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UNSUPERVISED LEARNING TO AID VISUALIZATION OF
HIGHER-DIMENSIONAL POINCARÉ MAPS IN

MULTI-BODY TRAJECTORY DESIGN

Stefano Bonasera∗, Natasha Bosanac†

In spatial or nonautonomous models of multi-body systems, it is often challeng-
ing to explore the solution space via a higher-dimensional Poincaré map. In this
paper, unsupervised learning techniques are used to improve analysis and visual-
ization of Poincaré maps: clustering is used to group trajectories by their geome-
try, while manifold learning is used for both visualization, cluster correction and
correlation. This approach is demonstrated using three examples: studying the
persistence of solutions across various values of the independent variables in the
elliptic restricted three-body problem and the point mass ephemeris models, and
across models of increasing fidelity.

1 INTRODUCTION

Poincaré mapping is often leveraged in rapid and informed trajectory design strategies within
multi-body dynamical systems. When constructed appropriately, this technique reduces the com-
plexity of visualization and analysis, revealing the underlying features of the solution space. For
instance, trajectory designers explore the solution space in lower-fidelity models, such as the Cir-
cular Restricted Three-Body Problem (CR3BP), via Poincaré maps to support preliminary analysis:
the crossings of a map may reveal patterns that enable mission orbit selection, identification of arcs
with a desired behavior, or initial guess construction. This approach has been valuable in many
applications, from aiding in the explanation of the natural motion of comets1 to direct application
in the trajectory design of the Lunar IceCube2 and EQUULEUS CubeSat missions.3

The ease of use and information that may be extracted by a human trajectory designer analyzing
a Poincaré map depends on the properties of the underlying dynamical model. When the dynamical
model is nonautonomous, the trajectories are three-dimensional, or a constant of motion does not
exist, each intersection of a trajectory with the surface of section possesses a multi-dimensional
description. These map crossings are typically visualized via a projection onto a lower-dimensional
space; the result is a nonunique set of map crossings, loss of information, data obscuration and, in
some cases, a lack of patterns to reveal fundamental dynamical structures. Previous researchers have
explored a variety of strategies to aid visualization and analysis of multi-dimensional data projected
onto lower-dimensional Poincaré maps. Examples in the field of astrodynamics include the use of
additional constraints to further reduce the dimensionality of the problem and the introduction of
multivariate representations for each crossing.4, 5
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An alternative paradigm for using higher-dimensional Poincaré maps has recently been explored
by Bosanac6 and Bonasera and Bosanac.7 These works pose the visualization and analysis of
higher-dimensional data generated during Poincaré map construction as a Big Data problem. In
the interdisciplinary field of Big Data, unsupervised learning techniques have been used to: dis-
cover groupings within the data without analytical expressions or labeling; perform a dimensional-
ity reduction to visualize the data in a lower-dimensional space; and conduct knowledge discovery.
Both clustering and dimension reduction algorithms have been leveraged in pursuit of these goals
in a wide variety of applications. In Bosanac6 and Bonasera and Bosanac,7 we have previously
used clustering to group the crossings on a Poincaré map according to the geometry of the associ-
ated trajectories and provide a summary of the solution space via a set of representative solutions.
Specifically, we have leveraged Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN).8 In Bosanac,6 this clustering-based approach is presented and demonstrated in
the planar CR3BP. In Bonasera and Bosanac,7 the planar investigation is extended and applied to
higher-dimensional datasets associated with spatial trajectories and nonautonomous systems.

This paper extends our previous work by leveraging manifold learning algorithms to enhance
visualization and analysis of higher-dimensional Poincaré maps when used in combination with
clustering. Manifold learning algorithms enable a multi-dimensional dataset to be projected onto an
assumed nearby lower-dimensional manifold in an unsupervised manner. One example of a recent
manifold learning algorithm is Uniform Manifold Approximation and Projection (UMAP).9 UMAP
constructs a lower-dimensional approximation of the higher-dimensional manifold associated with a
dataset by minimizing the associated topological distance between them. UMAP has been success-
fully used to explore a wide variety of higher-dimensional datasets in nonlinear systems, including
visualizing proteins in single cell biology,10 investigating genetic structure in large cohorts11 and
classifying the origin of solar wind.12 In this paper, we use both clustering and manifold learning to
effectively analyze and visualize large higher-dimensional datasets associated with Poincaré maps
capturing trajectories in multi-body systems. First, HDBSCAN is used to cluster the crossings on
a map by the geometry of the associated trajectories. Then, we leverage UMAP to speed up the
clustering process, enable visualization of higher dimensional Poincaré maps, refine the clustering
output and correlate clusters of similar solutions across distinct maps.

