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IMPULSIVE CONTROL OF FORMATIONS NEAR INVARIANT TORI
VIA LOCAL TOROIDAL COORDINATES

Ian Elliott* and Natasha Bosanac†

Invariant tori relative to periodic orbits have historically been identified as a useful
reference for locating spacecraft formations in multi-body environments. An im-
pulsive control strategy is presented to enable geometric formations of spacecraft
operating near periodic orbits. Toroidal coordinates that represent the relative state
of a spacecraft in relation to the center eigenspace of a periodic orbit are used to
develop a targeting strategy that is capable of tracking specific deviations from a
periodic orbit. The presented strategy is developed using the circular restricted
three-body problem and assessed in a point-mass ephemeris model of the Sun-
Earth system with perturbations from solar radiation pressure.

INTRODUCTION

Formations of spacecraft in multi-body environments may enable space-based observations of
scientific phenomena and reduce the cost of future missions.1 Previous concepts for distributed
space systems in multi-body environments include the Terrestrial Planet Finder,2 Stellar Imager,3

and Darwin,4 focused on placing formations of spacecraft in multi-body environments to search for
potentially habitable planets, study stellar magnetic activity, and achieve other scientific objectives.
Trajectories near the Sun-Earth equilibrium points have specifically been identified as favorable
locations for spacecraft due to communication geometry, thermal stability, and reasonable station-
keeping requirements.2, 5 Space-based interferometers formed by passive clusters of spacecraft may
also observe heliophysics activities such as coronal mass ejections.6 This type of passive interferom-
etry does not require active reconfiguration so long as antenna positions are known7 and motivates
the use of natural motion within formation trajectory design.

An existing strategy for the design of formations in simplified dynamical models of multi-body
systems such as the circular restricted three-body problem (CR3BP) places spacecraft on the sur-
face of invariant tori that exist near periodic orbits to achieve bounded relative motion.8 However,
computation of invariant tori in the nonlinear CR3BP is a computationally expensive numerical
process.9, 10 For small separation distances from a periodic orbit, the local center eigenspace of the
periodic orbit supplies a suitable approximation of oscillatory motion corresponding to invariant
tori.11, 12 While the motion along an invariant torus is naturally bounded in the vicinity of a periodic
orbit, small deviations may quickly grow in the chaotic dynamical environment.13 Because of this
sensitivity, control may be necessary to maintain bounded formations.
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Several strategies for the control of spacecraft near periodic orbits have been introduced that
incorporate information on the local eigenspaces of the periodic orbit to determine impulsive ma-
neuvers. Spacecraft control strategies that leverage naturally-bounded relative motion may require
lower station-keeping control usage compared to targeting non-natural motion.14 Floquet mode
strategies, as presented by Simo et al.,15 determine instantaneous maneuvers that periodically elim-
inate the unstable component of a spacecraft state relative to a periodic orbit. This method was
further developed by Howell and Marchand14 to eliminate both unstable and periodic components
to control the motion of spacecraft onto only the stable and center eigenspaces, resulting in bounded
oscillatory motion near a periodic orbit. Another impulsive station-keeping strategy, introduced by
Pavlak and Howell,16 uses the direction of the stable eigenspace of a periodic orbit as an initial
guess for long-term, optimal station-keeping maneuvers of a single spacecraft near a periodic or-
bit. Continuous control schemes have also been developed that incorporate insight into the local
stability of periodic orbits, including continuous Floquet mode methods,17, 18 Lyapunov function-
based feedback control,19 and other modal strategies.20 However, impulsive control strategies are
the focus of this analysis.

While Floquet control methods are well-suited to stabilizing a single spacecraft relative to a ref-
erence periodic orbit, formations of spacecraft near an associated periodic orbit may require stricter
constraints, such as formation geometry maintenance and collision-avoidance. These constraints
require spacecraft to be capable of tracking specific deviations from a reference periodic orbit.
Surveys by Folta21 and Shirobokov et al.22 present comprehensive discussions of station-keeping
strategies for spacecraft near periodic orbits in the CR3BP, capturing the current state-of-the-art in
station-keeping strategies. Targeting methods, such as formulations presented by Howell and Bar-
den12 and Qi et al.,23 support tracking of specific deviations from a periodic orbit. Furthermore,
target point methods, introduced by Howell and Pernika24 and modified by Howell and Gordon,25

modify the targeting problem into a optimization problem. However, unlike Floquet mode con-
trol, these targeting schemes do not require knowledge of the local stability of the periodic orbit.
These prior works motivate combining the benefits of both modal and targeting impulsive control
strategies for spacecraft near periodic orbits.

To develop an impulsive control strategy that incorporates characteristics of both modal and tar-
geting strategies, a family of local toroidal coordinates introduced by Elliott and Bosanac26 is em-
ployed in this analysis. The introduced toroidal coordinates decompose a state relative to a periodic
orbit in terms of the projection onto, and deviation from, the center eigenspace and have previously
been applied to the derivation of a nonlinear feedback control algorithm for spacecraft near peri-
odic orbits with oscillatory modes.19 When expressed using local toroidal coordinates, motion in
the center eigenspace is time-invariant in the CR3BP when linearized about a periodic orbit. Ad-
ditionally, the toroidal coordinates possess a geometric interpretation of the amplitude and poloidal
angle along a torus, as well as separation of a state from the center eigenspace. This geometric
decomposition enables the intuitive definition of the states of multiple spacecraft in a formation,
each following distinct references tracing the same approximated invariant torus, corresponding to
first-order approximations of quasi-periodic orbits.

