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Although orbital maneuver design currently relies heavily on human flight dynamicists,
autonomousmaneuver planning technologiesmay enablemissions that require a rapid response
and support resiliency in uncertain environments. However, it is often challenging to precisely
translate the maneuver design process, balancing near- and long-term objectives with various
constraints, into a single analytical expression. Techniques based on inverse reinforcement
learning offer one approach to approximately uncover the objectives of a maneuver planner.
In this preliminary analysis, apprenticeship learning via inverse reinforcement learning is used
to recover the strategy of a straightforward controller in the design of station-keeping and
rendezvous maneuvers for a spacecraft in a near rectilinear halo orbit in cislunar space.

I. Introduction

The current state-of-the-art in spacecraft maneuver planning relies heavily on human-in-the-loop design and
verification of heavily constrained solutions. During station-keeping and proximity operations, orbital maneuvers

are regularly designed to achieve a variety of near- and long-term objectives, while also satisfying path, thrust plume,
collision and other constraints. The design of maneuvers and associated trajectories that satisfy these constraints is
especially challenging in a multi-body gravitational environment, where complex and chaotic dynamical systems govern
the motion of spacecraft. As a result, these maneuver design activities are typically performed by a team of flight
dynamicists. Autonomous spacecraft operations, which reduce the human-in-the-loop dependencies, may be invaluable
for designing both regular maneuvers to station-keep and unexpected maneuvers in response to hazards or changing
goals. In fact, autonomy in these decision-making activities may enhance a variety of missions by reducing operational
complexity (e.g., for the components of space-based infrastructure or large swarms) and enable missions that necessitate
rapid responses or suffer from time delays (e.g., in-space assembly or distant operations). One approach to autonomously
planning robust, efficient and safe maneuvers is to mimic a human flight dynamicist who is able to reason, learn, and
adapt. However, during the trajectory design process, it is challenging for a flight dynamicist to precisely translate
the goals and constraints considered during maneuver planning into a single, analytical expression. To address these
challenges, inverse reinforcement learning (IRL) – also referred to as inverse optimal control [1, 2] – and apprenticeship
learning are used in this paper to uncover an approximation of the objective of a maneuver planner.

Several IRL-based approaches exist and are differentiated by the information available to describe the expert policy.
For instance, the IRL methods derived by Ng and Russell [3] and Abbell and Ng [4] assume the reward at each state
to be a weighted linear combination of features derived from a set of preconstructed solutions. Implementations of
IRL that assume the reward is a linear combination of features are typically solved using a linear programming (LP) or
quadratic programming (QP) formulation [3, 4]. These IRL methods enable a maximum margin based optimization,
whereby the reward uncovered from an expert policy is an improvement over the reward uncovered from all non-expert
policies [1, 5, 6]. Maximum margin IRL has previously been used in astrodynamics problems to recover the behavior of
space objects by Linares and Furfaro [7], specifically to detect maneuvers and estimate the associated ∆v for space
objects in a geostationary orbit. In addition, entropy-based IRL methods, that maximize the expected entropy given
by a policy have also been presented and applied by Ziebart, Maas, Bagnell and Dey and Fu, Luo and Levine [8, 9].
This maximum entropy IRL formulation has been used by Doerr, Linares and Furfaro to estimate the behavior of space
objects in low-Earth and geostationary orbits [10].
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Apprenticeship learning is a related process to IRL: rather than directly recovering the reward function of an expert,
apprenticeship learning recovers an estimated policy that produces trajectories closely resembling the trajectories
produced by the expert policy [11]. In the apprenticeship learning process, an IRL algorithm is used as a critical step to
iteratively update the estimated, or apprentice, policy until the value of the estimated policy converges to the value of
the expert. Apprenticeship learning has been applied to learning the actions of an agent in a variety of scenarios and
environments. One notable example is the recovery of driving styles from observing a human drive a car in a simulated
environment; in such a scenario, no exact analytical and generalizable reward function may be defined to describe
the intentions and decisions of the human [4]. Apprenticeship learning has also been applied to acrobatic helicopter
maneuver design following expert helicopter pilot demonstrations of complex maneuvers [12, 13]. By examining an
expert demonstration of a helicopter pilot, apprenticeship learning enables identification of an apprentice policy that
successfully recreated a variety of helicopter maneuvers, mimicking a skilled human pilot.

This paper explores the use of apprenticeship learning to recover the objectives of a maneuver planner for a spacecraft
in a chaotic multi-body gravitational environment using demonstrations from an expert policy; in this preliminary
analysis, the expert policy is a straightforward continuous and unconstrained controller. In fact, expert trajectories
are generated using a policy defined by a linear quadratic regulator (LQR) control model with a known cost function
and associated gains; this controller is selected to support efficient trajectory generation and to enable straightforward
verification of the results of the apprenticeship learning procedure. Then, the gains associated with the LQR controller
are selected to design trajectories in two distinct maneuvering scenarios: rapid rendezvous and station-keeping. In
addition, the uncontrolled dynamics of the spacecraft in the Earth-Moon system are modeled using the Circular Restricted
Three-Body Problem (CR3BP), which sufficiently approximates the complex nature of the dynamical environment in
cislunar space. In this dynamical model, a Near-Rectilinear Halo Orbit (NRHO) in the vicinity of L2 in the Earth-Moon
system is selected as the reference orbit; this particular orbit is of much interest in the space community as a potential
location for the upcoming Lunar Orbital-Platform Gateway [14]. Then, the expert policy defined by the LQR controller
is used to design a controlled trajectory for a spacecraft in the vicinity of an L2 NRHO reference orbit. The gains are
selected to recover trajectories in two distinct maneuver scenarios: station-keeping and rendezvous. In each scenario,
trajectories generated using this expert policy are input to the apprenticeship learning algorithm to recover an apprentice
policy that produces similar solutions to the expert’s policy. One by-product of apprenticeship learning is an estimate of
the reward or objective function maximized by the apprentice policy; while this reward function is typically not a close
approximation of the objective of the expert, it may provide sufficient insight into the priorities of the maneuver planner.
In this paper, the outputs of this apprenticeship learning procedure are analyzed and compared to the LQR controller via
the trajectories generated by the apprentice policy as well as the estimated reward function. The results of this analysis
indicate that, in the context of this spacecraft maneuver planning scenario, apprenticeship learning generates policies
that resemble the LQR controller and recovers the priorities of the expert to a similar order of magnitude.

