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DESIGNING IMPULSIVE STATION-KEEPING MANEUVERS
NEAR A SUN-EARTH L2 HALO ORBIT

VIA REINFORCEMENT LEARNING

Stefano Bonasera*, Ian Elliott*, Christopher J. Sullivan*,
Natasha Bosanac†, Nisar Ahmed‡, Jay McMahon†

Reinforcement learning is used to plan station-keeping maneuvers for a spacecraft
operating near a Sun-EarthL2 halo orbit and subject to perturbations from momen-
tum unloads. This scenario is translated into a reinforcement learning problem that
reflects the desired goals, variables and dynamical environment. Proximal Pol-
icy Optimization is used to train policies that generate station-keeping maneuvers
in the circular restricted three-body problem and a point mass ephemeris model.
These policies successfully produce bounded trajectories with small maneuver re-
quirements, motivating further development of autonomous maneuver planning
technologies for spacecraft operating in complex gravitational environments.

1 INTRODUCTION

Autonomous maneuver planning in multi-body environments will be a key capability that both
enhances and enables future missions. One type of maneuver that may occur throughout the lifetime
of a mission is a station-keeping maneuver, which focuses on maintaining bounded motion near a
desired path. Existing strategies for planning station-keeping maneuvers for spacecraft operating in
a multi-body environment often leverage a combination of dynamical systems theory, optimization,
and support from a human trajectory designer.1–3 These strategies successfully recover efficient ma-
neuvers at the expense of significant human and computational resources. Developing approaches to
autonomously plan these station-keeping maneuvers may be invaluable for reducing the operational
cost and complexity of operating large observatories, formations, and small satellites.

Reinforcement learning (RL) algorithms have emerged as a tool for autonomously designing a
control policy in complex environments. An RL problem is formulated using a policy, producing
the action to apply at a certain observation, and an environment that governs the transition from
a specific observation-action pair. The observation represents the information the agent perceives
from the environment. Another key component of an RL problem is the mathematical definition of
the reward function that encodes the immediate reward of selecting an action at a given observation.
Using these definitions, the goal is to uncover a policy that maximizes the long-term reward, i.e.,
the discounted cumulative reward of successive observation-action pairs. RL algorithms have been
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demonstrated to successfully recover policies in a wide variety of applications and environments.4–6

In astrodynamics, specifically, Das-Stuart et al.,7 Miller and Linares,8 Sullivan and Bosanac,9, 10 and
LaFarge et al.11 use state-of-the-art RL implementations to design low-thrust enabled orbit transfers
in chaotic environments, while Scorsoglio et al. apply an RL algorithm to the problem of relative
motion around periodic orbits.12 Guzzetti studies the performance of a tabular Monte Carlo imple-
mentation of RL for planar orbit maintenance,13 while Molnar leverages RL in a hybrid approach
with dynamical systems theory, to aid in the analysis and design of spatial orbit station-keeping.14

These successful applications motivate further exploration of the use of RL in astrodynamics activ-
ities that currently rely heavily on large optimization problems and a human-in-the-loop.

In this paper, an RL problem is formulated and employed to train policies planning impulsive
station-keeping maneuvers for a spacecraft operating near an unstable Sun-Earth L2 southern halo
orbit. In particular, the formulation is motivated by an analysis performed for the Nancy Grace
Roman Telescope (formerly the Wide Field Infrared Survey Telescope) by Bosanac et al.1 This
paper first explores the translation of the maneuver design scenario, typically formulated as an
optimal control problem, into an RL problem, including the definition of: an appropriate reward
function, the agent observations and associated actions, appropriate terminating conditions, and the
environment. The resulting RL-based maneuver planner is implemented using Proximal Policy Op-
timization (PPO) and PyTorch.15 PPO is employed due to previous demonstrations of favorable
convergence properties when computing a policy for a spacecraft in a multi-body gravitational envi-
ronment.8–11 Bayesian optimization is employed to guide the selection of suitable hyperparameters
and neural network structures that govern the RL-based maneuver planner. Then, the results of this
implementation are verified via a comparison to expected results from dynamical systems theory
in a simplified scenario where maneuvers are greedily selected in a dynamical environment that is
modeled using the circular restricted three-body problem (CR3BP).1

The constructed RL-based maneuver planner is demonstrated in two station-keeping scenarios:
one with the dynamical environment modeled using the Sun-Earth CR3BP, and the other with a
higher-fidelity point mass ephemeris model. In both scenarios, PPO is used to train a policy that
produces station-keeping maneuvers that balance long-term minimization of the control effort and
boundedness within the vicinity of the reference. The performance of the training process is evalu-
ated in this paper via the effectiveness and confidence of the trained policy over successive updates
to reveal successful convergence on a policy that produces a high discounted cumulative reward.
Then, the trained policies are applied to a spacecraft that experiences perturbation due to regular
momentum unloads applied in random directions. The RL-based maneuver planner successfully
designs maneuvers that maintain bounded motion in the vicinity of a Sun-Earth L2 southern halo
orbit: in the first scenario, a total maneuver magnitude of 15.87 m/s is required over a 20 year
duration to bound the spacecraft within 390 km and 0.24 m/s of the reference path; and in the sec-
ond scenario, a total of 5.13 m/s is used over 8.84 years to bound the spacecraft to within 211 km
and 0.08 m/s of the reference path. These results offer a foundation for continued exploration of
the use of RL in autonomous maneuver planning for spacecraft operating in complex multi-body
gravitational environments and, eventually, in more complex maneuver design scenarios.

2 BACKGROUND: DYNAMICAL MODELS

This paper focuses on a spacecraft that is station-keeping near a reference trajectory in the Sun-
Earth system using two dynamical models of increasing fidelity: the CR3BP and a point mass
ephemeris model. The configuration and equations of motion for each of these models are presented
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in this section. In the CR3BP, periodic orbits exist in the rotating frame defined by the two primary
bodies. However, in an ephemeris model, these periodic solutions do not exist. Therefore, a periodic
orbit that exists in the Sun-Earth CR3BP is used in a multiple-shooting method to recover a nearby,
continuous trajectory in an ephemeris model; this procedure is briefly summarized in this section.
Each of these paths serve as a reference for the spacecraft during station-keeping maneuver design.

