
AAS 21-636

MULTI-OBJECTIVE REINFORCEMENT
LEARNING FOR LOW-THRUST TRANSFER DESIGN

BETWEEN LIBRATION POINT ORBITS

Christopher J. Sullivan*, Natasha Bosanac†,
Alinda K. Mashiku‡, and Rodney L. Anderson§

Multi-Reward Proximal Policy Optimization (MRPPO) is a multi-objective rein-
forcement learning algorithm used to construct low-thrust transfers between pe-
riodic orbits in multi-body systems. Previous implementations of MRPPO have
relied on a predefined reference transfer to successfully train each policy. In this
paper, an algorithmic modification labeled the ‘moving reference’, is introduced
to autonomously construct these reference trajectories during training. With this
modification, MRPPO is used to recover various low-thrust transfers between two
periodic orbits in the Earth-Moon circular restricted three-body problem to solve
a multi-objective optimization problem. These results are then compared with
the solutions recovered via a gradient descent optimization scheme to validate the
performance of MRPPO with the moving reference modification.

INTRODUCTION

Infusing autonomy into the trajectory design process may reduce the workload of human analysts
and operators during mission concept development, and potentially enable a wide variety of mission
concepts for spacecraft operating within multi-body systems. In multi-body systems, many exist-
ing approaches to trajectory design rely heavily on input from an expert trajectory designer: from
a dynamical systems based method for initial guess construction to classical optimization meth-
ods.1–6 However, designing a transfer in a multi-body system may be a time consuming process
with the geometry of any initial guesses or governing parameters that are selected by an analyst
often impacting the local basin of convergence and success of these numerical methods.1, 2 These
limitations are particularly significant in multi-objective optimization problems with competing ob-
jectives and constraints, and in scenarios with little insight into the complex and diverse solution
space. Motivated by these challenges, members of the astrodynamics community have recently be-
gun to explore the use of reinforcement learning (RL) in constructing a framework for autonomous
trajectory design in multi-body systems.

Reinforcement learning has previously been employed to autonomously construct a variety of
transfers in multi-body systems.7–14 One commonly used state-of-the-art RL algorithm, Proximal

*Ph.D. Student, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineering Sciences,
University of Colorado Boulder, Boulder CO, 80303.

†Assistant Professor, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineering Sci-
ences, University of Colorado Boulder, Boulder CO, 80303.

‡Deputy Manager, Navigation and Mission Design Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771
§Technologist, Mission Design & Navigation, NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109

1

Policy Optimization (PPO), trains a policy to recover locally optimal behavior in unknown dynam-
ical environments for a single objective function.15 Multi-Reward Proximal Policy Optimization
(MRPPO), developed by Sullivan and Bosanac, uses PPO as a foundation within a multi-objective
framework to simultaneously train multiple policies, each maximizing unique objective functions
using information gained from the experiences of all agents.9 Due to this architecture, MRPPO
retains the beneficial convergence properties of PPO in chaotic environments, while also reducing
the computational time required to recover distinct components of the solution space in a multi-
objective optimization problem.9, 12–14, 16 However, standard implementations of PPO and MRPPO
have been observed in our previous work to struggle to converge on complex transfers between
two periodic orbits without a predefined initial guess or reference trajectory; such limitations are
consistent with the challenges of using RL for complex path planning in a broader array of disci-
plines.9, 10, 17–20 This observation motivates the algorithmic modification presented in this paper.

An algorithmic modification, labeled the ‘moving reference’, is constructed to enable the au-
tonomous generation of reference trajectories during training of MRPPO. As observed in our previ-
ous work, reference trajectories often serve as valuable guides for training policies to recover trans-
fers between two periodic orbits; without a reference trajectory, training in both PPO and MRPPO
may fail to produce successful policies.9, 10 As constructed, the moving reference modification re-
quires no initial guess to be defined prior to training and enables the best trajectories generated
throughout training for each policy to serve as the moving reference until a better trajectory is gen-
erated. Using MRPPO with the moving reference modification enables the design of transfers in
high-dimensional, multi-objective solution spaces.

This paper focuses on exploring the moving reference modification within MRRPO to design
low-thrust transfers for SmallSats in the Earth-Moon system; both extending and addressing some
limitations of earlier implementations of MRPPO. This algorithmic modification is demonstrated
in the context of transfers between distinct libration point orbits, specifically transiting from an L1

northern halo orbit to an L2 southern halo orbit, in the Earth-Moon circular restricted three-body
problem (CR3BP). Once the periodic orbits, spacecraft parameters, and reward function are defined,
MRPPO with the moving reference modification autonomously recovers solutions without any ad-
ditional information required from a trajectory designer nor machine learning expert. Applying
MRPPO with the moving reference modification to a multi-objective optimization problem and bal-
ancing competing objectives, such as flight time and propellant mass usage, results in the recovery
of a subset of the multi-objective solution space. Additionally, the validity of the results generated
by MRPPO with the moving reference modification is examined in this paper via a comparison to
the nearby local optima recovered using gradient descent optimization. Then, the solution spaces
developed by both methodologies are analyzed to validate the results produced by MRPPO with the
moving reference modification.

DYNAMICAL MODEL

Often in preliminary trajectory design, approximate dynamical models are used to reduce the
complexity of the design space while still retaining the fundamental dynamical properties of the
system. For instance, the CR3BP may be used to approximate the motion of a spacecraft under
the gravitational influences of two larger primary bodies such as the Earth and Moon. The equa-
tions of motion for the CR3BP may be modified to include additional accelerations imparted by a
spacecraft’s propulsion system. In this paper, the low-thrust CR3BP equations of motion are used
to model the motion of a low-thrust-enabled spacecraft in cislunar space.

2

Circular Restricted Three-Body Problem

The CR3BP is used to model the natural motion of a spacecraft in the Earth-Moon system sub-
ject to the gravitational influences of the two primary bodies. This autonomous dynamical model
approximates the motion of the primaries, with masses M1 and M2 respectively, modeled as point
masses following circular orbits about their mutual barycenter. In this model, a rotating frame,
(x̂, ŷ, ẑ), is defined using the primaries: the x̂ axis is directed from the Earth to the Moon, the ẑ
axis is defined with the orbital angular momentum vectors of the primaries, and the ŷ axis is defined
to form a right-handed triad.21 Parameters are typically nondimensionalized via the characteristic
quantities l∗,m∗, and t∗.21 Table 1 displays the characteristic quantities for the Earth-Moon CR3BP
used in this paper. Nondimensionalizing the position, velocity, time, and mass quantities typically
reduces the potential for poor conditioning in numerical integration, facilitates a smoother training
process for neural networks, and enables comparisons between distinct multi-body systems. Then,
the nondimensionalized state of the spacecraft is defined as x̄ = [d̄T , v̄T]T where d̄ = [x, y, z]T and
v̄ = [ẋ, ẏ, ż]T are the position and velocity vectors in the rotating frame with respect to the barycen-
ter of the system. Additionally, the mass ratio of the system, a quantity that significantly influences
the solution space in the CR3BP, is defined as µ = M2/(M1 +M2).21 Using these definitions, the
equations of motion that govern the motion of a spacecraft in the CR3BP are written as

ẍ− 2ẏ =
∂U∗

∂x
ÿ + 2ẋ =

∂U∗

∂y
z̈ =

∂U∗

∂z
(1)

where the pseudo-potential function is U∗ = (1/2)(x2 +y2)+(1−µ)/d1 +µ/d2 and the distances
from the spacecraft to Earth and the Moon are, respectively, d1 =

√
(x+ µ)2 + y2 + z2 and d2 =√

(x− 1 + µ)2 + y2 + z2.21 In this dynamical model, a constant of integration, denoted the Jacobi
constant exists and is equal to CJ = 2U∗ − ẋ2 − ẏ2 − ż2.21 The Jacobi constant is valuable for
describing the relative energy between natural solutions to the CR3BP and also the states along a
maneuver-assisted transfer.