In this paper, an impulsive targeting control strategy for spacecraft in a formation near a periodic
orbit is formulated using local toroidal coordinates. The strategy modifies existing linear targeting
strategies that use a state transition matrix to determine a maneuver that targets a specific deviation
from a reference orbit after a specified time. For this strategy, a state transition matrix evaluated
along a periodic orbit is reformulated in the toroidal coordinate frame to map between initial and
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final deviations defined in toroidal coordinates. Then, leveraging the slow description of motion
near the center eigenspace, simplifications are applied to the state transition matrix formulated in
the toroidal coordinate frame. The resulting strategy supplies impulsive feedback control that sup-
ports tracking distinct deviations from a reference trajectory that lies in the center eigenspace. The
strategy combines the benefit of targeting strategies, that is, the ability to target specific deviations,
with the benefits of the Floquet mode strategies, which incorporate knowledge of naturally bounded
motion relative to a periodic orbit. First, the CR3BP dynamical model is summarized, followed
by the description of a point-mass ephemeris model with perturbations from solar radiation pres-
sure (SRP) used in this paper as a higher-fidelity model of spacecraft dynamics. Next, an overview
of invariant tori near periodic orbits in the CR3BP is included, as well as a summary of the local
toroidal coordinate formulation employed by the control strategy. The derivation of the impulsive
control strategy is then detailed. To validate the simplifying assumptions within the derivation, the
performance of the strategy is first assessed in the CR3BP. Then, to assess the performance of the
strategy in a higher-fidelity dynamical model, a Monte Carlo analysis is conducted that incorpo-
rates navigational and thruster firing error models. The required control costs, steady-state error,
and overall robustness of the strategy are investigated. Finally, a comprehensive application of the
control strategy to a conceptual spacecraft formation near a Sun-Earth L1 halo orbit is presented.
This example serves as a demonstration of the presented strategy to the control of a formation of
spacecraft in an environment where previously only single spacecraft have operated.

DYNAMICAL MODELS

The presented control strategy is formulated using insight from dynamical systems theory as
applied to the analysis of periodic orbits in the CR3BP and to the control of spacecraft near reference
trajectories that exist in a higher-fidelity dynamical model. In this section, a brief overview of the
reference frame and equations of motion of the CR3BP is presented. Next, a point-mass ephemeris
model with perturbations from SRP is introduced as a higher-fidelity dynamical model for assessing
the performance of the control strategy. Finally, the procedure used to recover a reference trajectory
in the ephemeris model that possesses similar properties to periodic orbits is briefly summarized.
States along this trajectory serve as the formation center, used as a reference for specifying the
relative state of one or more chaser spacecraft.

The Circular Restricted Three-Body Problem

The CR3BP is a well-known dynamical model that approximates the motion of spacecraft under
the gravitational influence of two celestial bodies, assumed to be point masses that travel in circular
orbits about their mutual barycenter.27 The approximated dynamical model provides autonomous
equations of motion for a single spacecraft, and admits several fundamental solutions, including
equilibrium points, periodic orbits, and quasi-periodic orbits.28 Specifically, this analysis uses the
Sun-Earth CR3BP to simulate the motion of spacecraft in the Sun-Earth system.

The equations of motion of the CR3BP are expressed using a rotating frame defined by the two
primary bodies. The two primary celestial bodies are denoted P1 and P2, where P1 is the more mas-
sive body. The rotating frame, denoted R : {x̂, ŷ, ẑ}, is defined such that x̂ is directed from P1 to
P2, ẑ is aligned with the orbital angular momentum vector of the P1-P2 system, and ŷ completes the
right-handed, orthogonal coordinate frame. A nondimensionalization scheme is applied such that
quantities of length are normalized by the assumed constant distance between P1 and P2, quantities
of time are normalized to produce a mean motion of the P1-P2 system equal to unity, and quantities
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of mass are normalized by the total mass of the P1-P2 system. Using this nondimensionalization
scheme, a mass ratio, µ, is defined as µ = m2/(m1 + m2), where mj is the mass of body j. In
the Sun-Earth CR3BP, the mass ratio is approximately µ = 3.0035× 10−6. Under the assumptions
of the CR3BP, the positions of P1 and P2 are constant in the rotating frame and equal to the nondi-
mensional vectors r1 = −µx̂ and r2 = (1 − µ)x̂, respectively. The position vector of P3 relative
to the barycenter, r3, expressed in the rotating frame is defined as r3 = [x, y, z]T . Finally, the state
of a spacecraft in the CR3BP is expressed in the rotating frame and relative to the inertially-fixed
barycenter of the P1-P2 system as x3 = [x, y, z, ẋ, ẏ, ż]T . Using these definitions, the nondimen-
sional equations of motion of the CR3BP in the rotating frame are written as the following three
scalar, second-order differential equations:

ẍ = 2ẏ +
∂U∗

∂x
, ÿ = −2ẋ+

∂U∗

∂y
, z̈ =

∂U∗

∂z
(1)

where U∗ is a pseudo-potential function, defined as U∗ = (x2+y2)/2+(1−µ)/r13+µ/r23 and the
position vectors, r13 and r23, are the magnitudes of the relative position vectors for P3 from P1 and
P2, respectively. Throughout this paper, relative position vectors are defined as rkj = rj − rk. In
this formulation, the equations of motion of the spacecraft are autonomous and facilitate a dynamical
systems theory analysis of solutions in the approximated model.

Point-Mass Ephemeris Model with SRP

A point-mass ephemeris model of the Sun, Earth, and Moon is used to model spacecraft motion
in higher fidelity. The Sun, Earth, and Moon are modeled as point masses and their paths are
defined using the NASA Jet Propulsion Laboratory DE421 ephemerides, accessed via the SPICE
toolkit.29 This higher fidelity model also include the accelerations due to SRP acting on spacecraft,
approximated using a spherical model.30 Selecting the Earth as the primary body with third-body
effects from the Sun and the Moon, and perturbations from SRP, the total inertial acceleration of a
spacecraft, denoted by the subscript s, relative to the Earth is expressed as30, 31

r̈E,sc = −GmE
rE,sc

r3E,sc

+
N∑

j=M,S

Gmj

(
rsc,j
r3sc,j

−
rE,j

r3E,j

)
+ CRPSr

2
AU

A

m

rS,sc
r3S,sc

(2)

where subscripts E, S, and M correspond to the Earth, Sun, and Moon, respectively. The ap-
proximate SRP model requires the following quantities: the solar flux at 1 AU, PR; the reflectivity
coefficient of the spacecraft, CR; the surface-area-to-mass ratio of the spacecraft, A/m; and the
mean distance from the Sun to the Earth, rAU . The mass of each spacecraft is assumed to remain
constant throughout this analysis. The SRP and gravitational parameters, Gm, values are consistent
with NASA Goddard Space Flight Center’s General Mission Analysis Tool.32 In implementation,
the state of a spacecraft in this dynamical model is expressed and integrated in the Geocentric Ce-
lestial Reference Frame (GCRF).31 Throughout this paper, this dynamical model is referred to as
the ephemeris model for brevity.

