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Exploring multi-body systems with low-thrust-enabled small satellites opens up a new
frontier of scientific opportunities. However, the limited control authority of these spacecraft
introduces significant challenges during trajectory and maneuver design. In this paper, a deep
reinforcement learning method is used to design a control profile for a low-thrust-enabled
small satellite to approach a periodic orbit from a nearby initial condition and over a short
time horizon. Multiple neural networks are trained to recover controlled paths that meet a
variety of objectives while tracking to a reference trajectory on a stable manifold. Monte Carlo
simulations for three distinct formulations of a reward function are performed using a control
scheme derived from trained neural networks.

I. Introduction

With the recent success of the Mars Cube One (MarCO) mission and advancements in miniaturized technologies,
SmallSats are no longer limited to operating in low Earth orbit (LEO). Rather, deep space exploration, technology

demonstrations, and targeted science missions via low-thrust-enabled SmallSats may soon become a reality. In fact,
upcoming missions such as Lunar IceCube, LunaH-map and NEA Scout will feature SmallSats deployed to a variety of
locations within multi-body gravitational environments after riding as secondary payloads onboard Artemis 1 [1–3].
However, trajectory and maneuver design for spacecraft in chaotic multi-body systems is an inherently high-dimensional
problem complicated moreso by incorporating the constraints associated with low-thrust-enabled SmallSats: limited
propulsive capabilities, operational scheduling constraints, and fixed, yet uncertain, initial conditions. While several
numerical approaches from optimal control and dynamical systems theory (DST) exist for constructing low-thrust
trajectories and maneuver profiles in approximate dynamical models of multi-body systems, the development of
autonomous and robust design strategies necessitate an alternative approach.

One class of algorithms that is of increasing interest in the astrodynamics community for enabling autonomy in
trajectory and maneuver design is reinforcement learning (RL). RL algorithms typically involve an agent interacting
with an environment by undertaking actions for dynamical states to maximize a reward function. The agent explores the
environment until the policy that determines the optimal action at each state has been identified. When formulated
appropriately, these algorithms may explore many state-action pairs to determine the optimal actions while limiting
exploration of suboptimal actions. RL methods have been used in astrodynamics for trajectory and maneuver design in a
variety of applications and dynamical models. For instance, Dachwald has explored designing a transfer to Mercury for
a low-thrust-equipped spacecraft using artificial neural networks and an evolutionary algorithm [4]. A more recent
approach by Das-Stuart, Howell, and Folta leverages RL along with fundamental dynamical structures to design complex
transfer trajectories between periodic orbits in the Circular Restricted Three-Body Problem (CR3BP) [5]. In addition,
Scorsoglio, Furfaro, Linares, and Massari also use an actor-critic, deep reinforcement learning (DRL) approach to
develop docking maneuvers for spacecraft in Near Rectilinear Orbits in cislunar space [6]. More recently, Miller
and Linares apply the well-known Proximal Policy Optimization (PPO) algorithm to design transfers between distant
retrograde orbits in the Earth-Moon system, modeled via the CR3BP [7]. The success of each of these studies has
created a valuable foundation for the astrodynamics community to continue exploring and extending the use of RL in
multi-body trajectory design strategies. Specifically, this paper builds upon these previous works by focusing on one
important component of implementing an RL-based approach to trajectory design: formulation of a reward function
that reflects both the design objectives and the constraints that influence the operational feasibility of the recovered
maneuver profile. This analysis is performed in the context of trajectory design for a low-thrust-enabled SmallSat to
quickly access a nearby reference trajectory that lies on a stable manifold associated with a periodic orbit in the CR3BP.
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In this preliminary analysis, DRL is used to design a control profile for a SmallSat to approach a periodic orbit within
a multi-body system modeled via the CR3BP. The advantage of using DRL and neural networks is that, once fully trained,
they may be used to rapidly produce locally optimal results for any state within the training environment since evaluating
a trained neural network takes a negligible amount of time. In the CR3BP, invariant manifold structures naturally guide
motion towards and away from periodic and quasi-periodic orbits within the system. Manifolds emanating from a target
orbit tend to enable the design of trajectories with low propellant requirements. In this investigation, PPO is used to
train sets of neural networks corresponding to three distinct reward functions to guide a low-thrust-enabled SmallSat
towards a nearby trajectory that lies on the stable manifold associated with a periodic orbit over a short time horizon.
The first reward function is designed to reward the spacecraft for possessing a state that is close to a state that lies
along the reference trajectory; this reference state is defined using an isochronous correspondence. A second reward
function is formulated to reward matching a reference state that is calculated via a normal correspondence, i.e., by
locating the nearest state along the reference trajectory. The third reward function then incorporates an additional term
to minimize the change in the thrust vector over each time step, reflecting a significant operational constraint. Once the
neural networks are trained for each reward function, the control schemes are evaluated on a common set of perturbed
initial conditions to examine the properties of the recovered solutions and associated maneuver profiles.

II. Dynamical Environment
For trajectory and maneuver design in multi-body gravitational environments, dynamical models of varying levels

of complexity are often employed. In this analysis, the CR3BP is used to model the motion of a SmallSat of negligible
mass in cislunar space. The CR3BP admits a variety of fundamental dynamical structures that are approximately
retained in higher-fidelity models. Thus, the CR3BP serves as a useful environment for constructing an initial guess for
a trajectory and maneuver profile. The equations of motion for the natural CR3BP are then augmented to include the
acceleration due to the low-thrust engine of the SmallSat. Thus, the dynamical environment for a PPO implementation
is instantiated using a low-thrust-enabled CR3BP.

