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Poincaré maps are invaluable for rapidly analyzing the complex solution space within
multi-body dynamical systems. However, for spatial motion or even planar dynamics in a
nonautonomous model that does not admit a constant of motion, the information contained
on a Poincaré map is often higher-dimensional and, therefore, challenging to visualize. In this
paper, clustering is used to group higher-dimensional crossings on a Poincaré map according
to the geometry of the associated trajectories; this procedure is demonstrated for natural and
low-thrust-enabled solutions in the circular restricted three-body problem. The value of this
clustering approach in reducing the complexity of visualization and analysis is demonstrated
within the context of trajectory construction for the Lunar IceCube mission.

I. Introduction

Poincaré maps are often leveraged in astrodynamics and celestial mechanics to rapidly analyze the complex solution
space typical of multi-body dynamical systems. A Poincaré map displays the intersections of a set of trajectories

with a surface of section, reducing continuous solutions to sequences of individual states. An appropriately constructed
map also decreases the dimensionality of the problem while still retaining the characteristics of the solution space.
In the context of multi-body gravitational environments, maps have been employed in a variety of scenarios: from
studying Earth-to-Moon low-energy transfers to reveal the underlying dynamical structure of the system to uncovering
the natural motion of Jovian comets [1, 2]. In dynamical systems such as the Circular Restricted Three-Body Problem
(CR3BP), Poincaré maps have been used to facilitate the trajectory design process: arcs of interest are selected from the
map and used during initial guess construction to enable rapid recovery of an end-to-end trajectory in a higher fidelity
model. Recently, Poincaré maps have been used during the early stages of the trajectory design process for CubeSat and
SmallSat missions, where propulsion systems and deployment conditions are severely constrained and initial guess
construction is particularly challenging; one prominent example includes the Lunar IceCube mission, involving a
CubeSat that is deployed from the upcoming Artemis-1 mission and must reach an eccentric and highly-inclined orbit
near the Moon [3].

The benefit of using Poincaré maps to explore the solution space in a chaotic gravitational environment depends on
the complexity of the dynamical model and the dimension of the information describing each crossing on the map.
For planar motion in a nonautonomous model that does not admit a constant of motion or even spatial motion in an
autonomous dynamical system, Poincaré map visualization does not produce a bijective or unique representation of a
trajectory via a map crossing; thus, analysis by a human-in-the-loop may be challenging. Typically, in these scenarios,
either a multivariate representation of the map crossings is employed or additional constraints are introduced. For
instance, Haapala represents four-dimensional map crossings on a two-dimensional projection by leveraging glyphs [4].
Alternatively, Gómez et. al. introduce additional filters to further reduce the dimension of the map crossings associated
with spatial motion in the CR3BP [5]. In the CR3BP, applying these techniques to Poincaré map visualization may
enable further insight into the solution space via the emergence of patterns in the map crossings or interactive analysis
by a human-in-the-loop. However, if the dataset asociated with a higher-dimensional representation of a Poincaré
map is dense or associated with a nonautonomous dynamical model, such patterns may not emerge, necessitating
alternative approaches to enable effective analysis. In this paper, clustering techniques are used to address the challenges
associated with analyzing and visualizing higher-dimensional Poincaré maps. Specifically, clustering is used to group
map crossings associated with trajectories that share similar characteristics or geometries.

Clustering techniques have been leveraged in a wide variety of disciplines to extract fundamental insights from large
datasets; recently, they have been employed in the disciplines of astrodynamics and applied mathematics. For example,
Hadjighasem, Karrasch, Teramoto, and Haller apply spectral clustering to locate coherent structures in several nonlinear
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flow regimes [6]. In astrodynamics, Nakhjiri and Villac leverage clustering algorithm k−means to autonomously detect
regions of stability in planar maps with a focus on the region near distant retrograde orbits.[7]. Additionally, Villac,
Anderson, and Pini employ k−means clustering to organize periodic orbits near small bodies [8]. More recently, Bosanac
has employed a hierarchical and density-based clustering algorithm, Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN), to group the trajectories associated with the crossings on a general periapsis map
in the planar CR3BP according to geometry; the result is a set of fundamental solution geometries and a representation
of the regions of existence of each type of solution [9, 10]. Bosanac demonstrates this approach for two similarity
measures and exploits a density-based cluster validity index to merge clusters of similar solutions in scenarios where the
computational effort associated with the clustering step must be reduced [10]. In addition, Smith and Bosanac leverage
a variety of clustering algorithms to summarize a continuous family of periodic orbits in the Earth–Moon CR3BP via a
finite set of representative solutions [11]. In each of these studies, clustering has successfully supported a data-driven
process for extracting new insights into the structure of the solution space in a complex dynamical system.

This paper builds upon the previous work of Bosanac by extending and applying clustering to higher-dimensional
maps of the solution space in multi-body gravitational environments: capturing either spatial trajectories in the CR3BP
or in a low-thrust-enabled CR3BP that is nonautonomous. The goal of this clustering-based approach is to reduce the
complexity of visualizing and analyzing a higher-dimensional map that reflects a complex solution space. To achieve
this goal for maps constructed in each of the dynamical models of interest, continuous trajectories are first summarized
via a finite set of parameters or geometric characteristics. The resulting dataset is input to the HDBSCAN algorithm
following the approach presented by Bosanac [10]. This clustering algorithm is used to group map crossings by the
properties of the associated trajectories – producing a representative set of solutions for each cluster as well as insight
into the region of existence of each arc. To extend this clustering approach to higher-dimensional maps and reduce the
computational complexity of clustering the large dataset associated with a more complex solution space, this analysis
also exploits cluster validity measures [12]. Specifically, the large dataset is coarsely partitioned: for spatial motion
in the CR3BP, partitions corresponds to several hyperplanes with distinct definitions; and in the low-thrust-enabled
CR3BP, partitioning is performed via high-level geometric criteria. Once the dataset is coarsely partitioned, clustering
is performed on each partitioned dataset. Then, inspired by the approach presented by Bosanac, a scalar cluster validity
measure is used to merge the clusters containing similar solutions across distinct partitions, effectively connecting the
partitions in a computationally-efficient manner. The resulting clusters, generated without a priori definition of analytical
expressions to govern the grouping, facilitate rapid and informed analysis of the solution space. To demonstrate this
clustering-based approach to Poincaré map visualization and analysis, the outlined strategy is explored in the context
of the trajectory construction process for the Lunar IceCube mission [3]. In particular, this paper focuses on using
clustering to analyze Poincaré maps constructed in two dynamical models that predominantly predict the motion of
the spacecraft during two distinct segments of the Lunar IceCube trajectory: (1) spatial motion in the Sun–Earth
CR3BP corresponding to the phasing and energy adjustment transfer segment and (2) low-thrust-enabled motion in
the Earth–Moon CR3BP, to study the lunar approach phase [3]. In both of these applications, the data contained on a
Poincaré map possesses a higher dimension than that of the map representation. Thus, clustering is used to discover
groupings of solutions that aid the human analyst during the trajectory construction process.

II. Mission Application: Lunar IceCube
Although CubeSats offer a rapid and low-cost platform for targeted science missions, the trajectory design process

is significantly influenced by their form factor and associated operational constraints. Since CubeSats often ride as
secondary payloads, there are significant uncertainties associated with their highly-constrained deployment conditions.
With limited maneuvering capabilities for trajectory adjustments, trajectory design for a CubeSat destined for locations
well beyond low Earth orbit may be a challenging task. Furthermore, regular redesign may be required as the mission
concept, hardware design or deployment conditions evolve. Together, these challenges necessitate the development of a
systematic trajectory design process and further understanding of the solution space.

