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TECHNICAL IMPLEMENTATION OF THE CIRCULAR
RESTRICTED THREE-BODY MODEL IN STK ASTROGATOR

Cody Short∗, Amanda Haapala† and Natasha Bosanac‡

Spacecraft trajectory design is captivating: it is challenging, intriguing, creative,
occasionally tedious, and ultimately pretty cool. While some of this characteriza-
tion is subjective, it is language that is typical for practitioners of the associated
arts. One thing that is much more objective is that trajectory design is a process,
and this process is often iterative. Currently, the process frequently begins with
lower-fidelity, yet representative, models to compute initial guess data for phases
of the trajectory itinerary, with incrementally more complex models expanding
understanding of the design space. An example of a model that inherently reflects
such an incremental increase in fidelity is the Circular Restricted Three-body Prob-
lem (CR3BP), which still represents a simplification from real-world systems but
does so at the advantage of rich mathematical theory. This model offers reduced
numerical and conceptual complexity yet yields solutions that can capture the gov-
erning behaviors of the underlying higher-fidelity systems. This paper is intended
to establish the relevance of the incorporation of the mathematical framework of
the CR3BP model into the Systems Tool Kit (STK) Astrogator module from An-
alytical Graphics, Inc. (AGI), to discuss the unique implementation requirements
posed by this effort and to offer verification and validation of this implementation.

INTRODUCTION

The modeling environment in STK is formulated to incorporate highly accurate systems of space
and time. High-fidelity ephemerides are used to define the positions and orientations of solar sys-
tem bodies. Additional theory, such as high-fidelity modeling of central body orientations and
gravity fields, is incorporated to best simulate the dynamical environment where a user’s assets are
to be modeled. In particular cases, users can even include corrections for general relativity and the
Yarkovsky effect. Despite a potentially effective ability to model the system, real solutions deviate
from expectations as a consequence of imperfect knowledge of the environment or the spacecraft
performance. For example, in a recent interview, the lead scientist for OSIRIS-REx described how
outgassing from water ice was substantial enough to yield accelerations larger than solar radiation
pressure on the spacecraft and push the vehicle out of orbit about Bennu, had it not been appropri-
ately mitigated.1, 2 While it’s ultimately desirable to bring design solutions as close to the real-world
solution as reasonably possible, it is often cumbersome, prohibitive and potentially untenable to per-
form initial design efforts in such high-fidelity environments. For instance, in multi-body trajectory
design, lower-fidelity models such as the CR3BP are often employed for rapid analysis and design;

∗Astrodynamics Software Engineer, Analytical Graphics, Inc., 220 Valley Creek Blvd., Exton, PA 19341
†Mission Design Engineer, Astrodynamics and Controls Group, Johns Hopkins University Applied Physics Laboratory,
11100 Johns Hopkins Rd., Laurel, MD 20723
‡Assistant Professor, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineering Sci-
ences, University of Colorado Boulder, Boulder, CO 80309

1



solutions designed in these approximate models are then efficiently transitioned into higher-fidelity
environments for further analysis. To support a trajectory designer who wishes to start from a
simplified model, but to also work within the STK system, implementation of the CR3BP model
requires special considerations as well as adaptations of the existing environment.

To support efficient transitions between analyses performed in the restricted problem and higher-
fidelity environments in STK, a reusable implementation of the CR3BP model is desired. Incorpo-
rating simple yet elegant models like the CR3BP into a toolset like Astrogator makes the associ-
ated theory a possibility for some mission designers whose focus and time typically lies elsewhere.
Bringing the model into the tool also alleviates the previously required user effort associated with
transforming data to migrate related analyses into STK as well as post processing. The capability
to both create and reproduce CR3BP trajectories directly in Astrogator also enables an additional
step in the process of transitioning solutions to higher-fidelity models within the same tool. Beyond
these meaningful strides, the current state of a general CR3BP implementation within Astrogator
remains somewhat nascent, and the effort represented by this paper reflects a strategy to lay a solid
foundation upon which to incrementally expand. Ultimately, if trajectory designers and mission
planners can use these tools to do more, faster—to accomplish additional exciting work, then these
efforts have been and will continue to be well spent.

This paper supplies an overview of the technical implementation of the lower-fidelity CR3BP
within the STK Astrogator framework. First, key concepts associated with STK Astrogator and
the circular restricted three-body problem are summarized. Using this foundation, implementation
details of the force model within the Systems Tool Kit for use within Astrogator are discussed. Then,
specific configuration requirements for the STK system to be used effectively with the CR3BP are
described. Examples of direct propagation within STK Astrogator of representative orbits and two
L1 orbit families with initial states taken from external simulation as well as supporting metric
comparisons are examined. An L1 to L2 transfer produced and corrected in Astrogator is presented
and discussed. Finally, concluding remarks are offered along with a few points of future work.