In this paper, it is assumed that the motion of all chaser spacecraft and the formation center
are governed by the ephemeris model with the same SRP properties. In a previous investigation
by Farres et al.,33, 34 the authors identify the challenges posed by differential SRP near Sun-Earth
equilibrium points, which may result in a chaser spacecraft using propellant to mitigate the natu-
ral acceleration differences between spacecraft in a formation due to SRP in order for spacecraft

4



to remain in close proximity to each other. For this analysis, each spacecraft, including the non-
physical formation center, are assumed to have the same physical characteristics affecting the SRP
perturbation, that is, the same area-to-mass ratio and reflectivity coefficient. A reflectivity coeffi-
cient of CR = 1.8 and a surface-area-to-mass ratio of A/m = 0.01 m2/kg are selected to represent
the characteristics of a small satellite.35 Future investigation may analyze the effects of different
area-to-mass ratios or differential SRP between spacecraft on the presented control strategy.

Spacecraft Formation Reference Trajectory in the Ephemeris Model

The reference trajectory used as the formation center in the ephemeris model is assumed to share
similar geometric characteristics with a periodic orbit in the CR3BP, and is computed via a numeri-
cal corrections scheme. Following the process presented by Pavlak,36 a multiple-shooting scheme is
used to recover a continuous trajectory in the ephemeris model using a periodic orbit in the CR3BP
as an initial guess. First, several revolutions of a periodic orbit are discretized into multiple arcs.
The initial state of each arc is then transformed into the GCRF frame using the instantaneous states
of the Sun and Earth from the SPICE ephemerides. A free variable and constraint formulation is
used to constrain state and epoch continuity across the trajectory in the ephemeris model. Specifi-
cally, the free variable vector is constructed to contain the initial state, initial epoch, and integration
time of each arc. The constraint vector is formulated to enforce continuity in the full state and epoch
between the end of each arc and the beginning of the following arc. The initial epoch of the trajec-
tory is also constrained to a desired value. Using a multivariate Newton’s method, the free variables
are updated iteratively until the constraints are satisfied to within a sufficient numerical tolerance,
and a continuous trajectory in the ephemeris model is recovered. Within the numerical corrections
process, nondimensionalized quantities are used to prevent ill-conditioning of the partial derivative
matrix used within the multivariate Newton’s method.

In this paper, the reference trajectory in the ephemeris model lies close to a Sun-Earth L1 south-
ern halo in the CR3BP. The selected periodic orbit possesses a nondimensional state at apogee of
approximately x = [0.98888, 0,−0.00081065, 0, 0.0089041, 0]T and a period of approximately
T = 177.84 days in the CR3BP. A continuous reference trajectory is recovered in the ephemeris
model using this periodic orbit and the previously outlined scheme with an initial desired epoch on
January 1, 2025. The recovered trajectory is displayed in Figure 1 in the Sun-Earth rotating frame
with the orbit of the Moon over the same time duration plotted for reference. The trajectories are
plotted relative to the Earth, which is fixed as the origin of the rotating coordinate system. The
trajectory has an average positive out-of-plane amplitude of approximately 1.483 × 105 km. This
reference trajectory is similar to the orbit of International Sun-Earth Explorer-3 (ISEE-3) and Solar
and Heliospheric Observatory (SOHO),37 and is used in the following sections to demonstrate the
presented control strategy.

INVARIANT TORI NEAR PERIODIC ORBITS IN THE CR3BP

The presented control strategy is designed for the control of one or more chaser spacecraft lever-
aging naturally-bounded relative motion near either a periodic orbit in the CR3BP or a reference
trajectory in the ephemeris model with similar geometric characteristics to a periodic orbit. In this
section, a brief description of the stability analysis of periodic orbits in the CR3BP is presented.
Next, the local toroidal coordinate systems introduced by Elliott and Bosanac are summarized, in-
cluding the coordinate transformation between the toroidal coordinate frame and the rotating frame.
Examples of first-order approximations of invariant tori near Sun-Earth L1 and L2 halo orbits that
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Figure 1. Reference trajectory in the ephemeris model with similar characteristics to
a Sun-Earth southern L1 halo orbit.

admit nearby quasi-periodic relative motion are then presented. Finally, a process for approximating
the center eigenspace of a periodic orbit in the ephemeris model is discussed.

Approximating Invariant Tori Near Periodic Orbits

While invariant tori have been previously investigated as a structure for the design of naturally
bounded spacecraft motion near periodic orbits, first-order approximations of invariant tori have
been demonstrated to be useful for spacecraft formation flying scenarios.11, 14 To construct a first-
order approximation of an invariant torus near a periodic orbit, the stability characteristics of a peri-
odic orbit in the CR3BP are first assessed. Because periodic orbits in the CR3BP exhibit periodicity
in the rotating frame, Floquet Theory may be applied.28 A State Transition Matrix (STM) along
the periodic orbit between an initial time, t0, to a final time, t, is denoted as, Φ(t, t0). Using the
Jacobian,A, of the CR3BP equations of motion, an STM is calculated via numerical integration of
the differential equation dΦ(t, t0)/dt = A(t)Φ(t, t0), with the initial conditions, Φ(t0, t0) = I6.38

The STM evaluated from t0 for one period, T , of the periodic orbit is denoted as the monodromy
matrix,M(t0) = Φ(t0 +T, t0). The eigenvalues of the monodromy matrix formulated in the rotat-
ing frame, λ, describe the local stability of the periodic orbit while the corresponding eigenvectors,
w(t0), describe the span of the local eigenspaces at t0.

An invariant torus exists near a periodic orbit in the nonlinear CR3BP with a monodromy matrix
that admits a complex-conjugate pair of eigenvalues that lie on the unit circle.38 The corresponding
complex eigenvectors span the center eigenspace and are used to develop a first-order approximation
of an invariant torus in the CR3BP and relative to the associated periodic orbit. The set of states,
ϕ, that lie on the center eigenspace of the periodic orbit at time t are calculated using the complex
eigenvector of the monodromy matrix, w(t), as9

ϕ(t) = ε (Re(w(t)) cos θ + Im(w(t)) sin θ) (3)

where ε is a positive scaling term and θ is a parameter defined between 0 and 2π. For a single
value of ε at a fixed time, the set ϕ forms a first-order, elliptical approximation of the instantaneous
invariant curve of an invariant torus relative to the fixed point along the periodic orbit.26
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Constructing a first-order approximation of an invariant torus in the CR3BP requires knowledge
of ϕ over one period of the periodic orbit. When formulated in the rotating frame, the span of
the center eigenspace of a periodic orbit is generally time-varying. Using initial conditions of a
complex eigenvector of the monodromy matrix at a fixed point along a periodic orbit, w(t0), the
evolution of the eigenvector along the periodic orbit is computed by numerically integrating the
vector differential equation dw(t)/dt = A(t)w(t).39 Using the eigenvector information over a
period of the orbit, the surface of a first-order approximation of an invariant torus relative to the
periodic orbit is constructed by generating the set ϕ at a discrete number of fixed points along the
periodic orbit for a constant value of ε and several values of θ between 0 and 2π.