Lunar IceCube is an upcoming CubeSat mission that will study water on the lunar surface; development of the Lunar
IceCube mission is led by Morehead State University and is supported by NASA Goddard Space Flight Center, Busek
and Catholic University of America. The mission will leverage a 6U CubeSat that will ride as a secondary payload on
the upcoming Artemis-1 mission. The CubeSat is expected to possess an initial wet mass of 14 kg and is equipped with
a propulsion system that admits an estimated thrust level of approximately 0.9 mN with a specific impulse of 2500s [13].
To fulfill the mission requirements, LunarIce Cube will perform observations from a highly-inclined, elliptical lunar
orbit with a semi-major axis of a = 4287 km, an eccentricity of e = 0.5714, an inclination of i = 89 deg and periapsis
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located over the equator [13]. Prior work by Bosanac, Bosanac, Cox, Howell and Folta and Folta, Bosanac, Cox and
Howell has focused on developing a framework for designing a feasible trajectory for the Lunar IceCube spacecraft to
reach this desired lunar orbit following deployment [3, 13, 14]. In their works, the authors divide the transfer trajectory
into three segments: an Earth outbound leg, a phasing and energy adjustment segment and a final lunar capture phase
[3]. During the phasing and energy adjustment segment, the gravitational pull of the Sun is leveraged to decrease the
spacecraft energy and ballistically drive the spacecraft towards the Earth–Moon L2 gateway. In the final approach phase,
the low-thrust engine is employed to lower the spacecraft energy until lunar capture. In their work, Poincaré mapping is
employed to gain insights into the solution space within each segment via low-fidelity, yet representative, dynamical
models; this insight is then used to construct an initial guess for a trajectory in a low-fidelity model [3, 13, 14]. The
Poincaré maps used to facilitate this trajectory design process are revisited in this current work via the application of
clustering, with the goal of gaining additional insight into the distinct geometries of solutions in each segment of the
trajectory as well as their regions of existence.

III. Background: Dynamical Models
The CR3BP is employed to describe the dynamics governing the motion of a spacecraft due to the point-mass

gravitational influence of two primary bodies. In this model, two primaries, P1 and P2, are assumed to follow circular
orbits about their mutual barycenter. The third body, representing the spacecraft, is assumed to possess a negligible mass
with respect to the two primaries [15]. Three characteristic quantities are introduced to nondimensionalize mass, length
and time quantities, respectively: m∗, equal to the sum of the masses of the primaries; l∗, equal to the constant distance
between the two primaries; and t∗, to set the mean motion of the primaries to unity. This nondimensionalization scheme
also enables definition of the parameter µ, which represents the ratio between the mass of the smaller primary and the
system mass. In the Sun–Earth system, the mass parameter is µ ≈ 3.00348064 × 10−6, while in the Earth–Moon system,
µ ≈ 0.01215058. Then, the nondimensional state of the spacecraft is expressed in an orthogonal reference frame,
(x̂, ŷ, ẑ), that rotates with the two primaries; this frame definition enables the construction of equations of motion that
are autonomous. The x̂-axis of this rotating frame is directed from the larger to smaller primary, the ẑ-axis is aligned
with the total angular momentum of the system, while the ŷ-axis completes the right-handed coordinate frame. The
nondimensional state of the spacecraft is written in this frame relative to the system barycenter as x = [x, y, z, Ûx, Ûy, Ûz]T .
The nondimensional equations of motion for a spacecraft in the CR3BP are expressed as:

Üx − 2 Ûy =
∂U
∂x

, Üy + 2 Ûx =
∂U
∂y

, Üz =
∂U
∂z

(1)

with a pseudo-potential function defined as U = (x2 + y2)/2 + (1 − µ)/r1 + µ/r2, and the distances of the spacecraft
from the two primaries as, respectively, r1 =

√
(x + µ)2 + y2 + z2 and r2 =

√
(x − 1 + µ)2 + y2 + z2 [15]. The CR3BP

admits one integral of motion, the Jacobi constant, equal to JC = 2U − Ûx2 − Ûy2 − Ûz2 [15]. At a single value of the Jacobi
constant, a wide variety of fundamental solutions may exist in the CR3BP including: equilibrium points, labelled Li for
i = [1,5]; periodic orbits; bounded quasi-periodic motion and chaos. These solutions are bounded by Zero Velocity
Surfaces (ZVS), separating allowable and forbidden regions of motion for a specific value of the Jacobi constant.

For a spacecraft that is equipped with a low-thrust propulsion system, the equations of motion for the CR3BP are
augmented by an additional acceleration term. Consider a spacecraft with a mass m and a propulsion system with a
dimensional thrust, T , and a specific impulse, Isp; both the thrust and specific impulse are assumed to be constant over
time. At a single instant of time, the unit vector describing the thrust direction is written in the velocity-normal-conormal
(VNC) frame, defined relative to a primary body to enable the use of heuristics during development of an initial control
strategy [14]. This unit vector is then transformed to the rotating frame associated with the CR3BP where it is written
as û = [ux, uy, uz]T . Using these definitions, the system of equations in Eq. 1 are then augmented to include the
acceleration due to the propulsion system and the time rate of change of the spacecraft mass. The result is the following
system of equations for low-thrust-enabled motion in the CR3BP:

Üx − 2 Ûy =
∂U
∂x
+

Tltux

m
, Üy + 2 Ûx =

∂U
∂y
+

Tltuy
m

, Üz =
∂U
∂z
+

Tltuz
m

, Ûm = −
Tt∗

Ispg0
(2)

where Tlt is the thrust normalized only by time and length quantities such that Tlt = T(t∗)2/l∗ and g0 = 9.81 m/s2 is the
gravitational acceleration on Earth at sea level. Due to the inclusion of an additional acceleration associated with the
low-thrust propulsion system, the solution space is fundamentally different than in the natural CR3BP. Furthermore, the
complexity of analyzing the solution space has significantly increased as the thrust direction unit vector evolves.
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IV. Background: Poincaré Maps
In dynamical systems theory, Poincaré maps reduce the complexity of analysing a large set of continuous trajectories.

This goal is achieved by first defining a surface of section that is transverse to the flow. Useful definitions for a surface
of section may include: hyperplanes, e.g. fixing a certain space or velocity coordinate; hyperspheres centered at
one primary; and stroboscopic surfaces, capturing the flow at specific times [16]. Then, continuous trajectories are
dimensionally reduced to a finite set of states, representing the locations where the continuous arcs pierce the hyperplane.
Depending on the problem definition, the definition of the hyperplane and the map configuration, the map crossings
associated with each trajectory may provide insight into the characteristics of the underlying dynamics. In fact, the
collection of map crossings associated with a large set of trajectories may admit specific patterns that may indicate the
existence of specific types of fundamental solutions; the absence of such patterns may also reveal valuable insight in
some circumstances. However, in dense, higher-dimensional maps associated with autonomous dynamical models, such
patterns may be difficult for a human analyst to detect. Furthermore, in nonautonomous dynamical models, such patterns
do not typically exist. Thus, the complexity of analyzing the solution space reflected on a Poincaré map depends on the
properties of the dynamical model, the definition of the surface of section and the flow segments of interest.

To supply an overview of the Poincaré map construction process, consider a perigee map for prograde, planar motion
in the Sun–Earth CR3BP at a single value of the Jacobi constant; this is the same map presented in Bosanac [10]. First,
a periapsis surface of section is defined as:

(x − 1 + µ) Ûx + y Ûy + z Ûz = 0 ∪ (x − 1 + µ) Üx + y Üy + z Üz + Ûx + Ûy + Ûz > 0 (3)

relative to the smaller primary in the Sun–Earth CR3BP, i.e., the Earth [17]. In this example, initial conditions for
generating planar trajectories of interest are seeded directly from this surface of section at a single Jacobi constant;
for this example, this Jacobi constant is set equal to JC = 3.00088. These initial perigees possess states of the form
xIC = [x, y, z = 0, Ûx, Ûy, Ûz = 0]T . Position coordinates, x and y, for the initial conditions are selected to lie within the
Zero Velocity Curves (ZVCs), i.e., the intersection between the ZVS and the plane of the primaries, at the fixed value
of the Jacobi constant. In this example, 201 equally-spaced x−coordinates are seeded within the ZVCs and between
the locations of L1 and L2, along with 201 equally spaced y−coordinates within the range [−0.01, 0.01]. For each
combination of x and y, the speed at perigee is calculated from Eq. 2 as v =

√
2U − JC. If this relationship produces a

real number for v, the velocity vector at the initial state is defined by multiplying the unit vector that satisfies Eq. 3 by
the speed. This unit vector is directed such that the state is prograde relative to the Earth, producing an instantaneous
angular momentum vector for the spacecraft relative to the Earth with a positive z-component. Each initial condition
that satisfies the prograde periapsis condition is then propagated forward in time in the CR3BP. In this example, up to 20
successive intersections with the hyerplane are recorded. This propagation terminates early if the trajectory passes
within a distance of r2 < 10−5 from the Earth or the spacecraft leaves the Earth vicinity through either the L1 or L2
gateways. The Poincaré map constructed with this approach is displayed in Fig. 1a). This map reflects the position
coordinates (x, y) of every intersection of the generated trajectories with the surface of section, plotted in black in Fig. 3.
The locations of the Earth, L1 and L2 are labeled, with the ZVCs indicating the boundaries of the gray shaded forbidden
region. Definition of the map configuration along with constraining the flow in the CR3BP to planar solutions at a fixed
value of JC results in each map crossing uniquely representing each trajectory [10].

