toroidal coordinates
supply increased intuition into the position of the chaser spacecraft, at the expense of a
singular point along the n̂ axis. Along the n̂ axis, Y = 0 and a nonunique definition occurs
in the mapping from geometric toroidal coordinates to Cartesian coordinates. When this
condition is met, \ is undefined.

The values of the geometric toroidal coordinates are directly computed from the nonsin-
gular coordinates. Once the nonsingular coordinates have been computed from the position
and velocity vectors of a chaser spacecraft relative to a target spacecraft located along a
periodic orbit via Eqs. (17) and (20), Y and \ are extracted as

Y =
q
U

2 + V
2
, (24)
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\ = tan�1
✓
V

U

◆
(25)

The geometric coordinate rates are calculated as nonlinear functions of the nonsingular
coordinates and their respective rates as

§Y =
U §U + V §V

Y

, (26)

§\ =
U §V � V §U

Y
2

(27)

The values of the coordinate ⌘ and its time derivative §
⌘ remain unchanged from the nonsin-

gular coordinate set. The position vector is written as a nonlinear function of the geometric
toroidal coordinates as

1 = Y (rA cos \ + r8 sin \) + ⌘n̂ (28)

The time derivative of Eq. (28) produces an expression for the relative velocity of the chaser
spacecraft, 10, in terms of the the geometric coordinates and their rates as

1
0 = §Y

�
rA cos \ + r8 sin \

�
+ Y

�
vA cos \ � rA sin \ §\ + v8 sin \ + r8 cos \ §\

�
+ §
⌘n̂ + ⌘n̂

0 (29)

These expressions map the geometric local toroidal coordinates and respective coordinate
rates to the relative position and velocity vectors expressed in the rotating frame and relative
to a state along a periodic orbit.

5.3 Properties of quasi-periodic motion in local toroidal coordinates

While a relative state may be expressed via the local toroidal coordinate systems, states within
the set > that lie along the first-order approximation of an invariant curve are straightforward
to describe via a sparse state representation where only two of the six coordinates and
coordinate rates possess nonzero values. This section demonstrates that states within the set
> are equilibrium solutions to the equations of relative motion that are linearized relative
to a periodic orbit when expressed using local toroidal coordinates. This result is a direct
consequence of defining the basis vectors of the local toroidal coordinate frames using the
normalized complex eigenvector associated with the oscillatory mode, which is integrated
along with the state of the target spacecraft. In nonsingular toroidal coordinates, all states
within the set > admit values of ⌘ = §

⌘ = §U = §V = 0, while U and V are free parameters
indicating the projection of the position vector onto the plane instantaneously spanned by rA

and r8 . This property of the coordinate set is evident in Eqs. (15) and (18), where ⌘ = §
⌘ =

§U = §V = 0 results in a state along the set > as defined in Eq. (11). Similarly, in geometric
toroidal coordinates, all states within the set > possess values of ⌘ = §

⌘ = §Y = §\ = 0 due
to the definitions of the geometric coordinates as a function of the nonsingular coordinates,
expressed in Eqs. (24)-(27). The quantities Y and \ are analogous free parameters that,
respectively, correspond to the size of and angle along the first-order approximation of the
invariant curve associated with a fixed point.

The equations of relative motion that are linearized about a periodic orbit and the time
derivative of the normalized complex eigenvector, w, are both governed by the Jacobian
evaluated along the periodic orbit. The Jacobian evaluated at a state along a periodic orbit
may be expressed using four 3 ⇥ 3 submatrices as

G

��
C =


G1 G2

G3 G4

�
(30)
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The time derivative of the eigenvector w for an observer in the rotating frame is then
written as the sum of two 6 ⇥ 1 vectors containing the real and imaginary components as
w

0 = w
0
A +8 w0

8 . These two vectors are each defined in terms of two, three-dimensional vectors
corresponding to relative velocity and acceleration as w0

A = [v)A , a)A ]) and w
0
8 = [v)8 , a)8 ]) ,

where v and a indicate velocity and acceleration components of the eigenvector, respectively,
and the subscripts A and 8 indicate real and imaginary components, respectively. Using these
definitions, aA and a8 , are then expressed as linear functions of the submatrices of the
Jacobian as aA = G3rA + G4vA and a8 = G3r8 + G4v8 , respectively.

An expression for the relative acceleration of a state within the set > is derived by
expressing the equations of relative motion that are linearized about a periodic orbit in terms
of toroidal coordinates and the Jacobian. The linearized relative Cartesian acceleration is
approximated as a function of the submatrices of the Jacobian and the relative position and
velocity vectors as

1
00 ⇡ G31 + G41

0 (31)

Recall that the relative position vector for a state within the set > in terms of nonsingular
coordinates is written as 1 |i = UrA + Vr8 whereas the associated relative velocity vector
for an observer fixed in the rotating frame is written as 1

0 |i = UvA + Vv8 . Substituting
the expressions for these relative position and velocity vectors into the expression for the
linearized relative acceleration of the chaser spacecraft in Eq. (31), the relative acceleration
of a state along the first-order approximation of the invariant curve is written as

1
00��

i ⇡ G3 (UrA + Vr8) + G4 (UvA + Vv8) = UaA + Va8 (32)

Accordingly, this expression relates the acceleration for a state located along the first-order
approximation of the invariant curve to the time derivative of the complex eigenvector and
the nonsingular coordinates, U and V.