II. Background

A. Dynamics Model
The CR3BP offers a suitable approximation of the natural dynamics governing the motion of a spacecraft in the

chaotic multi-body gravitational environment of the Earth-Moon system. The CR3BP approximates the path of the two
primary bodies – the Earth, P1, and the Moon, P2 – via circular orbits about their mutual barycenter. A spacecraft,
P3, is an assumed massless particle and is only influenced by the point-mass gravity of the two primary bodies. An
Earth-Moon rotating coordinate system is defined using a frame (x̂, ŷ, ẑ) and is centered at the system barycenter: x̂ is
defined in the direction of P2, such that the bodies P1 and P2 are fixed along the x̂ axis; ẑ is defined in the direction of
the angular velocity of the system; and ŷ completes the right-handed coordinate system. The rotating frame is illustrated
in Fig. 1, along with the Earth, Moon, and spacecraft, not to scale. A nondimensionalization scheme is also employed.
Length quantities are normalized using the Earth-Moon distance, such that the nondimensional distance between the
Earth and Moon is unity. Quantities of time are nondimensionalized such that the period of the Earth and Moon about
their barycenter is 2π. Finally, mass quantities are nondimensionalized using the total mass of the Earth-Moon system
and a mass ratio, µ, is defined as:

µ =
m2

m1 + m2
(1)

where m1 is the mass of the Earth and m2 is the mass of the Moon. The nondimensional state vector of a spacecraft in
the rotating frame relative to the system barycenter is then formulated as ®x = [x, y, z, Ûx, Ûy, Ûz]. In this analysis, the natural
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Fig. 1 Definition of the rotating frame in the Earth-Moon CR3BP.

motion approximated by the CR3BP is augmented by a control acceleration. This nondimensional acceleration vector is
defined using the components ux , uy , and uz , applied in the x̂, ŷ, and ẑ directions, respectively. Using these definitions,
the controlled motion of the spacecraft is described by the following equations of motion:

Üx = 2 Ûy + x −
(1 − µ)(x + µ)

r3
1

−
µ(x − 1 + µ)

r3
2

+ ux

Üy = −2 Ûx + y −
(1 − µ)y

r3
1

−
µy

r3
2
+ uy

Üz = −
(1 − µ)z

r3
1

−
µz
r3
2
+ uz

(2)

where r1 =
√
(x + µ)2 + y2 + z2 and r2 =

√
(x − 1 + µ)2 + y2 + z2 are the distances of P3 from P1 and P2, respectively

[15]. When ux = uy = uz = 0, these equations of motion correspond to the CR3BP: the underlying dynamical structure
admits a variety of fundamental solutions including equilibrium points and periodic orbits that may be approximately
retained in higher fidelity models of the cislunar environment.

B. Reference Orbit
An NRHO is a periodic orbit that exists in the CR3BP along a subset of a halo orbit family associated with either

L1 or L2. These orbits possess a low perilune and high apolune and are nearly polar. An Earth-Moon L2 southern
NRHO has been identified as a favorable option for near-future lunar operations due to favorable characteristics
including neutral dynamical stability, availabilities of communications line-of-sights, and low ∆v requirements [14, 16].
Specifically, an L2 NRHO with a 9:2 lunar synodic resonance has been cited as a likely destination for the Lunar Orbital
Platform-Gateway and serves as the reference orbit used in this analysis. This orbit, propagated using the dynamics
of the CR3BP, is depicted in Fig. 2 in the Earth-Moon rotating frame with the L2 equilibrium point plotted as a red
diamond for scaling purposes. In this figure, the black arrow indicates the direction of motion along the NRHO. This
NRHO is highly eccentric and highly inclined with respect to the Earth-Moon plane; the orbit also possesses a period of
6.062 days. Modeling the Moon as a sphere with a radius of 1738 km, the reference NRHO possesses a lunar periapsis
altitude of approximately 294 km and an apoapsis altitude of approximately 66,390 km. Due to this large range in the
distance to the Moon, the relative motion dynamics along the reference orbit vary significantly as the spacecraft travels
along the NRHO.