STK ASTROGATOR

Astrogator’s roots lie in a strong lineage of tools with incarnations dating back to 1989.3 Many
elements and algorithms preceded these formal offerings, and others have arisen over time. The tool
has been used for analysis, design and operations on missions ranging from LEO to GEO,3 from
the Sun4 to Arrokoth in the Kuiper Belt,5, 6 and many places in between. Most of these applications
faced unique requirements, and software enhancements resulted in response.7–10 Astrogator has
also supported numerous programs operationally. The earliest mission utilizing the software was
the Wilkinson Microwave Anisotropy Probe (WMAP) mission.11 In addition to WMAP, Astroga-
tor has also been used in an operational context to support other libration point missions including
ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interac-
tion with the Sun), a follow-on to THEMIS (Time History of Events and Macroscale Interactions
during Substorms) that included phases in and around Earth–Moon L1 and L2 and DSCOVR (Deep
Space Climate Observatory; Sun–Earth L1). Many other missions, including various additional
libration point missions, have been supported in the planning and analysis phases; some are enu-
merated in Short et al.10

The role of Astrogator in the spacecraft mission design lifecycle is largely reflected in the trajec-
tory design and analysis phases, although it is also relevant to other stages such as early concept
design and selection as well as operations. Astrogator’s integration within STK leads to significant
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synergies that enable trade studies where the environment is modeled accurately to capture many
important contributions to the system. For example, inherent system awareness of periods of time
when a spacecraft has line-of-sight intervisibility (or access) to other resources will affect other as-
pects of the mission design. Similar access considerations are also critical during operational phases
of a spacecraft mission. Further, the integration with STK allows for feedback through graphics and
data product reporting.

While the STK system lends some support, Astrogator displays several independent strengths.
In turn, Astrogator extends the capabilities of the STK system. Particular strengths of Astrogator
are reflected in the principles of modularity and configurability. These principles are implemented
in the STK Component Browser and associated component technology.12 The various components
in the browser represent individual aspects of the mission model. A particular component may
reflect part of the force model or characteristics associated with a central body for the system.
Some components represent calculations and provide a mechanism for reporting various data, while
others interact to produce a functional unit or even a sequence of segments to define an Astrogator
satellite. These capabilities offer extensive “out-of-the-box” options, while also providing plugin
points for users to supply their own models when needed. Additional mechanisms exist to execute
the simulation. The Mission Control Sequence (MCS) is a interactive environment for designing
and configuring the evolution of spacecraft trajectories. The MCS uses various segments and other
objects to capture the design—each of these pieces is a component. The recent incorporation of
the CR3BP elements that comprise the focus of this paper, while implemented in an integrated way
within STK, are all offered to the user through components.

THE CIRCULAR RESTRICTED THREE-BODY PROBLEM

A useful and approximate model of a multi-body system is one that sufficiently captures the
dominant features of the dynamical interactions. Formulating a dynamical model that reflects the
gravitational interactions of three bodies produces a model that is sufficiently complex to reveal
many important characteristics while remaining tractable. However, the general three-body prob-
lem possesses no closed-form analytical solution.13 Thus, additional simplifications, such as those
consistent with the Circular Restricted Three-Body Problem∗, offer significant insight.

The CR3BP models the gravitational influence of two larger, massive primaries (for example, the
Earth and the Moon) evolving on circular orbits on a third, much smaller body of negligible mass
(e.g., a spacecraft). These two primary bodies are designated as P1 and P2. Position variables, x,
y, and z describe the position of the third body P3, the spacecraft, with respect to the barycenter
B of the primary system, defined in the rotating frame (x̂, ŷ, ẑ). This rotating frame is depicted in
Figure 1 relative to an inertial reference frame (X̂, Ŷ , Ẑ). The system mass parameter is represented
by µCRP = m2

m1+m2
, a function of the masses or mass parameters of the primary bodies. Additionally,

distances between the third body and each of the massive primaries are denoted ri3. In a coordinate
frame that rotates coincident with the circular motion of the primaries, a system of differential
equations that describes the motion of the third body is written as

ẍ =
∂U∗

∂x
+ 2ẏ, ÿ =

∂U∗

∂y
− 2ẋ, z̈ =

∂U∗

∂z
, (1)

∗The acronyms CR3BP and CRP as well as the forms “restricted problem” and “circular restricted three-body prob-
lem” are all adopted and used interchangeably throughout.
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Figure 1: A pictorial schematic of the circular restricted three-body problem

with the pseudo-potential function defined as

U∗ =
1− µCRP

r13
+
µCRP

r23
+

1

2
(x2 + y2). (2)

First derivatives in x and y appear in the equations of motion as a result of the Coriolis acceleration,
and typical formulations incorporate nondimensionalization by characteristic system quantities in
length, time and mass.

The equations of motion in the restricted problem, consistent with Szebehely,14 admit a single
constant of the motion in the rotating frame. This Jacobi integral is defined as

CJ = 2U∗ − v2, (3)

where v2 = ẋ2 + ẏ2 + ż2, that is, the square of the magnitude of the velocity. The Jacobi constant
enables a reduction of order in the problem, and frequently plays an important role in the definition
of maps. The integral also reveals boundaries on the motion of the third body in the restricted
problem; such insight is useful for validating the accuracy of numerical simulations and developing
heuristics for trajectory and maneuver design.

The restricted problem represents a model of sufficient complexity to exhibit regions of both
chaotic and relatively ordered behavior. Fundamental solutions such as libration points, periodic or-
bits and invariant manifolds emerge from the elegant mathematical approaches developed, in part,
to study this problem. Generally, the focus of an analysis in this model is understanding and ex-
ploiting the underlying dynamics to identify useful trajectory arcs. The CR3BP is frequently used
to yield first-order trajectory design solutions, and the features revealed through analysis of it as a
dynamical system supply substantial insight into the associated design space.