A. Circular Restricted Three-Body Problem
The CR3BP is an autonomous dynamical model that approximates the higher-fidelity gravitational environment in

multi-body systems. This model reflects the dynamics governing a spacecraft of negligible mass under the gravitational
influence of two larger primary bodies, the Earth and Moon, assumed to follow circular orbits about their mutual
barycenter. Under these assumptions, a rotating frame, (x̂ ŷ ẑ), is constructed and displayed in Fig. 1 with the x̂ axis
directed from the Earth to the Moon, the ẑ axis is aligned with the angular momentum vectors of the primaries, and ŷ

completes the right-handed coordinate frame. Then, length, time and mass quantities are nondimensionalized using the
following characteristic quantities: l∗ is set equal to the distance between the two primaries, t∗ is defined to set the
mean motion of the primary system to unity, and the sum of the masses of the primaries is m∗ = M1 + M2. Finally,
in the Earth-Moon system, the mass ratio is defined as µ = M2

m∗ ≈ 0.01215. This quantity significantly influences
the underlying dynamical structures governing the solution space in the CR3BP. Although nondimensionalization is

Fig. 1 Definition of the rotating frame (x̂ ŷ ẑ) in the Earth-Moon CR3BP.
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typically used to reduce the potential for ill-conditioning during numerical integration and to enable straightforward
comparison between systems with a similar mass ratio, it also offers an additional benefit in an RL-based approach:
reducing the potential for ill-conditioning during neural network evaluations. The nondimensional state of the spacecraft
in the CR3BP is then defined as x̄ = [x, y, z, Ûx, Ûy, Ûz] relative to the system barycenter and in the rotating frame. Then, the
equations of motion that govern the natural dynamics of the spacecraft in the CR3BP are written as:

Üx − 2 Ûy =
∂U∗

∂x
Üy + 2 Ûx =

∂U∗

∂y
Üz =

∂U∗

∂z
(1)

where the pseudo-potential function U∗ = 1
2 (x

2 + y2) +
1−µ
r1
+

µ
r2

and the distance of the spacecraft to each primary
is r1 =

√
(x + µ)2 + y2 + z2 and r2 =

√
(x − 1 + µ)2 + y2 + z2 [8]. Using these equations of motion, an energy-type

quantity denoted the Jacobi Constant is equal to CJ = 2U∗ − Ûx2 − Ûy2 − Ûz2 [8]. In the CR3BP, the value of the Jacobi
constant is constant along a single natural trajectory. This parameter also provides insight into the relative difference
in energy between two states of the system. For instance, if two states in the CR3BP possess distinct Jacobi constant
values, then energy must be added or removed via a propulsion system for a spacecraft to transfer between the states.

Fundamental dynamical structures that exist within the CR3BP include equilibrium points, periodic orbits, quasi-
periodic orbits, and invariant manifolds [9]. A multi-body system described by the CR3BP admits five equilibrium
points: the collinear equilibrium points, L1, L2, and L3, and the triangular points, L4 and L5. Due to the significant
interest in placing the Lunar Orbital Platform-Gateway (LOP-G) into an L2 Near Rectilinear Halo Orbit (NRHO), this
investigation will construct solutions in the L2 region of the Earth-Moon system [10]. A variety of orbit families emanate
from the L2 equilibrium point, including the planar L2 Lyapunov family; Fig. 2 depicts a subset of this family in the
xy-plane of the rotating frame and colored by the Jacobi constant of each orbit. Specifically, an L2 Lyapunov orbit with
a Jacobi constant of 3.17 is selected as the target orbit for the trajectory design scenario in this paper due to its proximity
to the L2 equilibrium point, a potentially valuable region for future scientific research and infrastructure placement.
This member of the L2 Lyapunov family admits stable and unstable invariant manifolds, capturing trajectories that,
respectively, asymptotically approach and depart an unstable orbit. These structures are often used in constructing initial
guesses for low-cost transfers within multi-body gravitational environments [11, 12]. For this reason, a trajectory that
asymptotically approaches the selected L2 Lyapunov orbit from the vicinity of the Moon is used to define a reference
trajectory for the scenario examined in this paper. Figure 3 displays a segment of the stable manifold (blue) associated
with the selected L2 Lyapunov orbit (black). The red arc corresponds to the specific reference trajectory used in this
analysis, which is sampled at and uniquely described by the following state: x̄ = [1.120,−0.0442,0,0.0614,0.0274,0].
This state is considered the initial condition along the reference trajectory. A spacecraft possessing this exact state at any
time will asymptotically approach the selected L2 Lyapunov orbit in the CR3BP. However, to reach this state – or another
state along the associated reference trajectory – in the CR3BP from a nearby state, a controlled transfer is necessary.

Fig. 2 Members of the L2 Lyapunov periodic orbit family in the Earth-Moon CR3BP colored by the value of
the Jacobi constant.
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Fig. 3 A segment of the stable manifold (blue) associated with an L2 Lyapunov periodic orbit (black). The
specific reference trajectory used in this paper is displayed in red.

B. Low-Thrust-Enabled CR3BP
When the propulsion system is activated, both the mass of the SmallSat and the acceleration from the low-thrust

engine must be incorporated into the dynamical model. The nondimensional acceleration imparted by an engine with a
constant thrust and constant specific impulse, Isp , is written as:

ā =
T

ms/c
û = ax x̂ + ay ŷ + az ẑ (2)

where ms/c denotes the current spacecraft mass normalized by the initial wet mass, T is the thrust normalized by length
and time characteristic quantities and the spacecraft initial wet mass, and û is a unit vector describing the thrust direction
in the Earth-Moon rotating frame. Using these definitions, the equations of motion for a low-thrust-enabled spacecraft
in the CR3BP are written as:

Üx − 2 Ûy =
∂U∗

∂x
+ ax Üy + 2 Ûx =

∂U∗

∂y
+ ay Üz =

∂U∗

∂z
+ az . (3)

Then, the state vector is augmented to include the nondimensionalized spacecraft mass, i.e., x̄LT = [x, y, z, Ûx, Ûy, Ûz,ms/c].
Finally, an additional first-order differential equation is formulated to model the decrement in the spacecraft mass due to
propellant mass usage. The mass flow rate equation for a constant thrust, constant Isp low-thrust engine is written as
Ûms/c =

−T
Ispg0

, where g0 is the gravitational acceleration as measured from the surface of the Earth [13]. The resulting
first-order differential equations are supplied to the RL algorithm to define the dynamical environment.