Table 1: Earth-Moon CR3BP characteristic quantities.22

Parameter Value
Characteristic length, l∗ 384,400 km
Characteristic time, t∗ 375,132 s
Characteristic mass, m∗ 6.0477× 1024 kg
Mass ratio, µ 1.2151× 10−2

Fundamental solutions to the CR3BP include equilibrium points, periodic orbits, and hyperbolic
invariant manifolds. Five equilibrium points, denoted L1-L5, exist in the CR3BP with each possess-
ing nearby periodic orbit families of varying energy levels and inclinations.22 In the Earth-Moon
system, L1 and L2 are of particular interest due to their proximity to the Moon and the periodic
orbit families that emanate from the points.23 Two families of periodic orbits, the L1 northern halo
orbit family and L2 southern halo orbit family, each have members that offer extensive coverage
of the lunar surface and supply constant line-of-sight with the Earth.23 In this paper, a variety of
low-thrust transfers are constructed from an L1 northern halo orbit to an L2 southern halo orbit with
Jacobi constants of 3.15 and 3.11, respectively, within the multi-objective solution space associated
with propellant mass usage and flight time.

3

Incorporating Low-Thrust Acceleration into the CR3BP

Spacecraft equipped with low-thrust propulsion systems may induce additional accelerations in-
fluencing their motion within the multi-body system. To account for the low-thrust acceleration, the
CR3BP equations of motion are modified and a fourth differential equation is added to model the
propellant mass usage. In this paper, the spacecraft is assumed to be equipped with a single variable
thrust, constant specific impulse engine whereby the thrust direction is expressed in the Earth-Moon
rotating frame. The nondimensional acceleration imparted by the low-thrust engine is written in the
Earth-Moon rotating frame as

ā =
Tt∗2

1000ms/cm0l∗

(
ũxx̂+ ũyŷ + ũz ẑ

)
= axx̂+ ayŷ + az ẑ (2)

where T is the thrust magnitude, m0 is the initial wet mass of the spacecraft in dimensional units,
ms/c is the mass of the spacecraft nondimensionalized by the initial wet mass, and ¯̃u = [ũx, ũy, ũz]

T

is the thrust direction vector. The mass flow rate equation is incorporated into the equations of
motion to reflect the propellant mass usage of the spacecraft. With the low-thrust engine activated,
the equations of motion for the low-thrust-enabled CR3BP are written as

ẍ− 2ẏ =
∂U∗

∂x
+ ax ÿ + 2ẋ =

∂U∗

∂y
+ ay z̈ =

∂U∗

∂z
+ az ṁs/c =

−T |¯̃u|t∗

Ispg0m0
(3)

where Isp is the specific impulse, |¯̃u| is the magnitude of the thrust vector, and g0 = 9.81 m/s2 is the
gravitational acceleration at the surface of the Earth.22 These four differential equations are used to
model the dynamics of a low-thrust-enabled spacecraft in the Earth-Moon CR3BP.

DEEP REINFORCEMENT LEARNING

Recently, RL algorithms have been successfully applied in a variety of applications to solve
complex, high-dimensional optimizations problems, including within the astrodynamics commu-
nity.7–14, 24–30 A majority of these RL applications train neural networks, which act as universal
function approximators, to learn optimal behavior via mapping actions, denoted as ūt, to states, rep-
resented by s̄t, that maximize a set of objectives within an unknown environment.31 Additionally,
neural networks are able to learn the complex, high-dimensional state-action relationships within
an environment much more robustly and efficiently than traditional RL techniques.32 The neural
networks are parameterized by a number of hidden layers and hidden nodes, each with weights, bi-
ases, and activation functions. In this investigation, the Rectified Linear Unit (ReLU) is selected as
the activation function while the weights and biases of each connection within the neural networks
are encapsulated within the parameter vector, θ̄, which is updated throughout training. Often, the
neural networks are initialized without any knowledge of the environment or objectives; as a result,
they may recover optimal behavior without biasing from a human designer. However, neural net-
works with two or more hidden layers are typically limited to recovering a local minima rather than
the global minima for a set of objectives.33, 34 These objectives are encapsulated within the reward
function which mathematically determines the instantaneous reward of any state-action pair within
the environment.35 Then, the goal of RL algorithms is to train the neural networks to maximize the
expected total reward within the environment for a single trajectory.36 To do so, state-of-the-art RL
algorithms are constructed using neural networks that control one or more agents within the envi-
ronment.37 The agents explore the environment and collect state-action-reward experiences that are
used to update the neural networks.38, 39 Using this formulation, RL algorithms may be applied to

4

a variety of applications including optimization problems where traditional optimization techniques
cannot be applied to uncover optimal behavior or where significant human input is required.31, 40

State-of-the-art RL algorithms often incorporate an actor-critic structure to train two neural net-
works to uncover locally optimal behavior within the environment. In an actor-critic structure,
learning is separated into two distinct components: (a) the actor maps optimal actions to every state
in the environment, denoted as the policy function π(s̄t, ūt), and (b) the critic estimates the value
function, denoted as V π(s̄t), for every state in the environment.41 The value function determines
the expected discounted cumulative reward for every state in the environment and is computed as

V π(s̄t) = E
[∞∑
t=0

γtrt(s̄t, ūt, s̄t+1)

]
(4)

where γ denotes the discount factor which reduces the influence of future rewards and rt(s̄t, ūt, s̄t+1)
represents the reward function for the state and action at time t and the state at time t+ 1.42 Using
two distinct structures to learn the optimal behavior simplifies the learning process and leads to
more robust convergence properties compared to singular structure methods such as policy iteration
or value iteration methods.41 Additionally, while many function approximators exist, neural net-
works have demonstrated advantageous performance across many applications; thus, they are used
in this paper to construct the actor and the critic. While actor-critic structures with neural networks
are often used as the basis for learning the optimal policy and value functions, there are a variety of
algorithms available for training the networks.