IMPLEMENTATION DETAILS

Astrogator’s numerical propagation model follows a modular execution strategy based upon the
concepts of a “propagator” and a “numerical integrator”. While these concepts or terms are part of
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the general astrodynamics vernacular, they are used specifically within Astrogator. Both objects fol-
low the STK component paradigm and exist independently of a specific spacecraft or orbit model.
Consequently, these components can be customized and configured as needed to support a broad
variety of possible applications. Within the context of the CR3BP, a special propagator component
has been introduced that appropriately constrains user choices. For example, the selectable gravity
model offers only the associated circular restricted model propagator function—no two-body, grav-
ity field or third-body perturbations allowed! Other propagator functions are allowed such as solar
radiation pressure, general relativity and others. Propagation of the state transition matrix is also
determined by the addition of its associated propagator function. Certain combinations are given
special handling to best numerically condition the propagation when additional choices are added
to the propagator. Likewise, the numerical integrator component embedded within the propagator
has also been customized by appropriately limiting options that are not relevant to CR3BP analysis.

Prior to evaluation and simulation, internal mechanisms associated with the mission control se-
quence identify if the CRP functions are to be evaluated. If so, the Astrogator state is prepared to
account for this evaluation. The Astrogator internal state holds various data essential to propagating
and recreating the spacecraft ephemeris. Some of this data are context dependent, such as maneuver
related properties. Consequently, such data are only updated within the particular context where
they are relevant. This context-dependent state element update is the case for propagation associ-
ated with the CR3BP. If the CRP function is to be evaluated, the Astrogator initial state (however it
has been defined by the user, then converted and stored internally in its STK Central Body Inertial,
or CBI, representation) is transformed into its CRP representation. The CRP representation of the
initial state is set into the Astrogator state vector in reserved space used only when propagating
under restricted problem dynamics; the CR3BP mass parameter is also set into the state vector at
this time. Finally, internal flags are set to indicate that a circular restricted force model will be used
and whether the State Transition Matrix (STM) must be evaluated.

As execution of the MCS begins, each propagator function is processed in turn, building up
the acceleration acting on the spacecraft. With each major step of the numerical integrator, many
function evaluations are performed. It is during this chain of function evaluations that the newly im-
plemented CRP equations of motion may be invoked and, depending on selected options, the state
transition matrix functions may also be executed in response to the CRP evaluations. Evaluation of
the CR3BP equations of motion represents a seemingly straightforward process, and this is typically
the case when the simulation environment has limited preconditions. However, the “system” pre-
sented by the Systems Tool Kit architecture imposes some such preconditions that require careful
handling. The strategy employed has been one of adapting the system as well as adapting the eval-
uation in a way that favors the most consistent numerical results, both in terms of self-consistency
as well as in terms of consistency with external simulation, at the end of the process.

Astrogator CR3BP equations of motion implementation

The implementation of the CR3BP equations of motion relies on instantaneous transformations
to produce a hybrid system that evolves under these equations of motion, but redefines the system
with each time step, accounting for all aspects of the motion of the secondary. If the secondary
body in the three-body system follows natural motion (i.e., non-circular), the associated motions
will be incorporated into the instantaneous transformations inducing librations and pulsations in the
rotating frame inconsistent with the CR3BP dynamics. However, if the secondary motion for the
system is appropriately defined (i.e., moving on a circular orbit about the primary, etc.) the result is
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Table 1: Transformation Matrices Employed in CR3BP Model Evaluation

Matrix Dimension Description

IRR(t) 6×6 or 9×9 Rotation matrix from the CR3BP rotating frame to the STK CBI frame

ISR(t) 6×6 or 9×9 A diagonal scaling matrix with the position, velocity and acceleration
(in some cases) scale factors comprising the diagonal

IHR(t) 6×1 or 9×1 A vector to shift the state from the barycenter to the primary center

RRI(t) 6×6 or 9×9 Rotation matrix from the STK CBI frame to the CR3BP rotating frame

RSI(t) 6×6 or 9×9 A diagonal scaling matrix with the position, velocity and acceleration
(in some cases) reciprocal scale factors comprising the diagonal

RHI(t) 6×1 or 9×1 A vector to shift the state from the primary center to the barycenter

consistent with the circular restricted model. Thus the implementation of the CR3BP in Astrogator
assumes a guided framework where the environment is properly and precisely configured. Aside
from these considerations (i.e., the noted adaptations of the STK system discussed in the software
system preparation section), the numerical implementation is generally consistent with typical nu-
merical integration approaches. The process is principally one of frame transformations performed
in a specific order to prepare the position and velocity state variables to be utilized as inputs for
the dynamical model. Once appropriately cast, the model is evaluated and the necessary quantities
retained. Subsequent transformations are performed based on the propagator definition.

The CR3BP system is defined based upon the configuration of the propagator function. The
central body for the propagator serves as the system primary, P1, and the user must specify which
STK central body is to act as the restricted problem secondary, P2. The STK system has been con-
figured to allow the choice of secondary bodies to include child or parent bodies of the primary.
Given a CR3BP system, the transformation matrices are summarized in Table 1. In the table, the
superscripts I and R imply notional relevance in dealing with two fundamental systems: STK’s in-
ternal, dimensional Central Body Inertial (CBI) system and the CR3BP nondimensional, rotating,
barycentric system. The superscripts not only represent the associated reference systems but they
also generally convey the directional behavior of the transformation, based on context, read from
right to left as a matrix (or vector) is premultiplied (or summed) against a state vector. The rotation
matrices are formed consistent with STK’s Rotating Libration Point (RLP) systems,15 and incor-
porating similar notions to those found in Anderson.16 They are used to transform position and
velocity state variables in their 6×6 forms or position, velocity and acceleration in their 9×9 forms.
In each case, all vector derivatives and kinematic considerations are incorporated directly into the
rotation matrices. The scaling matrices are comprised of the position variable scaling factor on the
diagonal of the upper-left 3×3 submatrix and the velocity variable scaling factor on the diagonal of
the lower-right 3×3 submatrix in the case of only position and velocity transformation. In the case
where acceleration is also transformed, the velocity scale factor comprises the central 3×3 diagonal
submatrix of the larger 9×9 matrix, and the acceleration variable scale factor populates the diago-
nal of the 3×3 lower-right diagonal submatrix. The direction of scaling (up or down) determines
whether the scaling factors in the matrix are either simply the characteristic quantities for the system
or their reciprocals. Finally, the shift vectors are simply added to the state vector to translate the
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base point for the position components from the primary center to the system barycenter or vice
versa, as appropriate.