2.1 Circular Restricted Three-Body Problem

The CR3BP describes the motion of an assumed massless spacecraft subject to the gravitational
attraction of two primaries modeled as point masses and following circular orbits about their mutual
barycenter. The equations of motion for the CR3BP are usually formulated in an orthogonal frame
(x̂, ŷ, ẑ) that rotates with the two primaries, P1 and P2: the x̂-axis is directed from P1 to P2, the
ẑ-axis is directed along the orbital angular momentum vector of the system, and the ŷ-axis com-
pletes the right-handed triad. In addition, normalization is often employed via three characteristic
quantities: the characteristic length is set equal to the assumed constant distance between P1 and
P2, the characteristic mass equals the sum of the masses of the primaries, and the characteristic time
produces a nondimensional period of the primary system that is equal to 2π. Following normaliza-
tion, µ represents the mass ratio, equal to µ ≈ 3.00348064× 10−6 in the Sun-Earth CR3BP. Then,
the nondimensional spacecraft state vector relative to the P1-P2 barycenter is defined in the rotating
frame as x = [x, y, z, ẋ, ẏ, ż]T ∈ R6. Using these definitions, the nondimensional equations of
motion for the spacecraft in the CR3BP and in the rotating frame are written as:

ẍ− 2ẏ = Ux, ÿ + 2ẋ = Uy, z̈ = Uz (1)

where the pseudo-potential function is defined as U = (x2 + y2)/2 + (1 − µ)/d1 + µ/d2 and
the distances between the spacecraft and the primaries are d1 =

√
(x+ µ)2 + y2 + z2 and d2 =√

(x− 1 + µ)2 + y2 + z2. When formulated in the rotating frame, the CR3BP is an autonomous
dynamical model that admits an energy-like integral of motion, the Jacobi constant, equal to CJ =
2U − ẋ2 − ẏ2 − ż2. The CR3BP also admits a variety of solutions: five equilibrium points Li with
i ∈ {1, . . . 5}, periodic and quasi-periodic orbits, as well as chaotic motion.16

2.2 Point Mass Ephemeris Model

A Sun-Earth point mass ephemeris model represents a higher-fidelity description of the dynamics
in the Sun-Earth system. In this paper, this model is formulated to include the gravitational influence
of both the Sun and Earth, labeled P1 and P2 and each assumed to be spherically symmetric; note
that higher fidelity dynamical models may incorporate the gravity due to additional bodies such as
the Moon. The mass of the spacecraft is assumed to be negligible in comparison and its gravitational
influence on each of the two celestial bodies is ignored. Consistent with the Sun-Earth CR3BP, the
same characteristic quantities are used for normalization. In an inertial and orthogonal reference
frame (X̂, Ŷ , Ẑ) and relative to an inertially-fixed basepoint, O, the state of a spacecraft is defined
as X = [X, Y, Z, Ẋ, Ẏ , Ż]T ∈ R6. Then, the generic body Pj is located with a nondimensional
position vector Rj = XjX̂ + YjŶ + ZjẐ, while the spacecraft is located via R3 = XX̂ +

Y Ŷ + ZẐ. Then, the nondimensional position vector of the spacecraft relative to Pj is denoted
Rj,3 = R3 − Rj . In a Sun-Earth point mass ephemeris model, the nondimensional equations of
motion for the spacecraft are written in an Earth-centered J2000 inertial coordinate system as:

R
′′

E,s/c = − GME

R3
E,s/c

RE,s/c +GMS

(
Rs/c,S

R3
s/c,S

−
RE,S

R3
E,S

)
(2)
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where G is the nondimensional universal gravitational constant, the nondimensional mass of each
primary is Mi, and the subscripts S, E, and s/c correspond to the Sun, Earth, and spacecraft,
respectively. In this paper, the Jet Propulsion Laboratory DE421 ephemerides are accessed via the
SPICE toolkit for both state information and for use in frame transformations.17, 18

2.3 Recovering a Continuous Trajectory in an Ephemeris Model

Multiple shooting is employed to recover a continuous trajectory that exists in a Sun-Earth point-
mass ephemeris model and retains the geometry of a nearby periodic solution from the CR3BP. In
this work, the multiple shooting scheme is formulated following the procedure outlined by Bosanac
et al.; this approach is briefly summarized here.1 First, an initial guess is constructed for a desired
initial epoch using multiple revolutions of the reference periodic orbit that exists in the CR3BP. The
initial guess is formed by discretizing this path into a sequence of arcs: the description of each arc is
composed of the initial state that is expressed in an Earth-centered J2000 inertial coordinate system
following a coordinate transformation, the associated initial epoch, and the integration time along
the arc. This information is combined into a free variable vector. A constraint vector is then formed
to reflect state and time continuity between each pair of neighboring arcs. The free variable vector
that describes the discontinuous initial guess is then iteratively updated via Newton’s method until
the constraint vector equals zero to within a small tolerance. This procedure successfully produces
a continuous trajectory, associated with a specific initial epoch, that serves as a suitable reference
path for a spacecraft operating in the Sun-Earth point mass ephemeris model.

3 BACKGROUND: REINFORCEMENT LEARNING

RL algorithms leverage neural networks, which act as universal function approximators, to learn
the optimal policy that maximizes the long-term reward, denoted the value or discounted cumulative
reward, returned from an agent interacting in an RL environment.4 To facilitate efficient and robust
learning without extensive support from a human-in-the-loop, the neural networks are structured in
an actor-critic setup: the actor neural network learns the optimal actions to take at every observa-
tion in the environment and the critic neural network establishes the observations with the highest
value in the environment.19, 20 In this paper, the actor and critic neural networks are trained us-
ing PPO, an RL algorithm that possesses advantageous convergence properties in chaotic, complex
environments.21–23 This section presents a brief summary of the fundamental components of PPO.

3.1 Feed-forward Neural Networks

Neural networks are universal function approximators for learning complex, nonlinear mappings
between inputs and outputs in higher-dimensional environments.24 A neural network is composed
of nodes arranged in consecutive and connected layers enabling outputs from a preceding layer to
be fed into the following layer. Feed-forward neural networks, specifically, are constructed using
an input layer, one or more hidden layers, and a final layer. In an RL algorithm, the input layer
accepts the current observation of the agent and feeds the observation into the first hidden layer of
nodes whereby the connections are assigned weights and biases. To incorporate nonlinearity into the
network, each of the hidden nodes is assigned a nonlinear activation function, such as the hyperbolic
tangent function.25 Then, the first hidden layer of the neural network is fully connected to a second
hidden layer with weights and biases and this process is repeated until the final hidden layer. The
final hidden layer is fully connected to an output layer; for an RL algorithm, the product of the output
layer may represent the value for the critic neural network, or the characteristics of the distribution
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associated with the action sampling for the actor network. The training parameters, comprising the
weights and biases for each connection in this feed-forward neural network, are iteratively adjusted
using a stochastic gradient descent optimization algorithm based on backpropagation. This approach
captures, via the chain rule of derivatives, the influence of each training parameter on the gradient
of a defined loss function.26, 27 The implementation in this paper employs the Adam optimization
algorithm, which has been demonstrated to efficiently and robustly converge in RL algorithms and
complex environments.21, 28