As an example, first-order approximations of tori near Sun-Earth L1 and L2 halo orbits are con-
structed and visualized. In Figure 2, several low z-amplitude members of the Sun-Earth northern
and southern L1 and L2 halo orbit families are illustrated in the rotating frame; the Earth is lo-
cated by a black marker. Members of the northern and southern L1 halo families are indicated by
cyan and magenta, respectively, and members of the northern and southern L2 halo families are
represented by red and blue, respectively. Illustrated at the boundaries of Figure 2 are examples of
first-order approximations of invariant tori, visualized relative to their associated periodic orbits in
the rotating frame. The surfaces of the tori visualized in Figure 2 possess complex geometries that
vary for different associated periodic orbits in the Sun-Earth halo orbit families. Additionally, an
infinite number of nested tori exist relative to each periodic orbit. To facilitate the description of this
motion within the presented control strategy, local toroidal coordinates that describe motion relative
to periodic orbits with oscillatory modes are employed.

Figure 2. Members of the northern and southern Sun-Earth L1 and L2 halo orbit
families with selected first-order approximations of invariant tori.

Overview of Local Toroidal Coordinates

The local toroidal coordinate sets introduced by Elliott and Bosanac26 supply useful state rep-
resentations for spacecraft located near the surfaces of first-order approximations of invariant tori
relative to a periodic orbit. Two formulations of local toroidal coordinates are summarized, denoted
the nonsingular and the geometric local toroidal coordinates. The state representations decompose
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the configuration of a spacecraft relative to a periodic orbit in terms of the projection onto, and
separation distance from, the center eigenspace of the orbit. Thus, use of toroidal coordinates is not
limited to the description of motion in the center eigenspace. A key property of the toroidal coordi-
nates is that motion along the center eigenspace is described by a two-dimensional, time-invariant
set which possess a consistent interpretation across different periodic orbits.

To transform between Cartesian coordinates and local toroidal coordinates, knowledge of the
complex eigenvector corresponding to an oscillatory mode of the periodic orbit is required. The
complex eigenvector requires a normalization process to remove ambiguity in the definition and en-
sure consistent results using toroidal coordinates.26 Following the normalization process, a unique
complex eigenvector is defined at a selected fixed point along the periodic orbit. The complex eigen-
vector is decomposed into four, 3 × 1 vectors corresponding to position and velocity components,
denoted by r and v, respectively, and real and imaginary components, denoted by subscripts r and
i, respectively. The complex eigenvector is then expressed as w = [rTr ,v

T
r ]T + i[rTi ,v

T
i ]T . The

position components, rr and ri, span the plane containing the projection of the center eigenspace
onto the configuration space at the selected fixed point. This plane is described by the unit vector,
n̂, defined as n̂ = n/n, where n = rr × ri. For the implementation detailed in this paper, the
complex eigenvector and corresponding components are formulated in the rotating frame.

The toroidal coordinates are local coordinate systems that describe the state of a chaser spacecraft
relative to the state of a target spacecraft or reference trajectory following a periodic orbit. The basis
vectors of the coordinate system varies over time as the reference travels along the periodic orbit.
The relative position, ρ, of a chaser spacecraft from a fixed point along the periodic orbit is defined
as ρ = rc−rt. Using the rotating frame basis, relative position is expressed as ρ = δxx̂+δyŷ+δzẑ.
This relative position is equivalently expressed as a linear combination of the position components
of the complex eigenvector, rr and ri, and the normal unit vector n̂, as ρ = αrr + βri + hn̂.
The set of scalar quantities, (α, β, h), are defined as the nonsingular relative toroidal coordinates,
which uniquely describe the configuration of chaser spacecraft relative to a fixed point along a
periodic orbit with oscillatory modes. To compute their values, the toroidal coordinates are first
defined using the set z = [α, β, h]T . The 3 × 3 matrix, R, containing the basis vectors of the
toroidal coordinate system in the rotating frame is defined asR = [rr, ri, n̂]. Then, the nonsingular
relative toroidal coordinates are computed using a linear transformation from the rotating frame,
expressed as z = R−1δr where δr = [δx, δy, δz]T . A conceptual illustration of the nonsingular
toroidal coordinate description of the configuration of a chaser spacecraft relative to a periodic orbit
is included in Figure 3(a). The formation center reference trajectory is denoted by t, while the
chaser spacecraft is denoted by c.

The three basis vectors of the toroidal coordinate frame and a fixed point along a periodic orbit
supply a useful coordinate system for spacecraft motion near the center eigenspace of a periodic
orbit. The toroidal frame is denoted as Z : {rr, ri, n̂}. In general, the basis vectors rr and ri are
non-orthogonal, and the magnitudes of rr and ri are not equal to one. Thus, units of length are not
preserved during the transformation from the rotating frame, and differ from unit of Cartesian posi-
tion (e.g., kilometers) along the rr and ri directions. Because these basis vectors evolve along the
center manifold, they correspond to quasi-periodic motion. Thus, the matrixR is not periodic (i.e.,
R(t0) 6= R(t0 + T )). Furthermore, a curvilinear formulation of local toroidal coordinates, termed
geometric relative toroidal coordinates, is used to increase insight into the configuration relative to
the center eigenspace. The geometric toroidal coordinates are an alternative to the planar toroidal
coordinates, α and β, which describe the projection of the spacecraft on the center eigenspace. The

8



(a) Nonsingular local toroidal coordinates. (b) Geometric local toroidal coordinates.

Figure 3. Conceptual illustrations of the local toroidal coordinate sets used to describe
motion relative to a periodic orbit with oscillatory modes.

geometric coordinates, ε and θ, are defined via the following nonlinear functions: ε =
√
α2 + β2

and θ = tan−1(β/α). The geometric toroidal coordinates are related to the nonsingular toroidal
coordinate as: α = ε cos θ and β = ε sin θ. The coordinate, ε, describes the size of the torus rela-
tive to the periodic orbit, and the coordinate, θ, is an angle parameter indicating rotation along the
poloidal direction of the torus.26 The third coordinate, h, is shared with the nonsingular toroidal
coordinate set. This local toroidal coordinate set adds geometric insight into the state of a chaser
spacecraft, and is conceptually illustrated in Figure 3(b).