To demonstrate the complexity of higher-dimensional maps, consider a second Poincaré map constructed at the
same Jacobi constant of JC = 3.00088, but for spatial motion in the CR3BP. This map is constructed using a similar
procedure as in the previous example. However, the set of initial conditions is discretized using 51 equally spaced
x−coordinates within the locations of L1 and L2, 51 equally spaced y−coordinates in the range [−0.01, 0.01], 51
equally spaced z−coordinates in the range [−0.01, 0.01]. Then, when solving for a unit vector that is aligned with the
velocity vector, the perigee condition in Eq. 3 admits an additional degree of freedom. Thus, 51 equally spaced values
of Ûz are considered within the range [−v, v]. Each initial state is then propagated forward in time for 5 consecutive
intersections with the hyperplane defined in Eq. 3, with the same early termination conditions as in the previous
example. Each intersection of the propagated trajectories with the surface of section is then plotted in black in the
three-dimensional configuration space in Fig. 1b). This Poincaré map reflects prograde perigees for trajectories near
the Earth in the Sun–Earth CR3BP at a Jacobi constant of JC = 3.00088. The locations of the Earth, L1 and L2 are
labeled, with the ZVS displayed as a transparent blue surface; the forbidden region at the selected Jacobi constant lies
outside this ZVS. Analysis of this figure reveals that the complexity of this map reflecting spatial motion in the CR3BP
has significantly increased. In fact, this three-dimensional projection does not supply a bijective representation of the
mapping as each crossing represents four-dimensional data, thereby impeding a rapid and thorough investigation of the
available design space by a human-in-the-loop. Furthermore, modifying the data displayed on this map via filtering
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Fig. 1 Example Poincaré maps capturing prograde perigees at JC = 3.00088 in the Sun–Earth CR3BP for a)
planar and b) spatial trajectories.

or higher-dimensional visualization schemes may require significant a priori insight into the structure of the solution
space. In fact, constructing exact analytical conditions for further discretizing the data set may not be feasible. Thus,
data-mining techniques, such as clustering, offer a potential approach for effectively exploring the solution space and
reducing the complexity of analysis.

V. Background: Clustering
Clustering techniques enable an unsupervised grouping of the members of a dataset: data in the same cluster are

considered as similar while data in separate clusters are considered dissimilar. This grouping is performed based on a
specified representation of the data, labeled the feature vector, in a multi-dimensional space. Then, cluster assignments
may be performed via a variety of algorithms, which tend to fall into the following classes: partition-based, hierarchical
and density-based [18]. In this paper, the Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) algorithm, developed by Campello, Moulavi and Sander, is leveraged for cluster assignment following
the approach presented by Bosanac [9]. As Bosanac notes, this algorithm is particularly well-suited to the clustering
of the crossings on a Poincaré map according to the geometry of the associated solutions since it: can accommodate
clusters of arbitrary shape and density; can label data as noise; does not require a priori knowledge of the number of
clusters; and can accommodate an unknown or nonconstant distance between data in a cluster [10]. In this section, an
overview of the HDBSCAN algorithm is presented, followed by the definition of the feature vector and the similarity
measures employed in this paper along with the approach for extracting a cluster representative. Then, density-based
cluster validity indices, introduced by Moulavi et al., are discussed as a means for algorithm parameter selection and
merging clusters of similar solutions [12].

A. HDBSCAN Overview
HDBSCAN is a density-based hierarchical clustering algorithm developed by Campello, Moulavi and Sander [9].

This algorithm takes as an input the dataset [T] = {t1, t2, . . . , tN }, composed of N members that are described by
M-dimensional feature vectors. Then, HDBSCAN groups data in sufficiently dense regions of a multi-dimensional
space into clusters. Two input parameters govern this clustering algorithm: mpts and mclSize. The first input parameter,
mpts , enables calculation of the core distance, dcore, of the i-th member of the dataset, defined as the metric-distance of
ti from its nearest mpts-neighbor, including ti , i.e., dcore(ti) = KNN(ti, mpts). The second parameter, mclSize, defines
the minimum number of members of the dataset that may form a single cluster. Once the input parameters are set,
HDBSCAN populates a distance matrix based on a scalar distance metric, e.g., Euclidean norm, L∞-norm, or Hausdorff
distance. The distance between the i-th and j-th data points reflects the mutual reachability distance (MRD), calculated
as dreach(ti, t j) = max

{
dcore(ti), dcore(t j), d(ti, t j)

}
where d(ti, t j) is simply the distance between the two points. A

Minimum Spanning Tree (MST) is then constructed by leveraging the computed MRDs as the weights of the edges
between each pair of members of the dataset. A self-loop representing the core distance of each member is added at
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each node to generate an extended MST. HDBSCAN then condenses the MST to produce a dendrogram that supports
cluster assignment: clusters are identified as those that both possess at least a minimum number of members and are
considered sufficiently stable across the dendrogram. During the clustering process, each member of the dataset is either
assigned to a cluster or considered noise [9]. As discussed by Campello, Moulavi and Sander, the HDBSCAN algorithm
is ∼ O(MN2) in time and ∼ O(MN) in memory storage, when the clustering is performed on an N × M-dimensional
dataset [9]. In this analysis, the HDBSCAN algorithm is accessed via the hdbscan Clustering Library in Python [19].

B. Feature Vector Representation
Each member of the dataset is described by a feature vector that reflects properties of the map crossing and associated

trajectory. In this work, continuous arcs are summarized as a sequence of states. However, the challenge in applying
this definition lies in selecting the appropriate states and parameters to balance fidelity of the representation with
computational performance and avoiding the well-known curse of dimensionality [10]. Following the previous work of
Bosanac, the geometry of a trajectory is summarized via a feature vector, ti , defined using a curve-based approximation.
Each trajectory is identified by a sequence of Na apses – periapses and/or apoapses – calculated with respect to one
of the primaries [10]. This feature vector is constructed such that ti =

[
si,0, si,1, . . . , si,k, . . . , si,Na

]T , where si,k
represents the k-th apse recorded along the trajectory associated with the i-th map crossing. Each apse, si,k , is then
represented by the time and state components at that apse such that:

si,k =
[
τi,k, xi,k, yi,k, zi,k, Ûxi,k, Ûyi,k, Ûzi,k

]T (4)

where τi,k is the time at which the k-th apse occurs normalized by the total propagation time along the trajectory and(
xi,k, yi,k, zi,k, Ûxi,k, Ûyi,k, Ûzi,k

)
are the state components of the k-th apse in the rotating frame. If the trajectory terminates

early and prior to reaching the k-th apse, the vector si,k is assigned a placeholder value: si,k = [0, ±10, 0, 0, 0, 0, 0]T
[10]. The positive sign is used for trajectories stopping prior to reaching an apoapsis, while the negative sign is used
for a trajectory that terminates prior to reaching a periapsis. To mitigate the potential for ill-conditioning between the
components of the feature vector, a normalization scheme is also employed such that each parameter is normalized to
possess a value within the range [−1, 1] across the entire data set.