3.2 Actor-Critic Methods

Actor-critic methods form the foundation of many state-of-the-art RL algorithms by combining
the benefits of value-based and policy-based learning methods without significant penalties.29 In
an actor-critic structure, the policy and value function are learned independently by the actor and
critic, respectively, to simplify the learning process; one approach involves modeling each of the
actor and critic via a feed-forward neural network. The actor neural network approximates the
policy function, denoted πθ(ut|st), which maps locally optimal actions, ut, to every observation,
st, in the environment. Concurrently, the critic determines the observations in the environment that
are expected to maximize the cumulative reward returned over an episode, which is mathematically
encapsulated within the value function. In this work, an episode is composed of a finite number of
time steps, each step defined as a single interaction between the actor and the environment.30 The
value function for an observation at time t in the environment is written as:

V π(st) =

τ∑
t=0

γtrt(st,ut, st+1) (3)

where τ represents the maximum number of steps for an episode, γ denotes the discount fac-
tor which decreases the influence of future rewards compared to more immediate rewards, and
rt(st,ut, st+1) is the reward function for the observation-action pair at time t and the observa-
tion at time t + 1.31 Although numerous state-of-the-art RL algorithms successfully leverage an
actor-critic structure, PPO has been observed to perform well in complex environments.21, 23

3.3 Proximal Policy Optimization

PPO is a state-of-the-art RL algorithm that has been successfully applied to a variety of multi-
body trajectory design scenarios due to its robust convergence in chaotic environments.8, 10, 11, 21–23

Once a set number of observation-action-reward experiences have been collected from the environ-
ment using the neural networks, the experiences are used to form an update to the parameters of the
neural networks. First, an advantage function is defined to determine the observation-action pairs
in the environment that return the highest value. The advantages of each observation-action pair are
estimated using Generalized Advantage Estimation (GAE) via

Âπt (st,ut) =
∞∑
`=0

(γλ)`δt+` (4)

where
δt = rt(st,ut, st+1)− V π(st) + γV π(st+1) (5)

is the estimated advantage of the action ut and λ is the GAE factor, which influences the bias-
variance trade-off in the estimated advantages.31 Then, PPO incorporates a trust region constraint
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inspired by another RL algorithm, Trust Region Policy Optimization, to prevent large changes from
destabilizing the neural networks.32 In this paper, the change in the neural networks for an update j
is measured using the probability difference between the old and new policies, written as

Ri,t(θi,j) = πθ,i,j(ut|st)− πθ,i,j−1(ut|st) (6)

where values near zero correspond to smaller updates to the neural networks.9, 33, 34 Then, a loss
function is necessary to compute updates to the parameters of the neural networks using the stochas-
tic gradient descent algorithm and is defined as

LCLIPt (θj) = Êt[min(Rt(θj)Ât, clip(Rt(θj),−ε, ε)Ât)] (7)

to constrain the probability difference to possess a magnitude less than or equal to the clipping
parameter, ε.22 Two additional terms are appended to the loss function to incentivize continuous
exploration in the environment and guide the networks to uncover the value function for the envi-
ronment.22 The resulting modified objective function used in PPO is written as

LCLIP+V F+S
t (θj) = Êt[LCLIPt (θj)− c1LV Ft (θj) + c2S[πθ,j ](st)] (8)

where S[πθ,j ](st) is an entropy term that influences the amount of exploration within the environ-
ment, LV Ft (θj) = (Vθ(xt)− V target

t )2 is a squared-error loss term that encourages the networks to
learn the value function, c1 is the squared-error loss coefficient, and c2 is the entropy coefficient.22

This modified objective function is used by PPO in a stochastic gradient descent optimization algo-
rithm, such as Adam, to train the neural networks using experiences within the environment.21, 22, 28

During training, PPO is primarily governed by a variety of hyperparameters. For the implemen-
tation presented in this parameter, hyperparameters of interest include the clipping parameter, the
squared-error value loss coefficient, the entropy coefficient, the GAE factor, the discount factor, and
the learning rate that governs how quickly the policy is updated by the Adam optimizer. Two addi-
tional hyperparameters include the number of epochs specifying how many times each observation-
action pair is used to update the parameters and the number of batches defining the amount of groups
the observation-action pairs are divided into for each epoch, which both govern how the generated
observation-action-reward experiences are accessed for each update.9 When these hyperparameters
are selected appropriately, PPO admits an efficient and robust training process that uncovers locally
optimal behavior in a complex dynamical environment.

4 STATION-KEEPING MANEUVER DESIGN VIA REINFORCEMENT LEARNING

The RL-based maneuver planner is demonstrated in the context of a spacecraft station-keeping
near a southern L2 halo orbit in the Sun-Earth system. An overview of this scenario, modeled
after the upcoming Nancy Grace Roman Space Telescope, is first presented. An existing station-
keeping strategy that leverages dynamical systems theory is also summarized. Then, the procedure
for designing station-keeping maneuvers is translated into an RL problem via the definition of the
states, actions, reward function, and episode termination criteria. To support the proof of concept
presented in this paper, this RL problem is formulated for two approximations of the dynamical
environment in the Sun-Earth system: one modeled via the CR3BP and the other using a Sun-Earth
point mass ephemeris model. In addition, hyperparameter selection is performed via Bayesian
optimization. Finally, a verification of the implementation presented in this paper is presented in a
simplified scenario via a comparison to the expected results from dynamical systems theory.
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4.1 Scenario Overview

In this paper, the maneuvering spacecraft is assumed to operate near a Sun-Earth L2 southern halo
orbit in a scenario that is modeled after the Nancy Grace Roman Space Telescope. When modeling
the dynamics via the CR3BP, a periodic L2 southern halo orbit with a period of Tr = 180 days and
a Jacobi constant of CJ = 3.00078 is employed as a reference trajectory; this path is displayed in
Figure 1(a) in the Sun-Earth rotating frame using dimensional coordinates relative to the Earth. The
corrections scheme summarized in Section 2.3 is then used to recover a nearby continuous quasi-
halo trajectory that exists in the Sun-Earth point mass ephemeris model. This reference trajectory,
associated with an initial epoch of e0 = 29389.905 MJD and a final epoch ef = 32628.759 MJD that
is approximately 8.87 years later, is displayed in Figure 1(b) in the Sun-Earth rotating frame using
dimensional coordinates, centered at the Earth. This reference trajectory geometrically resembles
the periodic L2 southern halo orbit that exists in the CR3BP.