PPO is one RL algorithm that has demonstrated strong performance and favorable convergence
properties in chaotic environments.16, 43 PPO trains a single policy to maximize the total reward re-
turned for an environment and reward function while limiting the size of updates from destabilizing
the networks by enforcing a soft constraint within an objective function.15 This objective function is
composed of three elements: (1) a clipped objective that limits the influence of highly rewarding or
penalizing state-action pairs from over correcting the networks, (2) a value error term that computes
the error in the estimation of the value function, and (3) an entropy term that encourages exploration
in the environment.15 The clipped objective is defined as

LCLIPt (θ̄j) = Êt[min(Rt(θ̄j)Ât, clip(Rt(θ̄j), 1− ε, 1 + ε)Ât)] (5)

where

Rt(θ̄j) =
πθ̄,j(ūt|s̄t)
πθ̄,j−1(ūt|s̄t)

(6)

is the standard definition of the probability ratio between the old and new policies such that ratios
near unity correspond to small changes in the policy, ε denotes the clipping parameter controlling
how far the new policy may deviate, and Âπt is the estimated advantage function.15 The advantage
function uses Generalized Advantage Estimation (GAE) to evaluate how beneficial a state-action
pair is based on the expected and returned rewards and is calculated as

Âπt (s̄t, ūt) =

∞∑
`=0

(γλ)`∂t+` (7)

where
∂t = rt(s̄t, ūt, s̄t+1) + γV π(s̄t+1)− V π(s̄t) (8)

5

is the estimated advantage of action ūt and λ is defined as the GAE factor which influences the
bias-variance trade-off within the estimated advantages.36 The clipped objective is combined with
the value error and entropy components to create the objective function used in PPO and written as

LCLIP+V F+S
t (θ̄j) = Êt[LCLIPt (θ̄j)− c1L

V F
t (θ̄j) + c2S[πθ̄,j](s̄t)] (9)

where LV Ft (θ̄j) = (V est
θ̄

(s̄t) − V act
t)2 is the squared value error term, S[πθ̄,j](s̄t) denotes the en-

tropy term, and c1 and c2 are scalar coefficients for the value error and entropy terms, respectively.15

To train the networks to optimize this objective function, the AdamW optimizer is selected, which
offers improved convergence performance compared to the traditionally used Adam optimizer by
incorporating a weight decay term in the update to the neural networks.44 Then, using PPO as a
foundation, MRPPO constructs a multi-objective framework that trains multiple policies simultane-
ously while still retaining PPO’s beneficial convergence properties in chaotic environments.9

Multi-Reward Proximal Policy Optimization

MRPPO is a multi-objective framework that leverages PPO to train multiple policies, each with a
distinct reward function, simultaneously by sharing state-action propagation data generated by one
policy with every other policy. Sharing state-action pairs across policies enables the same amount
of environmental data to be used to train multiple policies. This structure significantly reduces
the computational time and effort required to generate a variety of solutions in a multi-objective
solution space. Specifically, MRPPO trains N policies denoted [π1 . . . πN], each controlling Ki

independent agents in the environment, to maximize unique objective prioritizations defined via
the corresponding reward functions [r1,t . . . rN,t]. In each case, the policies aim to maximize the
total reward generated for their assigned reward functions by learning the state transitions, system
dynamics, and locally optimal behavior. Once the state-action propagation data is generated for
the policies, each policy feeds the data through its unique reward function to produce state-action-
reward experiences that are used to update the policy. Figure 1 depicts the architecture of MRPPO
along with the flow of information through the system whereby N policies in blue each control
Ki agents in red, state-action pairs are propagated within the dynamical model to generate the
next state, the propagation information is stored in the shared memory in pink, and finally at the
update phase to the networks, the entire set of state-action pairs from all policies are input to each
reward function to generate the unique state-action-reward experiences. However, due to the limited
machine precision available and the statistical nature of certain actions, the objective function used
by PPO must be adjusted for MRPPO to enable a smooth training process.

State-action-reward experiences are used to update the networks encoding the policies by evalu-
ating the objective function. However, since policies become more exploitative throughout training
as the policies learn more information about the environment and objectives, certain actions un-
dertaken by other policies may become highly statistically unlikely. This effect is compounded
by limited floating point precision leading to the probability ratio defined in Eq. (6) approaching
infinity. To negate this effect, the policy ratio for policy πθ̄,i,j is redefined as

Ri,t(θ̄i,j) = πθ̄,i,j(ūt|s̄t)− πθ̄,i,j−1(ūt|s̄t) (10)

whereby ratios near zero now correspond to small changes between the old and new policies.45, 46

Then, the clipping objective from Eq. (5) must be redefined to enforce ratios near zero via

LCLIPi,t (θ̄i,j) = Êt[min(Ri,t(θ̄i,j)Âi,t, clip(Ri,t(θ̄i,j),−ε, ε)Âi,t)] (11)

6

Figure 1: Conceptual representation of MRPPO illustrating N policies with assigned reward func-
tions ri,t(s̄t, ūt) commanding Ki agents in a common dynamical model.

MRPPO is implemented in PyTorch, an open-source machine learning library.47 Additionally,
MRPPO retains PPO’s favorable convergence properties and robustness to hyperparameter selec-
tion.9, 16, 43 Table 2 displays the hyperparameters and construction parameters used in this paper.
Specifically, a grid search exploration by Sullivan and Bosanac in combination with tuning in a
distinct trajectory design scenario is used to select these hyperparameters.9, 16, 43 Additionally, both
MRPPO and PPO are both robust to hyperparameter selection compared to other state-of-the-art
RL algorithms.9, 16, 43 Using this set of hyperparameters, probability ratio, and clipping objective
for MRPPO enables multiple policies to be trained simultaneously without the threat of destabiliza-
tion due to limited machine precision.

Table 2: MRPPO hyperparameter and construction parameter values.

Quantity Value
Update Phases 500
Environmental Steps, τ 4096
Epochs, E 5
Mini Batches, M 4
Discount Factor, γ 0.95
GAE Factor, λ 0.9
Value Function Coefficient, c1 0.5
Entropy Coefficient, c2 1× 10−3

Quantity Value
Clipping Parameter, ε 2× 10−2

Initial Learning Rate, lr 1× 10−3

Actor Hidden Layers 2
Actor Nodes per Hidden Layer 64
Critic Hidden Layers 1
Critic Nodes per Hidden Layer 1024
Activation Function ReLU
Agents per Policy 4

Moving Reference Modification

An algorithmic modification, labeled the ‘moving reference’, is constructed to enable the au-
tonomous generation of reference trajectories during training of MRPPO. As observed in previous
work, reference trajectories often serve as valuable guides for training policies to recover trans-
fers between two periodic orbits; without a reference trajectory, training in both PPO and MRPPO
may fail to produce successful policies.9, 10 The moving reference modification is defined by the
following steps during the training of each policy:

1. Generate a trajectory for policy Pi
2. Evaluate as reference trajectory for policy Pi

• If first trajectory: set as the current reference trajectory for policy Pi
• Else: compare to existing reference trajectory for policy Pi and replace if better

7

Figure 2: Updating the reference trajectory throughout training in a transfer design scenario.

Determining whether a new trajectory supplies a better reference may depend on the properties
of interest, e.g., via criteria defined in the phase space, evaluation of the reward function, etc. In
this paper, reference trajectories are initially selected based on their closest approach to the final
periodic orbit over several time steps and, at later updates, based on a combination of the flight time
and propellant mass usage. Specifically, once the average distance for the 10 closest states falls
below 10,000 km, reference trajectories are then selected based on maximizing L =

∑tF
t=1−4 −

cm∆mt where cm is the propellant mass usage coefficient assigned to each policy. Of course,
using a single reference trajectory for each policy influences the geometry of solutions from other
departure locations along the periodic orbit; addressing this limitation is the focus of ongoing work.
Figure 2 illustrates the moving reference concept during training to recover transfers between two
periodic orbits. Each policy produces a unique reference trajectory corresponding to the distinct
objective prioritization assigned to the policy through the reward function. As constructed, the
moving reference modification requires no initial guess to be defined prior to training and enables
the best trajectories generated throughout training for each policy to serve as the reference until a
better trajectory is generated.