Beginning with the position and velocity state components in dimensional form (D) and expressed
in STK’s CBI (I) coordinate system, designated XI

D(t), as input to the model, the following sequence
of operations is performed: rotate, scale, shift. These steps are performed in the following equations
by first rotating the state in Equation 4, then nondimensionalizing in Equation 5.

XR
D(t) =RRI(t)XI

D(t) (4)

XR
ND(t) =RSI(t)XR

D(t) (5)

xR
ND(t) =RHI(t) + XR

ND(t) (6)

In Equation 6, the final step of shifting the state to the barycenter results in a traditional barycentric,
nondimensional (ND), rotating (R) CR3BP state, where the lower case vector notation, i.e., x, has
been adopted for this overall state form.

Given a state posed in the native system of the CR3BP, the force model is simply evaluated∗

consistent with Equation 1. This evaluation yields the CR3BP acceleration, aR
ND(t). With the accel-

eration computed, a 9×1 vector is constructed, x̃R
ND(t), comprised of position, velocity and acceler-

ation components. The restricted problem position and velocity state variables are also committed to
the Astrogator state for potential use later in computing various quantities upon demand (e.g., CJ ).
To this point, the transformation matrices and vectors have been either 6×6 or 6×1. The addition
of acceleration to the state vector invokes the necessity of the 9-dimensional counterparts. With the
9-dimensional state vector, the inverse transformation process to that performed in Equations 4–6 is
executed: shift, scale, rotate.

X̃
R
ND(t) =IHR(t) + x̃R

ND(t) (7)

X̃
R
D(t) =ISR(t)X̃

R
ND(t) (8)

X̃
I
D(t) =IRR(t)X̃

R
D(t) (9)

The resulting 9-dimensional state vector, X̃
I
D(t), is the CBI position, velocity and acceleration,

with only the acceleration components representing “new information”. At this point, the CBI
position and velocity allow for consistency checks on the initial inputs to the model, while the CBI
acceleration components are the basic necessary outputs for integration to proceed within STK’s
general numerical integration framework.

First-order partial derivative evaluations

In the case where the state transition matrix is to be computed, the first-order partial derivatives
must be evaluated. Whether the STM is to be computed or not is determined by user inclusion
of the STM propagator function on the numerical propagator component. Additional logic is im-
posed to determine in which frame to integrate the variational equations. If the propagator contains
only the CR3BP and STM propagator functions, the partial derivatives are maintained in their na-
tive restricted problem representation to minimize numerical artifacts introduced through additional
transformations. Otherwise, if additional forces are considered through the inclusion of propagator
∗Several alternative formulations were considered including implementing the CR3BP equations of motion dimen-

sionally or in a primary-centered form. Each alternative option yielded numerical results less consistent against various
validation efforts and self-consistency checks than evaluation in the native CR3BP formulation posed here.
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functions like, for example, solar radiation pressure∗, the partial derivatives must be transformed
into the common working frame for those other forces, CBI, before the variational equations are
integrated. The transformations of the partial derivatives are noted through observation to intro-
duce additional numerical bias upon integration. This numerical discrepancy is such that partials
that have been transformed to CBI and integrated produce an STM when transformed back to the
rotating frame that disagrees, over time, with an STM produced from natively integrated partial
derivatives. While generally small, consistent with numerical integration error buildup, the dis-
agreement does grow with simulation time and is therefore avoided when not including additional
forces. The inclusion of additional forces, however, imposes the transformation as other options are
prohibitive.

The simplest case for the evaluation of the first-order partial derivatives is when they are re-
tained in their native rotating form for integration. However, since the remainder of the variables
in the Astrogator state vector are typically integrated in dimensional time consistent with the pro-
cess described in the previous section, the partials do require dimensionalization, even in this case.
Consider the following matrix of (nondimensional) first-order partial derivatives:

AR
ND(t) =

∂F

∂xR
ND

=

[
∂v
∂r

∂v
∂v

∂a
∂r

∂a
∂v

]
, (10)

where F represents the first-order system of differential equations corresponding to Equation 1,
xR

ND is the position-velocity state vector consistent with the left-hand-side of Equation 6 and r, v
and a are the position, velocity and acceleration 3-vectors, respectively. Dimensionalization of the
partial derivatives in this matrix in preparation for integration is accomplished by dividing each of
the elements of the four submatrices by the characteristic time parameter, t∗, of the CRP system, its
square or unity, as appropriate (in some cases, an operation is naturally unnecessary and, therefore,
not performed).

∂v
∂r elements: divide by t∗

∂a
∂r elements: divide by t∗2

∂v
∂v elements: divide by 1

∂a
∂v elements: divide by t∗

If additional forces are to be considered while integrating the STM, then the partial derivatives
must be converted to the STK CBI system to match the partial derivative computations for the other
forces. In this case, the dimensionalized matrix of partial derivatives is transformed as

AI
D(t) =IRR(t)AR

D(t)RRI(t), (11)

where both rotation matrices are the 6×6 position-velocity rotation matrices. The partial derivatives
with respect to position are carried through for incorporation with any other force model partial
derivatives to be integrated and produce the resulting STM.