Regular impulsive station-keeping maneuvers are often employed to mitigate the impact of un-
certainties, momentum unloads, and off-nominal maneuvers on the spacecraft path. In this paper,
regular momentum unloads are the only perturbations considered and are modeled as an instanta-
neous change in velocity, denoted ∆vMU ; full state knowledge and nominal maneuver performance
are assumed. Similar to the scenario presented by Bosanac et al. that is based on an early iteration
of the Nancy Grace Roman Space Telescope mission parameters, these momentum unloads are as-
sumed to occur in a random direction with a fixed magnitude of 8.7 mm/s; although Bosanac et al.
apply these maneuvers every 130 hours, this paper assumes they occur every tMU = 110 hours to
produce a near-integer ratio with the period of the reference orbit.1 The station-keeping maneuvers
and momentum unloads are assumed to occur at evenly-spaced time intervals, forming momentum
unload cycles.1 Each cycle begins with an impulsive station-keeping maneuver that is designed to
maintain boundedness in the vicinity of the reference trajectory; in this paper, there is no constraint
on its magnitude and direction. This station-keeping maneuver is followed by a coast arc with a
duration of tMU . Three momentum unloads and three coast arcs then occur in alternating order to
form a single momentum unload cycle. Following the scenario presented by Bosanac et al., the goal
is to design station-keeping maneuvers that require less than 5 m/s per year for up to 10 years.

L2

to Earth

L2

(a) (b)

Figure 1. Reference paths near Sun-Earth L2: (a) southern halo orbit in the CR3BP
and (b) nearby quasi-halo trajectory in the Sun-Earth point mass ephemeris model.

4.2 Example of Existing Approach to Designing Station-Keeping Maneuvers

One existing approach to designing low-cost station-keeping maneuvers for a spacecraft operat-
ing near a libration point orbit leverages insights from dynamical systems theory. This approach is
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based on an observation by Pavlak and Howell in the context of the Acceleration, Reconnection,
Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission.
This mission involved two spacecraft following separate reference quasi-halo orbits near each of
the Earth-Moon L1 and L2 equilibrium points. Pavlak and Howell observed that station-keeping
maneuvers that occur at the xz-plane crossings of the rotating frame and are designed to mini-
mize the maneuver magnitude while maintaining long-term boundedness near the reference tend
to closely align with the eigenvectors of the monodromy matrix that are associated with the stable
mode.35 More recently, Farrés et al. have further explored this observed alignment between the
locally-optimal station-keeping maneuvers and the eigenvector associated with the stable mode.36

Bosanac et al. use Pavlak and Howell’s observation to reduce the computational complexity of de-
signing station-keeping maneuvers for the Nancy Grace Roman Space Telescope via optimization.
At each maneuver location, the greedy station-keeping maneuver design procedure begins by com-
puting the state transition matrix propagated for one period along the perturbed trajectory and calcu-
lating the eigenvector associated with the stable mode. Then, the position components of the stable
eigenvector are used to define an initial guess for the direction of the impulsive station-keeping ma-
neuver that immediately minimizes the maneuver magnitude while constraining the x-coordinate
at the second subsequent xz-plane crossing to within 150 km of the reference. This constrained
optimization problem is solved at each maneuver location.1 Following this approach, Bosanac et
al. recover low-cost station-keeping maneuvers in a Sun-Earth-Moon point mass ephemeris model
with solar radiation pressure and subject to regular perturbations from momentum unloads; a total
maneuver magnitude of 2.2 m/s over a 10 year time interval is used to maintain boundedness near
a Sun-Earth L2 quasi-halo orbit in an ephemeris model. This dynamical systems based approach is
used later in this section to verify the RL-based maneuver planner in a simplified control scenario.

4.3 Translating Station-Keeping Maneuver Design into an RL Problem

Three scenarios are formulated in this paper to demonstrate the capability of RL to train a policy
for designing station-keeping maneuvers for a spacecraft operating near the selected Sun-Earth L2

southern halo orbit. The three scenarios employed in this paper are summarized as follows:

• Scenario 1, greedy station-keeping in the CR3BP: the spacecraft operates in the CR3BP and
the maneuvers are selected individually to greedily minimize deviations from the reference
via a constraint on the second subsequent xz-plane crossing.

• Scenario 2, long-term station-keeping in the CR3BP: the spacecraft operates in the CR3BP
and the maneuvers are selected to ensure the path remains near the reference over a longer
episode composed of multiple sequences of maneuvers and coast arcs.

• Scenario 3, long-term station-keeping in an ephemeris model: the spacecraft dynamics are
governed by the Sun-Earth point mass ephemeris model and the maneuvers are designed to
produce a path that remains near the reference over a longer episode, defined using multiple
sequences of maneuvers and coast arcs.

These three scenarios reflect increasing levels of fidelity and complexity. The simplest scenario is
used solely for verification of the results via a comparison to expected maneuver directions from
dynamical systems theory. The second and third scenarios enable demonstration of a more complex,
long-term maneuver planning scheme in both low- and higher-fidelity dynamical models.

An RL implementation of the station-keeping maneuver design problem in each of the three
scenarios is formulated using a similar foundational structure. During training, a single episode
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is defined using up to a maximum number of time steps, τ . Each time step begins by specifying
an initial observation-action pair. The continuous observation, o, is defined in each scenario to
reflect the state of the spacecraft in the dynamical environment and to ensure an efficient mapping
to suitable actions. During training, the dynamical environment is modeled without perturbations;
momentum unloads are only employed to perturb the path of the spacecraft during evaluation of
the trained policies in the long-term station-keeping scenarios. The components of the observation
vector, possessing a unique definition in each scenario, are also scaled to generally remain within
the range [−1, 1] during training; scaled quantities are indicated using tilde notation throughout
this section. At the beginning of the first time step within an episode, the observation is randomly
sampled from a continuous uniform distribution across the interval [−1, 1]. The continuous action,
u, is formulated as a 3×1 vector that is scaled to produce the components of the impulsive maneuver,
∆v, in the Sun-Earth rotating frame; in each scenario, this scaling factor is set to αA ≈ 0.3 m/s.
Then, this observation-action pair is used to form a six-dimensional state vector for the spacecraft
at the beginning of the time step. This state vector is then propagated in a selected dynamical
environment for a specified duration, ∆t, to produce the state of the spacecraft at the end of the time
step. The information associated with the path of the spacecraft at the end of this time step is used
to evaluate the immediate reward. In the station-keeping maneuver design problem, this reward
is formulated as a weighted sum of two objectives: minimizing the control effort and minimizing
a specified definition of the deviation from the reference path. When τ > 1, the observation at
the end of the current time step seeds the initial observation for the subsequent time step. The
propagation and reward evaluation procedure continues until either the specified maximum number
of time steps are reached along the episode or additional termination criteria are satisfied. Although
the foundational structure of the RL implementation is consistent across the three scenarios, the
definitions of the observation vector, reward, and episode are specific to each scenario.