The time derivatives of the local toroidal coordinates are useful for understanding the deviation of
the state of the chaser spacecraft from motion on the center eigenspace. The time derivative of the
nonsingular toroidal coordinates for an observer in the toroidal coordinate frame, Zz′, is calculated
from the relative velocity for an observer in the rotating frame, δv = [δẋ, δẏ, δż]T , as

Zz′ = R−1δv −R−1R′R−1δr (4)

When this velocity is expressed in the toroidal coordinate frame, it is equal to Zz′ = [α̇, β̇, ḣ]T . The
computation of the coordinate rates expressed in Eq. (4) requires the time derivative of the toroidal
coordinate frame basis vectors for an observer in the rotating frame, defined as R′ = [vr,vi, n̂

′].
The time derivatives of the toroidal coordinates describe the difference between a spacecraft’s rela-
tive velocity with respect to the periodic orbit, and the velocity of motion on the center eigenspace,
such that the time derivatives of the three coordinates are each equal to 0 when a spacecraft lies
on the center eigenspace. Thus, using the toroidal coordinates, a state on the center eigenspace is
straightforwardly designed by selecting h = α̇ = β̇ = ḣ = 0.

A linear transformation is used to transform a relative state between the toroidal frame and rotat-
ing frame. A 6 × 1 relative Cartesian state vector that describes the state of the chaser spacecraft
relative to the periodic orbit is defined as δx = [δx, δy, δz, δẋ, δẏ, δż]T . An equivalent relative state
vector is defined using the nonsingular coordinates and coordinate rates as ζ = [α, β, h, α̇, β̇, ḣ]T .
A 6 × 6 transformation matrix, T , that maps a state vector formulated in the toroidal coordinates
frame to a state vector formulated in the rotating frame is defined as

T =

[
R 03

R′ R

]
(5)
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As the matricesR andR′ are dependent on the current reference fixed point along the periodic orbit,
the transformation matrix is also dependent on the current fixed point. The transformation from a
relative state vector defined in the rotating frame, δx, to a relative state in the toroidal coordinate
frame, ζ, is then expressed as ζ = T−1δx. The transformation matrix is full-rank and invertible so
long as the associated oscillatory mode is not rectilinear in the rotating frame.

Transitioning Center Eigenspace Information to an Ephemeris Model

The complex eigenvector of the monodromy matrix of a periodic orbit is used to formulate the
presented control strategy. Within the CR3BP, this eigenvector is numerically integrated along with
the state along the periodic orbit and state of a chaser spacecraft. For application of the control
strategy in the CR3BP, this implementation allows eigenvector information to be exactly specified
at any time. However, to use toroidal coordinates within the ephemeris model an approximation of
the complex eigenvector of the periodic orbit used as an initial guess for the reference trajectory is
constructed using a cubic spline interpolation. Capturing the eigenvector information within a cubic
spline interpolation allows the complex eigenvector to be evaluated from a piecewise polynomial
and does not require additional numerical integration once generated. To compute the cubic spline
approximation of the complex eigenvector, the 6 × 1 eigenvector is first numerically integrated
in the CR3BP for one period then sampled evenly over time. The eigenvector is then evaluated
at several fixed points, evenly distributed in time along the periodic orbit, to construct the cubic
spline piecewise polynomial. In this implementation, the eigenvector is evaluated at 100 fixed
points. Using this number of evaluations, the error between the interpolated eigenvector and true
eigenvector in the CR3BP, defined as

∫ t0+T
t0

|w(t)true−w(t)spline| dt using nondimensional units, is
7.784× 10−7. The cubic spline interpolation constructed using 100 evaluations across the periodic
orbit is observed to be sufficient for the simulations in the following analysis.

Another consideration for the use of the complex eigenvector in the ephemeris model is that the
continuous reference trajectory recovered in the ephemeris model to resemble a periodic orbit is not
exactly periodic in the rotating frame of the Sun and Earth. To account for this, the cubic spline
approximation of the eigenvector is redistributed over time for each revolution of the orbit. A rev-
olution of the reference orbit is defined as two subsequent crossings of the xz plane with positive
ẏ in the Sun-Earth barycentric, rotating coordinate system. To account for the variation in the time
between crossings of each revolution, the time since crossing this plane, normalized by the time
between crossing of the current revolution, is used to sample the cubic spline interpolation and re-
turn the appropriate eigenvector state. Additionally, after each revolution the complex eigenvector
must be updated by the complex eigenvalue, λ. The eigenvector must be updated because of the
natural quasi-periodic evolution of the eigenvector after a period of the periodic orbit, expressed by
the eigenvalue relation: Φ(t+ T, t)λ = w(t)λ. This is implemented by multiplying all eigenvector
values in the interpolation by the complex eigenvalue during the eigenvector update each revolution.
These steps enable the complex eigenvector, and thus the toroidal coordinates, to be sufficiently ap-
proximated in the ephemeris model for use with the presented control strategy. Future investigations
of alternative methods for the transition of the complex eigenvector into the ephemeris model may
provide benefits over the implemented strategy.

FORMATION STATION-KEEPING CONTROL STRATEGY

The local toroidal coordinates are leveraged to produce an impulsive feedback control strategy
that enables multiple spacecraft using the same control law independently to track different ref-
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erences on a center eigenspace of a periodic orbit. This strategy determines successive impulsive
changes in velocity, ∆v, applied at a specified maneuver frequency. The strategy is formulated
using insight from previously derived targeting strategies that require an STM to be computed be-
tween subsequent maneuvers times.12 However, a beneficial characteristic of this strategy is the
ultimate removal of the requirement to compute the STM between maneuver epochs, resulting in a
straightforward control strategy that is relatively computationally inexpensive.

Control Strategy Derivation

To derive the control strategy, the STM evaluated along the periodic orbit in the CR3BP between
two subsequent maneuver times is first formulated in the toroidal coordinate frame. Consider the
STM between time t0 and t formulated in the rotating frame, Φ(t, t0). The transformation matrix
between the rotating and toroidal frame, T , evaluated at times t0 and t, is used to reformulate this
STM into the toroidal coordinate frame, denoted ZΦ(t, t0). This transformation is expressed as
ZΦ(t, t0) = T (t)−1Φ(t, t0)T (t0). The formulation of the STM in the toroidal coordinate frame
describes the first-order mapping of initial and final deviations from the periodic orbit, defined using
the toroidal coordinate relative state vector, ζ, expressed as ZΦ(t, t0) = ∂ζ/∂ζ0.