Upon completion of the numerical propagation of the CRP, the Astrogator state vector contains
its typical data, including CBI position and velocity components and any other contextual data. In
this particular case, CRP state variables are also populated for each step in the ephemeris as well as
the CRP mass parameter. Further, if the STM was propagated it was produced either in the native
∗Inclusion of additional forces into the model is an allowance afforded by Astrogator’s modular paradigm. However,

if the user chooses to do so, the resulting system will, of course, increasingly depart from the fundamental mathematical
character consistent with the CR3BP.
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restricted problem system or in CBI. If computed in the native CRP system, the STM is transformed
for storage in the state vector into CBI for consistency—at the present time, the STM is always
saved into the Astrogator state vector in CBI.

SOFTWARE SYSTEM PREPARATION

To incorporate the lower-fidelity dynamical model represented by the CR3BP into a high-fidelity
tool like STK, appropriate adjustments are required. While the fundamental mathematics associated
with the model have been implemented directly into STK for use within Astrogator, those mathe-
matics rely on the same assumptions in STK as they would elsewhere. Namely, that the three-body
system is consistent with the CR3BP definitions. In this case, that means the system must also be
adjusted to match the mathematical model. Primarily, these adjustments involve adapting the envi-
ronment to be consistent with the definitions given by Szebehely14 and reflecting common modifi-
cations consistent with Howell17 and others. The process detailed in this section has been captured
to varying degrees in other AGI media including a tutorial18 as well as a high-level video.19 The
inclusion of the process here provides a mechanism for additional elaboration and clarification. At
the present time the steps outlined in the following two subsections must be carried out by the user.
A point of future effort is to remove this burden from the user and provide a tool within the STK
system to perform these operations. Regardless, the details are illustrative and relevant to any future
automated process.

Creating a consistent STK system

The Systems Tool Kit represents not only a suite of software capabilities to interact with time-
dynamic systems but also a system itself. It is comprised of multiple subsystems that work in concert
to simulate various physical phenomena. One critical component of the system is that of the central
body. While an STK scenario typically holds a default central body, which can be selected upon
scenario creation, this default does not restrict the environment to analysis only on and about that
body. Rather, the default central body most often serves simply as the default for new object creation
and other settings. Astrogator is a particular subsystem within STK that often simultaneously takes
advantage of multiple central bodies, each of which may be configured independently by the user.
The central body components in the STK Component Browser serve as user level interfaces to
lower-level STK central body constructs, and provide a mechanism for a user to customize or create
a new central body. It is this capability that is exploited to appropriately configure the CRP system.

A fundamental assumption of the circular restricted three-body problem is that the two massive
primaries mutually orbit on circular orbits about their common barycenter. As no real-world systems
satisfy this assumption under the JPL ephemerides used to model the orbital motions of the STK
bodies, a suitable alternative means to satisfy the assumption must be made if the CR3BP model is
to be used. The assumption can be satisfied by a secondary in a circular orbit about the primary in
the inertial system. Using this as the basis for bridging the gap between STK’s environment and the
CRP model, the key step is to create the appropriately defined secondary central body. Then, the
CR3BP propagator can use the physical and orbital parameters of the secondary along with those of
the primary, to fully characterize the CR3BP system. The process begins with creating the central
body to act as the secondary. The user:

1. Duplicates an existing central body in the STK Component Browser (ideally one with mini-
mally predefined data like the “asteroid template”).
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2. Enters physical properties of the secondary, specifying its gravitational parameter and parent.

3. Optionally defines the attitude of the secondary (this allows for visualization in a secondary
“fixed” frame).

4. Defines the secondary’s orbit to be circular, consistent with desired parameters for the CRP
system. All orbital element rates are zero except that of the anomaly parameter, which defines
the rotating frame rate.

5. Configures STK to show the new central body graphically.

The pattern of duplicating an existing component in the Component Browser to create a new com-
ponent has been long established within STK and is generally effective; however, this approach can
leave multiple settings “to be unset” in the case of a central body. Thus it is advised to use the re-
cently created “asteroid template”. Upon creation of the new body, setting its two-body gravitational
parameter (GM2b) is critical as this will be used in conjunction with the primary’s gravitational pa-
rameter to define the CR3BP mass parameter, µCRP, as

µCRP =
GM2b, secondary

GM2b, primary + GM2b, secondary
. (12)

Further, the specification of the secondary’s parent signals to the CR3BP propagator and associated
propagator function that it (the secondary) may be selected in combination with the central body
for the propagator, which acts as the primary. Only children or the parent of the primary may be
selected when choosing the secondary for the CR3BP propagator function. Specifying the attitude of
the newly defined secondary enables advanced visualization and analysis, but is not required for the
CR3BP force model to work. The specification of the analytic orbital parameters for the secondary
determines the initial system configuration and epoch. This specification allows for significant
flexibility in defining the CR3BP system to match a natural system at some epoch. Finally, the
configuration of various graphical settings allows for visualization of the secondary’s orbit as well
as, perhaps, adding a 3D model onto the central body.

Creating a working coordinate system

The next major step in configuring the STK system involves invoking another STK subsystem, the
Analysis Workbench (AWB). The goal at this step is to configure a convenient working coordinate
system, and involves using the definitions of the CR3BP to define geometric constructs to build the
coordinate system. The process involves creating:

1. A displacement vector between the primary and secondary using actual positions (i.e., not
using STK’s adjustments for light time delay).