4.3.1 Scenario 1: Greedy Station-Keeping in the CR3BP The first, simplified scenario reflects
greedy station-keeping maneuver design in a low-fidelity dynamical environment with boundedness
defined using the x-coordinate of xz-plane crossings. This scenario is used solely to facilitate
verification of the RL implementation via comparison to expected results from dynamical systems
theory. First, the environment used to propagate the spacecraft state during training and evaluation
is defined as the natural Sun-Earth CR3BP with no perturbations. Each episode is composed of
a single time step corresponding to one station-keeping maneuver, followed by a coast arc. At
the beginning of the time step, a relative state vector is denoted as δx̃ = [δx̃, δỹ, δz̃, δ ˙̃x, δ ˙̃y, δ ˙̃z]T ,
defined in the Sun-Earth rotating frame and measured relative to a state along the reference orbit,
xref , that is fixed for a single policy. The scaling coefficients used to produce δx̃ correspond to
dimensional values of αP ≈ 150 km and αV ≈ 0.003 m/s for position and velocity components,
respectively. Accordingly, the observation vector oc,1 is defined in this simplified scenario as

oc,1 = [δx̃] ∈ R6 (9)

This observation is used to generate an action from the policy and a relative state in the Sun-Earth
rotating frame. The nondimensional relative state is added to the selected initial state vector along
the reference orbit. Once an action is applied, the resulting state vector is propagated forward
for a time ∆t = 1.5Tr and the second subsequent crossing of the xz−plane is recorded; at this
crossing, the displacement in the x-coordinate from the reference orbit is denoted as ∆xI . Then,
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the immediate reward is defined to balance minimizing ∆xI and the control effort as

r =

{
− ln

(
∆x2I

)
+K (1− ‖u‖) if crosses xz-plane twice within ∆t

−10 otherwise
(10)

with a scaling coefficient K = 7 used in this paper. When the perturbed path of the spacecraft
deviates significantly from the reference, the trajectory may not complete two crossings of the xz-
plane within the specified integration time. In this case, the observation-action pair that produces
this undesirable behavior is penalized by assigning a reward r = −10.

4.3.2 Scenario 2: Long-Term Station-Keeping in the CR3BP In this scenario, a station-keeping
maneuver is selected as the first maneuver from a sequence of τ > 1 maneuvers, separated by a
duration of ∆t, that together minimize the cumulative deviation from the reference path and the
cumulative control effort. That is, unlike the simplified first scenario, a station-keeping maneuver
is not designed to greedily achieve these goals. To translate this scenario into an RL problem, an
episode is defined to consist of τ time steps, each composed of an impulsive maneuver followed by
a coast arc with a duration, ∆t, that is set equal to Tr/τ . Each episode is initialized by randomly
selecting a state that lies along the reference halo orbit, denoted xref , and randomly sampling a
relative state vector, δx̃, from a continuous uniform distribution within the interval [−1, 1]. Accord-
ingly, an observation vector is defined in this scenario to reflect both the relative state information
and the associated state along the reference orbit as

oc,2 = [x̃ref , δx̃] ∈ R12 (11)

Using this observation, the position and velocity components of x̃ref that lie within the interval
[−1, 1] are scaled using the minimum and maximum values of the associated state components
along the reference orbit to produce xref . The relative state δx is recovered by scaling the last six
components of the observation by coefficients that correspond to dimensional values of αP ≈ 150
km and αV ≈ 0.003 m/s for position and velocity components, respectively. The observation oc,2 is
input to the policy to generate an action and combined to produce the state vector of the spacecraft at
the beginning of a time step. Following propagation for a duration of ∆t, the resulting observation-
action pair is used to evaluate the immediate reward, defined as

r =

{
− ln (‖δx(tI + t0)‖) +K (1− ‖u‖) if ‖δx(tI + t0)‖ ≤ 4.5× 10−5

−100 otherwise
(12)

where K = 100 and δx(tI + t0) is the state deviation of the perturbed path at the end of the time
step from the closest state along the reference orbit. To penalize significant departure from the
reference orbit, an observation-action pair is assigned a value r = −100 if the state deviation at the
end of a step exceeds a specified threshold; in this case, the episode is also terminated. The episode
continues until either τ steps are performed or a subsequent step generates a reward of r = −100.

4.3.3 Scenario 3, Long-Term Station-Keeping in an Ephemeris Model This scenario is formu-
lated consistent with the second scenario, with some modifications to accommodate the use of the
Sun-Earth point mass ephemeris model. Each episode is composed of up to τ steps, with each
step consisting of a single impulsive maneuver followed by a coast arc with a duration ∆t that is
equal to Tr/τ . Each episode is initialized by selecting a random initial epoch, tE , in the range
[e0, ef ] MJD to produce an associated state vector, x̃ref , along the quasi-halo reference that exists
in the ephemeris model over the same interval of epochs. A relative state vector, δx̃, measured
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from the selected reference state and in the rotating frame is then generated by randomly sampling
from a continuous uniform distribution across the interval [−1, 1]. This information, specified in
the Sun-Earth rotating frame, is combined to form the following observation vector:

oe = [x̃ref , δx̃, t̃E ] ∈ R13 (13)

This observation vector is leveraged to generate an action from the policy, as well as to compute the
initial state of the spacecraft using a scaling approach that is consistent with the second example.
The immediate reward for this observation-action pair is then evaluated consistent with the reward
function in Scenario 2, defined in Equation (12), and using the same termination conditions. The
only difference, however, is that the displacement vector δx(tI + t0) is computed as the full state
deviation between the spacecraft state at the end of the time step and the state along the reference
trajectory at the same epoch. After the initial step, the episode continues until either τ steps are
performed or a subsequent step generates a reward of r = −100.