An expression for the second time derivative of the nonsingular toroidal coordinates
evaluated on the set > is derived and used to prove that the set corresponds to an equilibrium
solution to the equations of relative motion linearized about a periodic orbit. First, recall the
expression for the relative velocity, 10, in terms of nonsingular coordinates and coordinate
rates in Eq. (18). Di�erentiating Eq. (18) with respect to time produces an expression for the
relative acceleration for an observer fixed in the rotating frame, 100, in terms of nonsingular
coordinates and coordinate rates as

1
00 = X

00
z + 2X0

⇣
Z
z
0
⌘
+ X

⇣
Z
z
00
⌘

(33)

where X
00 is the second time derivative of X, equal to X

00 = [aA , a8 , n̂00]. Solving for Z
z
00,

the second time derivative of the nonsingular coordinates is then equal to

Z
z
00 = X

�1
⇣
1
00 � X

00
z � 2X0

⇣
Z
z
0
⌘⌘

(34)

Recall that for states within the set >, the coordinate rates for an observer fixed in the Z
frame, i.e., Z

z
0, and the out-of-plane coordinate, ⌘, are equal to zero. Consequently, the

second time derivative of the geometric coordinate set evaluated along > simplifies to

Z
z
00��

i = X
�1

⇣
1
00��

i � UaA � Va8

⌘
(35)

Substituting Eq. (32), the expression for the linearized relative acceleration of the chaser
spacecraft evaluated at a state within the set >, reveals that

Z
z
00��

i ⇡ X
�1 (UaA + Va8 � UaA � Va8) = 0 (36)
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Because the first and second time derivatives of the geometric coordinates equal zero, a state
within the set > corresponds to an equilibrium solution to the equations of relative motion
linearized about a periodic orbit. This result supplies a direct description of trajectories in the
linear equations of relative motion that trace out the surface of a first-order approximation
of an invariant torus via toroidal coordinates.

6 Computing separation extrema for relative motion along a torus

At a constant value of Y, states in the set > form an ellipse in the three-dimensional configu-
ration space relative to the associated fixed point along a periodic orbit. For this fixed point,
the principal semi-axes of this ellipse in configuration space correspond to the instantaneous
extrema in the position separation between a target spacecraft following a periodic orbit
and a chaser spacecraft located on the first-order approximation of the invariant curve for a
specific value of Y. This result o�ers valuable information in the preliminary design of space-
craft formations using quasi-periodic motion and subject to constraints on inter-spacecraft
separation.

The states located at the vertices and co-vertices of the first-order approximation of the
invariant torus are directly computed by integrating the components of an SVD. First, the
normalized complex eigenvector formulated in the rotating frame is calculated at a specified
fixed point along a periodic orbit. Next, a 3 ⇥ 2 matrix, KA , is defined using the real and
imaginary position components of the complex eigenvector as KA = Y[rA , r8], where Y

reflects the size of the approximated invariant torus. This matrix is decomposed via an SVD
as KA = [A⌃A\

)
A , where [A is a 3 ⇥ 2 semi-orthogonal matrix containing the basis unit

vectors of the principal axes in configuration space. Specifically, [A is ordered with a unit
vector aligned with a major axis in the left column and a unit vector aligned with a minor
axis in the right columns. The matrix ⌃A is a 2⇥ 2 diagonal matrix containing the magnitude
of the semi-major axis, A0, and the magnitude of the semi-minor axis, A1, of the ellipse in
the upper-left and lower-right, respectively. The matrix elements of the SVD of the matrix,
KA , then are di�erentiated as (Seeger et al. 2017; Townsend 2016)

3

3C

[A = [A

⇣
L �

⇣
[

)
A K

0
A\A⌃A + ⌃A\

)
A (K 0

A ))[A

⌘⌘
+

⇣
O3 �[A[

)
A

⌘
K

0
A\A⌃�1

A (37a)

3

3C

⌃A = O2 �
⇣
[

)
A K

0
A\A

⌘
(37b)

3

3C

\A = \A

⇣
L �

⇣
⌃A[

)
A K

0
A\A + \

)
A (K 0

A ))[A⌃A

⌘⌘
+

⇣
O2 � \A\

)
A

⌘
(K 0

A ))[A⌃�1
A (37c)

where L is a 2 ⇥ 2 matrix function of the instantaneous values of A0 and A1, defined as
(Townsend 2016)

L =

"
0 1

A2
1�A2

0
1

A2
0�A2

1

0

#
(38)

To support the integration of the SVD of KA , its time derivative is defined as K 0
A = Y[vA , v8].