C. Measures of Similarity
In this analysis, two distinct distance metrics are leveraged to assess similarity: the Euclidean l2−norm and a

modified Hausdorff distance. The Euclidean l2−norm enables definition of a distance metric, d2(·, ·), via an isochronous
comparison between two trajectories that are represented as a sequence of states. This quantity is calculated as follows:

d2(ti, t j) = | | ti − t j | |2 =

√√√ Na∑
k=1

(
si,k − s j ,k

)T (
si,k − s j ,k

)
(5)

For a time-independent and geometry-based measure of similarity between two trajectories, a modified Hausdorff
distance, dmHD(·, ·), is useful. In this paper, this quantity is defined as:

dmHD(ti, t j) = min
(
dmHD,1(ti, t j), dmHD,1(t j, ti)

)
(6)

where:

dmHD,1(ti, t j) =
Na∑
k=1

(
min

l=1,...Na

| |si,k − s j ,l | |2

)
/Na (7)

Due to its form, the modified Hausdorff distance requires more computational time during computations or clustering
than the l2-norm [20]. An approach to mitigate the impact of using the Hasudorff distance on the computational time
via prepartitioning the dataset and merging clusters across partitions is discussed in later sections.

D. Cluster Representative Definition
Following application of the HDBSCAN algorithm, the map crossings associated with each cluster are summarized

by a single representative member and associated trajectory. Following the approach of Bosanac, the medoid of a cluster
is used to define a representative data point [10]. A medoid, sometimes referred to as clustroid, is the element of a cluster
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that is most similar to the other members of the same cluster [21]. Mathematically, for cluster Cj = {t
(j)
1 , t

(j)
2 , . . . , t

(j)
Mj
},

with cluster cardinality |Cj | = Mj , the medoid of the j-th cluster is defined as:

t
(j)
med
= argmin

t
( j)
k
∈C j

Mj∑
i=1, i,k

d
(
t
(j)
i , t

(j)
k

)
(8)

where d (·, ·) corresponds to the selected distance metric. To ensure that identification of the medoid is performed in a
computationally-efficient manner and is not significantly influenced by data at the boundary of the cluster, the concept
of soft-clustering is employed [22]. Specifically, only members of a cluster that possess a probability of 1 for belonging
to a cluster are used to calculate the medoid.

E. Cluster validation
Cluster validation is leveraged in this analysis both to select the parameters governing the clustering algorithm and

to merge clusters of similar solutions across partitions of the dataset. For clustering algorithms, validation usually
falls under three different types: external, internal or relative. Of most interest in this analysis, relative validation uses
the internal results of the clustering algorithm for comparison across various values of the input parameters. For a
Poincaré map capturing spatial trajectories in the CR3BP or solutions in a nonautonomous dynamical system, there
is limited a priori knowledge of an appropriate division of the dataset formed by the map crossings. Thus, following
the work of Bosanac, the relative Density-Based Clustering Validation (DBCV) index introduced by Moulavi et al. is
used in this work to validate clustering results – both to select input parameters and to identify when clusters of similar
solutions should be merged across partitions of the dataset [10, 12]. The DBCV index is built upon the definition of the
all-points-core distance; for the generic datapoint ti in cluster Cj , the all-points-core distance is defined as:

dacore =
©­­«
∑ |C j |

k=2

(
1

KNN (ti , k)

)b
|Cj | − 1

ª®®¬
−1/b

(9)

where b represents an integer value, often equal to the dimension of the feature vector. For eachmember of a cluster, the all-
pointsMutual Reachability Distance (aMRD) is then defined as dareach(ti, t j) = max

{
dacore(ti), dacore(t j), d(ti, t j)

}
.

Then, Moulavi et al. define two more quantities: the density sparsness of a cluster, DSC(Ci) which uses the maximum
internal weight of the MST based on the aMRD of cluster Ci and the density separation of a cluster pair, DSPC(Ci, Cj),
defined to reflect the minimum weight of the MST based on the aMRD of both clusters, Ci and Cj . The DSC(Ci)

index is essentially a measure of the internal density compactness of a cluster, whereas the DSPC(Ci, Cj) index is an
indication of the density separation between two clusters. The validity index of a cluster, VC(Ci), then incorporates
both DSC and DSPC to represent the quality of the obtained clustering result: a good cluster is compact with a large
separation from the other clusters. Thus, a positive value of VC(Ci), indicates a compact cluster while a negative value
of VC(Ci) corresponds to a loose cluster. When a dataset is grouped into l clusters, the DBCV index is computed as:

DBCV =
l∑

i=1

|Ci |

|T |
VC(Ci) (10)

From this definition, −1 < DBCV < 1, with positive values indicating a good clustering result. Since the number of
noise points contributes to the cardinality of the dataset, i.e., |T |, a clustering result with a large percentage of noise
points possesses a lower absolute value of the DBCV index [12]. An approximation of this DBCV index is leveraged
in this analysis both for parameter selection and to improve computational speed during prepartioning and cluster
merging; this approximation is obtained via the hdbscan library in Python and uses the MRD rather than the aMRD in
computation. Although it is merely an approximation of the true index, the approximation, DBCVa, represents a valid
alternative for relative comparison between HDBSCAN runs on the same dataset [19].

VI. Application of Clustering to Poincaré Maps in the Spatial CR3BP
In this section, HDBSCAN is employed to cluster the crossings of a Poincaré map associated with spatial trajectories

in the autonomous Sun–Earth CR3BP. A technique inspired by tomography is presented to reduce the computational
effort associated with clustering a large dataset. This procedure is then explored in the context of the Lunar IceCube
mission, with a focus on analyzing the solution space for the phasing and energy adjustment segment of the trajectory.
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A. Algorithm overview
To efficiently cluster the crossings on a higher-dimensional Poincaré map by the geometries of the associated spatial

trajectories, a partition-based approach that is inspired by tomography is presented. First, several distinct sets of initial
conditions are defined and the trajectories associated with each of these sets form a partition of the dataset. Clustering is
performed separately on each of these partitions. Then, the clusters associated with each partition are compared: if two
clusters intersect in phase space, they are merged. This second step corresponds to the connection of cluster across
partitions of the dataset. The technical approach for implementing this clustering procedure is summarized as follows:

1) Definition of several sets of initial conditions: several sets of initial conditions are defined in the available
phase space as a means to guide the partitioning process. One approach to partitioning the initial conditions is
to sample only states that occur at the intersection of the surface of section for defining the map and a set of
additional hyperplanes. For spatial trajectories in the CR3BP, these additional hyperplanes may be defined as a
set of mutually orthogonal hyperplanes passing through the location of the smaller primary, such as z = 0, y = 0
and x = 1 − µ. Alternative examples include a set of parallel but distinct hyperplanes.

2) Seeding initial conditions in each partition: the initial conditions are seeded directly from the intersection of the
surface of section used to define the map and each additional hyperplane, while also subject to any additional
constraints. When studying perigees along trajectories that remain in the Earth vicinity in the spatial CR3BP,
these initial conditions are seeded between the L1 and L2 gateways using the procedure outlined in Section IV
and defined to correspond to prograde perigees at a fixed value of the Jacobi constant with Ûz = 0.

3) Generation of the partitioned dataset: for the i-th set of initial conditions, the associated trajectories are propagated
in the Sun–Earth CR3BP until satisfying any of the following termination conditions: completing a total of Na

apses with respect to the Earth, i.e., completing Na/2 subsequent perigees; passing within a distance of 10−5

from the Earth; or passing through either the L1 or L2 gateways. Each trajectory generated from the i-th set and
performing at least two apses is stored in the i-th partition of the dataset, [Ti]. Each crossing of the two-sided apse
map is described via a feature vector that reflects a sequence of perigees and apogees, as outlined in Section V.B.