The STM expressed in the toroidal frame is used to formulate a linear targeting scheme, which
determines the impulsive maneuver required to reach a desired deviation from the periodic orbit
after a specified time in a linearized dynamical model. Similar to previously derived linear targeting
schemes formulated in the rotating frame,12, 23 to calculate the required impulsive maneuver, the
STM is decomposed into four quadrants. The quadrants of the STM formulated in the toroidal
coordinate frame are labeled as

ZΦ(t, t0) =

[ZΦ11
ZΦ12

ZΦ21
ZΦ22

]
(6)

Using these quadrant definitions, the first-order relation between the initial and final relative states
defined using nonsingular toroidal coordinates is expressed as[

z
Zz′

]
=

[ZΦ11
ZΦ12

ZΦ21
ZΦ22

] [
z0

Zz′0 + ∆z′0

]
(7)

where ∆z′0 is an instantaneous change in toroidal coordinate rates at t0 corresponding to an impul-
sive maneuver. This instantaneous change in the coordinate rate relates to an instantaneous change
in Cartesian velocity, ∆v0, as ∆z′0 = R(t0)

−1∆v0. This expression is derived by calculating the
partial derivative of Eq. (4) with respect to δv.

At this step, the control strategy is formulated by assuming that the desired motion of the chaser
spacecraft lies in the center eigenspace. Because motion within the center eigenspace in the lin-
earized dynamical model is time-invariant when expressed in toroidal coordinates, the desired rela-
tive configuration is described by a constant description, zd. Rearranging Eq. (7) and incorporating
the relationship between ∆z′0 and ∆v0, the required change in Cartesian velocity required to reach
the desired final configuration in linearized dynamics is

∆v0 = R(t0)
(ZΦ−112

(
zd − ZΦ11z0

)
− Zz′0

)
(8)

Note that only the upper quadrants of the STM are required. In this formulation, the ∆v determined
by Eq. (8) is confirmed to be equivalent to the maneuver determined by a Cartesian linear targeting
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scheme using initial and final conditions converted from toroidal coordinates to relative Cartesian
deviations.

The characteristics of the STM formulated in the toroidal coordinate frame enable approximations
of the quadrants of the STM within the computation of an impulsive control maneuver. Because a
relative toroidal state vector described by only nonzero values of α and β is constant over time in
the linearized dynamical model, the upper-left quadrant of the STM expressed in the toroidal frame
possesses the form

ZΦ11 =
∂z

∂z0
=

1 0 ∗
0 1 ∗
0 0 ∗

 (9)

To leverage this property, consider the first two terms of the Taylor series expansion of an STM,
Φ(t, t0), at t040

Φ(t, t0) ≈ I6 +A(t0)δt =

[
I3 03

03 I3

]
+

[
03 I3

A3(t0) A4(t0)

]
δt (10)

where δt = t − t0. Using these terms of the Taylor series expansion to approximate the STM
formulated in the toroidal coordinate frame, the upper-left quadrant of the STM is approximated as
ZΦ11 ≈ I3, and the upper-right quadrant is approximated as ZΦ12 ≈ δtI3. Thus, the upper-left
quadrant of STM formulated in the toroidal frame shares two columns with the approximation of
the quadrant.

Applying the approximation of the quadrants of the STM formulated in the toroidal coordinate
frame within the targeting control law, a straightforward control strategy is developed. Substitut-
ing the approximated definitions of ZΦ11 and ZΦ12, the resulting impulsive control maneuver is
determined as

∆v0 = −R(t0)

(
z0 − zd
δt

+ Zz′0

)
(11)

When the chaser spacecraft lies near the center eigenspace, h, and all three coordinate rates have
near-zero values, minimizing the impact of the differences between the true and approximated val-
ues of ZΦ12 and the third column of ZΦ11. In fact, when the chaser spacecraft lies exactly within the
center eigenspace, indicated by h = α̇ = β̇ = ḣ = 0, the ∆v0 determined by Eq. (8) and Eq. (11)
are equivalent. Ultimately, the simplifications remove the computation of the STM between succes-
sive maneuvers while enabling station-keeping of specified deviations from a reference trajectory in
the CR3BP and ephemeris models.

Station-Keeping Performance in the CR3BP

The simplifications to the STM formulated in the toroidal coordinate frame are evaluated in the
CR3BP. Using the Sun-Earth southern L1 halo orbit defined previously as the formation center, a
maneuver interval of 10 maneuvers per revolution is selected, corresponding to a time between ma-
neuvers of approximately δt = 17.8 days, or δt = 0.30598 in nondimensional units of time. Starting
from apogee, the nondimensionalized upper quadrants of the STM formulated in the toroidal frame
evaluated along the periodic orbit for δt are equal to

ZΦ11 =

1 0 0.04346
0 1 −0.04859
0 0 1.3121

 ZΦ12 =

 0.33730 −0.032148 0.000263
0.032464 0.33727 −0.010084
0.006635 0.003438 0.33693


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The form of ZΦ11 is consistent with the form of Eq. (9). Furthermore, the diagonal terms of ZΦ12

possess values near the nondimensional value of δt and smaller off-diagonal terms. As the time
between successive maneuvers decreases, the approximations of the STM quadrants better represent
the true STM quadrants.

These approximations are further assessed by comparing the performance of the impulsive con-
trol strategy formulated using the true approximated STM. The strategies are applied to the control
of a single chaser spacecraft relative to the Sun-Earth L1 halo orbit. The desired relative trajec-
tory is located on the surface of a first-order approximation of an invariant torus, described by a
constant state vector of ζd = [1000, 0, 0, 0, 0, 0]T (km, km/s) and is constant. The initial rela-
tive state of the chaser spacecraft is slightly perturbed from the desired relative state, defined as
ζ = [1000, 0, 10, 0, 0, 0]T (km, km/s) relative to apogee. The control strategy is then applied using
the impulsive maneuvers determined using the true STM, as described in Eq. (8), and the approx-
imated STM, described in Eq. (11), for a maneuver interval of 10 maneuvers per revolution. Each
controlled trajectory is propagated from the initial conditions for five revolutions of the halo orbit.
The error of each trajectory, defined as the magnitude of the Cartesian position difference between
the spacecraft and the desired trajectory, is plotted over time, normalized by the period, in Figure 4.
The error of the trajectory associated with maneuvers determined using the full STM is depicted in
blue, while the error associated with the approximated STM is depicted in red. While using the true
STM results in lower average error over time, maximum steady-state error is similar between the
two control formulations, at approximately 0.5 km or 0.05% of αd. The trajectory associated with
the approximated STM also exhibits a slower convergence to the steady-state error compared to the
trajectory associated to the true STM. This example demonstrates that the impulsive control strat-
egy leveraging the approximated quadrants of the STM supports a chaser spacecraft station-keeping
near the L1 halo orbit in the Sun-Earth CR3BP.