C. Linear Quadratic Regulator Control
To define a metric for evaluating the results of the apprenticeship learning algorithm in the context of this preliminary

analysis, an expert policy is created to maximize a known reward function. In this paper, LQR is used to design
controlled trajectories around natural reference solution, defined as the Earth-Moon southern L2 NRHO. LQR is a
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Fig. 2 Earth-Moon near rectilinear halo orbit associated with L2 with a 9:2 lunar synodic resonant period in
the rotating frame using nondimensional coordinates.

suitable candidate for constructing an expert policy as the LQR objective function that is minimized by the controller is
straightforwardly translated into a reward function that is optimized by the policy. The goal of LQR is to minimize the
following cost or objective function, evaluated over a finite time horizon from an initial time, t0, to a final time, t f :

J =
∫ t f

t0

δ ®xTQδ ®x + δ®uT Rδ®u dt (3)

where Q and R are gain matrices associated with the state error, δ ®x, and control error, δ®u, respectively. These gain
matrices must be adjusted to achieve a desired behavior of the spacecraft trajectory relative to the reference. For an
n-dimensional state vector and p-dimensional control input, the Q and R matrices possesses dimensions of n × n and
p × p respectively; upon augmenting the CR3BP with a control acceleration, n = 6 and p = 3. Then, the relative state,
δ ®x, is defined relative to a state, ®xr , along the reference orbit via an isochronous correspondence, i.e., δ ®x(t) = ®x(t)− ®xr (t).
Since the reference orbit in this analysis is defined as a natural trajectory, the control usage error is equivalent to the
control acceleration for the maneuvering spacecraft, i.e., δ®u = ®u. The optimal control acceleration, ®u, that minimizes the
LQR cost function is calculated using the following state feedback-control law:

®u = −Kδ ®x (4)

where the time-varying matrix K is equal to:
K = R−1BP (5)

and the matrix B is the following input matrix:

B =

[
03×3

I3×3

]
(6)

where 03×3 is a 3 × 3 matrix of zeros and I3×3 is a 3 × 3 identity matrix. Then, the matrix P is the solution to the Riccati
differential equation, written mathematically as:

ÛP = −AT P − PA + PBR−1BT P −Q (7)

with the boundary condition P(t f ) = 0n×n. In this expression, the matrix A is the time-varying state derivative matrix
evaluated along the reference trajectory, ®xr . Following definition of the Q and R matrices, this LQR controller is used to
efficiently generate trajectories that minimize the LQR cost function over a defined finite time horizon.
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D. Overview of Inverse Reinforcement Learning
Inverse reinforcement learning is the process of recovering the reward function that is maximized by an expert given

observations of the solutions generated under the expert policy. In the context of the spacecraft maneuver planning
scenario analyzed in this paper, the behavior of the expert policy is observed through a set of trajectories generated using
an LQR controller. Application of this approach to the spacecraft maneuver planning problem is depicted conceptually
in Fig. 3. First, a set of maneuvers and associated trajectories is generated via an LQR controller for initial conditions
that are perturbed from the reference NRHO. These trajectories are sampled in time and input to an IRL algorithm along
with a model of the CR3BP and the LQR controller. The goal of IRL is to then approximate the reward function that is
maximized by the policy used to generate the input solution demonstrations. In this process, the input data set and
algorithm formulation significantly influence the obtained reward function.

Fig. 3 Conceptual representation of the inverse reinforcement learning process used to recover the approximate
reward from trajectories sampled from an expert policy.

The path followed by an agent in an environment that is described by a continuous state space and an associated
set of actions is formulated as a continuous Markov decision process (MDP). This MDP is defined using the tuple
(S, A, Psa, γ,D, R) where S is a set of continuous states, A is set of continuous actions, Psa is the state transition
probability of taking action a at state s, γ is the discount factor, defined as γ ∈ (0, 1], D is the distribution of initial states,
and R is the reward function. The reward function is designed to reward favorable actions and penalize unfavorable
actions. A policy, π, is then defined as a set of mappings from the set of states S to the set of actions A. The expected
value, E[Vπ], of a policy is expressed as:

E[Vπ] = E

[
∞∑
i=0

γiR(®xi, ®ui)
���� π] (8)

to reflect the expected sum of rewards over time along a trajectory [4]. Given trajectories generated by a policy and
discretely sampled in time, a vector of features, ®φ(®x, ®u), is defined using characteristics of the solutions and the objectives
of the maneuver planner. The IRL algorithm implemented in this analysis assumes that the reward function R(®xi, ®ui) is a
linear combination of the components of the feature vector evaluated at each time along a trajectory, scaled by a vector
of weights, ®w. Thus, the reward function at time ti is expressed as R(®xi, ®ui) = ®wT ®φ(®xi, ®ui). The feature expectations
vector of a policy, ®f (π), is then defined as:

®f (π) = E

[
∞∑
i=o

γi ®φ(®xi, ®ui)
���� π] (9)

Then, the expected value of the policy is related to the feature expectation vector via the following relationship:

E[Vπ] = ®wT ®f (π) (10)

Using the feature expectations vector associated with an expert policy, labeled ®fE , the goal of IRL is to recover the
weight vector, ®wE , associated with the reward function. However, a well-known challenge in IRL is the ambiguity
associated with the recovered estimate of the reward function. There may exist several weight vectors that explain the
expert’s feature expectations vector; or, equivalently, the expert policy may maximize several reward functions [3].

One approach to approximating the expert’s reward function is maximum margin IRL. This particular algorithm
recovers a set of reward weights that correspond to the expert policy possessing a greater expected value than the
expected value of other, non-expert policies [4]. This algorithm is formulated as an optimization problem by introducing
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a scalar margin, β, between the expected value of the expert policy, and the expected value of a non-expert policy.
Maximization of this scalar margin is written mathematically as:

Maximize β

Such that ®wT ®fE ≥ ®wT ®f + β

| ®w | ≤ 1
(11)

where ®f is the feature expectations vector of the non-expert policy. The variables recovered via this optimization
problem include both β and ®w. In addition, the Euclidean norm of the weight vector is constrained to values less than or
equal to unity to bound the search [4]. Since this optimization problem is composed of a scalar objective function,
and both linear and quadratic constraints, it may be solved using a nonlinear optimization solver, e.g., an interior point
algorithm. In this paper, MATLAB’s fmincon algorithm is employed.