4) Clustering on each partition of the dataset: the input parameters mpts and mclSize are selected to balance
maximizing the DBCV index, lowering the subset of the dataset identified as noise and avoiding either an
excessively large or negligibly small number of clusters. Using a consistent set of input parameters, clustering is
performed independently on each of the partitions of the dataset.

5) Merge clusters across partitioned datasets: the clusters associated with each partition of the dataset are used to
identify a minimal set of unique clusters. Merging of two clusters of similar solutions is performed by locating
intersections in the phase space. If a cluster from one partition does not intersect the cluster within another
partition, it is considered a standalone cluster. Finally, noise points are merged into a single noise set.

6) Analysis of the results: representative solutions of the clusters associated with the complete dataset are generated.
The medoid of a cluster is identified either directly from the data points in that cluster or, if the cluster contains
more than 104 members, via subsampling of the cluster [10]. These cluster representatives are analyzed along
with a visualization of the map crossings with each cluster colored uniquely.

This procedure is demonstrated in the context of a prograde periapsis map for spatial motion in the Sun–Earth CR3BP at a
Jacobi constant of JC = 3.00088 with Ûz = 0. The results of the clustering procedure are validated through a comparison
with a computationally-intensive clustering of the full dataset associated with the Poincaré map in Section VI.B. Then,
this approach is applied to the phasing and energy adjustment segment of the Lunar IceCube trajectory in Section VI.C.

B. Technical Approach
To demonstrate the outlined approach for reducing the complexity of clustering the map crossings associated with

spatial trajectories in the CR3BP, consider a prograde periapsis map in the Sun–Earth CR3BP at a Jacobi constant of
JC = 3.00088. Three partitions of the dataset are generated via the intersections of the surface of section used to define
the map with three additional hyperplanes; these hyperplanes are summarized in Table 1 along with the properties of
each partition, the parameters input to HDBSCAN and the properties of the clusters generated for each partition. The
first dataset corresponds to periapses that remain in the plane of the primaries with Ûz = 0. The second dataset includes
initial periapses in the y = 0 plane with Ûz = 0 while the third dataset reflects initial conditions located with x = 1 − µ
and Ûz = 0. Then, trajectories in each partition of the dataset are generated by integrating the associated initial conditions
forward in time for up to six subsequent apses with respect to the Earth. These trajectories are stored in the partition [Ti]
using the feature vector definition that reflects a time-ordered sequences of perigees and apogees. Next, HDBSCAN
is used along with the input parameters listed in Table 1 to perform clustering on each of the individual partitions of

8



Dataset No. Constraints on Initial Perigees [mpts, mclSize] |T | Nclusters DBCVa Noise level %
1 z = 0 [50, 100] 31544 14 0.20177 6.21
2 y = 0 [50, 100] 26108 25 0.10868 3.99
3 x = 1 − µ [50, 100] 18639 8 0.18575 0.22

Table 1 Clustering parameters and results for each partition of the dataset used to generate a prograde
periapsis map.

dataset. Then, the merging procedure, outlined in Section VI.A, is employed to merge connected clusters that exist
across multiple partitions of the datasets. Following merging, the final clustering result is displayed in Fig. 2 with
each individual cluster colored uniquely. The clusters in this figure reveal the region of existence of solutions with
similar geometries as well as the variety of distinctly different geometries exhibited by trajectories across the entire data
set. Of course, this representation is limited to the selected subsets of perigees used to define the initial condition sets.
Furthermore, the recovered clusters are dependent upon the specific parameters input to HDBSCAN.

The fidelity of the prograde periapsis map constructed in the Sun–Earth CR3BP at a Jacobi constant of JC = 3.00088
with Ûz = 0 is increased by introducing several parallel hyperplanes, defined in configuration space, to create a larger
number of partitions of the dataset to be used in the clustering process. In particular, additional sets of initial conditions
are constrained to possess individual values of the y-coordinate in the range y ∈ {−4, −3.5, −3, . . . , 4} × 10−3. Each of
these additional datasets, reflecting the geometry of the trajectories associated with each set of initial conditions, is
clustered individually. Then, clusters that exist across multiple partitions are merged following the procedure outlined in
Section VI.A. The resulting increased fidelity map is displayed in Fig. 3 with a subset of map crossings displayed and
colored according to their cluster assignment; only selected clusters are displayed to ensure clear visualization. Cluster
representatives for the clusters that are labeled in Fig. 3 are displayed in Fig. 4 in the Sun–Earth rotating frame. In this
figure, green circle locate the initial conditions, the Earth is identified by a gray circle and red diamonds correspond
to the equilibrium points. The transparent blue surface corresponds to the ZVS. These representatives each exhibit

L1

L2Earth

Fig. 2 Poincaré map reflecting prograde periapses in the Sun–Earth CR3BP at a Jacobi constant JC = 3.00088
and Ûz = 0 following the partitioning and cluster merging procedure.
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Fig. 3 Poincaré map reflecting prograde periapses in the Sun–Earth CR3BP at a Jacobi constant JC = 3.00088
and Ûz = 0 following the partitioning and cluster merging procedure, constructed using a large number of
partitions. Four selected clusters are identified.

0 1 2 3

Fig. 4 Representatives of the clusters labelled on the map in Fig. 3, plotted in the Sun–Earth rotating frame.

fundamentally different geometries, illustrating the capability for the clustering approach to group the crossings on a
map via the geometry of the associated trajectories.

To validate the results of clustering a large dataset via the described prepartitioning and merging process, a
comparison to simultaneous clustering of the entire large data associated with all initial conditions is performed. The
full initial condition set is defined by seeding 301 x−, 301 y− and 301 z−coordinates in the neighborhood of the Earth
and between the L1 and L2 gateways, with Ûz = 0 and the prograde periapsis condition. Then, a complete dataset of
spatial trajectories is generated and clustered via HDBSCAN. A dataset of |T | = 542446 trajectories is produced and
is organized into 13 clusters with a noise level of 0.2481% by setting [mpts, mclSize] = [200, 500]. The clustering
result is displayed in Fig. 5, with only a subset of the initial conditions plotted for clarity and colored by their cluster
assignment. The clusters identified in Fig. 3 are also labeled in Fig. 5. The overall structure of the clusters displayed in
Fig. 5 is consistent with the results in Figs. 2 and 3, aside from the color differences due to the use of different coloring
schemes. Furthermore, comparison of these two figures reveals that both approaches recover clusters with periapses that
encompass similar regions of the configuration space. However, the two approaches may not result in exactly the same
amount of total clusters, since the clustering process is sensitive to the input parameters selection and the properties of
the dataset.
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Fig. 5 Poincaré map reflecting prograde periapses in the Sun–Earth system at a Jacobi constant JC = 3.00088
and Ûz = 0 constructed by clustering the full dataset in a single step. The same four clusters identified in Fig. 3
are labeled.

C. Case Study: Lunar IceCube Phasing and Energy Adjustment Segment
The presented approach to efficiently clustering higher-dimensional map crossings via prepartitioning is applied to

the phasing and energy adjustment segment of the Lunar IceCube trajectory to assess the region of existence of arcs
used in the trajectory construction process. Consider a sample trajectory for Lunar IceCube developed and provided by
David Folta at the NASA Goddard Space Flight Center (Private communication, David Folta, 2018). This trajectory is
propagated in a high fidelity model of the Sun, Earth and Moon gravitational environment and plotted in the Sun–Earth
rotating frame in Fig. 6 via a) a projection onto the (x, y)-plane and b) a projection onto the (x, z)-plane; the locations
of apogees that occur along this solution are depicted as green dots and labeled. In this figure, blue arcs indicate natural

a)

b)

c)

d)

Earth

Apogee #1

Apogee #2

L1 L2

JC(L2)
JC(L1)

Apogee #1
Apogee #2

Apogee #1 Apogee #2

Fig. 6 Lunar IceCube trajectory, propagated in an ephemeris model: a) projected onto the (x, y)-plane and b)
projected onto the (x, z)-plane. Time history of the c) Sun–Earth Jacobi constant and d) Ûz component of velocity.
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motion while red arcs correspond to the application of low-thrust. The phasing and energy adjustment segment begins
at the first apogee and ends prior to the low-thrust-enabled approach into the Earth–Moon L2 gateway. Since this
segment corresponds to purely ballistic motion, the Sun–Earth CR3BP is useful in predicting the fundamental dynamical
structures governing the solution space. In Fig. 6c) the Jacobi constant, JC, in the Sun–Earth system is evaluated along
the trajectory and the values of the JC at the L1 and L2 equilibrium points are marked as black dashed lines. Since the
reference trajectory is generated in a high-fidelity dynamical model, the Jacobi constant fluctuates. However, the value
of the Jacobi constant generally indicates that the Sun–Earth L2 gateway is open, allowing the spacecraft to potentially
exit the vicinity of the Earth. The first apogee that occurs along this reference trajectory is used to analyze the geometry
of arcs in the phasing and energy adjustment segment for use in the trajectory construction process.