The matrix components of the SVD of KA , i.e.[A , ⌃A , and\A , are simultaneously integrated
via the matrix di�erential equations in Eq. (37) together with the state of the target spacecraft
and the complex eigenvector associated with the oscillatory mode. The vectors that appear
in the columns of ([A⌃A ) locate a vertex and co-vertex of the first-order approximation of an
invariant curve. The other vertex and co-vertex of the invariant curve are straightforwardly
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calculated by mirroring the computed principal axes across the origin, i.e., a fixed point
along the periodic orbit.

The sequence of relative position vectors directed towards the vertices and co-vertices
of the ellipse as it evolves over time does not correspond to a natural trajectory. Rather, the
principal axes are geometric characteristics of the approximated invariant curve, governed
by the di�erential equations in Eq. (37); they do not correspond to a continuous sequence
of states generated using the linearized relative dynamics expressed in Eq. (7). Accordingly,
a spacecraft initially aligned with the semi-major axis of the elliptical approximation of
an invariant curve will not necessarily be located along the semi-major axis of the ellipse
relative to a subsequent fixed point at a later instant of time.

Integrating the SVD of the first-order approximation of the invariant curve for a revolution
of the periodic orbit reveals fundamental insight into the separation between the target and
chaser spacecraft. While this process supplies the separation distance extrema over time
for the first-order approximation of an invariant torus, for small spacecraft separations,
nonlinear motion initialized on the invariant curve is demonstrated in the next section to
be well-approximated by these extrema. This process may also be modified to compute the
first-order approximation of the relative velocity magnitude between the chaser spacecraft
exhibiting quasi-periodic relative motion and the target spacecraft located along a periodic
orbit. In this case, the initial SVD is performed on the matrix containing columns composed
of the real and imaginary velocity components of the complex eigenvector.

7 Quasi-periodic relative motion near the Earth-Moon R2 southern halo orbit family

In this section, the presented toroidal coordinates and associated techniques are used to
analyze first-order approximations of quasi-periodic relative motion near members of the !2

southern halo orbit family in the Earth-Moon CR3BP. This section begins with a stability
analysis of the Earth-Moon !2 southern halo orbit family to identify members that admit
oscillatory modes and, therefore, nearby quasi-periodic relative motion. A single member
of this family is also identified to facilitate a detailed demonstration of the technical pro-
cedures presented in this paper prior to expansion to other members of the family. Next,
first-order approximations of invariant 2-tori are generated using toroidal coordinates near
various members of this family and visualized in the rotating frame. An error analysis is then
performed to compare the trajectories generated in the nonlinear and linear models from the
same initial conditions associated with first-order approximations of quasi-periodic relative
motion. This error analysis is performed for various members of the !2 southern halo orbit
family for tori of various sizes and represented using the geometric toroidal coordinate set
to facilitate interpretation. Finally, first-order approximations of invariant tori near various
members of the !2 southern halo orbit family are characterized by their minimum and max-
imum separation from the nearby periodic orbit using the principal axes of invariant curves
calculated relative to various fixed points. This final example demonstrates the capacity for
the toroidal coordinates to facilitate rapid examination of the separations between spacecraft
within a formation that are following naturally bounded motion.

7.1 First-order approximations of invariant tori near the !2 southern halo orbit family

In the Earth-Moon CR3BP, members of the !2 southern halo orbit family evolve away from a
bifurcation with the !2 Lyapunov orbit family and towards the Moon, possessing a maximum
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I-extension that occurs below the Earth-Moon plane (Breakwell and Brown 1979; Farquhar
1971). In Fig. 4, selected members of the southern !2 halo orbit family are plotted in the
Earth-Moon rotating frame using dimensional coordinates measured relative to the Moon.
Four specific halo orbits within this family are highlighted in Fig. 4 and used later in this
subsection to demonstrate the characteristics of nearby invariant 2-tori.

Fig. 4 Members of the Earth-Moon southern !2 halo orbit family plotted relative to the Moon in the Earth-
Moon rotating frame

To facilitate a detailed initial demonstration of the technical approach presented in this
paper, an Earth-Moon !2 southern halo orbit with a period of 13.3 days is examined. This
particular periodic orbit is displayed in cyan in Fig. 4 and possesses a nondimensional state at
apolune in the rotating frame of approximately x = [1.1358, 0,�0.16938, 0,�0.22465, 0]) .
From this state at apolune, a monodromy matrix is generated by propagating the state
transition matrix in the rotating frame for one period, i.e., approximately 13.3 days. This
monodromy matrix admits the following eigenvalue structure: a trivial unity eigenvalue
pair, _1,2; a pair of unstable and stable modes, _3,4; and a pair of complex conjugate
eigenvalues that lies on the unit circle, _5,6, corresponding to an oscillatory mode. The
nontrivial eigenvalues of the monodromy matrix and the associated eigenvectors are listed in
Table 1. For the presented analysis, the oscillatory mode is of particular interest. Specifically,
the complex eigenvector following the normalization process is listed in Table 1 as w6. This
normalized complex eigenvector is used to recover a nearby first-order invariant 2-torus used
as a reference in the computation of the local toroidal coordinates.