III. Deep Reinforcement Learning
DRL algorithms have been of much interest for applications where an optimization problem cannot be solved

analytically. Fundamental RL algorithms typically involve an agent interacting with an environment, defined via a
known or unknown dynamical model taking actions that maximize the long-term reward at a given state [14]. This
returned reward is mathematically encapsulated within a scalar value function that denotes the long-term reward of
a particular state within the state space [15]. Additionally, the set of actions that are performed throughout the state
space to maximize the value function is often identified as a policy. Developing a policy for a state-action space that
maximizes the value function admits the optimal actions for any state within the state space.

While the overall structure of RL-type problems has generally remained consistent over time, numerous methods
have been introduced to solve these problems [16]. Of particular interest in this analysis is the Actor-Critic method
which incorporates two independent neural networks to develop an optimal policy within an environment. Actor-Critic
methods have gained significant traction in a wide variety of disciplines due to their computational efficiency and ability
to stochastically model the optimal action for a given state [17]. Recent advancements in computational power and the
development of more efficient algorithms have resulted in robust algorithms that are capable of discovering policies
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for a continuous action space in highly chaotic environments [18]. The introduction of deep neural networks into RL
algorithms has revolutionized the field of RL and enabled DRL algorithms to be applied to entirely new applications.

A. Neural Networks
Neural networks are composed of layers of nodes structured similarly to neurons in a brain. For the first layer, also

known as the input layer, these nodes take as input the states associated with the environment. In this analysis, these
states include the position and velocity vectors in the Earth-Moon rotating frame, the mass of the spacecraft and time
measured from an initial epoch. The next layer is termed a hidden layer and consists of a set of nodes, each defined using
an nonlinear activation function such as the hyperbolic tangent, rectified linear unit (ReLU), or sigmoid [19]. Each of
the input nodes is fully connected to each node in the first hidden layer, and each connection is assigned a weight that
signifies the magnitude of the connected input node in computing the result of the hidden layer node. Then, if working
with a deep neural network, the following layer is another hidden layer with nodes fully connected to the preceding
hidden layer. Multiple hidden layers with a specified number of nodes may be incorporated into a deep neural network.
The final layer of the network is denoted the output layer. The output layer reflects the network’s current estimate of the
optimal behavior, i.e. actions, weights, or another parameter that the network is tasked with learning. Figure 4 displays
a conceptual representation of a deep neural network where the blue nodes represent the input layer; two hidden layers
are depicted in gold; the output layer is red; connections between the nodes are denoted using black arrows; the weights
for each layer are encapsulated within W̄i; and the nodes within each layer are numbered using superscripts for the layer
number and subscripts to enumerate the nodes within one layer. Although a neural network may be formulated to use
the dynamical states to recover optimal actions, configuration of the neural network is nontrivial. In fact, assigning
the weights to each connection within a neural network is often an iterative process due to the complex and nonlinear
relationships within a network.

While neural networks may be useful in solving problems where analytical mappings between states and actions do
not exist, they must be trained to replicate the behavior they are created to emulate. To train a neural network, updates
to the weights of the network must be formulated. These updates to the network are designed in an RL problem by
using experiences derived from the network interacting with the environment and receiving rewards based on previously
performed actions and states. The commonly used Adams Optimizer method is leveraged in this analysis due to its
well established success in state-of-the-art DRL algorithms [20]. For a well-trained neural network, these weights will
asymptotically converge to values that produce trajectories that correspond to solutions that maximize the long term
reward. Additionally, the selected activation function and number of hidden nodes in each layer often influences the
convergence behavior of the algorithm [19]. A larger number of hidden nodes per layer may potentially reflect the
complexity of the solution space for the chaotic dynamics of a multi-body system, but at the expense of longer training
times. Furthermore, the choice of activation function for a specific problem is nontrivial and still an active area of
research [19]. In this investigation, the neural networks are structured with three hidden layers, 256 hidden nodes per
hidden layer, and each node using an ReLU activation function. This structure is observed through a trial-and-error
approach to produce favorable results within an Actor-Critic method and based on its success in other applications with
complex dynamics.

Fig. 4 Representation of a neural network with an input layer, two hidden layers, and an output layer.
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B. Actor-Critic Methods
Actor-Critic methods form the foundation of many modern DRL algorithms due to their robust convergence

properties and applicability to a wide variety of problems. These methods are characterized by their implementation
of two neural networks: one for an actor and one for a critic [21]. An actor neural network produces what it believes
to be an optimal action for a given state while the critic neural network evaluates the actor and updates the networks
accordingly. These two neural networks are independent and both attempt to learn and optimize a distinct reward
function within the environment. Specifically, the actor neural network is used to learn the policy function, πθ (ūt | x̄t ),
that produces the optimal action, ūt , for a given state, x̄t , at time t [22]. Note, both x̄t and ūt may be set to scalar values
in an Actor-Critic method – however, in this analysis, they are each defined as vector quantities. Meanwhile, the critic
neural network is used to learn the value function, Vπ

θ (x̄t ), defined as:

Vπ
θ (x̄t ) =

T∑
t=0

γtrt (x̄(t), ū(t)) (4)

where γ denotes the discount factor, T represents the maximum number of time steps for the agent along a trajectory
within the environment, π is the current policy believed by the networks to optimize the value function, rt is the reward at
each time step t, and θ signifies the the current set of policy parameters [23]. More precisely, θ is formulated as a vector
containing all of the weights within both the actor and critic neural networks. Equivalently, the policy may be generated
directly from the actor neural network while the critic neural network ensures that the policy converges on a long-term,
locally optimal solution. Figure 5 depicts a conceptual representation of an Actor-Critic method with the environment:
the current state is denoted by x̄, the reward of that state-action pair by r , the derivative of the state by Û̄x, the action ū,
and the weights of each neural network by W̄c and W̄a formulated as vectors for the critic and actor neural networks
respectively. The environment contains both the dynamics of the system and the reward function for the algorithm.
While deep neural networks are contained within both the actor and critic blocks, updates to those networks may be
developed via a variety of approaches including policy gradient, least squares, and projected gradient descent methods.