4.4 Selecting the Hyperparameters Governing the RL Implementation

The performance and results produced by PPO are often significantly influenced by a set of gov-
erning hyperparameters and the structure of the underlying neural networks. The hyperparameters
are typically selected to achieve an efficient training process that balances both exploration and
exploitation to converge on a solution that maximizes the discounted cumulative reward. A vari-
ety of strategies for tuning these quantities exist, including: random search, grid search, Bayesian
optimization, and leveraging an outer RL-based loop.37, 38 In this paper, Bayesian optimization is
employed due to its tendency to exhibit sample efficiency for problems with expensive cost function
evaluation, such as those that require numerical integration in sensitive dynamical systems. Specif-
ically, Bayesian optimization describes a generic cost function via a Gaussian process.37, 39 The
goal of the optimizer is then identifying a set of inputs that maximize the cost function; in this case,
the inputs are selected parameters governing the algorithm. As more input sets are explored, the
algorithm increases its confidence of a specific range of inputs to explore in the next iteration. An
acquisition function then selects the input set for the next cost function evaluation by balancing the
exploration of areas with large uncertainty with the exploitation of regions where the expected mean
cost function is large. This process continues until a specified termination condition is satisfied.

This work leverages Bayesian optimization to select a suitable set of hyperparameters and neural
network structures that are used in the RL-based maneuver planner. Specifically, PPO hyperparam-
eters and the width and depth of the neural network (NN) structures are selected in the context of the
second scenario, focused on long-term station-keeping in the CR3BP. To reduce the required com-
putational effort, this same set of hyperparameters and neural network structures are then employed
in all three scenarios. Of course, this single set of governing quantities does not necessarily repre-
sent an optimal set in each individual scenario. However, the CR3BP offers a good approximation
of the dynamical environment in a higher-fidelity point mass ephemeris model; thus, it is assumed
that the quantities derived in one scenario will result in a training process that delivers sufficient
results in the other scenarios. Implementation of this Bayesian optimization approach to selecting
the hyperparameters and neural network structures leverages the python toolbox BayesianOptimiza-
tion, using the Mattern kernel and the upper confidence bound acquisition function.40 Based on the
work by Andrychowicz et al. and Sullivan and Bosanac, the neural networks leverage tanh activa-
tion functions between consecutive layers and orthogonal initializers across all three scenarios; thus,
these properties are not tuned.9, 21 The cost function used to select these parameters during Bayesian
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optimization is composed of two terms: 1) the average discounted cumulative reward of the last up-
date batch set and 2) the mean derivative of the average discounted cumulative reward over the last
10 updates, approximated via forward finite differences. This definition favors policies that are both
effective in the final update and have exhibited large improvements within at least the final several
updates. Using these inputs and cost function definition, Bayesian optimization is applied over a
total of 130 runs of the training process: the first 50 training runs correspond to evaluation of ran-
dom sets of input parameters, while the next 80 runs reflect iterations according to the acquisition
function. During optimization, each iteration of the training process is implemented with a variable
number of episodes that correspond to a total of 2×106 time steps. The optimal hyperparameters
and neural networks structures recovered via this procedure are summarized in Table 1. These val-
ues are consistent with the general suggestions from authors applying PPO to a variety of complex
dynamical environments.9, 21–23, 31 Moreover, it appears that in this particular scenario and for the
specified cost function used for the optimization, the actor neural network favors multiple layers
with a small number of nodes, while the critic neural network benefits from one wide layer.

Table 1. Selected hyperparameters and neural network parameters.

Parameter Value Parameter Value

Learning rate, Lr 5× 10−3 Discount factor, γ 0.99
Clipping parameter, ε 0.02 GAE factor, λ 0.99

Number of epochs, Nep 4 Actor NN depth, Dact 3
Number of batches, Nb 6 Actor NN width, Wact 16

Value coefficient, c1 1× 10−3 Critic NN depth, Dcri 1
Entropy coefficient, c2 7× 10−3 Critic NN width, Wcri 1024

4.5 Verifying the Results of the RL Implementation in a Simplified Scenario in the CR3BP

Expected maneuver directions, derived from dynamical systems theory, are used to verify the
solutions produced by the RL implementation in the simplest scenario, focused on greedy station-
keeping maneuver design near a Sun-Earth L2 southern halo orbit in the CR3BP. Four policies are
individually trained in this example. Each policy is trained in the CR3BP with the same goal of
balancing minimization of the control effort and the deviation in the x-coordinate at the second sub-
sequent crossing of the xz-plane. However, the four policies differ in the definition of the fixed state
along the reference used to specify the initial conditions: the reference states are located near each
of the extrema in the z− and y−directions. Using the hyperparameters listed in Table 1, the training
process successfully converges on a solution that possesses a large cumulative discounted reward
over 555 updates. Throughout the learning process, the average discounted cumulative reward in-
creases across updates until reaching a plateau; simultaneously, the standard deviations associated
with the Gaussian distribution for sampling the actions steadily decrease. This behavior during
training is presented and examined in detail in the context of the second more complex scenario.

Following training, each policy is evaluated using a set of initial perturbations from the associ-
ated state along the reference orbit to generate individual station-keeping maneuvers that target the
second subsequent crossing of the xz-plane while also minimizing control effort. For each trained
policy, 30 initial perturbations are selected from a continuous uniform distribution within the range
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[−1, 1] and scaled by the αP and αV values to produce observation vectors. The resulting maneu-
vers, calculated from the actions output by each policy, are displayed in Figure 2. In this figure, the
reference L2 southern halo orbit is depicted as a black continuous path in the Sun-Earth rotating
frame using dimensional coordinates. Recall that each policy corresponds to a distinct initial refer-
ence state along the halo orbit. Thus, 30 arrows represent the maneuvers generated by evaluating
each policy near each of the four distinct locations along the reference orbit. For visual clarity, these
maneuvers are plotted in a unique shade of purple according to the initial reference state and scaled
to depict only the relative magnitude. The zoomed-in views on the right of Figure 2 each display the
30 maneuvers that are associated with a single policy, labeled as Ai, with i ∈ {1, ..., 4}. Overlaid
on this figure are red arrows that indicate the position components of the stable eigenvector of the
monodromy matrix evaluated along the reference periodic orbit. At each location along the orbit,
two red arrows appear: both arrows lie in the stable eigenspace but with opposite directions. Anal-
ysis of Figure 2 reveals that all four trained policies produce impulsive station-keeping maneuvers
that are closely aligned with the position components of the local stable eigenvector. This result
is consistent with Pavlak and Howell’s observation that station-keeping maneuvers that minimize
the maneuver magnitude while targeting a subsequent crossing of the xz-plane tend to align closely
with the stable eigenvector of the state transition matrix evaluated along the reference orbit for one
revolution. Accordingly, the results presented in Figure 2 indicate that the RL formulation of the
station-keeping problem implemented within this paper successfully produces maneuvers in this
simplified scenario that are consistent with the expected results from dynamical systems theory.1, 18