Figure 4. Relative error over time for the impulsive control strategy using the STM
(blue) and the approximated STM (red).

The performance of the control strategy with the simplified STM is assessed at different sepa-
ration distances and maneuver intervals to demonstrate the control strategy in multiple scenarios.
Values of the desired size of the torus, described by εd, near the Sun-Earth L1 halo orbit are selected
from between 0 and 1000 km. The desired angle coordinate is kept constant at θd = 0 rad. The
time between subsequent maneuvers is defined using the number of maneuvers per revolution, N ,
and is varied between N = 1 and 30. For each simulation, the controlled trajectory is initialized
on the desired state relative to apogee of the reference orbit and propagated for five periods. The
maximum position error is defined as the maximum magnitude of the Cartesian position difference
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between the spacecraft and the desired trajectory over the five periods. Two-dimensional plots of
cumulative ∆v and maximum position error over time as a function of εd and N are displayed in
Figure 5(a) and Figure 5(b), respectively. Over the propagation duration, divergence of the station-
keeping spacecraft is defined to occur if the position error between the spacecraft’s position and
desired position is greater than 0.1% of εd and also greater than one meter. Divergence is repre-
sented in Figures 5(a) and 5(b) as blank areas. When less than six maneuvers are applied per orbit,
the control trajectory is observed to diverge from the reference. However, for N ≥ 8, long-term
bounded motion is observed for all values of εd. As the number of impulsive maneuvers per orbit
increases beyond N = 8, the cumulative ∆v is observed to decrease slowly, while maximum posi-
tion error over time steadily decreases as maneuver frequency increases. Note that required ∆v per
orbit is small, on the order of magnitude of mm/s.

(a) Cumulative ∆v per orbit. (b) Maximum position error.

Figure 5. Performance of the simplified station-keeping controller near an unstable
Sun-Earth L1 southern halo orbit in the CR3BP.

Three controlled trajectories are examined individually to compare the performance of the strat-
egy in the CR3BP using different values ofN . The selected trajectories each correspond to a desired
relative state of ζd = [1000, 0, 0, 0, 0, 0]T (km, km/s) while the maneuver frequencies are compared
for N = 5, 10, 30. The position error versus time is plotted in Figure 6(a) for each of the three
trajectories. The cumulative ∆v required by the control strategy for each trajectory is plotted versus
time in Figure 6(b). At a maneuver frequency of N = 5, the controlled trajectory is observed to
diverge from the desired reference, consistent with the divergent regions in Figure 5. However, at
N = 10 and N = 30, the associated controlled responses are observed to remain bounded to the
desired reference. Comparing the trajectories corresponding to N = 10 and N = 30, increasing
the number of maneuvers per orbit is observed to lower the average position error and reduce the
required ∆v. If a low number of maneuvers per revolution is desired (e.g., N = 5), the true STM
may be used to produce bounded motion. However, this analysis demonstrates that the full STM is
not required for producing bounded relative motion near the center eigenspace of a periodic orbit
in the CR3BP. Of course, applying the control strategy near different periodic orbits will produce
different responses, motivating future assessments of the control strategy near different reference
orbits in the CR3BP.
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(a) Position error over time. (b) Cumulative ∆v over time.

Figure 6. Position error and cumulative ∆v over time for different maneuver fre-
quencies applied in the Sun-Earth CR3BP.

Station-Keeping in the Ephemeris Model

To assess the performance of the presented control strategy in a higher-fidelity simulation, a
Monte Carlo analysis of the control strategy is conducted in the ephemeris model. Compared to
the Sun-Earth CR3BP, the higher-fidelity ephemeris model considers ephemeris positions of the
Sun and Earth, the gravity of the Moon, as well as acceleration due to SRP. To further increase
fidelity, navigational errors and thruster firing errors are also considered, with 3σ values selected
based on historical and theorized values for spacecraft operating near the Sun-Earth L1 and L2

equilibrium points.37, 41 Injection errors are defined as the initial deviation of the chaser spacecraft
from the desired trajectory error. Navigational errors are added to chaser spacecraft state within
the determination of the required impulsive maneuver to simulate state estimation. Finally, thruster
firing errors are defined as a magnitude percentage error of the implemented maneuver; however,
thruster pointing errors are not simulated. To assess the performance of the control strategy, Monte
Carlo simulations are conducted to average the results of 100 trials of the strategy applied usingN =
10, 15, 30. The parameters of the Monte Carlo simulations are summarized in Table 1. For each
simulation, the chaser spacecraft is initialized relative to the initial state of the reference trajectory
at the southern crossing of the xz plane, approximately at apogee. Each controlled trajectory is then
propagated for 10 revolutions in the rotating frame, approximately 1777.4 days or 4.86 years.

Table 1. Monte Carlo simulation parameters in the ephemeris model.

Parameter Value

Initial epoch Jan. 1, 2025
Propagation duration 1777.4 days
Desired configuration zd = [1000 km, 0 km, 0 km]T

Navigation and injection position error 3σr = 10 km
Navigation and injection velocity error 3σv = 10 mm/s

Maneuver magnitude error 3σ∆v = 3%
Maneuvers per revolution N = 10, 15, 20
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In the Monte Carlo simulations of the control of the chaser spacecraft in the ephemeris model,
the control strategy maintains motion bounded to the reference trajectory for reasonable ∆v. The
control usage requirements and position error results averaged over the 100 trials of the Monte Carlo
simulations are summarized in Table 2. For each maneuver frequency, the ∆v requirements are less
than 1 m/s per revolution. However, in contrast to the assessment the CR3BP, increasing the number
of maneuvers per revolution instead results in an increase in the total ∆v required. Increasing the
number of maneuvers per revolution is observed to reduces the average and maximum position error.

Table 2. Monte Carlo results of the control strategy for ten revolutions of the reference trajectory.