Policy gradient algorithms are commonly employed within state-of-the-art actor-critic methods because the bounds
on the weights do not need to be predefined. Rather, the weights of the connections in the neural networks are iteratively
updated based on the collected experiences from the agent interacting with the environment to maximize the following
expected discounted total reward function:

J(θ) = Eπ

[ T∑
t=0

γtrt (x̄(t), ū(t))
]

(5)

which is evaluated along a single trajectory [22]. To maximize the returned reward, the gradient of this function, labeled
ĝ, is estimated as:

ĝ = ∇θ J(θ) = ∇θ Eπ

[ T∑
t=0

γtrt

]
= Êt [∇θ logπθ (ūt | x̄t )Ât ] (6)

where circumflex symbols denote estimated values and Ât is termed the estimated advantage function at a given time
step [24]. The advantage function is set equal to:

Ât = rt + γVπ
θ (x̄t+1) − Vπ

θ (x̄t ) (7)

Fig. 5 Structure of an Actor-Critic method with the environment of the system, the actor and critic neural
networks, and parameters that are passed between the components.
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This estimated advantage function converges to the true advantage function as the value function is iteratively updated
[23]. Using these definitions, a loss function is formulated via:

LPG(θ) = Êt [logπθ (ūt | x̄t )Ât ] (8)

and represents the loss function for the current policy and value functions [23]. The update to the neural networks
and policy is calculated by formatting the update as an unconstrained optimization problem. However, the limitation
of this approach is the potential for large updates that destabilize the system under poorly sampled state, action, and
reward data. Schulman, Moritz, Levine, Jordan, and Abbeel have developed the trust region policy optimization (TRPO)
algorithm which mitigates this issue by setting a hard constraint on the size of the update through the Kullback-Leibler
(KL) divergence evaluation, a measure of the entropy or difference between two updates [23]. Using this algorithm, the
optimization problem for developing a policy takes the following form:

maximizeθ : Êt
[
πθ,i(ūt | x̄t )Ât

πθ,i−1(ūt | x̄t )

]
(9)

subject to: Êt [KL[πθ,i−1(·| x̄t ), πθ,i(·| x̄t )]] ≤ δ (10)

where θi denotes the policy parameters at update i, KL indicates the KL divergence function evaluation, and δ is a
bound on the KL divergences between the policies [23, 24]. Additionally, the ratio, Rt , between the old and new policies
is defined as:

Rt (θ) =
πθ,i(ūt | x̄t )
πθ,i−1(ūt | x̄t )

(11)

When the policy converges on an optimal solution, this ratio approaches 1. However, determining a correct value for
δ is nontrivial as new environments and changing the parameters of the implementation may necessitate drastically
different values [24]. Subsequent Actor-Critic, policy gradient algorithms have been developed that improved on these
limitations, but generally follow the structure defined above.

C. Proximal Policy Optimization
PPO was originally developed to overcome the limitations of TRPO, eliminating the necessity of predefining a trust

region. Rather, the objective function is now clipped through a clipping parameter, ε, defined using the ratio, Rt (θ); any
update to the policy πθ,i(ūt | x̄t ) that causes the ratio to diverge away from 1 is penalized [24]. Using this information, a
new objective function is written as:

LCLIP(θ) = Êt [min(Rt (θ)Ât,clip(Rt (θ),1 − ε,1 + ε)Ât )] (12)

This loss function ignores any change in the policy ratio if it improves the policy parameters, but considers the policy
ratio when the update produces a decrease in the objective function [24]. A squared-error loss term and an entropy term
are both added to the above objective function and, together, encourages continued exploration of the environment while
converging towards a policy. The objective function that is used within a PPO algorithm is then written as:

LCLIP+VF+S
t (θ) = Êt [LCLIP

t (θ) − c1LVF
t (θ) + c2S[πθ ](x̄t )] (13)

where c1 and c2 are the value function and entropy scalar coefficients, the superscript VF refers to the squared-error loss
term, the superscript S represents the entropy term within the objective function, and S is the entropy bonus which
naturally degrades as the algorithm experiences more updates [25]. The squared-error loss term in this expression is
defined as:

LVF
t (θ) = (Vθ (x̄t ) − V target

t )2 (14)

The value of the clipping parameter originally proposed by the authors, ε = 0.2, tends to perform well on a wide
variety of problems and is, therefore, used in this analysis [24]. Applying PPO within a dynamical environment enables
the development of a policy via trained neural networks to maximize a reward function; Miller and Linares have
demonstrated that this algorithm can be successfully applied to a trajectory design scenario with the CR3BP used to
define the dynamical environment [7].
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IV. Implementing PPO in the CR3BP
PPO is used to design a trajectory and maneuver profile for a low-thrust-enabled SmallSat to reach a nearby

reference trajectory on the stable manifold associated with an L2 Lyapunov orbit in the Earth-Moon CR3BP. First,
the low-thrust-enabled CR3BP is employed as the dynamical environment within the PPO algorithm. Specifically, a
SmallSat equipped with one Busek BHT-8000 Hall Effect thruster set in the maximum thrust mode with T = 0.449N
and a specific impulse of Isp = 2210s is assumed [26]. In addition, an ESPA-class SmallSat with an initial wet mass of
180 kg is assumed in this analysis, consistent with current SmallSat technological capabilities [27]. Then, the PPO
algorithm is structured such that when the neural networks receive an observed state, an action is selected and the
reward is determined by analyzing the effect of the action on the state. In this analysis, the goal captured by each
reward function is to encourage the SmallSat to approach a specified trajectory by minimizing the position and velocity
difference between the current state and a reference state – and, in one reward function formulation, also minimizing
the change in the thrust vector direction. The action output from the neural networks, ū(t), is a 3 × 1 unit vector that
specifies the thrust direction in the rotating frame; although each component is originally selected from a continuous
space between [−1,1], this vector is subsequently normalized to possess a unity magnitude. Formulating the action as a
unit vector reflects a constant thrust applied at each time step. Furthermore, throughout each time step, ∆t, the thrust
direction of the SmallSat is held constant. By defining a constant ∆t term to propagate forward the state of a SmallSat
in the low-thrust-enabled CR3BP, the subsequent state and resulting reward is distinctly determined and returned to
the PPO algorithm. In selecting ∆t, a balance is required to enable the neural networks to identify the effect of an
action on a state without preventing the algorithm from discovering feasible trajectories. Thus, a value of ∆t = 0.001 is
selected in nondimensional units to define for each time step of the PPO algorithm, corresponding to approximately
six minutes. The algorithm is also constrained to identify a solution for the low-thrust-enabled SmallSat to reach the
reference trajectory from a specified initial condition within 50 time steps.