To assess the accuracy of the reward function recovered by the IRL algorithm, a straightforward transformation
between the weight vector and LQR gains is constructed. First, to estimate the objective of the expert – in this case, an
LQR controller – a reward function is constructed as a linear combination of nine features. Consider an LQR controller
with a set of gain matrices, Q and R, that are diagonal. For this controller, the associated features are straightforwardly
defined as the six state errors squared, and the three control inputs squared. Thus, the exact feature vector at each state is
defined as:

®φ(δ ®x, ®u) =
[
δx2 δy2 δz2 δ Ûx2 δ Ûy2 δ Ûz2 u2

x u2
y u2

z

]T
(12)

Then, the exact reward function for an LQR controller is equivalent to:

R(δ ®x, ®u) = α
[
−δ ®xTQ δ ®x − ®uT R ®u

]
(13)

where the scalar quantity α is employed to scale the Euclidean norm of the coefficients of the reward function to possess
a magnitude that is less than or equal to unity [12]. Note that the reward function and cost function for an LQR controller
differ in sign: the coefficients in the reward function are negative with a maximum scalar value of zero. Then, the
components of the true weight vector ®w associated with this reward function are equal to the negative of each of the
diagonal elements of the two gain matrices, scaled by α. Mathematically, this relationship is written as:

®w = −
1
α

[
Qx Qy Qz Q Ûx Q Ûy Q Ûz Rux Ruy Ruz

]
(14)

Conversely, to convert the estimated weights into an LQR controller model, the sign of the weights must first be flipped
to be positive and multiplied by the scalar quantity α. The value for α is selected using the a priori known minimum or
maximum value of the elements of the gain matrices.

E. Apprenticeship Learning
Apprenticeship learning is used to recover a policy that produces trajectories with similar characteristics to those

generated by an expert policy [4]. Given a feature expectations vector evaluated using the expert policy, an apprenticeship
learning algorithm estimates the weight vector associated with the reward function; the approach leveraged in this
analysis incorporates maximum margin IRL, as summarized in Eq. 11. With the estimated weights, an estimated policy
is generated using a given dynamics and controller model. Then, an estimated feature expectations vector is evaluated
using a set of trajectories generated with the estimated policy and compared to the feature expectations vector associated
with the expert policy. This process is repeated until the feature expectations vector derived from the estimated policy,
or “apprentice” policy, closely matches the feature expectations vector of the expert policy. While this procedure is
not guaranteed to recover the exact weights used to define the expert’s reward function, the policy generated through
apprenticeship learning resembles the expert’s policy if the algorithm converges to a solution based on a specified set of
termination criteria [4]. These steps of the apprenticeship learning process are summarized as follows:

1) Using trajectories generated via the expert policy, evaluate the expert feature expectations vector, ®fE . Define an
initial guess for an apprentice policy and evaluate the corresponding feature expectations vector, ®f0.

2) Apply maximum margin inverse reinforcement learning as outlined in Eq. 11 to estimate the weight vector, ®wi ,
of the estimated reward function at iteration i for the specified feature basis functions.

3) Check if the margin, β, possesses a value below a cutoff tolerance, ε .

6



4) Using the estimated weights at iteration i to define the estimated reward function, generate the current apprentice
policy, πi .

5) Generate trajectories using πi and sample at discrete times. Using these state sequences, calculate the associated
features expectations vector, fi .

6) Repeat steps 2-5 until either: convergence to a solution, as indicated by the value of β falling below a defined a
cutoff tolerance; failure of the algorithm to converge, as defined by reaching a maximum number of iterations.

This general procedure is depicted conceptually in Fig. 4. During apprenticeship learning, it is necessary to compute the
feature expectations vector along trajectories generated using both the expert and estimated policies. For both policies,
the same process is used to generate and sample trajectories prior to computing the feature expectations vectors. First,
initial state errors are randomly drawn from the same distribution relative to a state defined along the reference trajectory.
The trajectory associated with each initial condition are generated using the specified dynamics and control model for
the same duration and the trajectories are sampled at evenly-spaced time steps. Finally, the features expectations vector
is calculated from the generated trajectories using Eq. 9. The number of generated trajectories, number of sampled
states per trajectory, and discount factor are all tunable parameters for the computation of the feature expectations –
and, therefore, influence the results of the apprenticeship learning algorithm. For all cases in this preliminary analysis
where the dynamics and control models are deterministic, a discount factor of γ = 1 is selected. Then, the number of
generated trajectories and the number of sampled states along each trajectory are each selected based on insight from
previous studies of apprenticeship learning in other disciplines and a parameter search process conducted using the
scenario of interest [4].