RECOVERING LOW-THRUST TRANSFERS USING MRPPO

MRPPO with the moving reference modification is used to recover low-thrust transfers in the
Earth-Moon CR3BP without the need for a predefined reference trajectory or initial guess. In this
paper, four policies are initialized without any a priori knowledge of the environment nor objectives
and are trained to guide a low-thrust-enabled SmallSat from an initial periodic orbit to a final peri-
odic orbit. Then, these four policies are evaluated to uncover a subset of the propellant mass usage
and flight time trade space.

Trajectory Design Scenario

A sample trajectory design scenario is defined for a low-thrust transfer between two periodic or-
bits in the Earth-Moon CR3BP. In this scenario, the initial periodic orbit is a low-energy L1 northern
halo orbit whereas the final orbit is a higher-energy L2 southern halo orbit; a scenario previously ex-
plored in our past work due to the significant interest surrounding these transfer types.10, 23 Table 3
presents initial conditions and characteristics of the periodic orbits. Due to the difference in energy
between the orbits, maneuvers are required to complete a transfer in the CR3BP. Furthermore, the
low-thrust transfers are expected to resemble the invariant manifold structures that emanate from
both orbits and admit a gradual increase in energy along the transfer.10, 48

8

Table 3: Nondimensional characteristics of the selected initial and final periodic orbits.

Orbit x y z ẋ ẏ ż Period CJ

L1 Northern Halo 0.8687 0 -0.0451 0 -0.1881 0 2.7614 3.15
L2 Southern Halo 1.1676 0 -0.1029 0 -0.1973 0 3.3216 3.11

Spacecraft Properties and Initial Conditions

The agents in the environment are modeled as ESPA-class SmallSats with an initial wet mass
of 180 kg equipped with a single variable thrust, constant specific impulse engine with full control
over thrust direction in the Earth-Moon CR3BP.49 The maximum available thrust of the engine is
Tmax = 0.15 N while the specific impulse is assumed as Isp = 3000 s, both within the capabili-
ties of current or near-future low-thrust engines.49, 50 During training, the initial conditions for the
spacecraft are randomly drawn from along the initial periodic orbit and perturbed in both position
and velocity components. The induced perturbations are drawn from a Gaussian distribution with
zero mean and a standard deviation of 10−3 nondimensional units for both the position and veloc-
ity. However, when evaluating the trained neural networks, a common set of 1,000 perturbed initial
conditions is used to facilitate more equivalent comparisons between the policies. This perturbed
initial condition formulation reflects off-nominal conditions and enables the networks to experi-
ence a wider array of environmental information surrounding the initial periodic orbit. Once the
spacecraft are initialized and initial conditions are drawn, the networks generate actions and gather
state-action-reward experiences used to update the policies.

State and Action Definitions

Once an initial condition is selected for an agent, the spacecraft information is used to form a
state vector that is input to the neural networks to generate an action. The state vector for the neural
networks is defined in this paper as a 15× 1 vector written as

s̄t = [d̄Tt , v̄
T
t ,ms/c,∆d̄

T
t ,∆v̄

T
t , κ, t]

T (12)

In this state formulation, d̄t and v̄t denote the absolute state of the spacecraft in the Earth-Moon
CR3BP; ms/c is the nondimensionalized spacecraft mass; ∆d̄t and ∆v̄t represent the relative states
of the spacecraft measured with respect to the initial orbit, final orbit, or reference trajectory; κ
signifies whether the relative states are measured with respect to the initial orbit, final orbit, or
reference trajectory, and t is the current time step. Specifically, the relative states are measured
with respect to the closest dynamical structure or reference trajectory in position space unless the
spacecraft is within 10,000 km of the final orbit. Then, the final orbit is used to prevent chattering
in the relative states between a reference trajectory and final orbit. Then, κ corresponds to how the
relative states are measured and is set as -1, 0, or 1 for the initial orbit, reference trajectory, or final
orbit, respectively. This state formulation provides the networks information about the spacecraft
and enables the trained networks to draw locally optimal actions for the spacecraft.

Once the current state is input to the neural networks, the actor neural network generates an action
that aims to maximize the long-term reward in the environment. The action vector is a 4× 1 vector
written as ūt = [ux, uy, uz, uT] where the first three components determine the thrust direction and
the fourth component determines the thrust magnitude. The first three components are normalized
to produce the thrust direction vector, ¯̃u, used in Eq. (2). Then, to produce an actionable thrust

9

magnitude, T , for Eq. (2), the thrust magnitude component, uT , is scaled using

T = Tmax

(
tanh(uT) + 1

2

)
(13)

using the hyperbolic tangent function first to constrain the thrust component to be between -1 and 1
and then normalized to ensure that the thrust magnitude is between 0 and Tmax. Once a state-action
pair is generated, the spacecraft is propagated forward in time using the low-thrust-enabled CR3BP
equations of motion for a time step of ∆t = 6× 10−2 nondimensional time units, or approximately
6 hours. State-action pairs are continually generated along a single trajectory until a termination
condition is activated and the spacecraft is reset.

Reward Function Formulation

Using MRPPO with the moving reference modification, each policy possesses a distinct reward
function that significantly influences the resulting behavior of the policy. In this paper, the reward
functions are structured to incentivize the policies to guide the spacecraft from the initial orbit to
the final orbit by approximately following the generated reference trajectories while also reducing
propellant mass usage. The reward functions are structured based on whether the spacecraft is
closest to the initial orbit, final orbit, or reference trajectory. However, if the spacecraft is within
10,000 km of the final orbit, then the specification defaults to select the final orbit configuration.
The general reward function formulation for this trajectory design scenario is written as

rt(s̄t, ūt) =

−8− 10|∆d̄t+∆t| − |∆v̄t+∆t| − cm(ms/c,t −ms/c,t+∆t) + Ω Initial Orbit
−4− 10|∆d̄t+∆t| − |∆v̄t+∆t| − cm(ms/c,t −ms/c,t+∆t) + Ω Reference
−100|∆d̄t+∆t| − 10|∆v̄t+∆t| − cm(ms/c,t −ms/c,t+∆t) + Ω Final Orbit

(14)

where cm denotes the mass coefficient which scales the penalty on propellant mass usage and Ω is
the bonus or penalty associated with the termination conditions. The coefficients on the state dis-
continuity terms are selected to encourage the policies to stay close to the initial orbit and reference
trajectory. However, when the policies approach the final orbit, the coefficients are increased to
incentivize convergence to the final orbit. This formulation enables the policies to learn to follow
the dynamical structures within the system while also encouraging the targeting the final orbit.

Scaling the penalty on propellant mass usage enables the recovery of a variety of solutions within
the flight time and propellant mass usage trade space. The four policies trained on this trajectory
design scenario are assigned mass coefficients of cm = [0, 83.33, 166.66, 250] whereby a higher
mass coefficient corresponds to a higher penalty on propellant mass usage. However, unlike in a
conventional optimization problem, the reward function cannot be set to maximize the final mass or
to have too high of a mass coefficient because the policies would then be incentivized to not perform
any actions and stay along the initial orbit.