This paper demonstrates the application of both clustering and dimension reduction to Poincaré
maps by exploring the properties and persistence of solutions with distinct geometries across dy-
namical models of increasing fidelity. Rapid and informed trajectory design strategies often leverage
models of lower fidelity for preliminary exploration of the solution space and initial guess construc-
tion. However, it is often challenging to define a model that is of sufficiently low fidelity to support
rapid analysis and sufficiently high fidelity to predict the properties of the true solution space. Thus,
this paper demonstrates the application of clustering and dimension reduction to identify funda-
mental solution geometries via maps constructed in the Sun-Earth CR3BP, the Sun-Earth Elliptic
Restricted Three-Body Problem (ER3BP) and the Sun-Earth point mass ephemeris model. Clus-
ters of solutions are associated between these maps to study their properties and persistence as the
model fidelity is increased and parameters modified. This example demonstrates the value of using
both clustering and dimension reduction to: 1) analyze and visualize the higher-dimensional data
on a Poincaré map; and 2) conduct a preliminary exploration of the evolution of the solution space
in models of increasing fidelity. As a result, this paper demonstrates the value of using techniques
from the data mining community to reduce the complexity of analyzing and visualizing a complex
solution space via Poincaré maps for trajectory design within multi-body systems.
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2 BACKGROUND: DYNAMICAL MODELS

This paper examines the evolution of the solution space in the Sun-Earth system in three distinct
dynamical models of increasing fidelity. The most fundamental dynamical model is the autonomous
CR3BP, which assumes that the Sun and Earth follow circular orbits. Then, the ER3BP is used
to incorporate a nonzero eccentricity for the orbits of the primaries. Finally, the highest fidelity
dynamical model leveraged in this analysis is the point mass ephemeris model of the Sun-Earth
system. In this section, each of these models is presented.

2.1 Circular Restricted Three-Body Problem

The CR3BP is used to model the motion of an assumed massless spacecraft under the gravita-
tional influence of two point mass primaries, following circular orbits about their common barycen-
ter.13 Following introduction of these assumptions, three characteristic quantities are introduced to
nondimensionalize mass, length and time: m∗, set equal to the sum of the masses of the primaries,
P1 and P2; l∗, equal to the constant distance between P1 and P2; and t∗, producing a period of the
two primaries equal to 2π. An orthogonal frame (x̂, ŷ, ẑ), rotating with the two primaries, is also
introduced: the x̂-axis is directed from P1 to P2, the ẑ-axis is aligned with the orbital angular mo-
mentum of the system, and the ŷ-axis completes the right-handed triad. Using these definitions, the
nondimensional state vector of the spacecraft relative to the system barycenter and in the rotating
frame is written as x = [x, y, z, ẋ, ẏ, ż]T ∈ R6. Then, the nondimensional equations of motion
for the spacecraft in the CR3BP and in the rotating frame are written as

ẍ− 2ẏ = Ux, ÿ + 2ẋ = Uy z̈ = Uz (1)

where µ is the mass ratio, equal to µ ≈ 3.00348064 × 10−6 in the Sun-Earth CR3BP, the pseudo-
potential function is U(x) = (x2+y2)/2+(1−µ)/r1+µ/r2, and Ux, Uy and Uz denote the partial
derivatives of U with respect to x, y and z, respectively. The distances of the spacecraft from the
two primaries are r1 =

√
(x+ µ)2 + y2 + z2 and r2 =

√
(x− 1 + µ)2 + y2 + z2, respectively.

The CR3BP admits one integral of motion, labeled the Jacobi constant and equal to JC(x) =
2U(x)− ẋ2 − ẏ2 − ż2.13 At a fixed value of the Jacobi constant, the Zero Velocity Surfaces (ZVS)
bound trajectories by separating allowable and forbidden regions of motion. The intersections of
the ZVS with a plane are commonly referred to as the Zero Velocity Curves (ZVCs). Within the
ZVS, a wide variety of solutions exist in the CR3BP: equilibrium points Li for i = [1, 5], bounded
solutions such as periodic and quasi-periodic orbits, and chaos.