A first-order approximation of an invariant 2-torus is generated near the 13.3 day southern
!2 halo orbit for demonstration. First, a discrete number of states that lie along a single
invariant curve are calculated via Eq. (11) relative to apolune along the reference halo orbit.
For this example, 200 evenly distributed values of \ at Y = 1 km are used. The left subfigure
of Fig. 5 displays a projection of the resulting invariant curve onto the configuration space
of the rotating frame. This approximated invariant curve is plotted relative to apolune along
the !2 halo orbit, indicated as a red marker at the origin and labeled as C. The real and
imaginary position components of the normalized complex eigenvector associated with the
oscillatory mode are also plotted as red and blue arrows, respectively. This information is
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Table 1 Nontrivial eigenvalues and eigenvectors of the monodromy matrix evaluated at apolune of the selected
Earth-Moon !2 halo orbit and expressed in the rotating frame

_3 = 102.28 _4 = 9.78 ⇥ 10�3
_5,6 = �0.514 ± 0.8588

w3 =

266666666664

�0.4579
0.0466
0.0852
�0.594
0.403
0.516

377777777775

w4 =

266666666664

0.4579
0.0466
�0.0852
�0.594
�0.403
0.516

377777777775

w5,6 =

266666666664

0 ± 0.5968
1 ± 0

0 ± 0.6578
1.252 ± 08
0 ⌥ 1.5118
0.720 ⌥ 08

377777777775

used to generate a first-order approximation of the invariant 2-torus that produces quasi-
periodic motion relative to a target spacecraft on the nearby !2 halo orbit. Specifically, the
normalized complex eigenvector is integrated via the linearized equations of relative motion
and sampled at 1000 equally-distributed time instants. At each time step, the approximated
invariant curve corresponding to Y = 1 km is calculated. The collection of these curves forms
a first-order approximation of the associated 2-torus, displayed as a blue surface in the right
subfigure of Fig. 5, along with the original invariant curve evaluated at apolune, plotted in
black. Additional first-order approximations of invariant tori that exist near the periodic orbit
may be generated by calculating the invariant curves at alternative values of Y.
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Fig. 5 Constructing a first-order approximation of an invariant 2-torus described by Y = 1 km in the
configuration space relative to an Earth-Moon !2 halo orbit: (left) projection of the first-order approximation
of an invariant curve relative to apolune and (right) surface traced by the approximated invariant curve over
one revolution of the periodic orbit

Stability analysis is used to identify a wider array of members of the Earth-Moon southern
!2 halo orbit family that admit oscillatory modes and, therefore, nearby quasi-periodic
relative motion. The stability indices of periodic orbits within the computed segment of the
Earth-Moon southern !2 halo family are then plotted as a function of the orbit period in the
center of Fig. 6. In addition, the stability indices of the four reference orbits highlighted in
Fig. 4 are indicated using markers with a consistent color scheme. Analysis of this figure
reveals that members within the computed segment of this family admit stability indices,
B1 and B2, that lie between the critical values of -2 and 2. As a result, fixed points along
these orbits produce a monodromy matrix with at least one set of complex eigenvalues that
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Fig. 6 Stability indices of periodic orbits across the Earth-Moon southern !2 halo orbit family with selected
first-order approximations of invariant 2-tori associated with the indicated oscillatory mode and Y = 10 km
and displayed in relative position coordinates, measured from the target spacecraft

lie on the unit circle, indicating the presence of nearby quasi-periodic motion (Breakwell
and Brown 1979; Howell 1984). For example, the oscillatory modes of the halo orbit near
the bifurcation with the !2 Lyapunov orbit family (blue), and the centrally located halo
orbit (cyan) correspond to the B2 index, while the oscillatory mode of the NRHO (magenta)
corresponds to B1. These orbits, represented by blue and cyan markers, also possess a stability
index corresponding to a stable/unstable eigenvalue pair, equal to approximately B1 = 1137
and B1 = 102, respectively. The stable halo orbit (red), however, is located in a region of the
!2 halo orbit family where the orbits admit two pairs of oscillatory modes (Howell 1984).
This stability analysis reveals that the presented local toroidal coordinate sets, defined based
on first-order approximations of invariant 2-tori, may be used to study relative motion near
a variety of members across the Earth-Moon southern !2 halo orbit family.