Maneuvers per revolution 10 15 20

Min of total ∆v (m/s) 2.566 3.412 4.856
Mean of total ∆v (m/s) 2.945 2.891 5.427
Max of total ∆v (m/s) 3.330 4.455 5.936

Mean of max error (km) 78.793 44.849 33.150
Max of max error (km) 126.15 67.733 51.053

A single simulation trajectory from the Monte Carlo analysis is analyzed in more detail. Plots
associated with the controlled trajectory applying the presented control strategy at a maneuver fre-
quency of N = 15 are included in Figure 7. The controlled trajectory of the chaser spacecraft is
plotted in Figure 7(a) in the Sun-Earth rotating frame relative to the reference trajectory, indicated
by a black marker. Oscillatory bounded motion relative to the reference trajectory is observed, with
no secular drift towards or away from the reference orbit. The corresponding position of this tra-
jectory is plotted in Figure 7(b) using toroidal coordinates. The desired configuration is constant
over time, and the controlled configuration of the the chaser spacecraft in the ephemeris is observed
to remain close to the nominal values. The Monte Carlo analysis and sampled trajectory demon-
strate the the control strategy supports a chaser station-keeping to a specified deviation located on
the surface on an approximated invariant torus relative to the reference trajectory in the ephemeris
model. Of course, modification of the error parameters, dynamical model, or spacecraft properties
may impact results.

APPLICATION TO A CONCEPTUAL SPACECRAFT FORMATION

The presented control strategy is applied to the control of a conceptual spacecraft formation con-
sisting of six spacecraft near Sun-Earth L1. The conceptual scenario consists of six spacecraft
located at six distinctive locations on an invariant curve centered at the reference trajectory. This
simulation considers the formation post-injection, where the spacecraft are assumed to instanta-
neously begin applying the control strategy. The objective of the control of the formation is to
prevent spacecraft drifting towards each other while leveraging natural bounded relative motion
near the periodic orbit to reduce control usage costs. The six spacecraft each apply the control strat-
egy to station-keep near their respective desired trajectories, which are evenly distributed along the
invariant curve. Each spacecraft applies the control strategy independently, without state knowledge
of the other spacecraft in the formation. Each spacecraft applies impulsive maneuvers determined
by Eq. (11) at a maneuver frequency of N = 10 maneuvers per revolution of the halo orbit in the
rotating frame, or approximately 18 days between maneuvers. For this example, the maneuvers of
the six spacecraft are synchronized to occur simultaneously; however, this synchronization is not
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(a) Relative trajectory visualized in the rotating frame. (b) Relative position expressed in toroidal coordinates.

Figure 7. Example relative trajectory of a chaser spacecraft in the ephemeris model
applying the impulsive control strategy using 15 maneuvers per revolution.

a requirement of the control strategy. Injection, navigation, and maneuver magnitude 3σ values
are consistent with the values listed in Table 1. The controlled trajectories are propagated in the
ephemeris model for 10 revolutions of the reference orbit, or approximately five years.

The configuration of the formation over time applying the presented control strategy is analyzed,
leveraging the insight gained from the toroidal coordinate frame. The trajectories of each space-
craft in the formation are visualized in the Sun-Earth rotating frame relative to the reference orbit in
Figure 8(a). Within the Cartesian rotating frame, the formation is observed to stay bounded to the
vicinity of the reference trajectory, located at the origin. The maximum magnitude of the Cartesian
position error difference from the desired trajectory over time is observed to be less than 110 km
for each spacecraft. However, the same six trajectories are visualized in the nonsingular toroidal
coordinate frame relative to the reference trajectory in Figure 8(b). In the nonsingular toroidal coor-
dinate frame, the first-order approximation of the invariant curve is represented as a time-invariant
circle centered at the reference trajectory that spans the αβ plane with a radius of 1000 km. This
first-order invariant curve, which is represented as an ellipse in a Cartesian reference frame, is cir-
cular in the toroidal reference frame because of the time-varying magnitudes of the basis vectors, rr
and ri, of the reference frame. The trajectories of controlled spacecraft are observed to remain near
this circle, centered at their individual deviations from the reference trajectory. Each of trajectories
also exhibits small values of the out-of-plane coordinate, h, that are much smaller than α and β,
with no secular drift observed.

Finally, the ∆v requirements of the spacecraft formation in the ephemeris model are assessed.
The maneuver magnitude of each impulsive maneuver for each of the six spacecraft are plotted
versus time in Figure 9(a) while the cumulative ∆v usage is plotted in Figure 9(b), with coloring
consistent with Figure 8. The magnitude per each maneuver is observed to be similar to previously
developed station-keeping algorithms applied to spacecraft near Sun-Earth halo orbits,42 and the
required ∆v of less than 1 m/s/year is comparable to the station-keeping requirements of previously
flown missions near SE L1.22 Possible future investigations include modifications to the control
strategy formulation to reduce overall ∆v or the required number of maneuvers per revolution.
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(a) Relative trajectories visualized in the rotating frame. (b) Relative trajectories visualized in the toroidal frame.

Figure 8. Relative trajectories of the six spacecraft formation station-keeping near
the SE L1 reference orbit in the ephemeris model.

(a) Magnitude of station-keeping maneuvers. (b) Cumulative ∆v required by each spacecraft.

Figure 9. Station-keeping control individual maneuver magnitudes and cumulative
∆v requirements for the six spacecraft formation.

CONCLUSION

A control strategy for spacecraft formations near a periodic orbit in a multi-body system is de-
veloped using insight into the center eigenspace of the periodic orbit. The strategy enables multiple
spacecraft to independently apply impulsive maneuvers to maintain in a desired configuration using
the center eigenspace as a natural reference input. A formulation of local toroidal coordinates for
describing motion on a center eigenspace is used to formulate the control strategy. The properties
of this state representation enable the presented control strategy to perform similarly to a targeting
strategy without a requirement to compute a state transition matrix between maneuvers. The control
strategy is evaluated in the Sun-Earth CR3BP and a point-mass ephemeris model of the Sun-Earth-
Moon system with perturbations from solar radiation pressure. Finally, the strategy is applied to a
conceptual distributed spacecraft mission near a Sun-EarthL1 halo orbit to demonstrate the utility of
the control strategy and local toroidal coordinates in higher-fidelity mission design. As distributed
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spacecraft architectures become more prevalent in the near-future, this work continues to support the
potential for application of dynamical systems theory in the CR3BP to formation control strategies.
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