2.2 Elliptic Restricted Three-Body Problem

The ER3BP is formulated similar to the CR3BP; however, the two primaries are assumed to
follow elliptical orbits about the system barycenter. The distance between P1 and P2 is no longer
constant as the primaries following conics with a nonzero eccentricity, equal to eP ≈ 0.0167 in the
Sun-Earth system. Thus, the value of the length characteristic quantity, l∗, is no longer constant.
As a result, the primaries only appear at fixed locations over time in a pulsating, rotating frame.
In addition, the true anomaly, f , of the primary system is used as an independent variable, rather
than time, with f = 0 when the primaries are located at periapsis.13 Using this configuration, the
nondimensional equations of motion for the spacecraft in the ER3BP are written as:

x′′ − 2y′ = ωx, y′′ + 2x′ = ωy z′′ = ωz t′ = (1− e2P )3/2/(1 + eP cos f)2 (2)
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where the prime (.)′ indicates a derivative with respect to f and the pseudo-potential function is
ω(x, f) = (U(x) − z2eP cos f/2)/(1 + eP cos f).13 However, due to the explicit dependence of
Eq. (2) on the time-like quantity f , an integral of motion no longer exists.14

2.3 Point Mass Ephemeris Model

A point mass ephemeris dynamical model is often used as a higher-fidelity representation of
the Sun-Earth system during initial trajectory construction activities. In this model, Ne bodies
are each assumed to be spherically symmetric with a dimensional mass Mi. Body Pj is located
in an inertial reference system with axes (X̂, Ŷ , Ẑ) and origin O by the position vector Rj =

XjX̂+YjŶ +ZjẐ. The spacecraft, P3, is located at the coordinates (X,Y, Z); its relative position
vector with respect to body Pj is written as Rj,3 = (X −Xj)X̂ + (Y − Yj)Ŷ + (Z − Zj)Ẑ. The
point mass ephemeris model is formulated by expressing the acceleration acting on body P3 in a
Pj-centered J2000 inertial coordinate system due to the gravitational influence of all Ne bodies. In
this paper, the mass of the spacecraft is assumed to be negligible in comparison to each of the Ne

bodies.2 The resulting dimensional equations of motion for a spacecraft in the point mass ephemeris
model and in the Pj-centered J2000 inertial coordinate system are written as:
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(3)

where G is the universal gravitational constant. Once an initial epoch and spacecraft state are
defined, the states of all bodies included in the point mass ephemeris model are retrieved using the
Jet Propulsion Laboratory DE421 ephemerides via the SPICE toolkit.15 The same ephemerides are
leveraged when transforming the spacecraft state into the rotating frame.16

3 BACKGROUND: POINCARÉ MAPS

Poincaré mapping is a tool from dynamical systems theory that is often leveraged to reduce the
dimension of continuous trajectories via their intersections with a surface of section, facilitating the
analysis of complex solution spaces. A Poincaré map is constructed by first defining a surface of
section that is transverse to the flow. Each continuous arc is then reduced to a sequence of discrete
points, corresponding to subsequent intersections of this hyperplane. These intersections are then
represented via a Poincaré map.

This paper focuses on prograde periapsis maps for planar trajectories in the Sun-Earth system,
constructed using the same set of initial conditions across different dynamical models and system
parameters. To supply a high-level overview of the process for constructing a prograde periapsis
map, consider its implementation in the planar CR3BP at a fixed Jacobi constant; additional details
appear in Bosanac and Bonasera and Bosanac.6, 7 First, a periapsis surface of section, relative to the
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Earth in the Sun-Earth CR3BP, is defined as:17

(x− 1 + µ) ẋ+ yẏ + zż = 0 ∪ (x− 1 + µ) ẍ+ yÿ + zz̈ + ẋ+ ẏ + ż > 0 (4)

Initial conditions are seeded as prograde perigees in the vicinity of the secondary, defined within
the boundaries of the L1 and L2 gateways and the ZVS. By fixing the Jacobi constant, the velocity
magnitude at each feasible combination of configuration space variables is v =