At the boundaries of Fig. 6, the first-order approximations of invariant 2-tori associated
with the highlighted members and generated by exciting the indicated oscillatory modes
are plotted. Each torus is defined by Y = 10 km and visualized in the rotating frame. For
each member of the !2 southern halo orbit family, the complex eigenvector is normalized
at apolune. The oscillatory modes corresponding to the B1 index are characterized by large
in-plane separation with maximum out-of-plane separation occurring at perilune. The tori
generated by exciting the oscillatory modes corresponding to the B2 index are characterized
by ring-like structures with the largest components of separation in the ŷ direction at perilune.
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This noticeable di�erence in the geometry of quasi-periodic relative motion produced by
exciting each of the two oscillatory modes is also evident by comparing the two invariant
2-tori generated for the stable halo orbit that is highlighted in red. In fact, analysis of the
boundaries of Fig. 6 reveals that the quasi-periodic relative motion near a single periodic
orbit family may admit a variety of complex geometries. However, using the presented local
toroidal coordinates, the trajectories that trace the illustrated tori are all described by the
same quantities: Y = 10 km, value of \ between 0 and 2c rad, and ⌘ = 0 km. As a result, this
straightforward and geometric coordinate description may facilitate the rapid generation and
analysis of quasi-periodic relative paths in the CR3BP and, potentially, trajectory design for
formations of spacecraft.

7.2 Error in first-order approximation of invariant tori

A numerical analysis is used to examine the error associated with a first-order approximation
of quasi-periodic relative motion. This analysis is first demonstrated for motion along a
single first-order approximation of an invariant torus near one !2 southern halo orbit and
then expanded to examine the error for a variety of tori near members that span the computed
segment of the family, as plotted in Fig. 4. In each case, states along the following two types
of distinct trajectories, expressed in toroidal coordinates and generated from the same initial
condition that lie along one first-order approximation of an invariant curve, are compared:
1) trajectories generated using the nonlinear equations of motion and 2) sequences of states
that are seeded from first-order invariant curves.

An invariant curve is calculated relative to apolune along the Earth-Moon !2 southern
halo orbit with a period of 13.3 days, as displayed in cyan in Fig 4, and used to generate
the associated trajectories in each of the nonlinear and linearized models. First, 25 initial
conditions are seeded from the first-order approximation of the invariant curve and expressed
in geometric toroidal coordinates, using the complex eigenvector of the monodromy matrix
computed and normalized at apolune. These initial conditions are described by the following
values of the geometric toroidal coordinates: Y = 10 km and evenly distributed values of
\ 2 [0, 2c) rad, with values of ⌘ and the coordinates rates that are all initially set equal to zero
to indicate motion that lies within the set >. Each initial condition that is initially defined
in geometric toroidal coordinates is converted to a relative state vector formulated in the
rotating frame. The 25 initial conditions are then propagated using the nonlinear equations
of relative motion for two revolutions of the halo orbit, approximately 26.6 days.

The propagated trajectories are visualized relative to the halo orbit in Fig. 7. In the left
subfigure of Fig. 7, the relative trajectories are plotted in black in the rotating frame. In
the right subfigure of Fig. 7, the same trajectories are plotted in black in the nonsingular
toroidal coordinate frame. Although these trajectories are projected onto the UV plane, small
out-of-plane components exist. In addition, the first-order approximation of the invariant
curve is plotted as a blue circle with a radius of 10 km in the toroidal coordinate frame
along with the initial state of each trajectory, represented as blue markers. Visualization of
the relative trajectories in the rotating frame reveals oscillatory motion about the halo orbit.
However, visualization of the same relative trajectories in the toroidal frame supplies an
additional level of insight as the departure of the trajectories from the linear approximation
of the invariant curve is more clearly observed.

A single initial condition from the set displayed in Fig. 7 is used to generate a trajectory in
both the nonlinear and linear relative motion models to further examine the use of geometric
toroidal coordinates. Specifically, consider an initial condition located along an invariant
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Fig. 7 Trajectories propagated in the CR3BP relative to an Earth-Moon !2 southern halo orbit for two
revolutions with initial conditions located along an invariant curve with Y = 10 km, defined relative to
apolune, at evenly distributed values of \ . Trajectories are plotted relative to the periodic orbit in the: (left)
rotating frame and (right) nonsingular toroidal coordinate frame

curve and described by Y0 = 10 km and \0 = 0 rad relative to apolune along the selected
!2 southern halo orbit; recall that the initial out-of-plane coordinate and all coordinate rates
are set equal to zero. This initial condition possesses a relative Cartesian description in
the rotating frame of q0 = [0 km, 10 km, 0 km, 0.0334 m/s, 0 m/s, 0.0192 m/s]) . For the
associated trajectories generated in the nonlinear and linear dynamical models, the geometric
coordinates and coordinate rates are calculated at each integration time step and plotted in the
subfigures of Fig. 8, represented in black and blue, respectively. The values of the geometric
coordinates and coordinate rates along the trajectory in the linearized dynamical model are
verified to remain constant to within 10�14 nondimensional units, similar to the tolerances
used in numerical integration of the initial conditions in the linearized dynamical model.