5 RESULTS: STATION-KEEPING MANEUVER DESIGN IN THE CR3BP

RL is used to design station-keeping maneuvers for a spacecraft operating near an L2 southern
halo orbit in the CR3BP. In this scenario, a station-keeping maneuver is designed as the first maneu-
ver from a sequence of 10 maneuvers over 10 time steps that collectively minimize the cumulative
deviation from the reference path and control effort. Using the problem formulation outlined in
Section 4.3.2 with τ = 10 maneuvers and time steps per episode as well as the hyperparameters in
Table 1, PPO is used to train a policy in the natural CR3BP with no perturbations. Training con-
tinues for 1× 107 time steps within this dynamical environment, corresponding to at least 1× 106

L2

to Earth

A1 A2

A4 A3

Figure 2. For greedy station-keeping in the CR3BP relative to a Sun-EarthL2 halo or-
bit (black), the maneuvers (arrows in shades of purple) generated by the four trained
policies tend to align with the stable eigenvectors (red arrows).
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episodes. In this particular scenario and for the selected reward function, a straightforward heuristic
for expected maneuver directions does not currently exist for verification of the results produced by
the RL implementation. Accordingly, further examination of the training process is warranted.

The training process is examined using the discounted cumulative reward and standard deviations
of the actions associated with the policy across updates. Figure 3(a) displays the average value of
the discounted cumulative reward in black while the shaded red region, labeled±1σ, corresponds to
one standard deviation around the average; the standard deviation is computed using the discounted
cumulative rewards in each batch at each update. Analysis of this figure reveals an increase in the
discounted cumulative reward and a reduction in the associated standard deviation across updates
with a plateau forming towards the end of the training process. This behaviour indicates that the pol-
icy is successfully learning to achieve the intended goals encapsulated within the reward function.
Throughout the training process, the policy is also improving its understanding of the actions that
maximize the discounted cumulative reward. This improvement is visualized via the standard devi-
ations of the Gaussian distribution used to sample the actions, displayed in Figure 3(b). The natural
logarithms of the standard deviations for each of the three components of the actions, as defined in
the rotating frame, are displayed in distinct colors. The steady decrease of the standard deviations
across updates indicates that the policy is gaining confidence in the actions that maximize the dis-
counted cumulative reward by reducing the width of the sampled density functions during training.

The trained policy is evaluated with a variety of initial conditions in the natural Sun-Earth CR3BP
to verify that the maneuvers successfully produce controlled trajectories that remain in the vicinity
of the reference halo orbit. Specifically, 100 relative state vectors are randomly generated relative
to various locations along the reference orbit. The uncontrolled trajectories associated with these
initial conditions are propagated in the natural CR3BP for one orbital period and are displayed in
Figure 4(a) in the Sun-Earth rotating frame using dimensional coordinates relative to the Earth to
demonstrate departure from the reference without any maneuvers; in this figure, Sun-Earth L2 is
located by a red diamond. These same relative state vectors are input to the trained policy to design
the first station-keeping maneuver. Following application of the maneuver, the resulting state is
propagated in the natural CR3BP and without any perturbations from regular momentum unloads to
produce the state at the next time step; the next action is selected by reevaluating the trained policy.

Average

(a) (b)

Figure 3. Summary of the training process for long-term station-keeping in the
CR3BP via (a) the average discounted cumulative reward in black, with ±1σ in red
and (b) standard deviations of the Gaussian distribution for sampling actions.
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to Earth, Sun

L2 L2

(a) (b)

Figure 4. Evaluating the trained policy with 100 initial conditions near the refer-
ence halo orbit in the CR3BP: (a) associated trajectories propagated naturally and
(b) controlled trajectories with station-keeping maneuvers.

This process is repeated for one revolution around the orbit. The resulting controlled trajectories
are displayed in blue in Figure 4(b) and are visually indistinguishable from the reference at this
scale. In fact, the maximum deviation from the reference across these 100 trajectories possesses a
magnitude of 285 km and 0.13 m/s in position and velocity, respectively. Overlaid on this figure are
purple arrows that supply a scaled representation of the station-keeping maneuvers generated by the
trained policy. This figure demonstrates that the trained policy successfully achieves station-keeping
over one orbital period for initial conditions defined close to any state along the reference.

Following training, the policy associated with long-term station-keeping near an L2 southern
halo orbit is evaluated in the presence of regular momentum unloads. In this scenario, a single
initial condition is defined by applying a perturbation to a randomly selected location along the
reference orbit. The policy is evaluated with this initial condition to produce an impulsive maneu-
ver. Then, a momentum unload cycle is implemented using coast arcs in the natural CR3BP with a
duration of tMU = 110 hrs separated by momentum unloads instantaneously applied in a random
direction with a magnitude of ∆vMU = 8.7 mm/s. The perturbed state at the beginning of the
next time step is used to select the next station-keeping maneuver. This procedure is repeated for
approximately 20 years, i.e., 40 revolutions of the reference orbit. For a single initial condition,
the resulting controlled trajectory is displayed in blue in Figure 5(a), with purple arrows that depict
the direction and relative magnitude of the station-keeping maneuvers. The magnitude of each of
these station-keeping maneuvers is displayed in Figure 3(b). Over 20 years, 393 station-keeping
maneuvers are performed with a cumulative maneuver magnitude of ∆vtotal = 15.87 m/s, well
below the desired threshold of 5 m/s per year. Additionally, Figure 6 displays the time history of
the magnitudes of the displacements in position and velocity, between the reference and controlled
trajectory. The station-keeping maneuvers produce bounded motion near the reference halo orbit:
over 20 years, the maximum distance from the reference is 390 km and the maximum difference in
velocity possesses a magnitude of 0.24 m/s. Of course, these quantities may be reduced further with
alternative hyperparameter values and neural network structures, additional training, or a nonperi-
odic reference. Nevertheless, the results presented in this example demonstrate the trained policy
successfully designs maneuvers for long-term stationkeeping near an L2 southern halo orbit in the
Sun-Earth CR3BP with regular perturbations from momentum unloads.
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to Earth, Sun

L2

(a) (b)

Figure 5. Station-keeping maneuvers in the CR3BP with regular momentum unloads:
(a) single controlled trajectory propagated for 40 revolutions with maneuvers and (b)
associated maneuver magnitudes.