√
2U − JC. If v

is a real number, the prograde perigee condition enables direct calculation of the velocity vector
associated with an initial position vector that is located in the plane of the primaries and corre-
sponds to an initially prograde direction of motion. Each initial perigee then possesses the form
xIC = [x, y, z = 0, ẋ, ẏ, ż = 0]T .7 For each initial prograde perigee, a trajectory is propagated
until: 1) a specified number of subsequent perigees occurs; 2) the trajectory exits the Earth vicinity
through either the L1 or L2 gateways; or 3) the trajectory passes within a nondimensional distance
of 10−5 to the Earth. In the CR3BP, the map crossings associated with the perigee surface of sec-
tion are uniquely represented on a two-dimensional projection such as (x, y). However, when a
similar initial condition set is used to construct a set of trajectories in the ER3BP or the point mass
ephemeris model, the resulting map crossings are higher-dimensional. Under these conditions, it
may be challenging to employ these maps for rapid and informed trajectory design strategies. Thus,
data mining techniques, such as clustering and manifold learning, are employed to effectively ex-
plore the available solution space and reduce the complexity of the analysis.

4 UNSUPERVISED LEARNING

This work leverages unsupervised learning to organize the trajectories associated with Poincaré
map crossings into clusters based on their geometry. A dataset is first constructed by describing
each member with a feature vector; in this paper, the feature vector summarizes the trajectory asso-
ciated with each map crossings. A selected clustering algorithm then divides the trajectory set into
groups: arcs in the same cluster are considered similar, while arcs in different sets are assumed dis-
similar. Among the variety of available unsupervised techniques for clustering, this paper leverages
the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algo-
rithm, developed by Campello, Moulavi and Sander, following the approach outlined by Bosanac
and Bonasera and Bosanac.6–8 This section contains only a brief high-level overview of the in-
put parameters. For more details about the clustering procedure, see Bosanac and Bonasera and
Bosanac.6, 7 Each cluster, identified by HDBSCAN, is then summarized by a unique, representative
trajectory. Learning manifold algorithms offer a computationally efficient unsupervised approach
for the representation of higher-dimensional data that is clustered by HDBSCAN. Among the va-
riety of existing algorithms, the Uniform Manifold Approximation and Projection (UMAP), devel-
oped by McInnes, Healy and Melville is leveraged.9 UMAP enables an unsupervised dimension
reduction, preserving the structure of the data in this projection, even in datasets generated from
nonlinear models. This study combines HDBSCAN and UMAP to obtain a precise final clustering
result and to correlate clusters across different datasets. In this section, an overview of HDBSCAN
is presented, together with the definition of the feature and the approach used to define a cluster
representative. An overview of UMAP is then presented.

4.1 Clustering via HDBSCAN

HDBSCAN is a density-based hierarchical clustering algorithm developed by Campello, Moulavi
and Sander.8 This algorithm takes as an input the dataset [T ] = {t1, t2, . . . , tN}, composed of
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N members ti ∈ RM . Then, HDBSCAN clusters data in sufficiently dense-regions of the M -
dimensional space, assigning each datapoint ti to a cluster or labeling it as a noise point. Two
input parameters govern the clustering algorithm: mpts and mclSize. The first, mpts, influences the
computed distances d(·, ·) between two datapoints by changing the size of the local neighborhood
used to assess density; the second, mclSize, sets the minimum number of datapoints that may be
considered to form a single cluster. In this analysis, the HDBSCAN algorithm is accessed via the
hdbscan clustering library in Python.18

4.2 Feature Vector Definition

Unsupervised learning algorithms, such as HDBSCAN and UMAP, require that each contin-
uous trajectory arc is summarized by a finite-dimensional feature vector. The feature vector is
designed to balance the fidelity of the trajectory representation with computational performance,
while avoiding the well-known curse of dimensionality.6 The work presented in this paper fol-
lows the approach developed by Bosanac and Bonasera and Bosanac by using a geometry-based
representation for each trajectory. Each continuous arc is summarized by sequence of apses, i.e.,
periapses and apoapses, calculated with respect to the secondary.6, 7 The feature vector is defined
as ti = [si,0, si,1, . . . , si,k, . . . , si,Na ]