Analysis of Fig. 8 reveals that, as expected in the CR3BP, the nonlinear trajectory
gradually diverges from the linear approximation of the torus. Of course, relative motion
associated with an initial condition within the first-order invariant set will eventually diverge
from the vicinity of a periodic orbit with an unstable mode when propagated in the nonlinear
model. Additionally, motion slightly perturbed from the center eigenspace, indicated by a
nonzero value of ⌘ or nonzero toroidal coordinate rates, will excite other modes and produce
similar behavior in the nonlinear model. Nevertheless, the local toroidal coordinates supply
an intuitive description of nonlinear motion near a 2-torus relative to a periodic orbit.

This error analysis is expanded to analyze the divergence of nonlinear motion initialized
along one first-order invariant curve for a wider variety of separations relative to members
sampled across the computed segment of the Earth-Moon !2 southern halo orbit family.
Specifically, the geometric toroidal coordinates are used to define initial conditions relative
to the state at apolune along members of the family for a range values of Y0. This analysis
supplies regions of validity for which the toroidal coordinates su�ciently predict initial
conditions producing bounded motion in the nonlinear CR3BP. Values of Y0 are selected
within the range Y0 = [0, 100] km at an initial angle of \0 = 0 rad along the first-order
approximation of the associated invariant curve. Similar to the previous example, ⌘0 and the
coordinate rates are all set to zero to ensure that the initial condition lies on an invariant
curve relative to apolune. These initial conditions are then integrated from apolune for one
revolution of the corresponding halo orbit using the nonlinear equations of relative motion.
Errors in Y, \, and ⌘ after one revolution, labeled as XY 5 , X\ 5 , and X⌘ 5 , respectively, are
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Time (T) Time (T)

Fig. 8 Geometric local toroidal coordinates and coordinate rates evaluated along trajectories with the same
initial condition, located along an invariant curve with Y0 = 10 km and \0 = 0 rad, and defined relative to
apolune along an Earth-Moon !2 southern halo orbit with a period of 13.3 days. Trajectories are propagated
using the nonlinear CR3BP (black) and dynamical model linearized about the periodic orbit (blue)

defined as the di�erence between the final and initial values of the coordinates. The orders
of magnitude of the errors are visualized using color and plotted as a function of both the
period of the associated !2 southern halo orbit on the horizontal axis and the initial value of
Y, i.e., the size of the initial invariant curve, on the vertical axis in Figs. 9-11, respectively.
Each figure includes two subfigures, corresponding to exciting one of the oscillatory modes
associated with either B1 or B2 to generate quasi-periodic relative motion.

Although the errors generally evolve smoothly across the orbit family, two discontinuities
are observed in Figs. 9-11. The first discontinuity is observed in the B2 mode at the intersection
of the B2 stability index with �2, near an orbit possessing a period of approximately ) = 12
days. Near this discontinuity, increased numerical sensitivity is observed in the computation
of the approximated invariant curve due to the eigenvalues corresponding to the B2 index
possessing small imaginary components. Another discontinuity in the orbit family is observed
in the B1 mode near an orbit period of approximately ) = 9.6 days. In this region of the
halo orbit family, the geometry of the invariant curve at apolune corresponding to the B1

index evolves such that the eccentricity of the ellipse instantaneously equals zero. When
continuing the orbit family in either direction across this discontinuity, vectors aligned with
the principal axes of the invariant curve switch, causing a discontinuity in the surfaces due
to the normalization process of the complex eigenvector.

The di�erences between the nonlinear and linear trajectories, expressed in geometric
toroidal coordinates, supply insight into the errors induced by the linear approximation of
quasi-periodic relative motion across the orbit family. Analysis of Figs. 9-11 reveals that
!2 southern halo orbits near the bifurcation with the !2 Lyapunov family, i.e., members
that possess periods of approximately ) = 14.8 days, exhibit larger di�erences between the
nonlinear trajectories and the linear approximations after one period. In this region, the B1

stability index possesses a large value, corresponding to unstable modes with eigenvalue
magnitudes much greater than unity. In addition, the oscillatory motion corresponding to the
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B1 index reveals a region of increased errors near the range of halo orbits that possess a period
of approximately 9 days. In this region, the invariant curve near apolune is nearly-rectilinear
along the ŷ direction. Outside of this region, an error of less than 1 km is generally observed
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Fig. 9 Order of magnitude of error in Y after propagating selected trajectory for one revolution of a nearby !2
southern halo orbit, represented as a function of the reference orbit period and initial value of Y corresponding
to B1 (top) and B2 (bottom)
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Fig. 11 Order of magnitude of error in ⌘ after propagating selected trajectory for one revolution of a nearby !2
southern halo orbit, represented as a function of the reference orbit period and initial value of Y corresponding
to B1 (top) and B2 (bottom)

in both Y and ⌘, plotted in Figs. 9 and 10 respectively, for initial values of Y less than 50
km, i.e., the first-order torus with a maximum separation of 50 km from the periodic orbit at
apolune. In Fig. 10, the di�erences in the initial and final angle are observed to be generally
less than 5 ⇥ 10�3 rad for the same initial conditions.