Figure 6. Time history of the magnitude of the position (top) and velocity (bottom) of
the controlled trajectory in Figure 5 relative to the reference halo orbit.

6 RESULTS: STATION-KEEPING MANEUVER DESIGN IN AN EPHEMERIS MODEL

In this example, the RL maneuver planner is applied to a spacecraft operating near an L2 quasi-
halo orbit in the higher-fidelity Sun-Earth point mass ephemeris model. Recall from Section 4.3.3
that the RL problem formulation is similar to the previous example. The primary difference, how-
ever, is in the use of a nonperiodic, epoch-dependent reference trajectory and the incorporation of
a time-like quantity in the definition of the observation vector. Using this problem formulation, the
policy used to design station-keeping maneuvers is trained to follow the quasi-halo trajectory dis-
played in Figure 1 over the timespan [29389.905, 32628.759] MJD, i.e., from 24 Jun 2021, 09:42:02
UTC to 7 May 2030, 06:11:48 UTC. Training continues for 3× 106 time steps within the environ-
ment. This termination condition is defined using fewer time steps than the example presented in
Section 5 due to the higher computational complexity associated with numerical integration in a
point mass ephemeris model. However, the policy is effectively trained within this maximum bound
on the number of time steps to converge on a solution that possesses a high discounted cumulative
reward and with a small standard deviation in the Gaussian distribution used to sample the actions,
as displayed in Figure 7 using a configuration that is consistent with Figure 3. Analysis of Fig-
ure 7(a) reveals that the discounted cumulative reward increases throughout the learning process
and approaches a plateau, while the associated standard deviation decreases across updates. Fur-
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(a) (b)

Figure 7. Summary of the training process for long-term station-keeping in the
ephemeris model via (a) the average discounted cumulative reward in black, with±1σ
in red and (b) standard deviations of the Gaussian distribution for sampling actions.

thermore, Figure 7(b) displays the natural logarithm of the standard deviations associated with the
Gaussian distributions for sampling the actions across each update. Together, these two figures in-
dicate a successful learning process that produces a policy that possesses both a high discounted
cumulative reward and confidence in the associated actions.

The trained policy is evaluated to design station-keeping maneuvers for a spacecraft operating
near an L2 quasi-halo in a Sun-Earth point mass ephemeris model with regular momentum unloads
perturbing the trajectory. In this example, one initial state for the spacecraft is defined by applying
a perturbation from the reference path at an epoch of t0 = 29400 MJD. The first station-keeping
maneuver is selected by evaluating the policy. A momentum unload cycle is then implemented. The
observation vector at the end of this momentum unload cycle supplies the observation vector at the
beginning of the next time step that is used to evaluate the policy again. This process repeats for ap-
proximately 8.84 years. The resulting controlled trajectory is displayed in blue in Figure 8(a) in the
Sun-Earth rotating frame with dimensional coordinate relative to the Earth with scaled maneuvers
represented by purple arrows. To supplement this information, Figure 9 displays the time history of
the magnitudes of the displacements in position and velocity between the reference and perturbed

to Earth, Sun

L2

(a) (b)

Figure 8. Station-keeping maneuvers in the ephemeris model with regular momen-
tum unloads: (a) single controlled trajectory propagated for approximately 17.93 rev-
olutions with maneuvers and (b) associated maneuver magnitudes.

17



Figure 9. Time history of the magnitude of the position (top) and velocity (bottom) of
the controlled trajectory in Figure 8 relative to the reference quasi-halo trajectory.

trajectories. Over 8.84 years, the controlled trajectory remains within 211 km and 0.08 m/s of the
reference, even in the presence of perturbations via momentum unloads. Figure 8(b) then displays
the associated maneuver magnitudes: the 176 maneuvers that occur over these 8.84 years require
a total budget of ∆vtotal = 5.13 m/s, well below the desired threshold of 5 m/s per year. This
value of ∆vtotal is similar to that required over 8.84 years for the previous example, formulated
in the CR3BP; small differences are likely due to the use of a nonperiodic reference path in this
example as well as the distinct evaluation trajectories and recovered policies. Together, these results
indicate that the RL implementation successfully produces a policy that generates station-keeping
maneuvers for a spacecraft to remain near the L2 quasi-halo trajectory in the point mass ephemeris
model with a low required control effort, even as momentum unloads perturb the path. This proof
of concept will be extended in future work to: 1) implement more complex maneuvering goals,
2) incorporate constraints, 3) incorporate additional perturbations, and 4) train policies for a wider
array of reference paths and higher-fidelity environments.

7 CONCLUSIONS

Reinforcement learning (RL) is used to design station-keeping maneuvers for a spacecraft operat-
ing near a Sun-Earth L2 southern halo orbit. First, the goal of long-term station-keeping maneuver
design to cumulatively minimize both the deviation from a reference path and the required control
effort is translated into an RL problem. Then, Proximal Policy Optimization is used to train policies
that design these maneuvers in two environments of increasing complexity: the Sun-Earth circular
restricted three-body problem (CR3BP) and a Sun-Earth point mass ephemeris model. Hyperpa-
rameters governing PPO and the neural network structure are selected using Bayesian optimization.
Then, the maneuvers recovered through the RL implementation are verified in a simplified greedy
maneuver design scenario via comparison to expected results from dynamical systems theory.

The constructed RL-based maneuver is applied to long-term station-keeping maneuver design in
each of the two environments. In these examples, the RL-based maneuver planner is successfully
trained in each dynamical environment to converge on a policy with a high discounted cumulative
reward and high confidence in the corresponding actions. The two trained policies are then evalu-
ated with regular perturbations due to momentum unloads. Evaluating the scenario formulated in
the CR3BP with a single perturbed initial condition, a total maneuver magnitude of 15.87 m/s is re-
quired over 20 years for the spacecraft to possess a position and velocity that remains within 390 km
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and 0.24 m/s, respectively, of the reference southern halo orbit. In the point mass ephemeris model,
the second trained policy is evaluated with a single perturbed initial condition. Over the span of 8.84
years, a total maneuver magnitude of 5.13 m/s is required for the spacecraft to remain within 211
km and 0.08 m/s of the reference quasi-halo trajectory. In both the low- and high-fidelity dynami-
cal environments, the RL implementation successfully designs maneuvers that balance minimizing
long-term boundedness to the vicinity of a reference with minimizing control effort. Motivated by
these results, an alternative paradigm to station-keeping maneuver design that leverages RL offers
a foundation for continued development of autonomous maneuver planning capabilities that will
support future missions operating within multi-body regimes throughout our solar system.
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