T ∈ R5Na , with Na representing the maximum number of
apses and si,k formulated as

si,k = [τi,k, xi,k, yi,k, ẋi,k, ẏi,k]
T ∈ R5 (5)

where (xi,k, yi,k, ẋi,k, ẏi,k) represents the state components of the k-th apse in the rotating frame,
while τi,k is the time normalized by the total propagation time along that trajectory. Terminating
conditions are also employed, including impacting one of the primaries or departing through the
L1 or L2 gateways, to produce some trajectories that complete fewer than Na apses. In this case,
the feature vector is filled with placeholder vectors as si,P = ± [0, 10, 0, 0, 0]T . The positive
placeholder is used when the trajectory ends prior to reaching an apoapsis, while the negative value
is used when the trajectory terminates prior to reaching a periapsis.6 After evaluating each feature
vector, the dataset is normalized to mitigate the potential for ill-conditioning. A component-wise
normalization is applied such that each component of the feature vector is in the range [−1, 1].

4.3 Cluster Representatives

Following clustering, each group of trajectories is described by a single, representative arc and
associated map crossing. Following the approach of Bosanac and Bonasera and Bosanac, this rep-
resentative member of a cluster is defined as the medoid.6, 7 A medoid, or clustroid, is defined as
the member of a cluster that is most similar to the other members of the same cluster.19 The medoid
t
(j)
med of cluster Cj = {t(j)1 , t

(j)
2 , . . . , t

(j)
Mj
}, with cardinality |Cj | =Mj , is calculated as

t
(j)
med = argmin

t
(j)
k ∈Cj

Mj∑
i=1, i 6=k

d
(
t
(j)
i , t

(j)
k

)
(6)

To improve the computational efficiency of calculating the medoid, a soft-clustering modification of
HDBSCAN, available in the hdbscan clustering library in Python, is employed: only those members
of a cluster that possess a unitary probability for belonging to that cluster are used in the summation
above. This approach excludes members of a cluster that tend to lie at the boundary of a cluster
from this computation of the medoid.
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4.4 Dimension Reduction via UMAP

The Uniform Manifold Approximation and Projection (UMAP) algorithm, developed by McInnes
et al., offers one approach for dimensionality reduction via manifold learning.9 UMAP is founded
on the premise that the majority of the high-dimensional information describing each member of
a dataset is intrinsically redundant; thus, UMAP focuses on revealing the latent variables associ-
ated with a dataset.9 The algorithm leverages ideas from algebraic and fuzzy topology to support
the dimensionality reduction process. In fact, UMAP constructs a projection of the dataset onto a
low-dimensional manifold that is topologically similar to the high-dimensional description of the
data. First, the input dataset is assumed to be uniformly distributed on a high-dimensional man-
ifold. Then, UMAP calculates a local Riemannian metric on the high-dimensional manifold that
is assumed to be locally-connected using fuzzy simplicial sets. This process produces a fuzzy
topological structure which is representative of the higher-dimensional dataset. To generate a topo-
logical equivalent in the low-dimensional space, UMAP initializes a candidate low-dimensional
representation using spectral embedding techniques. With a fixed high-dimensional topological
representation, UMAP optimizes the low-dimensional projections by minimizing the cross-entropy
between the 1-simplicies of the two representations. The dimension of the projection space Rn is
user-defined. The optimization problem then employs stochastic gradient descent for computational
efficiency; however, for reproducibility, the user can fix the random seed generator for a relatively
small additional computational cost. This approach produces a useful lower-dimensional embed-
ding for the high-dimensional dataset.

UMAP is governed by a variety of fundamental input parameters that impact the computed em-
bedding. Among the variety of input parameters, this work focuses on three fundamental quantities:
nneigh, mdist and ncomp. The first, nneigh ∈ N+, supplies a measure of the local versus global
structure of the dataset used in calculating the lower-dimensional projection; a low value produces
a final embedding that is focused on the local structure. The second input parameter, mdist ∈ [0, 1],
balances the density level of the projections; a low value favors a condensed final embedding. The
third parameter, ncomp ∈ N+, sets the dimension of the lower-dimensional Euclidean manifold.
This work employs UMAP to visually investigate the relative association between clusters associ-
ated with distinct datasets and to correct the clustering output. To aid visualization of the projected
dataset, ncomp = 3. Due to the large size of the computed datasets, high values for nneigh and low
values for mdist are selected to generate a global and condensed projection of the dataset.