The results depicted in Figs. 9-11 correspond to motion initialized relative to apolune
along periodic orbits in the !2 southern halo orbit family and at a single value of \0. Of course,
modifying the reference fixed point, investigating di�erent values of \0, or investigating
values of Y greater than 100 km will alter the results. Nevertheless, the presented results supply
preliminary insight into the deviation of these trajectories from the center eigenspace of the !2

southern halo orbit family in the nonlinear CR3BP. In fact, for many members of this family, a
first-order approximation of nearby quasi-periodic relative motion su�ciently predicts quasi-
periodic relative motion in the nonlinear model for one revolution. Of course, nonlinear
invariant tori that exist in the CR3BP are not exactly recovered in higher-fidelity models
(Barden and Howell 1998b); rather, nearby trajectories may require control to maintain
boundedness over specific time intervals.

7.3 Separation envelopes for oscillatory motion near the southern !2 halo orbit family

This subsection examines the presented approximation for the separation envelope associated
with quasi-periodic relative motion. First, the actual relative distances between a chaser and
target spacecraft are calculated via the nonlinear equations of relative motion from initial
conditions within the set >. These relative distances are then compared to the predicted
magnitudes of the principal semi-axes over time, calculated using the method detailed in
Section 6.
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In this example, consider the 25 trajectories corresponding to quasi-periodic motion
relative to the Earth-Moon !2 southern halo orbit with a period of 13.3 days, as displayed in
Fig. 7. The initial conditions of these 25 relative trajectories are seeded from the first-order
approximation of the invariant curve with Y = 10 km relative to apolune. These states are
then propagated forward in time for two periods using the nonlinear equations of relative
motion. The separation distances between states along each of these trajectories and the
nearby periodic orbit are measured isochronously and compared to the magnitude of the
principal semi-axes of the first-order approximation of the invariant torus corresponding
to Y = 10 km. The time histories of the separation distance for chaser spacecraft along
each of these 25 trajectories are plotted in the top subfigure of Fig. 12 in black, along with
the calculated magnitudes of the semi-major axis (red) and semi-minor axis (blue). In this
figure, time is normalized by the period of the halo orbit, ) = 13.3 days. Recall that the
complex eigenvector associated with the oscillatory mode is also computed and normalized
at apolune. The interpretation of Y as a result of this normalization is evident in Fig. 12: the
maximum position separation at the initial condition, i.e., at apolune, is equal to Y = 10 km.
Over the first revolution of the periodic orbit, the separation distances between a chaser
spacecraft located along each of the nonlinear trajectories from a target spacecraft along the
reference halo orbit predominantly remain within the maximum and minimum separation
values predicted by A0 and A1. In fact, the maximum error between the nonlinear motion
and the estimated separation bounds over one orbit period is approximately 5 meters greater
than A0 and approximately 8 meters less than A1; both errors are significantly smaller than
the separation distance. However, consistent with the prior error analysis, over the second
revolution of the periodic orbit, gradual divergence of the nonlinear trajectories from the
approximated range of motion is evident.
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Fig. 12 Separation distance, measured from the 13.3 day Earth-Moon southern !2 halo orbit, for the trajec-
tories propagated using nonlinear equations of relative motion and displayed in Fig. 7. The time histories of
the magnitudes of the principal semi-axes of the approximated invariant curve described by Y = 10 km are
also plotted

The presented procedure is leveraged to conduct a broader examination of the separation
envelopes associated with quasi-periodic relative motion near a range of members of the
!2 southern halo orbit family. For a discrete sample of Earth-Moon southern !2 halo orbits
displayed in Fig. 4, the magnitudes of the principal axes of the first-order approximation of a
torus over time are computed using the process outlined in Section 6. The magnitudes of the
principal semi-axes of the invariant curve are then plotted as a function of time after apolune,
normalized by the period of the orbit, and the associated orbit, identified by orbit period.
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Fig. 13 Minimum (left) and maximum separation (right) of the first-order approximation of invariant tori
exciting the B1 index of associated members of the !2 southern halo orbit family

The vertical axes are scaled to indicate the separation of the principal axes normalized by the
value of Y of the torus. The result is a set of two-dimensional surfaces that bound the range
of separations of approximated tori from the halo orbit family. The surfaces corresponding

Fig. 14 Minimum (left) and maximum separation (right) of the first-order approximation of invariant tori
exciting the B2 index of associated members of the !2 southern halo orbit family

to the B1 and B2 stability indices are visualized in Fig. 13 and Fig. 14, respectively. The color
of the surfaces corresponds to the value along the vertical axis, for added visual clarity.