Once a termination condition has activated corresponding to the end of a trajectory, a bonus or
penalty is applied depending on whether the trajectory converged upon the final orbit. In this sce-
nario, four termination conditions are defined: (1) the spacecraft is within 5× 10−3 in position and
velocity of the closest state in position space of the final halo orbit and Ω = 1000, (2) the maximum
number of time steps, 150, is reached and Ω = 0, (3) the spacecraft strays over 12,500 km from
the initial orbit, final orbit, and reference trajectory and Ω = −1000, and (4) the spacecraft enters
within 5 Moon radii and Ω = −1000. These penalties discourage the spacecraft from departing the
system or impacting the Moon while the bonus rewards convergence to the final orbit.

10

NONLINEAR CONSTRAINED OPTIMIZATION

Once locally optimal solutions are recovered using MRPPO, the solutions are compared to those
generated by a classical optimization technique. This comparison is used to assess the results of
MRPPO and compare the solution spaces uncovered by the two methodologies. Since most opti-
mization techniques require an initial guess, the solutions developed by MRPPO serve as the initial
guess prior to optimization. In this paper, a multiple shooting algorithm in combination with fmin-
con in MATLAB© is used to explore whether the solutions generated by MRPPO lie close to locally
optimal solutions.51 The characteristics of the initial guess, including the low-thrust propagation
time, maximum available thrust, and thrust vector formulation, are consistent between the MRPPO
and fmincon implementations, but the limitations of fmincon prevent a completely equivalent im-
plementation.51 Namely, fmincon requires the objective function and constraints to be continuous
and possess continuous first order derivatives. Then, the objective function for fmincon must be
reformulated to solely maximize the final mass while state and action continuity is enforced via
constraints. While the recovered solution spaces are expected to be slightly different, the compari-
son facilitates insight into the validity of the solution space recovered by MRPPO with the moving
reference modification.

Free Variables

A multiple shooting algorithm is used to constrain the solutions that are optimized using fmin-
con. The free variable vector describes two distinct components of the trajectory: (1) a low-thrust
segment based on a reference trajectory produced by MRPPO and (2) a coast segment along the
final periodic orbit. These segments are discretized into multiple arcs that are described by nodes
located at their initial states. The initial node is defined at the perturbed initial condition of the
reference trajectory. However, only the action components for this node, ū1, are included as free
variables in the free variable vector. Then, all proceeding low-thrust nodes are written as N̄LT,i≥2 =[
x, y, z, ẋ, ẏ, ż,ms/c, ux, uy, uz, T

]T . For the final orbit coast segment, the position, velocity, and
propagation time are all included as free variables and written as N̄C = [x, y, z, ẋ, ẏ, ż,∆t]T . Un-
like the coast nodes, the free variables for the low-thrust nodes do not include the propagation time
to facilitate a more direct comparison to the MRPPO formulation and ensure a consistent flight time.
Finally, the entire free variable vector is written as X̄ =

[
ū1, N̄LT,2, . . . , N̄LT,n, N̄C,1, . . . N̄C,q

]T .
where n denotes the number of low-thrust arcs and q is the number of coast arcs along the final peri-
odic orbit. This free variable vector formulation is equivalent to the MRPPO with moving reference
modification implementation.

Equality Constraints

Unlike the MRPPO implementation where soft constraints are typically incorporated via penalties
in the reward function, hard constraints are explicitly defined and satisfied by the optimal solutions.
The constraint vector for this trajectory design scenario is formulated to ensure full state conti-
nuity between all nodes, mass continuity between low-thrust nodes, and unity magnitude for the
thrust direction for each low-thrust node. Full state continuity is enforced via c̄i = x̄i,t+∆t − x̄i+1,t

where i includes all nodes except for the final node. The full state continuity constraint for the
final node to ensure insertion into the final orbit is written as c̄F = x̄p+n,t+∆t − x̄IC,F where
x̄IC,F is set equal to the initial condition vector for the final orbit specified in Table 3. Similarly,
the mass continuity constraints for the low-thrust nodes are defined as ∆mi = mi,t+∆t − mi+1,t

while the thrust direction vector constraints for the low-thrust nodes are written as Ui = u2
i,x +

11

Figure 3: Free variable vector and constraints consisting of low-thrust and coast segments.

u2
i,y + u2

i,z − 1. Then, the entire constraint vector is written using these components as F̄ (X̄) =

[c̄1, . . . c̄F ,∆m1, . . . ,∆mn, U1, . . . , Un]T . Figure 3 depicts a free variable vector constructed us-
ing the results from MRPPO where spherical markers denote the initial state of a node, red arcs
correspond to low-thrust nodes, blue arcs represent coast nodes, and constraints are noted between
each node connection. These constraints are used to ensure that the solution recovered by fmincon
is continuous in the state, mass, and thrust directions to within a specified tolerance.

Initial Guess

Each initial guess for the free variable vector used in fmincon is formulated using a reference
trajectory developed by MRPPO. The low-thrust nodes are straightforwardly converted from each
moving reference trajectory into low-thrust nodes for the corresponding initial guess. For the final
orbit coast nodes, the final low-thrust node is naturally propagated forwards in time until the trajec-
tory intersects the x-axis. This natural trajectory is then discretized into a specified number of coast
nodes to form the final segment of the initial guess supplied to the optimization scheme in fmincon.

Objective Function

Once the initial guesses have been constructed, they are input to fmincon to generate locally
optimal trajectories. However, fmincon requires that both the constraints and objective function be
continuous and possess continuous first-order derivatives.51 While the constraint vector formulation
satisfies these requirements, the reward function defined for this trajectory design scenario is discon-
tinuous and violates the requirements of fmincon. Thus, a distinct but comparable objective function
is specified for use in fmincon to maximize the final mass of the spacecraft as J = −mn,t+∆t for
a fixed flight time. Then, the recovered solutions necessarily are part of a distinct multi-objective
solution space compared to the solutions recovered by MRPPO.

Optimization Method

Finally, fmincon possesses multiple optimization techniques that may be used to recover lo-
cally optimal solutions.51In this paper, Sequential Quadratic Programming (SQP) is used due to
the demonstrated effectiveness of this method in a variety of trajectory design scenarios.1, 52, 53 SQP
methods formulate the optimization problem as a quadratic programming problem whereby solu-
tions are iteratively updated until an optimal solution is found.54 Additionally, SQP algorithms may

12

handle nonlinear constraints and do not require the initial guess to be feasible prior to generating an
optimal solution.54

RESULTS

MRPPO with the moving reference modification is used to train four policies that recover low-
thrust transfers between halo orbits in the Earth-Moon system. The four policies are assigned dis-
tinct reward functions to encourage the policies to uncover a distinct solutions within the multi-
objective solution space. Once four policies are trained, the reference trajectories associated with
each policy are used to construct initial guesses that are subsequently input to the optimization prob-
lem solved via fmincon. The resulting solution spaces from both methodologies are used to validate
the results produced by MRPPO with the moving reference modification.