To evaluate a reward function that reflects the deviation between the current spacecraft state and the reference
trajectory, two definitions of a correspondence are employed: an isochronous and a normal correspondence [8]. An
isochronous correspondence between two trajectories is calculated as the difference between two states occurring at
the same time as measured from a common initial epoch. Thus, in the scenario used in this analysis, the spacecraft
state is compared at each time step to a state that is simultaneously integrated along the reference trajectory from the
specified initial condition. Alternatively, for a normal correspondence, the reward function is calculated using the
difference between the current spacecraft state and the closest point along the reference trajectory. In this analysis, this
location is calculated as the closest point in configuration space from a set of 500 states discretized along the reference
trajectory. When evaluating the reward function using an isochronous correspondence, the spacecraft is tracking towards
a moving target – a common scenario when trajectory and maneuver design strategies must incorporate timing or
phasing constraints. However, when using a normal correspondence, the goal is simply to reach any location along the
reference trajectory. This formulation for comparing the spacecraft state to a reference trajectory may be applicable to
scenarios where the goal is simply to access a specific dynamical structure rather than a single state at a specific epoch.

The initial conditions for generating low-thrust-enabled trajectories via the neural networks are defined using a
Gaussian distribution in the x, y, z positions relative to a specified state along the reference trajectory. Specifically, the
Gaussian distribution is defined using a standard deviation of 38.4 km. Although this value represents only a small
deviation from the reference trajectory, the vicinity of the L2 equilibrium point in the Earth-Moon CR3BP is sensitive.
In fact, trajectories generated from initial conditions defined using this small deviation from the reference trajectory
are depicted in Fig. 6 via a projection onto the (x, y)-plane. The reference trajectory lies along the stable manifold
associated with an L2 Lyapunov orbit – a spacecraft on this reference would asymptotically approach the periodic orbit.
However, Fig. 6 reveals that the perturbed solutions either return to the lunar vicinity or pass through the L2 gateway.
During the training phase of each neural network, initial conditions are randomly drawn from the Gaussian distribution,
producing a new set at each iteration. However, once the neural networks are trained using a specific reward functions,
the trained neural networks are all evaluated using the same set of 100 perturbed initial conditions to facilitate a clear
comparison of the resulting trajectories. Training the networks on random initial conditions and then testing on the
evaluation set of initial conditions may prevent overfitting to the data.

Structuring a neural network prior to training is specific to the environment and reward function. Typically, larger
neural networks can better approximate highly nonlinear functions – but at the expense of training time. In this
application, the neural network used in the PPO algorithms for the actor and critic are each structured with three hidden
layers consisting of 256 nodes in each hidden layer. The state input to the neural networks includes the position and
velocity vectors in the Earth-Moon rotating frame, spacecraft mass, and time along the trajectory. Additionally, for
the implementation of the PPO algorithm in this investigation, the associated hyperparameters are selected according
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Fig. 6 Trajectories associated with initial conditions generated via perturbations from a reference trajectory
along the stable manifold associated with an L2 Lyapunov orbit.

to trial-and-error observations of the convergence behavior of the algorithm; Table 1 summarizes the values used in
this investigation. These hyperparameters are used within the PPO2 implementation accessed via the Stable Baselines
open-source library, built using Google’s open-source TensorFlow library [28, 29]. Using these parameters within the
PPO algorithm, neural networks are trained on the low-thrust-enabled CR3BP environment to develop an optimal policy
for tracking to a reference trajectory over a short time horizon following a small perturbation.

The neural networks used in this analysis are trained using three specific formulations of a reward function.
Fundamentally, a general scalar reward function is written as a sum of terms reflecting the difference between the current
spacecraft state and the reference trajectory in position and velocity as well as the change in the thrust unit vector. Then,
each of the three examined reward functions is formulated by varying the scalar coefficients of these terms. The general
reward function, rt , is written as a function of the state and action pair as:

rt (x̄t, ūt ) = −cd |d̄re f (t + ∆t) − d̄s/c(t + ∆t)| − cv |v̄re f (t + ∆t) − v̄s/c(t + ∆t)| − cθθ (15)

where d̄(t) represents the position vectors at a given time step for either the reference trajectory or the current spacecraft
state relative to the system barycenter and in the rotating frame, the velocity vectors are v̄(t) for either the reference or
the current spacecraft state; the subscript ‘ref’ corresponds to a quantity evaluated along the reference trajectory while
the ‘s/c’ subscript corresponds to the current spacecraft state. Recall that the position and velocity difference terms of
the reward function may be evaluated using either an isochronous or normal correspondence. Then, θ is measured as the
angle between the current action unit vector and the previous action unit vector calculated as:

θ = cos−1
(

û(t) · û(t − ∆t)
|û(t)| · |û(t − ∆t)|

)
Then, cd , cv , and cθ denote coefficients for the position, velocity, and control direction terms, respectively. The negative

Table 1 Parameters for the PPO implementation

Parameter Value
Learning rate, α 2.5E-4
Discount factor, γ 0.99
Coefficient of squared-error loss, c1 0.5
Coefficient of entropy term, c2 0.01
Clipping parameter, ε 0.2
Time steps per update 65,536
Total time steps 315,000,000
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signs scaling each term reflect a penalty on large state deviations and large changes in thrust direction between each step.
By altering the coefficients of each term, the neural networks weight the importance of each of the three objectives to
produce a distinctly different reward function.