The surfaces of minimum and maximum separation reveal a complex variation in the
deviation of oscillatory motion relative to periodic orbits across the !2 southern halo orbit
family. The two discontinuities observed in Figs. 9-10 are also visible in Figs. 13 and 14.
Depending on the specific member of this family used to define the target spacecraft, the
first-order approximation of an invariant torus may possess one or more local extrema in the
maximum and minimum separation over time. Additionally, the di�erences between the max-
imum and minimum separation of a torus over time from the associated periodic orbit varies
significantly across the family. For example, consider the motion excited by the oscillatory
modes associated with B2, represented in Fig. 14. For orbits with periods of approximately
10 days, natural quasi-periodic relative motion significantly contracts relative to the periodic
orbit at a normalized time of 0.5, i.e., near perilune, indicated by simultaneously low values
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of A0 and A1. In addition, for motion excited by the oscillatory modes associated with B1

index, represented in Fig. 13, consider orbits in the near-rectilinear region of the family that
possess a period of around 6 days. At perilune of these orbits, a simultaneously high A0 and
low A1 is observed, indicating the torus admits a large variation in the separation distances
from the periodic orbit.

To clearly visualize the variety of approximated separation extrema for a chaser spacecraft
along a torus and measured relative to a target spacecraft along an !2 southern halo orbit,
their time histories are displayed for tori near the specific halo orbits highlighted in Fig. 6.
These halo orbits are highlighted in the central plot of Fig. 15 and characterized via their
stability indices and period. Then, the time histories of the separation extrema along tori
near these selected members are plotted at the boundaries of Fig. 15 and normalized by torus
size, Y: the red curves indicate the approximated maximum separation, while the blue curves
display the approximated minimum separation. Rapid analysis of these characteristics across
the orbit family may support the design of reference trajectories for spacecraft formations
that seek to leverage naturally bounded motion relative to a periodic orbit but are subject to
configuration constraints (Elliott and Bosanac 2022).

Fig. 15 Stability indices of periodic orbits across the Earth-Moon southern !2 halo orbit family with the
maximum (red) and minimum (blue) separation of selected first-order approximations of invariant 2-tori from
the respective periodic orbits
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8 Conclusions

This paper presents a family of local toroidal coordinate systems that are defined to support
relative trajectory design and analysis near periodic orbits with oscillatory modes in the
CR3BP. Specifically, the coordinate systems are defined using a first-order approximation
of an invariant 2-torus as a reference. Furthermore, these coordinates are demonstrated
analytically and numerically to supply a time-invariant description of motion on a first-order
approximation of an invariant torus for equations of relative motion in the CR3BP linearized
about a periodic orbit. Finally, a process for computing the instantaneous principal axes of the
first-order approximation of an invariant curve associated with a single 2-torus is presented,
leveraging integration of a singular value decomposition. This procedure enables a rapid
prediction of the minimum and maximum possible separation between a chaser spacecraft
located along an invariant torus relative to a target spacecraft along a nearby periodic orbit.

The toroidal coordinates and principal axes analysis are demonstrated in the context of
quasi-periodic motion relative to a target spacecraft located along various members of the
Earth-Moon !2 southern halo orbit family. First, quasi-periodic relative motion initialized
using geometric toroidal coordinates is studied across the !2 southern halo orbit family
using the linearized equations of relative motion. Then, the error between the nonlinear
relative motion and the first-order approximation of quasi-periodic relative motion is analyzed
across the !2 southern halo orbit family and presented using the geometric coordinate set
for various sizes of invariant curves defined relative to apolune. These results reveal a
su�ciently small error, indicating that the first-order approximation of quasi-periodic relative
motion within the toroidal coordinate systems is suitable for short-term analysis of motion at
small separations from a periodic orbit. Finally, surfaces of the approximated minimum and
maximum separation of a chaser spacecraft located along a torus and measured relative to a
target spacecraft located along various members of the !2 southern halo orbit are examined.

The geometric insight and slowly time-varying state description of spacecraft near quasi-
periodic relative motion in multi-body systems motivates continued application and explo-
ration of the local toroidal coordinates. For instance, the local toroidal coordinates may
facilitate characterization of relative motion near other periodic orbit families in the Earth-
Moon and Sun-Earth CR3BP that possess members with oscillatory modes, e.g., the !1 and
!2 vertical orbits, distant retrograde orbits, or !4 and !5 short period orbits. A geometric
interpretation of relative motion, achieved through the use of local toroidal coordinates,
may also support formation geometry analyses and the formulation of targeting and control
problems; both the focus of ongoing work by the authors (Elliott and Bosanac 2021a,b,
2022).
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