Transfers Recovered via MRPPO

Four policies are trained using MRPPO with the moving reference modification to construct trans-
fers for low-thrust-enabled SmallSats between halo orbits in the Earth-Moon system. Specifically,
policy P1 has no penalty on propellant mass usage while policy P4 is assigned the highest penalty on
propellant mass usage to encourage a variety of solutions within the multi-objective solution space.
Once trained, both the policies and resulting reference trajectories for each policy are evaluated to
uncover a subset of solutions within the propellant mass usage and flight time trade space. Fig-
ures 4a and 4b depict the reference trajectories developed by Policies 1 and 4 respectively, where
the initial orbit is denoted by a black dashed arc, the final orbit by a solid black arc, and the reference
trajectories are represented by dotted black arcs. While the trajectories may possess similar geome-
tries, Figs. 5a and 5b demonstrate that the Jacobi constant and thrust magnitude profiles of each
reference trajectory differ reflecting increases in the propellant mass usage penalty. Specifically,
policy P1 produces a higher thrust magnitude throughout the beginning of the transfer correspond-
ing to an increase in the energy of the spacecraft. Conversely, policy P4 produces negligible thrust
and coasting until the spacecraft approaches the vicinity of the final periodic orbit. Policies P2 and
P3 exhibit intermediary behavior with smaller levels of thrust than P1 but larger than P4. Addi-
tionally, since the policies are only trained to enter within a 5 × 10−3 hypersphere in position and
velocity around the final orbit, a small difference in the Jacobi constant is evident. These reference
trajectories are selected from the best trajectories generated during the training phase of the policies
and serve as guides for the policies to construct transfers between the orbits.

The trained policies are evaluated on a common set of 1,000 perturbed initial conditions to fa-
cilitate direct comparisons between the policies. Figures 6a and 6b depict the 1,000 evaluation
trajectories constructed by policies P1 and P4 respectively, and shaded in a variety of hues to aid in
differentiation between the transfers. Both policies produce transfers that resemble the generated
reference trajectories prior to converging on the final orbit. Additionally, the propellant mass usage
and flight time is calculated for each evaluation trajectory. Figure 7a portrays the propellant mass
usage and flight time values for each evaluation trajectory as circles and reference trajectory as di-
amonds constructed by each policy. The resulting trade space demonstrates a clear trend across the
policies whereby propellant mass usage decreases at the expense of an increase in flight time as the
propellant mass usage penalty increases. Similarly, Fig. 7b focuses on the propellant mass usage
and flight time for each reference trajectory mirroring the trend in the evaluation trajectories. The
reference trajectories for each policy accordingly correspond to the best trajectories generated and
serve as a valuable basis for the initial guesses used in the optimization scheme.

13

(a) Policy 1 (b) Policy 4

Figure 4: Reference trajectories developed using MRPPO with the moving reference modification.

(a) Jacobi Constant (b) Thrust Magnitude

Figure 5: Characteristics of the reference trajectories generated by each policy during training.

Transfers Recovered via Classical Optimization

The results autonomously generated by MRPPO with the moving reference modification are used
to construct initial guesses for optimization in fmincon . Recall, the objective function for this
optimization scheme is not equivalent to but only similar to the reward function used in MRPPO
to train the policies. Then, fmincon with SQP is used to recover a distinct solution space. Figure 8
displays the propellant mass usage and flight time trade spaces recovered by SQP using the initial
guesses constructed by MRPPO with the moving reference modification. In the figure, MR denotes
the solutions recovered by MRPPO with the moving reference modification while SQP represents
solutions recovered using fmincon with SQP. SQP recovers transfers with lower propellant mass
usage than the transfers recovered by MRPPO. However, except for policy P1 which has no incentive
to decrease propellant mass usage, the difference in propellant mass usage is minimal and decreases
as the flight time increases. The differences in propellant mass usage may be attributed to the
differences in implementations: (1) the methodologies are recovering distinct but related solution
spaces and (2) MRPPO is only required to enter the vicinity of the periodic orbit while fmincon must
target it to within a nondimensional tolerance of 1E-10. Both approaches develop related solution
spaces and demonstrate that as the flight time increases, the required propellant masses for both
local minima approach similar values.

14

(a) Policy P1 (b) Policy P4

Figure 6: Evaluation trajectories generated by policies trained using MRPPO with the moving
reference modification.

(a) Evaluation and reference trajectories (b) Reference trajectories

Figure 7: Propellant mass usage and flight time for the evaluation trajectories and reference
trajectories generated by policies trained using MRPPO with the moving reference modification.

Examining the solutions produced by both algorithms enables the validation of the results pro-
duced by MRPPO with the moving reference modification. Figure 9 depicts two transfers associated
with policy P1: (a) the initial guess constructed using the policies trained by MRPPO and (b) the
optimized transfer using SQP. In these figures, the red arcs correspond to low-thrust nodes while
the blue arcs denote coast nodes. The geometry of the two transfers closely resemble one another
with small differences in the solutions produced by fmincon due to the differences in the implemen-
tations. Additionally, Fig. 10 illustrates the two transfers associated with policy P4 which is trained
with a higher penalty on propellant mass usage. Both optimized transfers possess geometries that
closely resemble the initial guesses developed by MRPPO with the moving reference modification.
This demonstrates the benefit of using MRPPO with the moving reference modification to construct
initial guesses whose geometries are approximately retained when input to an optimization scheme
with a related objective function. Further, Figs. 11 and 12 depict the thrust magnitude and direction
profiles associated with the MRPPO and fmincon transfers for policies P1 and P4, respectively. In
these figures, the thrust magnitude profile associated with P1 is altered by fmincon to resemble a
bang-bang like profile with additional changes to the thrust direction. These changes may be due

15

Figure 8: Solution spaces via optimization recovered from initial guesses developed by MRPPO
with the moving reference modification.

(a) Initial Guess (b) Sequential Quadratic Programming Transfer

Figure 9: Low-thrust transfers associated with policy P1 from an L1 northern halo orbit to an L2

southern halo orbit in the Earth-Moon system.

to the differences in the objective functions between the two methodologies. However, the thrust
profile for policy P4 is negligibly altered by fmincon. The results produced by the optimization
scheme suggests that the results generated by MRPPO with the moving reference modification lie
close to the local optima in the multi-objective solution space. While SQP may recover transfers
with a lower propellant mass usage for transfers with lower flight times, the difference in propellant
mass usage decreases as the flight time increases. These results validate the results produced by
MRPPO by demonstrating that the recovered solution space closely resembles a related solution
space uncovered using a traditional optimization scheme.

CONCLUSION

In this paper, the moving reference modification is incorporated into the MRPPO framework to
enable policies to construct low-thrust transfers in a multi-body system without an initial guess from
a human trajectory designer. Policies are trained to guide a low-thrust-enabled SmallSat from an L1

northern halo orbit to an L2 southern halo orbit in the Earth-Moon system without an initial guess
and subject to distinct objective prioritizations. By developing low-thrust transfers in a chaotic

16

(a) Initial Guess (b) Sequential Quadratic Programming Transfer

Figure 10: Low-thrust transfers associated with policy P4 from an L1 northern halo orbit to an L2

southern halo orbit in the Earth-Moon system.

(a) Policy P1 (b) Policy P4

Figure 11: Thrust magnitude profiles for low-thrust transfers from an L1 northern halo orbit to an
L2 southern halo orbit in the Earth-Moon system.

multi-body environment without a predefined reference trajectory, the time and effort required of a
human trajectory designer is greatly reduced. Additionally, the policies trained by MRPPO uncover
locally optimal solutions within the multi-objective solution space, specifically focusing on the flight
time and propellant mass usage trade space.