2. An aligned and constrained unit-vector axes set with the primary-secondary vector direction
serving as the “x” direction, and the secondary’s orbit angular momentum serving as the “z”
direction; the “y” direction follows automatically to complete the dextral, orthonormal triad.

3. A primary-centered coordinate system using the unit-vector axes from the previous step with
a reference point at the primary center.
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4. A point for the barycenter along the “x” axis at the distance of µCRP · l∗ from the primary
center, with l∗ being the characteristic distance of the CRP system.

5. A barycentered coordinate system using the same unit-vector set with a reference point at the
system barycenter.

Each of these geometric constructs is useful for particular aspects of analysis in the CR3BP, but
the principal element is the barycentered coordinate system. With the coordinate system defined,
the user may now specify initial conditions in Astrogator consistent with the CR3BP system (in
dimensional units). Further, Astrogator stopping conditions and calculation objects can make use
of the new coordinate system.

With the STK system configured appropriately and a working coordinate system set up, the
CR3BP force model and attendant propagator can be used to effectively simulate solutions under the
restricted problem dynamics. An Astrogator satellite object is configured with a propagator compo-
nent using the force model against the primary-secondary system. Various Astrogator calculation
objects can be configured to report on data in the new coordinate system. The Jacobi constant is also
available for computations against ephemeris propagated with the CR3BP propagator. Finally, the
specific Astrogator satellite’s graphics properties can be configured such that the orbit system for
display is the CRP rotating frame. These capabilities represent the basic functionality to simulate
trajectories in the restricted problem. Additional capabilities remain under development.

VALIDATION

To ensure validity in the internal implementation of the model within the unique STK Astrogator
simulation environment, various accuracy checks and strategies are employed. Comparisons with
literature as well as self-consistency of results represent two approaches. Evaluation in external
simulation environments and across numerical integration schemes are additional choices. Aspects
of these approaches as well as others are invoked to verify and validate the CR3BP model in STK,
and particular details are offered.

A common and simple check graciously afforded by the CR3BP is a check of the time history
of the integral of the motion, the Jacobi constant, CJ . Although a fairly straightforward quantity to
compute, the Jacobi constant is often nontrivial to recover from operational software as it requires
the state variables to be posed in nondimensional, rotating coordinates consistent with the CR3BP
model. With the addition of the model natively into the Astrogator framework, the Jacobi constant
is now also available for use in the tool with this specific model. In Fig. 2, two periodic orbits about
L1 in the Earth–Moon CR3BP are depicted, a planar Lyapunov orbit (period: 12.46 days) in peach
and a three-dimensional halo orbit (period: 12.28 days) in lavender. In the figure, the direction of
motion is generally indicated by arrows and two views are included: a rotating frame view and an
inertial view. In Fig. 3, the absolute difference from the initial Jacobi constant (∆CJ ), a function of
numerical simulation error, is plotted along the single revolutions of each orbit depicted in Fig. 2.
Although the difference is non-zero it remains small, an expected behavior of a constant derived
from numerically integrated state data. These results reflect two data points associated with orbits
that are relatively well behaved numerically, and serve as an introduction to a more general process.

The preceding process is now extended across two families of orbits and specific details associ-
ated with the process in terms of producing the families as well as numerical integration schemes
are provided. Aggregate results and the relative efficacy of those results are also discussed. The
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(a) Rotating view (b) Inertial view

Figure 2: Earth–Moon Lyapunov and halo orbits about L1 constructed natively in Astrogator

(a) Lyapunov orbit

(b) Halo orbit

Figure 3: Jacobi constant variation associated with numerical integration of the orbits from Fig. 2

analysis is expanded and applied to the L1 Lyapunov and southern halo families under the follow-
ing methodology. System parameters are taken from the three-body system constructed in STK
and used to establish an independent simulation. This simulation is carried out in MATLAB with
a standard implementation of the first order differential equations of motion from Equation 1. In
MATLAB the numerical integration scheme ode113 is used with integration tolerances (absolute
and relative) of 1×10−12. The initial Lyapunov orbit is constructed from linear analysis about the L1
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point and the family is continued via Pseudo-Arclength Continuation (PALC)20, 21 with individual
orbits being corrected with multiple shooting on four control points. Inspection of the eigenvalue
structure of the monodromy matrix for constituent family orbits reveals bifurcations with other fam-
ilies. The bifurcation leading to the L1 halo families is followed along the southern branch, again
via PALC. These orbits are depicted in Figs. 4–5, where in Fig. 4a the Lyapunov orbits are depicted
in a color scale ranging from cerulean through shades of blue and pink to fuchsia. This coloring is
normalized among the included representative orbits and corresponds to closest approach distance
to P2. In Fig. 4b, a zoomed-in region near P2, denoted “CircularMoon”, is included along with an
x–y perspective projection of the southern halos superimposed on the Lyapunov orbits to convey a
relative sense of scale. The Earth, P1, is also visible in some of the images. Figure 5 offers several
perspective projections of the L1 southern halo family, constructed within STK. Simulation of the
family is terminated in the range of orbits denoted Near Rectilinear Halo Orbits (NRHO)22, 23 with
the member produced via continuation whose closest approach of P2 does not impact the surface
(altitude: ≈86 km). Again, the representative halo orbits are colored by closest approach to P2.
General orbital motion in the rotating frame is consistent in the orbits of these families as with the
orbits included in Fig. 2a. The generally central cyan point (unlabeled in several views to reduce
visual clutter) is L1.