III. Applying Apprenticeship Learning to Controlled Spacecraft Trajectory Design
To demonstrate the capability for apprenticeship learning to estimate the reward function describing the LQR

controller implemented in the CR3BP, three test cases are explored. In this particular application, the dynamics and
control models are set equal to the CR3BP and the LQR controller, respectively. Then, generating a new policy from
an estimated reward function is straightforward: the weight vector at iteration i is transformed to an approximate set
of gains via the relationship in Eq. 14. For a more complex controller model, this step is often replaced by a call
to a reinforcement learning algorithm to recover a policy that optimizes the estimated reward function. Then, the
parameters governing the apprenticeship learning procedure are also defined. In this particular application, the initial
guess corresponds to a random policy, while the algorithm termination conditions include both ε < 1 × 105 and a
maximum number of iterations based on computation time. Following formulation of the apprenticeship learning
algorithm in the context of the spacecraft maneuver design example in this preliminary analysis, three scenarios are
defined to explore both the accuracy of the results and the influence of the input data set on these results. In the first two
cases, the expert policy trajectories begin near apolune along the NRHO and the LQR gains are selected to reflect either
rendezvous and station-keeping behavior, i.e. placing an emphasis on minimizing state error or minimizing control
usage, respectively. The last case is presented to recover maneuver design policies for trajectories beginning in the
vicinity of a wider variety of states along the reference orbit. The same combinations of gains used in the first case
is used in this third case to reflect rendezvous behavior. While the LQR cost function gains are constant, the relative
dynamics influencing the maneuvering spacecraft will vary depending on the location of the spacecraft relative to the
reference orbit. In this final case, apprenticeship learning is used to recover the controller defined by the LQR gains

Fig. 4 Diagram of the apprenticeship learning process used to iteratively update an apprentice policy to closely
match the performance of an expert policy.
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using information from the entire reference orbit, significantly increasing the diversity of the expert demonstrations.
These scenarios, labeled Case 1-3, are summarized in Table 1 along with the characteristics of the associated input data
sets. In this table, the initial state distribution column lists the location/s along the NRHO used to generate the initial
conditions: either at apoapsis, or distributed along the NRHO. The trajectory duration column lists the propagation time
of each generated trajectory, defined as a fraction of the period, T , of the NRHO in the rotating frame; this time is also
serves as the time horizon in the LQR control scheme. Finally, N is the number of trajectories generated from the expert
and estimated policies, indicating the size of the expert data set.

Table 1 Summary of distinct maneuver design cases.

Case Type of Control Initial State Distribution Trajectory Duration N
1 Rendezvous Apolune 2/5 T 50
2 Station-Keeping Apolune 2/5 T 50
3 Rendezvous Random, along entire orbit 1/2 T 50

A. Case 1: Rendezvous from Apolune
In the first maneuver planning scenario, the LQR gains are selected consistent with a rendezvous scenario where

position and velocity errors are most significantly penalized. Large gains of 105 and 102 are associated with position
and velocity errors, respectively, while lower gains of 10 are associated with control use; the corresponding controller
prioritizes a low state error with less emphasis on limiting propellant mass usage. The nine LQR gains selected for the
expert policy to produce this behavior in Case 1 are listed in the "Expert Gains" column of Table 2. To evaluate each of
the expert and apprentice policies, initial conditions are defined using a Gaussian distribution relative to the apolune
location along the reference trajectory. The standard deviation of the initial position error is set equal to σr = 1000 km
while the velocity error standard deviation is equal to σv = 1 m/s and the time horizon of the LQR controller is set to
2/5 of the orbit period of the NRHO in the rotating frame, i.e., approximately 2.5 days. Additionally, for both the expert
and each iteration of the apprentice policy, 50 trajectories are used to generate the expert feature expectations vector
based on the feature basis set defined in Eq. 12 and each trajectory is sampled to produce 1000 states distributed evenly
in time. The components of the expert feature expectations vector, ®fE , are listed in the second column of Table 2.

The apprenticeship learning process is applied to recover an estimate of the expert’s policy in Case 1 and, as a
by-product, an estimate of the LQR gains. These estimated gains are used to generate the trajectories associated with the
estimated or apprentice policy and, therefore, compute the apprentice feature expectations vector. The final estimated
feature expectations vector and gains of the apprentice are listed in the third and fifth columns, respectively, of Table 2.
Comparing the expert feature expectations vector, ®fE , and the final feature expectations vector from the apprentice policy,
®f , the order of magnitude between each of the position, velocity and control components of the feature expectations are
similar. Furthermore, as a by-product of the apprenticeship learning procedure, the estimated reward weights of the
policy generated with apprenticeship learning are observed to follow the approximate structure of the known expert

Table 2 Summary of features expectations and LQR gains for the expert and apprentice policies in Case 1.

®φ Expert ®fE Estimated ®f Expert Gains Estimated Gains
δx2 1.194e-03 1.428e-03 1.000e+05 1.961e+05
δy2 1.260e-03 1.179e-03 1.000e+05 6.170e+05
δz2 1.632e-03 4.341e-04 1.000e+05 8.300e+05
δ Ûx2 3.841e-02 6.376e-02 1.000e+02 1.376e+02
δ Ûy2 4.128e-02 1.648e-02 1.000e+02 2.495e+04
δ Ûz2 5.110e-02 2.478e-02 1.000e+02 3.355e+02
u2
x 3.741e+00 9.719e+00 1.000e+01 1.000e+01

u2
y 4.113e+00 2.039e+00 1.000e+01 4.170e+01

u2
z 5.468e+00 4.756e+00 1.000e+01 2.592e+01
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(a) Expert Trajectories (b) Apprentice Trajectories

Fig. 5 Case 1 trajectories generated from the expert and recovered apprentice policies for a rendezvous
scenario.

weights: the estimated weights place higher emphasis on state error minimization, and specifically place a higher reward
on minimizing position error than minimizing velocity error, while the lowest estimated weight is placed on minimizing
control usage. However, as expected due to the nature of apprenticeship learning, these gains are not recovered exactly.
Furthermore, the gain calculated from the δ Ûy2-component of the weight vector is significantly larger than the other
two gains corresponding to velocity components. These differences between the original and recovered gains may
also be due to nonuniqueness in the reward function, the specific termination conditions, relative scaling between the
components of the feature expectations vector and the scaling strategy used to convert the weight vector into a set of
LQR gains.