The reference trajectories generated by MRPPO with the moving reference modification are
leveraged as initial guesses in an optimization algorithm to validate the solution space produced
by MRPPO. The trajectories are optimized using MATLAB’s fmincon to solely maximize the final
spacecraft mass, a distinct multi-objective solution space from that recovered by MRPPO with the
moving reference modification. The recovered solution spaces from both approaches demonstrate
comparable properties including similar propellant mass usages for a defined flight time. The results
generated by fmincon with SQP confirm and validate the solution space produced by MRPPO with
the moving reference modification while also evidencing the benefits of using MRPPO to construct
low-thrust transfers in multi-body systems.

17

(a) Policy P1 (b) Policy P4

Figure 12: Thrust direction profiles in the Earth-Moon rotating frame for low-thrust transfers from
an L1 northern halo orbit to an L2 southern halo orbit.

ACKNOWLEDGEMENTS

This work was supported by a NASA Space Technology Research Fellowship. Part of this re-
search was performed at the University of Colorado Boulder. Part of this research was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration (80NM0018D0004).

REFERENCES
[1] C. J. Sullivan, J. Stuart, R. L. Anderson, and N. Bosanac, “Designing Low-Thrust Transfers to High-

Inclination Science Orbits via Hybrid Optimization,” Journal of Spacecraft and Rockets, 0, pp. 1–13.
https://doi.org/10.2514/1.A34980.

[2] P. de Sousa-Silva, M. Terra, C. Mcinnes, and M. Ceriotti, “A Heuristic Strategy to Compute Ensembles
of Trajectories for 3D Low-Cost Earth-Moon Transfers,” 67th International Astronautical Congress,
Guadalajara, MEX, 09 2016.

[3] R. E. Pritchett, K. C. Howell, and D. J. Grebow, “Low-Thrust Transfer Design Based on Collocation
Techniques: Applications in the Restricted Three-Body Problem,” 2017 AAS/AIAA Astrodynamics Spe-
cialist Conference, Stevenson, WA, 2017.

[4] I. Elliott, C. Sullivan, N. Bosanac, J. Stuart, and F. Alibay, “Designing Low-Thrust Trajectories for a
SmallSat Mission to Sun–Earth L5,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 10,
2020, pp. 1854–1864. https://doi.org/10.2514/1.G004993.

[5] S. Boone and J. McMahon, “Orbital Guidance Using Higher-Order State Transition Ten-
sors,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 3, 2021, pp. 493–504.
https://doi.org/10.2514/1.G005493.

[6] C. J. Sullivan, I. Elliott, N. Bosanac, F. Alibay, and J. R. Stuart, “Exploring the Low-Thrust Trajectory
Design Space for SmallSat Missions to the Sun-Earth Triangular Equilibrium Points,” 29th AAS/AIAA
Space Flight Mechanics Meeting, 2019.

[7] A. Das-Stuart, K. C. Howell, and D. C. Folta, “Rapid Trajectory Design in Complex Environments
Enabled by Reinforcement Learning and Graph Search Strategies,” Acta Astronautica, Vol. 171, 2020,
pp. 172–195. https://doi.org/10.1016/j.actaastro.2019.04.037.

[8] A. Scorsoglio, R. Furfaro, R. Linares, and M. Massari, “Actor-Critic Reinforcement Learning Approach
to Relative Motion Guidance in Near-Rectilinear Orbit,” 29th AAS/AIAA Space Flight Mechanics Meet-
ing, Ka’anapali, HI, 2019.

[9] C. J. Sullivan and N. Bosanac, “Using Multi-Objective Deep Reinforcement Learning to Uncover a
Pareto Front in Multi-Body Trajectory Design,” AAS/AIAA Astrodynamics Specialist Conference, Vir-
tual, 2020.

[10] C. J. Sullivan, N. Bosanac, R. L. Anderson, A. K. Mashiku, and J. R. Stuart, “Exploring Transfers
between Earth-Moon Halo Orbits via Multi-Objective Reinforcement Learning,” IEEE Aerospace Con-
ference, Virtual, 2020. https://doi.org/10.1109/AERO50100.2021.9438267.

18

[11] S. Bonasera, I. Elliott, C. J. Sullivan, N. Bosanac, N. Ahmed, and J. McMahon, “Designing Impul-
sive Station-Keeping Maneuvers near a Sun-Earth L2 Halo Orbit via Reinforcement Learning,” 31st
AAS/AIAA Space Flight Mechanics Meeting, Virtual, 02 2021.

[12] C. J. Sullivan and N. Bosanac, “Using Reinforcement Learning to Design a Low-Thrust Approach into
a Periodic Orbit in a Multi-Body System,” 30th AIAA/AAS Space Flight Mechanics Meeting, Orlando,
FL, 2020. https://doi.org/10.2514/6.2020-1914.

[13] N. B. LaFarge, D. Miller, K. C. Howell, and R. Linares, “Autonomous Closed-Loop Guidance Using
Reinforcement Learning in a Low-Thrust, Multi-Body Dynamical Environment,” Acta Astronautica,
Vol. 186, 2021, pp. 1–23. https://doi.org/10.1016/j.actaastro.2021.05.014.

[14] D. Miller and R. Linares, “Low-Thrust Optimal Control via Reinforcement Learning,” 29th AAS/AIAA
Space Flight Mechanics Meeting, Ka’anapali, HI, 2019.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

[16] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep Reinforcement Learn-
ing that Matters,” Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, 2018.

[17] T. Trinh, D. Vu, and M. Kimura, “Point-of-Conflict Prediction for Pedestrian Path-Planning,” Proceed-
ings of the 12th International Conference on Computer Modeling and Simulation, 2020, pp. 88–92.

[18] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a Quadrotor with Reinforcement Learning,”
IEEE Robotics and Automation Letters, Vol. 2, No. 4, 2017, pp. 2096–2103.

[19] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous Drone Racing with Deep
Reinforcement Learning,” arXiv preprint arXiv:2103.08624, 2021.

[20] V. Spandan, P. Bharadwaj, M. Bassenne, and L. Jofre, “Scalar Source Tracking in Turbulent Environ-
ments Using Deep Reinforcement Learning,” Proceedings of the 2018 Summer Program, Center for
Turbulence Research, 2018, pp. 155–164.

[21] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, Dynamical Systems, The Three-Body Problem
and Space Mission Design. Marsden Books, 2006, pp. 8–11.

[22] D. A. Vallado, Fundamentals of Astrodynamics and Applications. El Segundo, CA: Microcosm Press,
4th ed., 2013, pp. 1041–1042.

[23] D. C. Davis, S. M. Phillips, K. C. Howell, S. Vutukuri, and B. P. McCarthy, “Stationkeeping and Trans-
fer Trajectory Design for Spacecraft in Cislunar Space,” AAS/AIAA Astrodynamics Specialist Confer-
ence, Stevenson, WA, 2017.

[24] A. Zavoli and L. Federici, “Reinforcement Learning for Robust Trajectory Design of Interplan-
etary Missions,” Journal of Guidance, Control, and Dynamics, Vol. 0, No. 0, 0, pp. 1–14.
https://doi.org/10.2514/1.G005794.

[25] A. Harris, T. Teil, and H. Schaub, “Spacecraft Decision-Making Autonomy Using Deep Reinforcement
Learning,” 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, 2019.