Subsequent to the family continuation and corrections process within MATLAB, the orbits are
repropagated from initial states, terminating on their previously determined periods. The Jacobi
constant is calculated and maximum variations are stored from the numerical integration within this
framework. The computation of the maximum variation of the Jacobi constant along a given orbit
is computed as:

Max (∆CJ) = max (abs (CJi − CJo)) ∀i, (13)

where i indicates an indexed state within the orbit’s ephemeris with o corresponding to the first state.
Further, consistent with the repropagated ephemeris, a measure of orbit closure is calculated as:

|∆X| = |xtf − xto|2 (14)

That is, the closure measure is simply the l2-norm of the vector difference between the initial state
and the final state of the orbit.

Given the converged orbits, their initial conditions, periods, Jacobi constants and closure mea-
sures, the analysis shifts back into Astrogator. The STK Astrogator Component Object Model
(COM) Application Programming Interface (API) is used through MATLAB to attach to the STK
scenario previously constructed for use with the restricted problem. In this case, the scenario uses
the Earth as P1 and a user-configured “Moon” placed on a circular orbit denoted “CircularMoon”
in Figs. 4–5. The analytical orbital parameters for the lunar orbit are consistent with those given
in the system configuration tutorial.18 The COM API is further utilized to add Astrogator satellites
to the scenario, populate those satellites with initial state and propagate segments, and configure
the segments to hold the initial conditions and other parameters from the MATLAB orbit family
simulations. Calculation objects are added to the propagate segments and the orbit system graph-
ics settings are configured for each satellite to depict the orbits in the rotating frame. Finally, the
mission control sequence for each satellite is executed and the calculation object data providers
are evaluated to compute the Jacobi constant along the orbits, its maximum variation and the orbit
closure measure. The visuals comprising Figs. 4–5 result from Astrogator propagations. Although
available from Astrogator’s target sequence capabilities, no numerical corrections are performed;
the goal is to simply propagate the orbits and evaluate the associated efficacy of the propagation.
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(a) L1 Lyapunov orbit family (b) L1 halo family for comparison

Figure 4: L1 Lyapunov and halo orbit families projected onto the x–y plane

(a) Rotating x–y perspective projection (b) 3D perspective view

(c) Rotating x–z perspective projection (d) Rotating y–z perspective projection

Figure 5: Southern L1 halo orbit family
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Propagation in Astrogator is accomplished with minor modifications to the default integration
settings. The selected numerical integration scheme is the default RKF7th8th integrator, an adap-
tive step size Runge–Kutta–Fehlberg 7th order scheme with 8th order error control. The requested
error tolerances are decreased to 1×10−13 and 1×10−15 (absolute and relative, respectively). These
error controls are enforced on the dimensional state within STK, a consideration that becomes im-
mediately apparent in the resulting analysis. In this case, the user-customized three-body propagator
includes the state transition matrix propagator function because the MATLAB simulation includes
the STM, however, no STM analysis is included for this effort as relevant data have not yet been
exposed for Astrogator. Under the different numerical integration parameters, it is expected that
results will generally disagree numerically between the two simulations. Nevertheless, the aggre-
gate behavior is consistent as evidenced immediately by the reproduction of the orbit families under
simple propagation. Figures 4–5 represent the initial validation of the STK Astrogator model—it
reproduces the solutions from the external simulation.

Subsequent comparison between the two simulations helps to establish how well the model cap-
tures the dynamics. Direct comparison between the Jacobi constant of representative orbits from
both families is offered in Fig. 6. In this and subsequent figures, the horizontal axis is marked in
terms of distance from P2, thus the orbits closest to L1 in each family are found on the right-hand
side of the plots. The Jacobi constant is visually consistent for the orbits from both simulations.
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Figure 6: Jacobi constant values for the representative orbits along the two families in Figs. 4–5

Recall, the implementation of the circular restricted three-body problem within STK required
a bridging of the gap between the simulation environment and the model. While this was ac-
complished with the goal of maximizing accuracy and consistency of the results, some tradeoff
is observed. To utilize the existing STK and Astrogator paradigms such as STK’s environmental
analysis capabilities and Astrogator’s calculation system for stopping conditions and data reporting,
state transformations are necessary and these incur a numerical price. This is immediately appar-
ent in Figs. 7–8, where the maximum Jacobi constant variation and the orbit closure measure for
each orbit are plotted, respectively. In each case the MATLAB simulation achieves roughly five
orders of magnitude greater accuracy. This is unsurprising since numerical integration error control
is enforced on the dimensional state in STK; this error control is essentially five orders of magni-
tude looser than that imposed on the nondimensional state in the analogous MATLAB integration.
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Two points of interest emerge from inspection of the Jacobi constant error results. The error grows
dramatically in the context of the families in all cases with proximity to P2. This is also true for
individual orbits as their proximity to P2 increases when inspected in plots similar to Fig. 3, in these
cases the maximum error is concentrated near the close approach.