In this case study, a higher-dimensional Poincaré map corresponding to retrograde apoapses producing trajectories
that remain near the Earth vicinity for two revolutions around the Earth are analyzed via clustering. The goal of this
analysis is to gain insight into the distinct geometries of arcs that exist in the Sun–Earth CR3BP and the associated
regions of existence; both are useful insights during the trajectory construction process. To generate the Poincaré map,
three hyperplanes are defined to create three sets of initial conditions at the Jacobi constant level associated with the
first apogee, i.e., JC = 3.000843740. These three initial condition sets are generated as retrograde apoapses in the
Sun–Earth CR3BP that also intersect the hyperplanes listed in Table 2; this table also displays properties of the dataset
and clustering results. The definition of these hyperplanes corresponds to three mutually orthogonal hyperplanes that
pass through the projection of the first apogee onto the plane of the primaries along the reference trajectory depicted in
Fig. 6. The constraint of Ûz = 0 is applied to each initial condition due to the low out-of-plane component of the velocity
of Lunar IceCube trajectory throughout this trajectory segment, as depicted in Fig. 6d). The three partitioned datasets
are independently clustered and clusters existing across multiple partitions are merged. The final clustering result is
depicted in Fig. 7 with each apogee colored according to the cluster assignment. Then, the first apogee that occurs
along the Lunar IceCube trajectory is indicated by a dark black dot. A zoomed-in view appears in Fig. 8a). In this plot,
three map crossings are highlighted by black dots and the associated trajectories are displayed via a planar projection in
the rotating frame in Fig. 8b) with the same color as the associated cluster. Recall that the trajectory of Lunar IceCube
is designed to reach the Moon after the second apogee. The pink trajectory, which possesses an initial condition that is
located closest to the first apogee along the Lunar IceCube reference trajectory, intersects a circular approximation of
the lunar orbit at an angle of approximately 45 degrees. However, the sample arcs from the other two clusters possess
distinctly different geometries as they revolve around the Earth in a different direction and intersect an approximation of
the lunar orbit after the second apogee at angle of nearly 90 degrees. In addition, these solutions both exhibit a low
perigee. Furthermore, the specific geometry of the pink colored cluster where the first apogee of the Lunar IceCube
trajectory is located offers useful insight. Solutions with a similar geometry exist throughout the configuration space: in
the plane of the primaries, the region of existence of this solution is sensitive to the distance from the Earth; however,
out of the plane of the primaries, there are a wide variety of similar solutions if a sufficiently high z-component may be
achieved at the first apogee. Although the Lunar IceCube trajectory presented in Fig. 6 is generated in a high-fidelity
dynamical model, the clustering result obtained in the low-fidelity Sun–Earth CR3BP still offers a useful prediction of
the characteristics of the solution space.

Dataset No. Constraints on Initial Apogees [mpts, mclSize] |T | Nclusters DBCVa Noise level %
1 z = −0.00029 [50, 100] 73538 17 0.022 0.6432
2 y = −0.00557 [50, 100] 24231 5 0.4763 0.0083
3 x = 0.99458 [50, 100] 18639 3 0.8944 0

Table 2 Clustering parameters and results for each partition of the dataset.

VII. Application of Clustering to Poincaré Maps in the Low-Thrust-Enabled CR3BP
The presented clustering approach is applied to a Poincaré map analysis of low-thrust-enabled lunar orbit insertion

arcs used to design the last segment of the Lunar IceCube trajectory. Recall that for this segment, the goal during
trajectory construction is to identify a trajectory that passes through the Earth–Moon L2 gateway in forward time and,
through the application of a low-thrust engine, captures into a highly-inclined and eccentric lunar orbit with perilune
located over the equator. As Bosanac and Folta, Bosanac, Cox and Howell note, solutions that achieve this goal may
be identified by discretizing feasible lunar orbits, integrating these boundary conditions backwards in time using a
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Apogee #1

Fig. 7 Retrograde apoapsis map in the Sun–Earth CR3BP at JC = 3.000843740 with Ûz = 0. The first apogee
along the reference Lunar IceCube trajectory is located by a black dot.

a) b)

L2L1
Lunar 
orbit

Forbidden Region

Fig. 8 a) Zoomed-in view of the retrograde apoapsis map in Fig. 7 and b) three sample trajectories propagated
in the Sun–Earth CR3BP.

combination of low-thrust-enabled and natural arcs, and analyzing only solutions that pass through the Earth–Moon L2
gateway [13, 14]. Visualization and analysis may then be performed via Poincaré maps constructed using a hyperplane
located at the x-coordinate of the Earth–Moon L2 equilibrium point. Each crossing on this map is multi-dimensional and
may not be represented uniquely on a two-dimensional or three-dimensional projection. Thus, the presented clustering
approach is used to group the crossings on this Poincaré map via the geometry of the associated solutions. However, the
prepartioning and merging process must be modified to accommodate the added complexity of the solution space.

A. Algorithm overview
To cluster the crossings on a higher-dimensional Poincaré map via the geometry of the low-thrust-enabled trajectories

that intersect a hyperplane at Earth–Moon L2 in backwards time, the following partition-based approach is employed:
1) Definition of the full set of initial conditions: the constrained initial conditions for generating low-thrust

trajectories in backwards time are defined using the approach presented by Bosanac and Folta, Bosanac, Cox and
Howell [13, 14]. First, the semi-major axis, inclination, eccentricity and argument of periapsis of target lunar
orbits are constrained to the values presented in Section II. Then, the right ascension of the ascending node, Ω, is
set to 85 distinct values within the range [0, 2π) rad and the true anomaly, f , is set to 85 distinct values within
the range [0, 2π) rad. These orbital elements are used to define a full set of initial conditions for states in a Moon
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inertial frame along a feasible lunar science orbit. Then, the spacecraft wet mass at the end of the lunar approach
segment or, equivalently, the initial state for integration backwards in time, is set equal to 13.5 kg [3].

2) Generation of the full data set: the initial conditions or, equivalently, final states at the end of the lunar approach
segment, are converted from a Moon inertial frame to the Earth–Moon rotating frame. Then, each state vector is
propagated backwards in time using Eq. 2 with the thrust unit vector aligned with the anti-velocity direction;
in backwards time, this thrust direction corresponds to an efficient increase in energy to open the L2 gateway.
Following the approach presented by Bosanac and Folta, Bosanac, Cox and Howell, the low-thrust engine is
activated until the value of the Jacobi constant is equal to a specified value that opens the L2 gateway [13, 14].
Suitable values for this stopping condition for propagation in the low-thrust-enabled CR3BP are defined using 15
distinct values of the Jacobi constant between the values of the JC at the Earth–Moon L2 and L3 equilibrium
points. Once a specified value of the Jacobi constant is reached, the low-thrust engine is deactivated and the
trajectory is naturally propagated backwards in time in the Earth–Moon CR3BP. This integration continues until
the trajectory pierces a hyperplane defined at the x-coordinate of the Earth–Moon L2 equilibrium point. Only
trajectories that reach this hyperplane within 250 days and without passing within a nondimensional distance of
10−5 from the Moon or through the L1 gateway are stored.