5 OVERVIEW OF TECHNICAL APPROACH

This section supplies an overview of the data-driven procedure used to track the persistence of
trajectories across distinct dynamical models and values of the independent variable. This proce-
dure is inspired by distributed data mining. First, perigee maps are clustered using HDBSCAN for
the same initial condition set, propagated using different dynamics. These maps are clustered indi-
vidually to reduce the computational complexity of processing a large dataset. Map crossings that
are designated as noise points but exist close to a cluster are reassigned using UMAP. Each cluster,
within each dataset, is then sampled and aggregated to produce a global summary. In an approach
that is motivated by Bosanac and Bonasera and Bosanac, clusters in this global summary are then
correlated.6, 7 However, in this particular paper, UMAP is leveraged to perform this correlation pro-
cess. Clusters that are correlated across distinct maps correspond to trajectories that persist in their
general geometry across various dynamical models, governed by distinct independent variables.
Each of these steps is described within this section.
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5.1 Clustering Individual Perigee Maps with HDBSCAN

The first step in studying the evolution and persistence of solution geometries across multiple
dynamical models is to construct a set of perigee maps across each model and for various parame-
ters. For each perigee map, the same set of initial conditions is employed, defined using planar and
prograde perigees that possess a Jacobi constant of JC = 3.00088 in the CR3BP, similar to the one
investigated by Bosanac and Bonasera and Bosanac.6, 7 Once this set of initial conditions is defined
in the CR3BP, the same initial states are used to define propagation in the higher fidelity dynamical
models. To construct the initial condition set, planar position vectors are seeded within the vicinity
of the Earth: this paper uses up to 401 x-coordinates between the locations of the Sun-Earth L1

and L2 points in the CR3BP and up to 401 locations of the y−coordinate in [−0.01, 0.01], while
the z-coordinate is set equal to 0. For each position vector, the associated speed is calculated from
the Jacobi constant as v =

√
2U − JC in the CR3BP. If this expression produces a real value, the

position vector lies within the ZVS and is added to the initial condition set. Then, the periapsis
condition is used to calculate the velocity unit vector and, therefore, produce the complete state at
the initial condition.

For the same set of initial conditions, multiple datasets are constructed for each dynamical model
and selected values of dependent variables, where appropriate. For the dataset describing trajecto-
ries in the CR3BP, each prograde perigee is propagated in the CR3BP until: a total of 7 apses with
respect to the Earth occurs; the spacecraft distance from the secondary falls below r2 < 10−5; or
the trajectory departs the Earth vicinity through either the L1 or the L2 gateways. Each continuous
trajectory is then discretized via the geometry-based feature vector outlined in Equation (5). If a
trajectory admits fewer than 7 apses, a placeholder vector is leveraged to produce the same dimen-
sion for each feature vector. Following this procedure, the complete dataset [T ] is composed of
|T | = 31544 map crossings. To generate a similar dataset in the Sun-Earth ER3BP, the same set of
initial conditions are propagated using the ER3BP equations of motion in Equation (2). However,
this procedure is repeated multiple times for various initial values of the f0, the true anomaly of the
primary system. To generate a dataset in the point mass ephemeris model, the equations of motion
from Equation (3) govern propagation of each initial condition. Due to the forms of these equa-
tions, each initial condition that is originally expressed in the rotating frame is transformed into the
Earth-centered inertial coordinate system for a specified initial modified Julian date (MJD). Once
the apses along the trajectory, calculated with respect to the Earth, are recorded, the state at each
apsis is transformed into the rotating frame at the associated epoch. This procedure is repeated mul-
tiple times for various values of the initial modified Julian date, which influences the ephemerides
of the Sun and Earth.

Each dataset, formed using the same initial condition set but generated using different dynamical
models and system parameters, is input to the HDBSCAN clustering algorithm. All dataset are
clustered using the same set of input parameters, selected as mpts = 200 and mclSize = 100.
This clustering procedure is first applied to the dataset associated with planar prograde perigees in
the Sun-Earth CR3BP at a Jacobi constant of JC = 3.00088, generated for up to 7 apses. The
resulting 13 clusters of map crossings is displayed in dimensional coordinates in the rotating frame
in Figure 1(a), with each cluster identified by a unique shade of red or blue and labeled; HDBSCAN
identifies 6.23% of the dataset as noise, indicated via black points, for the specified combination
of feature vector definition and input parameters. Of course, alternate feature vector definitions
and input parameters may yield a different number and form of clusters. The equilibrium points
are displayed as red diamonds in this figure, while the zero velocity curves outline the gray shaded
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Figure 1. Clustered perigee maps near the Earth, constructed for the same set of
initial conditions in: (a) the Sun-Earth CR3BP at JC = 3.00088 and (b) the Sun-
Earth ER3BP with f0 = π/2.