To compare the characteristics of the trajectories generated using the apprentice and expert policies, each of the state
and control components are analyzed. Trajectories sampled from the expert policy and the estimated apprentice policy
are plotted in the Earth-Moon rotating frame in Fig. 5, where expert trajectories are displayed in blue and apprentice
trajectories are displayed in red. In this figure, the original reference NRHO is plotted in black while the L2 equilibrium
point is indicated as a red diamond. The expert and apprentice trajectories are observed to exhibit similar characteristics
in quickly converging towards the NRHO. A more detailed comparison between the apprentice and expert trajectory is
then achieved by analyzing the individual time histories of the state and control components: Figure 6 overlays the
Euclidean norm of the position error for the expert and apprentice trajectories, Fig. 7 portrays the Euclidean norm of the
velocity error for the expert and apprentice trajectories, and Fig. 8 overlays the Euclidean norm of the control usage for
the expert and apprentice trajectories. In each figure, parameters associated with apprentice are plotted in red while
those associated with the expert are depicted in blue. Using these figures as a reference, the time histories of the position
and velocity magnitudes relative to the NRHO over the specified time horizon are on similar orders of magnitude and
exhibit similar characteristics for both the apprentice and the expert. The magnitude of the control acceleration over
time is also consistent in both order of magnitude and characteristics between the expert and apprentice. Of course,
there are some minor deviations between the expert and apprentice in these three time history plots. However, these
minor deviations exist only for a subset of the trajectories generated within the Gaussian distribution of initial conditions
in the vicinity of the apolune location along the NRHO – and only for a portion of the specified time horizon. Thus, this
analysis reveals that the policy recovered by apprenticeship learning is able to capture the expert behavior corresponding
to the selected expert LQR cost function for this scenario reflecting rendezvous from apolune.

B. Case 2: Station-Keeping from Apolune
The second scenario uses LQR gains designed to generate station-keeping behavior, where the spacecraft trajectory

simply remains bounded in the vicinity of the reference orbit. To achieve this type of behavior via the LQR controller,
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Fig. 6 Position error over time for trajectories generated from the expert policy (blue) and apprentice policy
(red).

Fig. 7 Velocity error over time for trajectories generated from the expert policy (blue) and apprentice policy
(red).

Fig. 8 Control usage over time for trajectories generated from the expert policy (blue) and apprentice policy
(red).

the largest penalties – i.e., the largest gains – are associated with control usage, while lower gains are assigned to
position and velocity errors. The exact LQR gains used to generate the expert trajectories are listed in the fourth column
of Table 3. Trajectories generated using the expert policy for station-keeping via this LQR controller are plotted in
blue in Fig. 9a in the Earth-Moon rotating frame. The initial conditions for these trajectories are defined within a
Gaussian distribution relative to the apolune location along the NRHO using an initial position error standard deviation
of σr = 1000 km and velocity error standard deviation of σv = 1 m/s. The simulation duration is set to 2.5 days and 50
trajectories are generated with 1000 states sampled evenly in time. After computing the expert feature expectations
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Table 3 Case 2 summary of features expectations and LQR gains for the expert and apprentice policies.

®φ Expert ®fE Estimated ®f Expert Gains Estimated Gains
δx2 6.799e-03 4.098e-03 1.000e+01 3.516e+02
δy2 5.708e-03 3.043e-03 1.000e+01 3.259e+01
δz2 5.699e-03 3.225e-03 1.000e+01 3.052e+01
δ Ûx2 2.224e-03 1.276e-03 1.000e+01 4.608e+03
δ Ûy2 8.321e-03 7.301e-03 1.000e+01 1.464e+03
δ Ûz2 1.636e-02 1.638e-02 1.000e+01 1.000e+01
δu2

x 5.423e-12 1.489e-07 1.000e+05 1.095e+05
δu2

y 5.086e-12 1.949e-07 1.000e+05 9.010e+04
δu2

z 4.425e-11 8.966e-09 1.000e+05 6.726e+04

(a) Expert Trajectories (b) Apprentice Trajectories

Fig. 9 Case 2 trajectories sampled from the expert and converged apprentice policy for a station-keeping
example.

vector and applying the apprenticeship learning process, the recovered feature expectations vector of the apprentice and
associated gains are listed in Table 3 for comparison to the expert. Analysis of these results reveals that the recovered
apprentice feature expectations vector possesses values on the same order of magnitude as the apprentice for the position
and velocity error feature basis functions. However, the order of magnitude of control components of the apprentice
feature expectations vector differ significantly from those of the expert – yet, they are still several orders of magnitude
less than the position and velocity components, consistent with the expert. Such a deviation in the apprentice feature
expectations vector from the expert is likely due to the large variance in the order of magnitude of the components of the
vector. This ill-conditioning between the components of the feature expectations vector motivates the exploration of
feature scaling strategies in further analyses. Furthermore, analysis of the estimated gains reveals that the apprentice
controller or reward function generally reflects the qualitative goals of the original controller: the control usage is
penalized more heavily than the state error. However, there are significant deviations in the order of magnitude between
the individual gains associated with position and velocity error in the LQR controller – inconsistent with the original
LQR gains corresponding to the expert.