3) Partitioning the dataset: due to the large number of solutions that must be generated to sufficiently reflect the
characteristics of the complex set of low-thrust-enabled lunar approach arcs, the full dataset is partitioned. The
stored trajectories are divided into three partitions based on the number of apses that occur while the Earth’s
gravity significantly influences the path of the spacecraft; in general, this is observed to occur after the spacecraft
completes 325 apses relative to the Moon in backwards time along the low-thrust segment of the generated
trajectories. Thus, the dataset is partitioned based on the number of lunar apses after the spacecraft completes
325 apses in backwards time from the desired lunar science orbit until piercing the specified hyperplane. Three
partitions are constructed to correspond to trajectories that complete: 1) less than 21 apses; 2) between 21 and 35
apses; and 3) between 36 and 65 apses.

4) Summarize each trajectory via a feature vector: each of the stored trajectories is summarized via a feature vector
reflecting several apolunes that occur immediately after the spacecraft passes through the L2 gateway in forward
time – or, equivalently, immediately before the spacecraft pierces the specified hyperplane in backwards time.

5) Initial clustering on each partitioned dataset: mpts and mclSize are selected for each partition to balance
maximizing the DBCV index, lowering the subset of the dataset identified as noise and producing a reasonable
number of clusters. Using the selected input parameters and defining the distance metric via the l2-norm,
clustering is performed independently on each of the partitions of the dataset.

6) Merging clusters within each partition: using the l2-norm to define similarity between solutions may separate
geometrically-similar trajectories that complete a slightly different number of apses; such a result is typical for
isochronous comparisons. Thus, clusters within each partition are merged in this step if the associated trajectories
are geometrically similar. This merging is performed using the cluster validity index, VC(Ci), evaluated with the
modified Hausdorff distance used to defined similarity. Specifically, pairs of clusters within each partition are
compared. Then, if VC(Ci) < 0 for both clusters, the clusters are merged within the partition.

7) Merging clusters across partitions: clusters that occur at the boundaries of the partitions are analyzed to determine
whether the associated trajectories exist across multiple partitions. This analysis is performed by comparing
pairs of clusters at the boundary of neighboring partitions using the cluster validity index, VC(Ci), evaluated with
the modified Hausdorff distance used to define similarity. If VC(Ci) < 0 for both clusters, the clusters are merged
across two partitions. This merging process produces a reduced set of clusters that span the full dataset.

8) Analysis of the results: representative solutions of the clusters associated with the complete dataset are generated.
The medoid of a cluster is identified either directly from the data points in that cluster or via subsampling of the
cluster. These cluster representatives are analyzed along with the clusters.

B. Case Study: Lunar IceCube Lunar Orbit Insertion Segment
The algorithm described in Section VII.A is applied to the analysis of candidate lunar orbit insertion arcs in the final

phase of the trajectory for the Lunar IceCube mission. Arcs that insert into a feasible lunar orbit after passing through
the Earth–Moon L2 gateway are generated following the procedure outlined in Step 1 of the presented algorithm. An
example of one of these trajectories is displayed in Fig. 9a) in the Earth–Moon rotating frame. In this figure, natural
arcs are colored blue while low-thrust-enabled segments are plotted in red; arrows indicate direction of motion in
forward time and black circles locate several apolunes. The hyperplane defined at the x-coordinate associated with the
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Fig. 9 Example trajectory for lunar orbit approach phase: a) in Earth–Moon rotating frame with the hyper-
plane in gray and b) associated time history of Ûr with respect to the Moon. Apolunes located via black circles.

Earth–Moon L2 equilibrium point is depicted as a gray plane. Then, Fig. 9b) displays the time history of the radial
velocity, Ûr, relative to the Moon for this same trajectory with a color scheme that is consistent with Fig. 9a). For the
first hundred days of propagating this trajectory backwards in time from a feasible lunar science orbit, the spacecraft is
predominantly influenced by the gravity of the Moon. However, once the spacecraft is located further from the Moon –
occurring after approximately 100 days before reaching the final lunar science orbit for this particular trajectory – the
Earth’s gravity significantly influences the path of the spacecraft. It is during this phase that the geometry of the lunar
approach trajectory is most complex to analyze and translate into target conditions during trajectory design [13, 14].
Similar characteristics are observed across the entire dataset. Thus, the geometry of these trajectories is defined in the
feature vector via the states and times at several apolunes that occur immediately after the spacecraft enters the lunar
vicinity. These apolunes, displayed as black circles in Fig. 9 occur along both natural and low-thrust-enabled arcs.

The full dataset capturing 12,095 low-thrust-enabled lunar orbit insertion arcs is partitioned into three smaller
datasets that are clustered individually using the l2-norm to assess similarity. This partitioning is performed using the
number of apses that occur along the trajectory – generated backwards in time from a feasible lunar orbit – after the
325th apse and before piercing the selected hyperplane. The conditions used to perform this partitioning are displayed in
the second column of Table 3 while the fourth column reflects the number of trajectories in each partition. The feature
vector describing each member of the partitioned dataset is then formed to reflect the apolunes that occur after the
spacecraft passes through the Earth–Moon L2 gateway in forward time and after completing the 325th apse in backward
time. Once the feature vectors are evaluated for the members of each partition, the HDBSCAN input parameters, mpts

and mclSize, are selected. Due to the wide variety of solutions captured across the three partitions, these quantities
must be selected individually for each partition; the values selected based on analysis of the DBCV index, noise level
and total number of generated clusters are displayed in the third column of Table 3. Then, clustering is performed on
each of the individual partitions using the l2-norm to assess similarity. The properties of the clustering results for each
partition are summarized in the last three columns of Table 3. Of course, these properties are a direct consequence
of the selected values of mpts and mclSize. Modifying these values may, for instance, produce similar clusters with a
lower fraction of members identified as noise. Furthermore, an alternative discretization of the feasible lunar orbit set
may produce a different density of solutions within the higher-dimensional space associated with the feature vectors,
thereby influencing the number of clusters and percentage of members identified as noise. Nevertheless, the results of

Dataset No. Number of Apses, Na [mpts, mclSize] |T | Nclusters DBCV Noise level %
1 Na < 21 [33, 95] 4406 6 0.5703 7.1947
2 21 ≤ Na < 35 [38, 190] 6787 10 0.4570 6.2178
3 36 ≤ Na < 65 [52, 55] 902 7 0.4069 16.7406

Table 3 Clustering parameters and results for each partition of the dataset composed of low-thrust-enabled
lunar insertion arcs.
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Fig. 10 Aggregate results of clustering within each of the partition using the l2-norm to assess similarity
displaying a) all members of the full dataset and b) only representatives of each cluster.

clustering within each individual partition are displayed together in Fig. 10. In Fig. 10a), each map crossing is colored
by the cluster assignment and plotted in three dimensions: the y-coordinate and z-coordinate of the intersection of
the trajectory with the hyperplane at Earth–Moon L2 are represented along with the number of apses, Na that occur
after the spacecraft passes through the Earth–Moon L2 gateway in forward time and after completing the 325th apse
in backward time. In Fig. 10b), only the cluster representatives, i.e., the medoids of each cluster, are plotted in the
same three dimensional view to reduce the complexity of visualization and supply insight into the variety of solution
geometries captured by the full dataset. However, these clusters only correspond to a grouping performed within each of
the three partitions and with similarity assessed via an isochronous correspondence; merging of clusters of geometrically
similar solutions within and across each of the partitions is necessary.