forbidden regions. As an additional example, Figure 1(b) displays the clusters of map crossings for
trajectories generated in the ER3BP with an initial true anomaly of f0 = π/2 and the same set of
input parameters. Note that, in this figure and similar maps constructed in higher-fidelity models,
the equilibrium points and ZVCs calculated in the CR3BP are overlaid only to supply perspective.
Analysis of Figure 1(b) reveals that this map, constructed for this specified initial true anomaly in
the ER3BP, admits similar clusters to those obtained for the CR3BP in Figure 1(a), with some slight
shifts and distortion. It is possible that some of the clusters in Figure 1(b) correspond to trajectories
with a similar geometry to those captured on the clustered map in Figure 1(a); the goal of this paper
is to correlate these clusters of similar solutions across distinct maps.

5.2 Refining Noise Points with UMAP

Although the HDBSCAN clustering algorithm is well-suited to discover clusters of distinct den-
sities within a dataset, it may produce noise points near the boundaries of clusters or in the sensitive
regions close to the Earth; thus, UMAP is used to robustly assign noise points to clusters of similar
solutions. Specifically, the entire dataset is projected onto the lower-dimensional manifold calcu-
lated by UMAP and noise points that lie close to a cluster are relabeled. As an example of this
procedure, consider the perigee map constructed in the ER3BP with f0 = π/2, as displayed in
Figure 1(b). The high-dimensional dataset [T ] that describes the trajectories associated with each
map crossing in this dynamical model are projected onto a three-dimensional space via UMAP
using the input parameters nneigh = 200 and mdist = 0.0: this parameterization produces a lower-
dimensional representation that focuses on the global structure of the dataset. Figure 2(a) displays
the dataset projected onto the resulting three-dimensional space, with points colored according on
the associated cluster, consistent with Figure 1(b). Analysis of this figure reveals that UMAP pro-
duces a lower-dimensional embedding that separates the dataset in a similar manner to the groupings
discovered by HDBSCAN, despite not being provided with these labels. However, there are a few
differences. First, clusters such as cluster 8 are split into sub-groups by UMAP and appear in distinct
regions of the embedding. Second, some larger clusters, such as clusters 12 and 14, are bounded
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Figure 2. Noise correction applied to the map in Figure 1(b), composed of trajectories
generated in the ER3BP with f0 = π/2: (a) UMAP projection of the pre-processed
map and (b) post-processed map.

by noise points, depicted in black. Since the lower dimensional embedding constructed by UMAP
preserves the structure of the data, but not density, this projection is used to refine the clustering
result and reassign these noise points that appear to coincide with clusters. For each noise point
identified by HDBSCAN, the distance to a maximum of 2000 randomly-selected points is calcu-
lated for each cluster using the coordinates in the lower-dimensional embedding. A noise point is
reassigned to a cluster if the distance to any member in that cluster is lower than 0.5. Of course,
this is a user-selected parameter; yet, performing this distance-based reassignment strategy in the
lower-dimensional representation is more robust than performing it in the full M -dimensional fea-
ture vector space. The results of this noise reassignment approach, applied to the clustered map
in Figure 1(b), are depicted in Figure 2(b): the fraction of noise within the dataset decreases from
11.46% following application of HDBSCAN to 2.18% after noise reassignment. Visual inspection
of Figure 2(a) suggests that this result is reasonable. Thus, this approach is applied to each clus-
tered map. The resulting maps are then used to perform cluster correlation and associate clusters of
similar solutions across distinct dynamical models and values of the independent variable.