Further insight into the deviations between the expert and apprentice policies in Case 2 is gained through a
comparison between each of the state and control components along the associated trajectory sets. In particular,
trajectories generating using both the expert and apprentice policies are plotted in configuration space in the Earth-Moon
system in Fig. 9; trajectories generated by the expert policy are plotted in blue and trajectories associated with the
apprentice are displayed in red. The apprentice trajectories are observed to exhibit a similar general behavior to the
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trajectories generated by the expert LQR controller; however, is it useful to analyze in more detail the time histories of
the individual components of the trajectories and maneuver profiles. The norm of the position error, velocity error, and
control usage over time of the trajectories associated with the expert (blue) and apprentice (red) policies are included in
Fig. 10, Fig. 11, and Fig. 12 respectively. For each of these three quantities, the trajectories associated with the two
policies are observed to have similar behavior – and distinctly different characteristics from the trajectories in Case 1.
Thus, the apprenticeship learning algorithm successfully recovers the overall intention of the expert policies when the
LQR controller gains are selected to produce specific trajectory behavior. However, there is a significant difference in
the maneuver profile between the apprentice and expert, as displayed in Fig. 12. This difference is attributed to the
inconsistent order of magnitudes of the feature expectations vector between the apprentice and expert. Recall that this
difference that is likely due to ill-conditioning between the components of the feature expectations vector, warranting
further analysis of feature scaling strategies.

Fig. 10 Position error over time for trajectories sampled from the expert policy (blue) and sampled from the
apprentice policy (red).

Fig. 11 Velocity error over time for trajectories sampled from the expert policy (blue) and sampled from the
apprentice policy (red).

C. Case 3
In case 3, apprenticeship learning is applied to an input data set composed of rendezvous trajectories associated with

initial conditions that are perturbed from a variety of fixed points along the reference NRHO orbit. This scenario is
used to evaluate the results of the apprenticeship learning when the input data set exhibits increased diversity. Since
the NRHO exhibits a large range of relative distances to the Moon and, therefore, sensitivities in the relative motion
dynamics, this increase in the diversity of the input data set is straightforwardly achieved by generating trajectories
beginning near various locations along the reference orbit. To create the trajectories associated with the expert policy,
the initial position error standard deviation is set at σr = 100 km and velocity error standard deviation of σv = 1 m/s.
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Fig. 12 Control usage over time for trajectories sampled from the expert policy (blue) and sampled from the
apprentice policy (red).

These standard deviations are used to define the Gaussian distribution relative to each randomly-selected fixed point
along the NRHO. Each trajectory associated with an initial condition near the NRHO is propagated forward in time
under the dynamics of the CR3BP for one half the period of the NRHO orbit, i.e approximately 3 days, with the same set
of LQR gains. Using this procedure, 50 trajectories are generated from perturbations relative to fixed points along the
entire orbit, except those that lie within 0.5T of perilune; each trajectory is sampled at 1000 evenly-spaced times. For
this example, the same LQR gains from the rendezvous behavior in Case 1 are used, as listed in the fourth column of
Table 4, to enable a clear comparison between the two cases. The 500 expert trajectories, initialized relative to random
fixed points along the reference trajectory, are plotted in blue in the Earth-Moon rotating frame in Fig. 13a. The value of
the expert weights, expert feature expectations, apprentice weights, and apprentice feature expectations for the third case
are listed in Table 4 for comparison.

Comparing the feature expectations between the expert policy and the estimate policy, the two vector quantities are
only similar to within an order of magnitude. Both feature expectations possess low position error feature expectations
on a similar order of magnitude and velocity errors feature expectations also with similar orders of magnitude – although
there is a larger difference between the exact value for the individual components than in Case 1 where the rendezvous
trajectories are generated relative to a single fixed point along the NRHO. Notably, both the expert and estimated feature
expectations exhibit the same characteristic of a smaller u2

x feature expectation than the u2
y and u2

z feature expectations.
While the cause of the difference between control usage features is a product of the complex underlying dynamics
and controller in this scenario, the recovery of the difference in these components of the feature expectations vector
demonstrates the capability of the apprenticeship learning algorithm to recover a policy with a similar structure to
that of the expert. For this case, the weights recovered by apprenticeship learning does not closely match the true

Table 4 Case 3 summary of features expectations and LQR gains for the expert and apprentice policies for
trajectories sampled across the entire reference orbit.

®φ Expert ®fE Estimated ®f Expert Gains Estimated Gains
δx2 4.963e-04 3.298e-04 1.000e+05 1.359e+07
δy2 2.428e-03 2.359e-04 1.000e+05 2.779e+06
δz2 4.866e-04 1.327e-04 1.000e+05 1.386e+07
δ Ûx2 6.813e-02 4.093e-02 1.000e+02 9.904e+04
δ Ûy2 2.621e-01 5.799e-02 1.000e+02 2.574e+04
δ Ûz2 1.258e-01 4.815e-02 1.000e+02 5.362e+04
δu2

x 5.530e+00 3.502e+00 1.000e+01 1.220e+03
δu2

y 6.747e+02 6.171e+02 1.000e+01 1.000e+01
δu2

z 3.245e+02 4.476e+02 1.000e+01 2.080e+01
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(a) Expert Trajectories (b) Apprentice Trajectories

Fig. 13 Case 3 trajectories sampled from the expert and converged apprentice policy for a rendezvous example.

weights specified a priori by the expert LQR cost function. However, recovering the exact weights of the expert reward
function is not guaranteed by the algorithm – thus, this result is not unexpected. Furthermore, while the reward function
associated with the LQR controller is constant for trajectories beginning near any fixed point along the NRHO, a close
match between the expert and apprentice feature expectations vectors and, therefore, policies may not be feasible when
the input data set is too diverse.