V. Results
Neural networks are trained using three distinct reward functions to generate three sets of trajectories and maneuver

profiles. Once trained, the neural networks are tested on the same set of initial conditions corresponding to perturbations
in x, y, z from a state along the reference trajectory. The computed set of controlled trajectories and maneuver profiles is
examined to gain further insight into the influence of the reward function on the results of the PPO algorithm.

A. Tracking to a Reference Trajectory via an Isochronous Correspondence
The first reward function formulation reflects the goal of tracking a reference trajectory via an isochronous

correspondence without any penalty on changes in the thrust vector direction. Thus, both the position and velocity
differences between the current spacecraft state and a state integrated along the reference trajectory must be included in
the reward function. However, the perturbed initial conditions are formulated to possess the same velocity at the initial
epoch as the corresponding state along the reference trajectory. Thus, the reward function must be modified to encourage
the networks to decrease the position prior to decreasing the velocity. Not incorporating this modification could result in
the networks not performing any actions because decreasing the position difference inherently increases the velocity
difference. To discourage this type of behavior, an exponential-like term is included in the velocity coefficient to increase
the weight of the velocity error penalty over time. Initially, the reward function only depends on the position term while
the magnitude of the velocity term tends to dominate at later time steps. Then, the reward function simplifies to:

r1(x̄t, ūt ) = −10,000 ∗ |d̄re f (t + ∆t) − d̄s/c(t + ∆t)| − 1,000 ∗ F(t) ∗ |v̄re f (t + ∆t) − v̄s/c(t + ∆t)| (16)

where cd is set to 10,000 to scale the position difference term to be approximately -1 when the sampled positions are
within 1E-4 nondimensional distance units, or 38.4 km, of the state along the reference trajectory at the current time step
and cv is set equal to 1,000 to similarly scale the velocity difference term to approximately -1. These coefficients aid
convergence of the neural networks by scaling the rewards to be the same order of magnitude as the states and actions,
which are both typically in the range [-1,1]. Then, an exponential-like term, F(t), is defined as:

F(t) =
k t/0.05 − 1

k − 1
(17)

and k is set equal to 1E10. Additionally, the state along the reference trajectory is propagated simultaneously with
the spacecraft state consistent with the use of an isochronous correspondence. Using this reward function, the neural
networks are trained for 315,000,000 time steps within the low-thrust-enabled CR3BP environment and then evaluated
on a set of 100 perturbed initial conditions. The evaluation set of trajectories are depicted in the Earth-Moon rotating
frame in Fig. 7a in the three-dimensional configuration space while Fig. 7b displays a projection onto the plane of the
primaries. The trajectories are colored using a variety of hues for clear differentiation. Using the controls scheme
derived from the neural networks, all of the generated solutions reach the reference trajectory within the specified upper
bound of 50 time steps.

To further analyze the results of the trained networks, a single trajectory is examined. The initial condition for
this trajectory is located approximately 122 km away from the specified initial condition on the reference trajectory.
Through the generated maneuver profiles, the spacecraft reaches the reference trajectory to within 17.61 km and 1.77
m/s in position and velocity, respectively, within 5 hours and 12 minutes. This trajectory is presented in Fig. 8a with the
controlled trajectory depicted in blue, the reference trajectory displayed as the black dashed line, and the red arrows
representing the thrust unit vectors output from the neural networks at each time step. A planar view of the trajectory is
also displayed in Fig. 8b. Both figures demonstrate a consistent understanding by the neural networks to direct the
spacecraft towards the reference trajectory as quickly as possible. Once the SmallSat has approached the reference
trajectory, the neural networks appropriately begin applying counter accelerations to avoid overshooting the reference.
The large and regular changes in the direction of the thrust vector associated with this trajectory may be infeasible for a
SmallSat over small time steps. Thus, modification of the reward function to penalize this behavior may be necessary.

Examining the state differences along the trajectories associated with the perturbed initial condition set offers
further insight into the results of the neural networks. The magnitude of the position differences over time for all
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(a) Spatial view (b) Planar view

Fig. 7 100 trajectories guided to a reference trajectory (black) using neural networks trained to minimize
position and velocity differences, evaluated using an isochronous correspondence.

(a) Spatial view (b) Planar view

Fig. 8 Low-thrust trajectory from a highly perturbed initial condition in blue guided towards the reference
trajectory, denoted by the black dashed line, with thrust directions depicted by red arrows, derived from the

neural networks trained to reduce state differences, evaluated using an isochronous correspondence.

generated trajectories is displayed in Fig. 9a. All trajectories – with the exception of four that start from highly perturbed
initial conditions – are guided to between 393 m and 10.78 km of the reference trajectory after 50 time steps. The
magnitude of the velocity difference between the generated solution set and the reference is displayed in Fig. 9b. The
maximum velocity difference at the final time step is 4.91 m/s due to a trajectory emanating from a highly perturbed
initial condition. Furthermore, the mean of the final velocity difference is 1.21 m/s while the minimum is 0.28 m/s.
Oscillations in the velocity differences through time are due to the neural networks performing an action to decrease the
position difference and subsequently counteracting that increase in velocity at the proceeding time step.