[26] M. Shirobokov, S. Trofimov, and M. Ovchinnikov, “Survey of Machine Learning Tech-
niques in Spacecraft Control Design,” Acta Astronautica, Vol. 186, 2021, pp. 87–97.
https://doi.org/10.1016/j.actaastro.2021.05.018.

[27] D. Izzo, M. Märtens, and B. Pan, “A Survey on Artificial Intelligence Trends in Spacecraft Guidance Dy-
namics and Control,” Astrodynamics, Vol. 3, No. 4, 2019, pp. 287–299. https://doi.org/10.1007/s42064-
018-0053-6.

[28] B. Gaudet, R. Linares, and R. Furfaro, “Terminal Adaptive Guidance via Reinforcement Meta-Learning:
Applications to Autonomous Asteroid Close-Proximity Operations,” Acta Astronautica, Vol. 171, 2020,
pp. 1–13. https://doi.org/10.1016/j.actaastro.2020.02.036.

[29] H. Holt, R. Armellin, N. Baresi, Y. Hashida, A. Turconi, A. Scorsoglio, and R. Furfaro, “Op-
timal Q-Laws via Reinforcement Learning with Guaranteed Stability,” Acta Astronautica, 2021.
https://doi.org/10.1016/j.actaastro.2021.07.010.

[30] L. Federici, B. Benedikter, and A. Zavoli, “Machine Learning Techniques for Autonomous
Spacecraft Guidance during Proximity Operations,” AIAA Scitech 2021 Forum, 2021.
https://doi.org/10.2514/6.2021-0668.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller,
A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-Level Control through Deep Reinforcement Learning,”
Nature, Vol. 518, 02 2015, pp. 529–533. https://doi.org/10.1038/nature14236.

[32] K. Hornik, M. Stinchcombe, H. White, et al., “Multilayer Feedforward Networks are Universal Ap-
proximators.,” Neural Networks, Vol. 2, No. 5, 1989, pp. 359–366. https://doi.org/10.1016/0893-
6080(89)90020-8.

19

[33] G. Swirszcz, W. M. Czarnecki, and R. Pascanu, “Local Minima in Training of Deep Networks,” arXiv
preprint arXiv:1611.06310, 2016.

[34] P. Baldi and K. Hornik, “Neural Networks and Principal Component Analysis: Learning from Examples
without Local Minima,” Neural networks, Vol. 2, No. 1, 1989, pp. 53–58. https://doi.org/10.1016/0893-
6080(89)90014-2.

[35] A. Y. Ng, D. Harada, and S. J. Russell, “Policy Invariance Under Reward Transformations: Theory and
Application to Reward Shaping,” Proceedings of the Sixteenth International Conference on Machine
Learning, ICML ’99, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 1999, p. 278–287.

[36] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-Dimensional Continuous Control
Using Generalized Advantage Estimation,” arXiv preprint arXiv:1506.02438, 2015.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[38] M. Minsky, “Steps toward Artificial Intelligence,” in Proceedings of the IRE, Vol. 49, No. 1, 1961,

pp. 8–30. https://doi.org/10.1109/JRPROC.1961.287775.
[39] A. G. Barto, “Reinforcement Learning and Dynamic Programming,” 6th IFAC/IFIP/IFORS/IEA Sym-

posium on Analysis, Design and Evaluation of Man-Machine Systems, Cambridge, MA, Vol. 28, No. 15,
1995, pp. 407–412. https://doi.org/10.1016/S1474-6670(17)45266-9.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe1, J. Nham, N. Kalchbren-
ner, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the Game of
Go with Deep Neural Networks and Tree Search,” Nature, Vol. 529, No. 7587, 2016, pp. 484–489.
https://doi.org/10.1038/nature16961.

[41] V. R. Konda and J. N. Tsitsiklis, “On Actor-Critic Algorithms,” Society for Industrial and Ap-
plied Mathematics Journal on Control and Optimization, Vol. 42, April 2003, p. 1143–1166.
https://doi.org/10.1137/S0363012901385691.

[42] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust Region Policy Optimization,”
International Conference on Machine Learning, Lille, FRA, 2015.

[43] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist,
O. Pietquin, M. Michalski, S. Gelly, and O. Bachem, “What Matters In On-Policy Reinforcement Learn-
ing? A Large-Scale Empirical Study,” arXiv preprint arXiv:2006.05990, 2020.

[44] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” International Conference on
Learning Representations, 2019.

[45] Z. Zhang, X. Luo, T. Liu, S. Xie, J. Wang, W. Wang, Y. Li, and Y. Peng, “Proximal Policy Optimization
with Mixed Distributed Training,” IEEE 31st International Conference on Tools with Artificial Intelli-
gence, 2019. https://doi.org/10.1109/ICTAI.2019.00206.

[46] M. S. Holubar and M. A. Wiering, “Continuous-Action Reinforcement Learning for Playing Racing
Games: Comparing SPG to PPO,” arXiv preprint arXiv:2001.05270, 2020.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep
Learning Library,” Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran
Associates, Inc., 2019.

[48] R. L. Anderson and M. W. Lo, “Role of Invariant Manifolds in Low-Thrust Trajectory Design,”
Journal of Guidance, Control, and Dynamics, Vol. 32, November-December 2009, pp. 1921–1930.
https://doi.org/10.2514/1.37516.

[49] N. Bosanac, F. Alibay, and J. R. Stuart, “A Low-Thrust Enabled SmallSat Heliophysics Mission to
Sun-Earth L5,” IEEE Aerospace Conference, Big Sky, MT, 2018.

[50] I. Levchenko, S. Xu, G. Teel, D. Mariotti, M. Walker, and M. Keidar, “Recent Progress and Perspectives
of Space Electric Propulsion Systems Based on Smart Nanomaterials,” Nature communications, Vol. 9,
No. 1, 2018, pp. 1–19. https://doi.org/10.1038/s41467-017-02269-7.

[51] “MATLAB Optimization Toolbox Version 8.2,” 2018. The MathWorks, Natick, MA, USA.
[52] J. T. Betts, “Very Low-Thrust Trajectory Optimization Using a Direct SQP Method,” Journal of Com-

putational and Applied Mathematics, Vol. 120, No. 1, 2000, pp. 27–40. https://doi.org/10.1016/S0377-
0427(00)00301-0.

[53] N. L. O. Parrish, Low Thrust Trajectory Optimization in Cislunar and Translunar Space. PhD thesis,
University of Colorado at Boulder, 2018.

[54] P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming,” Acta Numerica, Vol. 4, 1995, pp. 1–
51. https://doi.org/10.1017/S0962492900002518.

20

	Introduction
	Dynamical Model
	Circular Restricted Three-Body Problem
	Incorporating Low-Thrust Acceleration into the CR3BP

	Deep Reinforcement Learning
	Multi-Reward Proximal Policy Optimization
	Moving Reference Modification

	Recovering Low-Thrust Transfers Using MRPPO
	Trajectory Design Scenario
	Spacecraft Properties and Initial Conditions
	State and Action Definitions
	Reward Function Formulation

	Nonlinear Constrained Optimization
	Free Variables
	Equality Constraints
	Initial Guess
	Objective Function
	Optimization Method

	Results
	Transfers Recovered via MRPPO
	Transfers Recovered via Classical Optimization

	Conclusion
	Acknowledgements