The generally higher degree of numerical error in the Jacobi constant for the Astrogator propa-
gations may be understood in the context of the evaluation process. At each numerical integration
step, the CBI state is transformed into a CRP state undergoing nondimensionalization. The CRP
acceleration is evaluated and transformed into CBI (undergoing dimensionalization) for the integra-
tion step, at this time the CRP position and velocity are stored in the Astrogator state vector. Thus,
the CRP state is held to the dimensional error control in the integration step. Depending on the
magnitude of the characteristic quantities for the system, the associated numerical integration error
in the CRP state will automatically inherit an equivalent bias.
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Figure 7: Maximum Jacobi constant variation from numerical integration of the orbits from Fig. 6
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Figure 8: Closure measure after numerical integration of the orbits from Fig. 6
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RAPID INGESTION, CONSTRUCTION AND CORRECTION OF SOLUTIONS

The use case in this section is constructed in an STK system similar to that produced for the
validation work of the previous section. In this particular case the idealized “Moon” for the Earth–
Moon CR3BP is denoted “Luna” as in the system configuration tutorial.18 Given known parameters
for an L1 Lyapunov orbit (CJ ≈ 3.163007) with the goal to insert into an L2 Lyapunov orbit
(CJ ≈ 3.162991), initial guess arcs are seeded along the unstable manifold associated with the L1

Lyapunov orbit and the stable manifold associated with the L2 Lyapunov orbit. As the two orbits
possess different energy levels, indicated by unequal Jacobi constant values, it is expected that one
or more maneuvers will be required to transfer between the two orbits. The transfer solution is
depicted in Figure 9 along with the time-history of the Jacobi constant.

In the transfer design, three maneuvers are placed in the itinerary to support the solution process
and adjust the energy level. The first maneuver generally represents a perturbing step off the L1

Lyapunov orbit onto the unstable manifold and facilitates numerical corrections; its magnitude is
small: ≈1.9×10−4 m

s . Next, a match point between the unstable manifold arc from the L1 Lyapunov
orbit and the stable manifold arc from the L2 orbit is targeted using the differential corrector at the
Σ : x = 1−µCRP hyperplane. At this match point the energy difference is accounted for by a
second maneuver of ≈23.2 m

s . Finally, at the stable manifold interface with the L2 Lyapunov orbit
a third maneuver is performed to adjust the spacecraft state consistent with insertion into orbital
motion associated with the L2 Lyapunov orbit (≈9×10−3 m

s ). All three maneuvers are recalculated
by targeting known states on the stable manifold and near the periodic orbit, and convergence is
quickly met for tolerances set in postion at εpos < 1km and εvel < 1m

s . This particular process
illustrates the capability to transfer applicable knowledge of potential solutions into STK, rapidly
cast the problem in Astrogator constructs and leverage the available numerical corrections schemes
to form an end-to-end trajectory. While this example was produced with knowledge of existing
orbits, all corrections occur within the STK Astrogator framework. Finally, after such a process, the
resulting multi-body design is now available within Astrogator for additional analysis and advanced
study in higher-fidelity dynamical models.

This particular use case is an example that highlights a mechanism for transitioning and recreating
complete multi-body transfers in STK. Such capabilities, available in a tool like Astrogator, rein-
force the applicability of the associated concepts. Traditionally, multi-body approaches have been
studied heavily in academics, but their relevance continues to expand into industry. Access to asso-
ciated capabilities in the tools used within the industry supports workforce training. This capability
to analyze the CR3BP within STK enables training without requiring significant time and resources
to create specialized scripts, and supports the application of these lessons in commonly-used plat-
forms in new scenarios—thereby expanding access to knowledge from the multi-body community.
Further, an example like this illustrates the process of seeding a complex design into the software
with higher confidence as the level of effort to bring the toolset to the problem space is alleviated. In
general, the expanded capabilities presented by recent development efforts and the present exercise
to illustrate and capture these efforts in the literature both serve to clarify the overall process. These
steps also help to discern and verify how to proceed when approaching multi-body trajectories with
the CR3BP in the STK Astrogator framework.
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(a) Transfer from L1 Lyapunov to L2 Lyapunov orbit
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Manifold Revolution near 
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Maneuver 3 
~ 9x10-3 m/s

(b) Jacobi constant history for transfer

Figure 9: A multi-body transfer solution produced and corrected in STK Astrogator
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CONCLUDING REMARKS AND FUTURE WORK

The ability to rapidly create and reproduce multi-body solutions within STK allows users to
quickly bring their analyses to the point of considering other salient details of the system. While
numerical tradeoffs exist associated with the incorporation of the CR3BP into the existing STK As-
trogator architecture, these are often overshadowed by the natural goal of evolving solutions toward
higher fidelity. These tradeoffs represent a potentially acceptable cost to enable typical extended
STK Astrogator design and analysis capabilities. Additional options to mitigate the numerics by
offering an implementation separated from the typical Astrogator mechanisms may be possible if a
demonstrated need or desire is evidenced. More concretely, work is planned to offset much of the
existing user incumbency to configure STK to work in the CR3BP model by offering tools to easily
set up the STK environment for such operations.

With the addition of the CR3BP model natively into the STK Astrogator system, spacecraft tra-
jectories can now be quickly, natively simulated under these dynamics. This option supports early
trajectory design activities, and allows a pathway for users who spend their time and effort devel-
oping elegant and beautiful solutions to directly ingest such solutions directly into a procedure for
model fidelity advancement. The Jacobi constant, directly available for CRP propagation, offers a
quick validation against external simulation and provides a measure of internal consistency. Further,
the accessibility of the Jacobi constant enables maneuver and trajectory design heuristics as in the
case of the final example where the change in CJ at the manifold interface indicates a necessary
impulse. Recognizing the need to adapt the STK system to the model enables a straightforward def-
inition of the rotating coordinate system consistent with CR3BP definitions. While such a system
configuration process was previously supported, it has been generally improved and the underlying
model now exists to take advantage of it. All of these advancements are intended to increase the
accessibility of multi-body trajectory design concepts, reduce the burden on typical users and pro-
vide additional capabilities in support of increasing mission concepts in cislunar space and other
multi-body environments.
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