Across all trajectories in the generated set, the change in the thrust vector direction directly influences the practicality
of the maneuver profile. In fact, large and frequent changes in the direction of the thrust vector within the six minute
time steps are largely impractical operationally or highly discouraged – particularly for a SmallSat. However, due to
the definition of this dynamical environment where a constant thrust at each time step is applied, often the generated
trajectories require large thrust vector direction changes to avoid drifting away from the reference trajectory. In practice,
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(a) (b)

Fig. 9 Comparison between the reference and the controlled trajectories generated by the trained neural
networks to decrease the state differences via an isochronous correspondence for (a) position and (b) velocity

components of the state.

the SmallSat would likely coast once it is within a specified hypersphere of the associated state along the reference
trajectory. Thus, post-processing is used. First, the hypersphere is defined with a radius of 10 km in position and 2.5
m/s in velocity. If the spacecraft passes within this hypersphere, the low-thrust engine is deactivated. Following this
post-processing procedure, the angle changes occurring along the trajectories associated with 100 perturbed initial
conditions are displayed in Fig. 10a. In this figure, the solid black line indicates the mean angle change across all
non-converged trajectories, the dashed black lines represent one standard deviation, denoted σ, above and below the
mean angle change, and the gray dots are the individual angle changes for each trajectory at each point in time. The
high mean values of approximately 75 degrees indicate that on average, there are large thrust vector direction changes
that would likely be infeasible for a SmallSat to perform. Furthermore, there are four angles that the neural networks
repeatedly select, likely due to normalization of the actions to produce a unit vector. The thrust vector angle change for
the single trajectory depicted in Fig. 8 is also displayed in Fig. 10b. This figure highlights the large and frequent angle
changes associated with the recovered maneuver profile, thereby motivating the incorporation of a penalty on large
changes in the thrust direction.

(a) (b)

Fig. 10 Thrust vector direction changes along (a) all 100 trajectories and (b) a single trajectory generated by
the trained neural networks to decrease the state differences evaluated using an isochronous correspondence.
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B. Tracking to a Reference Trajectory via a Normal Correspondence
In this second example, the reward function is formulated to ensure that the spacecraft tracks to any location along

the reference trajectory. Since the CR3BP is autonomous and manifolds are time invariant structures, the SmallSat may
access the reference trajectory located on a stable manifold at any time and still approach the associated periodic orbit.
Thus, the reward function is reformulated to use a state on the reference trajectory that is closest in position space to the
current spacecraft state, i.e., implementing a normal correspondence. In this case, the reward simplifies to:

r2(x̄t, ūt ) = −10,000 ∗ |d̄re f ,p − d̄s/c(t + ∆t)| − 1,000 ∗ F(t) ∗ |v̄re f ,p − v̄s/c(t + ∆t)| (18)

where the subscript p denotes the state along the reference trajectory that is closest in position space to the SmallSat. The
coefficient of the term penalizing changes in the control direction is set equal to zero and the agent is encouraged to reach
any state on the reference trajectory by any means necessary. The neural networks are trained using this reward function
for 315,000,000 time steps to understand the environment and maximize the returned reward. Figures 11a and 11b
depict the trajectories associated with 100 perturbed initial conditions evaluated using the trained neural networks with a
color scheme consistent with Fig. 7a. All of the perturbed trajectories approach the reference trajectory in configuration
space within the maximum number of time steps. This behavior is highlighted in Figs. 12a and 12b which depict a single
trajectory associated with the same highly perturbed initial condition as displayed in Figs. 8a and 8b using a similar
color configuration. Analysis of these figures reveals that there are slight differences between the controls derived from
each neural network attributable to the difference in the comparison to the reference trajectory at each time step. This
particular trajectory corresponds to maneuvers that do not change in direction as frequently as in the previous case. The
thrust direction changes and state differences that do occur across all trajectories must still be examined.

Examining the thrust vector direction changes and the state differences for the evaluated set of trajectories supplies
insight into the characteristics of trajectories under policies that maximize the constructed reward function. The thrust
vector direction changes for all trajectories are displayed in Fig. 13a using the same configuration as in Fig. 10a with a
similar post-processing strategy. Similarly, the angle changes for the highlighted trajectory are depicted in Fig. 13b.
Under the current reward function, formulated using a normal correspondence, lower mean changes in the thrust
direction occur compared to the previous case. For the single trajectory presented, the thrust vector direction changes are
also much smaller than those in the previous case. Additionally, analysis of the state differences between the perturbed
solutions and the reference trajectory is useful. The magnitude of the position differences are displayed in Fig. 14a while
the magnitude of the velocity differences are depicted in Fig. 14b using a color scheme consistent with Fig. 9a. When
using a normal correspondence to formulate the reward function, the final position difference significantly decreases to
between 80 m and 2.61 km. Furthermore, the velocity differences at the final time are much lower than that of the first
reward function with a maximum velocity difference of 0.87 m/s: 80% lower than in the previous case. Overall, the
mean position and velocity differences at the final time are 0.78 km and 0.49 m/s respectively, indicating the recovery of
solutions that effectively reach the reference trajectory.

(a) Spatial view (b) Planar view

Fig. 11 100 trajectories guided to a reference trajectory (black) using neural networks trained to minimize
position and velocity differences, evaluated using a normal correspondence.
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(a) Spatial view (b) Planar view

Fig. 12 Low-thrust trajectory from a highly perturbed initial condition in blue guided towards the reference
trajectory, denoted by the black dashed line, with thrust directions depicted by red arrows, derived from the

neural networks trained to reduce state differences, evaluated using a normal correspondence.

(a) (b)

Fig. 13 Thrust vector direction changes along (a) all 100 trajectories and (b) a single trajectory generated by
the trained neural networks to decrease the state differences, evaluated using a normal correspondence.