Within each partition of the dataset, clusters are merged if they are composed of geometrically similar solutions
that differ only in the number of recorded apses. To motivate this first merging step, consider two representative
solutions from the first dataset, composed of solutions that admit less than 21 apses after the spacecraft passes through
the Earth–Moon L2 gateway in forward time and after completing the 325th apse in backward time. These two
representatives, from clusters 0 and 1, are displayed in Fig. 11 with red arcs indicating that the low-thrust engine is
activated and blue arcs corresponding to natural motion. Figs. 11a) and c) display a three-dimensional view of these
two trajectories, while Figs. 11b) and d) display the associated projections onto the xy-plane of the Earth–Moon
rotating frame. Analysis of these figures reveals that these two solutions are geometrically similar; yet, they differ in the
number of apolunes completed after the spacecraft passes through the Earth–Moon L2 gateway in forward time and
after completing the 325th apse in backward time. In Fig. 11b), the first apolune that occurs along the representative
trajectory for cluster 0 is highlighted via a red dashed circle. However, the representative trajectory for cluster 1 does not
admit an apolune in the same region. Since the feature vector is defined using a time-ordered sequence of apolunes
along each trajectory, using the l2-norm as a similarity measure results in an isochronous correspondence between the
two sequences of apolunes. However, using the modified Hausdorff distance to assess similarity between solutions in
these two clusters enables a straightforward procedure for merging clusters of solutions that are geometrically similar
within each partition. In fact, the cluster validity index is computed using the Hausdorff distance for each possible pair
of clusters within each partition; if the cluster validity index, VC(Ci), is negative for both clusters, they are merged. For
clusters 0 and 1, described by the geometrically similar representatives displayed in Fig. 11, the cluster validity indices
calculated using the modified Hausdorrf distance are VC = [−0.9704, −0.9096]. Since both of these quantities are
negative, these clusters are merged. Once this procedure has been completed for every cluster in the first partition of the
dataset, the number of clusters is reduced from six to three. The representative solutions of these three clusters are
displayed in Fig. 12 using a color scheme that is consistent with Fig. 11. Visual inspection of these representatives
reveals that they are geometrically dissimilar and, therefore, should exist in separate clusters.
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Fig. 11 Representative trajectories for cluster 0 and 1 from the first partition, plotted in the Earth–Moon
rotating frame: a) and c) three-dimensional views; b) and d) as planar projections. Apolunes identified via
black circles.
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Fig. 12 Representative solutions for clusters within the first partition following the first merging step.

Since solutions with a similar geometry may, potentially, exist across multiple partitions of the dataset, a second
cluster merging process is performed across partitions. The general procedure for merging clusters that exist across
multiple partitions is similar to the process for merging solutions within a single cluster. The cluster validity index,
evaluated using the modified Hausdorff distance, is calculated for each possible pair of clusters that exist at the boundaries
of contiguous partitions; if the cluster validity index for both clusters in a pair are negative, the clusters are composed
of geometrically similar solutions and are, therefore, merged. To demonstrate this process, consider the number of
apolunes that occur along trajectories within each cluster from the first two partitions, as depicted in Fig. 13a). In
this figure, the cluster ID is an integer identifying each grouping of trajectories discovered following application of
HDBSCAN and the subsequent cluster merging process within each individual partition: nonnegative values indicate a
true cluster, represented by filled circles colored uniquely for each cluster, while the black circles at a cluster ID of
-1 correspond to members of the dataset that are considered noise. Then, consider a pair of clusters that exist at the
boundaries of partitions: cluster 0 from the first dataset, composed of trajectories similar to those displayed in the left
column of Fig. 12, and cluster 4 from the second partition. Each of these clusters is highlighted by an orange box in
Fig. 13a). Trajectories within these clusters complete between 18 and 23 apses after the spacecraft passes through the
Earth–Moon L2 gateway in forward time and after completing the 325th apse in backward time – indicating that these
clusters may, potentially, encompass geometrically similar trajectories. Applying this inter-partition cluster merging
procedure to clusters 0 and 4 produces values of the cluster validity index equal to VC = [−0.9012, −0.9190] when
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evaluated using the Hausdorff distance. These two negative values indicate that the clusters are composed of solutions
that are geometrically similar and should be merged. This assessment is confirmed via visual inspection of the cluster
representatives. The representative trajectory for cluster 0 appears in Fig. 12a) while the representative trajectory for
cluster 4 is displayed in Fig. 14 in via a) a three-dimensional view and b) as a projection onto the xy-plane of the
Earth–Moon rotating frame; these two representative solutions are indeed geometrically similar. A similar merging
process is performed for the two clusters highlighted by the blue box in Fig. 13a). Following cluster merging across
partitions, the first and second partitions of the dataset admit only nine unique clusters, as displayed in Fig. 13b). A
similar procedure is performed for the clusters at the boundary of the second and third partitions. Following this merging
procedure, 18 independent clusters are recovered for the entire dataset. The representative trajectories associated with
these clusters are displayed in Fig. 15 in the Earth–Moon rotating frame with low-thrust arcs colored red and natural
arcs colored blue. Visual inspection of this reduced set of representative trajectories reveals that each solution exhibits a
fundamentally distinct geometry, demonstrating the value of a clustering-based approach to exploring and analyzing the
complex solution space captured on a higher-dimensional Poincaré map.

a) b)

Fig. 13 Number of recorded apolunes, Na after the spacecraft passes through the Earth–Moon L2 gateway in
forward time and after completing the 325th apse in backward time: a) before and b) after merging clusters
across the first and second partitions.

Fig. 14 Representative solution for cluster 4 in the second partition prior to merging across partitions.

VIII. Conclusion
In this paper, the density-based clustering algorithm HDBSCAN is employed to cluster the higher-dimensional

crossings on a Poincaré map by the geometry of the associated trajectories. Using clustering to group the trajectories in
a complex solution space enables the recovery of representative solutions that provide insight into the geometries of
feasible arcs along with their region of existence. The presented clustering approach is demonstrated for Poincaré maps
capturing spatial trajectories generated in two dynamical models: the natural CR3BP and a low-thrust-enabled CR3BP.
Then, this technique is used to gain further insight into the trajectory design process for the Lunar IceCube mission.

The first example explored in this paper focuses applying clustering to a Poincaré map capturing spatial trajectories
in the Sun–Earth CR3BP. First, a strategy inspired by tomography is leveraged to reduce the computational burden of
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Fig. 15 Representative solutions for all 18 clusters associated with the full lunar orbit insertion dataset after
both cluster merging steps. Trajectories are displayed in the Earth–Moon rotating frame with low-thrust arcs
(red) and natural arcs (blue); arrows indicate direction of motion in forward time.

data generation and clustering. Specifically, the set of initial conditions used to generate the map data is partitioned
using additional hyperplanes. Then, the partitions of the dataset are independently clustered. Next, clusters that exist
across multiple partitions via intersections in the phase space are merged. This approach is first applied to a periapsis
map constructed at a single value of the Jacobi constant, recovering groupings of solutions with fundamentally different
geometries – and producing results that are consistent with the clustering of a single, large dataset. Then, this approach
is applied to the analysis of arcs used in trajectory construction for the Lunar IceCube mission, with a focus on the
phasing and energy adjustment segment.

The second example explored in this paper focuses on a Poincaré map capturing low-thrust-enabled solutions in the
Earth–Moon CR3BP with direct application to the Lunar IceCube mission. In this example, a large set of trajectories
that approach a specified lunar orbit are generated in the low-thrust-enabled Earth–Moon CR3BP. Then, to reduce
the computational burden during clustering, the dataset is prepartitioned according to the number of lunar apses that
occur along each trajectory. Each partition is clustered via HDBSCAN using an isochronous measure of similarity,
i.e., the l2-norm. Then, within each partition, clusters are merged if they are composed of geometrically similar
solutions. This merging is performed using the cluster validity index evaluated using a modified Hausdorff distance.
Then, clusters are merged across the boundaries of partitions using the same strategy. The result of this approach is a
computationally-efficient means for grouping the solutions associated with higher-dimensional crossings on a Poincaré
map according to their geometry.

Through these two examples, this paper demonstrates the value of a clustering-based approach to analysis of the
complex solution space in nonautonomous and chaotic dynamical models. In fact, clustering enables a straightforward
summarization of the solution space via a set of representative solutions along with insight into the region of existence
of each arc; insight that is valuable to the human analyst during the trajectory design process. In addition, leveraging
a prepartitioning and merging process reduces the computational complexity of clustering the large dataset typically
associated with higher-dimensional Poincaré maps.
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