Further insight into the deviations between the expert and apprentice policies in Case 3 is gained through a
comparison between each of the state and control components along the associated trajectory sets. Trajectories generated
from both the expert (blue) and apprentice (red) policies are compared in Fig. 13 in the configuration space of the
Earth-Moon rotating frame. As opposed to case 1 and 2, the sampled trajectories for the expert and estimated policy are
generated near fixed points around the entire reference orbit. A notable characteristic of the behavior of the expert
policy trajectories is the trajectories that are initialized closer to lunar periapsis admit a large visible position error
before converging to the reference orbit; a similar characteristic may be observed in the trajectories generated from the
apprentice policy. However, a more detailed analysis in the deviation between these trajectories is achieved using the
individual time histories of quantities along each trajectory set. Specifically, the norm of the position error, velocity error,
and control usage over time for trajectories generated via the expert (blue) and apprentice (red) policies are displayed in
Fig. 14, Fig. 15, and Fig. 16, respectively. Overall, the characteristics of the trajectories generated via both the expert
and apprentice policies are summarized by a large initial control usage that decreases in time, as well as gradually
decreasing position and velocity error over time. However, while the general trends and orders of magnitude in these
quantities are similar between the expert and apprentice trajectories, there are significant differences in the time histories
of position and velocity error and control usage. For instance, in Fig. 15, the trajectories generated via the apprentice
policy exhibit small oscillations in the magnitude of the velocity error – these characteristics are not consistent with the
shape of the magnitude of the velocity error evaluated along the expert trajectories. This local mismatch between the
trajectories may be due to the deviations between the δ Ûy2 and δ Ûz2 components of the feature expectations vector for both
the expert and apprentice. Further exploration into whether these deviations may be decreased is warranted: either
through feature scaling, modification of the termination conditions or updates to the value of α used to transform the
weight vector to the LQR gain set during each iteration of the apprenticeship learning algorithm.
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Fig. 14 Position error over time for trajectories sampled from the expert policy (blue) and sampled from the
apprentice policy (red).

Fig. 15 Velocity error over time for trajectories sampled from the expert policy (blue) and sampled from the
apprentice policy (red).

Fig. 16 Control usage over time for trajectories sampled from the expert policy (blue) and sampled from the
apprentice policy (red).
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IV. Conclusion
Apprenticeship learning, via inforcement reinforcement learning, is used to recover the strategy of a maneuver

planner for a spacecraft operating in the multi-body gravitational environment of cislunar space. In this preliminary
analysis, this procedure is implemented and explored to recover maneuvers defined by an LQR controller. Specifically,
the LQR controller is applied to rendezvous and station-keeping scenarios for a spacecraft operating near an Earth-Moon
L2 NRHO reference orbit. Two cases of expert LQR cost function gains are selected to evaluate the utility of the
apprenticeship learning algorithm in recreating distinctly different behaviors for controlled trajectories relative to the
NRHO. The results of this algorithm are evaluated for both rendezvous and station-keeping examples for trajectories
beginning near a single initial condition at apolune on the reference trajectory. In the rendezvous scenario, the policy
recovered by apprenticeship learning exhibits closely matching feature expectations to the expert policy input to the
algorithm. These expert and apprentice policies are compared by analyzing the trajectories generated from both policies
in the Earth-Moon rotating frame, as well as comparing the Euclidean norm of the position error, velocity error, and
control usage over time. In the rendezvous scenario, the apprentice policy successfully mimics the characteristics
of the expert. While the apprenticeship learning algorithm does not claim to recover the true reward function of the
expert, the reward weights estimated by the algorithm after normalization are observed to be similar to the weights
of the expert reward function. In the station-keeping scenario, the apprenticeship learning algorithm implemented
in this analysis produces an estimated policy that recreates the general structure of the expert policy. However, this
apprentice policy does not sufficiently capture the control usage behavior associated with the expert of the policy. This
mismatch is likely due to ill-conditioning between the components of the feature expectation vectors, thereby motivating
further analysis into feature scaling strategies. Next, the rendezvous scenario is modified by introducing a more diverse
set of expert demonstrations: trajectories generated via the expert policy are initialized relative to a variety of fixed
points along the NRHO. In this case, the general structure of the LQR controller is approximately recovered and the
trajectories generated by the apprentice policy admit position, velocity and control usage errors that are on the same
order of magnitude as those generated via the expert policy. However, variations between the trajectories generated
by the apprentice and expert policies occur on smaller time scales across the specified time horizon. Such deviations
may occur due to a combination of ill-conditioning between the components of the feature expectations vector and
the strategy for transforming between the weight vector recovered after the inverse reinforcement learning step and
estimated LQR controller gains. However, it is more likely that diversity of the input data set negatively impacts the
recovery of an apprentice policy that is simultaneously accurate and generalizable for trajectories beginning near various
locations along the NRHO. Nevertheless, this analysis presents a preliminary step towards using techniques derived from
machine learning to support the summarization of maneuver planning strategies for a spacecraft operating in the complex
gravitational environment of cislunar space. Such techniques may be particularly valuable for scenarios reflecting
more complex control schemes where an exact analytical expression cannot summarize the maneuvers designed by a
large-scale optimization or a human flight dynamicist.
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