C. Tracking to a Reference Trajectory and Penalizing Thrust Vector Direction Changes
The third reward function encourages the spacecraft to track to any location on the reference trajectory while also

minimizing changes in the direction of the thrust unit vector between time steps. In this case, the reward function
simplifies to:

r3(x̄t, ūt ) = −10,000 ∗ |d̄re f ,p − d̄s/c(t + ∆t)| − 1,000 ∗ F(t) ∗ |v̄re f ,p − v̄s/c(t + ∆t)| − θ (19)

where the cθ term is set equal to unity to scale the position, velocity, and thrust direction terms approximately equally; in
this case, the position and velocity differences are calculated via a normal correspondence. The control profile developed
by the neural networks trained on this reward function is evaluated using the same set of 100 perturbed initial conditions
as in the first two cases. Figure 15a depicts a three-dimensional view of the resulting trajectories in configuration space
while Fig. 15b displays a planar projection of the trajectories onto the plane of the primaries using a configuration that is
consistent with Fig. 7a. The trajectories all approach the reference trajectory in configuration space within the maximum
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(a) (b)

Fig. 14 Comparison between the reference and the controlled trajectories generated by the trained neural
networks to decrease the state differences via a normal correspondence for (a) position and (b) velocity

components of the state.

number of time steps with a geometry similar to that of the first two cases – despite the additional penalty on changes in
the thrust direction. Figure 16a depicts the trajectory associated with a single, highly perturbed initial condition in blue
with the thrust directions displayed with red vectors along with the manifold trajectory represented as a black dashed
line; a planar perspective appears in Fig. 16b. The corresponding maneuver profile resembles those produced by the
second set of trained neural networks where the spacecraft initially matches the velocity of the reference. However, in
this case, smaller changes in the thrust direction occur across each time step.

Examining the thrust direction changes for all 100 perturbed trajectories supplies further insight into the influence of
the thrust direction term in the reward function and on the developed policy. Using the same post-processing strategy as
in the previous two cases, the change in the thrust direction for all trajectories is displayed in Fig. 17a along with the
mean and one standard deviation values. Additionally, Fig. 17b depicts the thrust angle change throughout the selected
trajectory. In both figures, there is a consistent decrease in the thrust vector direction change compared to the previous
two cases. For instance, the mean thrust direction change for the evaluation set of trajectories is approximately 20◦
compared to the 30◦ thrust direction change for the second reward function. Further, the maximum thrust direction

(a) Spatial view (b) Planar view

Fig. 15 100 trajectories guided to a reference trajectory (black) using neural networks trained to minimize
position and velocity differences, evaluated using a normal correspondence, along with a penalty on changes in

the thrust direction between time steps.

15



(a) Spatial view (b) Planar view

Fig. 16 Low-thrust trajectory from a highly perturbed initial condition in blue guided towards the reference
trajectory, denoted by the black dashed line, with thrust directions depicted by red arrows, derived from the
neural networks trained to reduce state differences evaluated using a normal correspondence and minimize

changes in the thrust direction over time.

(a) (b)

Fig. 17 Thrust vector direction changes along (a) all 100 trajectories and (b) a single trajectory generated by
the trained neural networks to decrease the state differences via a normal correspondence and with a penalty

on changes in the thrust direction.

change in the previous two cases is 180◦ while this control profile has a maximum change of 100◦. For the single
trajectory examined, the maximum thrust direction change is limited to under 55◦ while previous cases admit maximum
changes of 180◦ and 75◦, respectively. Furthermore, the thrust direction in the first 15 time steps is nearly constant.
These improvements demonstrate the impact of incorporating a penalty on the change in the thrust direction in the
reward function along with the use of a normal correspondence.

The entire set of trajectories reveals solutions that successfully track to the reference trajectory within the specified
time horizon. The magnitude of the position difference between each perturbed trajectory and the reference is displayed
in Fig. 18a. The maximum final position difference for any trajectory is 13.87 km while the mean final position
difference is 2.14 km. The mean and maximum final position differences are both much lower than the first case, but
slightly higher than the second case; discouraging large thrust direction changes tends to limit how closely the perturbed
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(a) (b)

Fig. 18 Comparison between the reference and the controlled trajectories generated by the trained neural
networks to decrease the state differences via a normal correspondence with a penalty on changes in the thrust

direction for (a) position and (b) velocity components of the state

trajectories approach the reference trajectory within the specified time frame. Furthermore, the minimum final position
difference is raised to 722 m. The magnitude of the velocity difference over time is depicted in Fig. 18b with similar
characteristics as the solutions evaluated using the second trained neural networks. For instance, the average velocity
difference at the final time is 1.31 m/s, the maximum difference is 4.51 m/s, and the minimum difference is 0.13 m/s.
However, unlike the previous cases, these solutions do not maintain a low velocity difference for much time before the
end of the simulation period.

VI. Concluding Remarks
A low-thrust-enabled SmallSat may be guided towards a periodic orbit by tracking to a reference trajectory that lies

along an associated stable manifold. However, approaching a reference trajectory with limited propulsive capabilities
poses challenges for trajectory and maneuver designers. One approach to designing trajectories and associated maneuver
profiles under these constraints is to employ a DRL method to iteratively learn the dynamics and objectives to formulate
a suitable control profile that produces a locally optimal solution. While training neural networks within a DRL method
requires many iterations, reevaluating a trained neural network is computationally trivial. This paper focuses on one
important component of implementing a DRL-based approach to trajectory design: formulation of a reward function
that reflects both the design objectives and the constraints that influence the operational feasibility of the recovered
maneuver profile. This analysis is performed in the context of trajectory design for a low-thrust-enabled small satellite
to access a nearby reference trajectory that lies on a stable manifold associated with a periodic orbit in the CR3BP over a
short time horizon.

In this analysis, neural networks are trained using three distinct reward functions and evaluated on a common
set of initial conditions perturbed from the reference trajectory. The first reward function is designed to reward the
spacecraft for possessing a state that is close to a state that lies along the reference trajectory; this reference state is
defined using an isochronous correspondence. A second reward function is formulated to reward matching a reference
state that is calculated via a normal correspondence. The third reward function then incorporates an additional term
to minimize the change in the thrust direction over each time step, reflecting a significant operational constraint. All
three neural networks generate maneuver profiles that enable a nearby spacecraft to track towards the reference in
phase space – however, the reward function that leverages a normal correspondence produces solutions with tighter
convergence towards the reference trajectory. Including a penalty on changes in the thrust direction in the reward
function significantly improves the potential feasibility of the maneuver profile at the expense of higher position and
velocity differences between the perturbed trajectories and reference solution. Across these three formulations of a
reward functions, neural networks are used to successfully recover solutions for a low-thrust-enabled SmallSat to track
to a reference trajectory on the stable manifold associated with an L2 Lyapunov orbit over a short time horizon.
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