5.3 Correlating Clusters Across Maps with UMAP

UMAP is leveraged to construct a relative robust procedure for correlating clusters of geo-
metrically similar solutions across distinct maps. Performing this correlation step in the full M -
dimensional space in a straightforward and robust manner would be challenging due to the curse of
dimensionality and the sensitivity of states within distinct regions of the phase space. However, the
lower-dimensional embedding constructed by UMAP preserves relative distances between mem-
bers of a dataset, locating similar members in nearby regions and separating dissimilar members.
Since the minimum distance between two datapoint on the UMAP projection is an input parame-
ter to the algorithm, it is relatively straightforward to construct a distance-based cluster correlation
procedure that is implemented in the lower-dimensional space and governed by a single value of a
distance-based threshold. This procedure is implemented as follows:

• Generate and cluster each map: D distinct datasets, {[T ]1, [T ]2, . . . , [T ]D}, are constructed

10



for each perigee map, generated for each dynamical model and set of system parameters. For
each map [T ]i, with i ∈ [1, D], HDBSCAN used with mpts = 200 and mclSize = 100 to
obtain an initial clustering result of Gi clusters. Then, noise reassignment is performed using
UMAP as described in Section 5.2.

• Sample clusters in each map to produce a global cluster summary: Each cluster [S]ji , with
j ∈ N+, of each map described by the dataset [T ]i, is sampled to produce a subset of
nsub = 300 points. The sampled map crossings from all clusters across all maps are ag-
gregated to produce a single reduced global dataset [P ]. These subsets of cluster members
are identified by leveraging the soft-clustering modification to HDBSCAN, available in the
hdbscan clustering library in Python: only members of [S]ji with a probability p > 0.8 of
being assigned to [S]ji are used to populate [P ]. If the number of members that satisfies this
condition for cluster [S]ji is greater than a user-specified maximum value nsub, these points are
sampled to contribute no more than nsub members to the global dataset. Once this procedure
has been implemented for all clusters across all maps, the reduced dataset [P ] is populated
with a total of [Q]j =

∑D
i=1Gi clusters, each represented by up to nsub members.

• Construct a lower-dimensional embedding of the global dataset: The global dataset [P ] is
renormalized in a component-wise manner and then processed with UMAP to obtain a three-
dimensional representation of the higher-dimensional dataset. This procedure is implemented
using nneigh = 100 and mdist = 0.0 to enhance the global structure of the projected dataset.

• Correlate clusters across distinct maps: The lower-dimensional projection of the global
dataset [P ] is analyzed to automatically correlate clusters of similar trajectories. First, the
distance of the projected representations of each member of [Q]j from members of all clus-
ters is calculated, excluding points from the same original map [T ]i. The minimum values
of these distances are recorded for each member and used to compute an average minimum
distance between two clusters [Q]j and [Q]k in the global dataset using the lower-dimensional
embedding. If the minimum average distance between clusters [Q]j and [Q]k is lower than a
threshold value tavg, the two clusters are correlated and are assigned the same cluster ID.

When two clusters are correlated, they are assumed to be composed of map crossings that produce
trajectories with a similar geometry, despite existing in different dynamical models and at different
values of the independent variable. In fact, UMAP is not provided with any information about
the generating model and its parameters; it is only provided a summary of the geometry of the
associated trajectories, via a sequence of apses. As a result, key information about the evolution and
persistence of trajectories of a specific geometry may be inferred in a robust, data-driven manner.

6 RESULTS: STUDYING CLUSTER PERSISTENCE ACROSS DYNAMICAL MODELS

The presented data-driven approach for clustering and correlating trajectories that exist across
distinct dynamical models is demonstrated in the Sun-Earth system. Several perigee maps are con-
structed for the same set of initial conditions with trajectories generated in each of the CR3BP,
ER3BP and point mass ephemeris models. Each perigee map is clustered individually via HDB-
SCAN and some noise points reassigned using UMAP. Then, clusters in each map are correlated to
study their persistence across models and values of the independent variables. In this section, this
procedure is demonstrated using three examples that study the evolution of trajectories, described
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by their geometry, across: 1) various values of the initial true anomaly in the ER3BP; 2) various
initial epochs in the point mass ephemeris model; and 3) across dynamical models.

6.1 Cluster Persistence Across Initial True Anomalies in the ER3BP

The map crossings associated with several perigee maps in the ER3BP, each constructed for vari-
ous values of the initial true anomaly, are clustered individually and then combined in a data-driven
approach to form a single global clustering result. Consider 10 perigee maps constructed for the fol-
lowing distinct values of the initial true anomaly of the primaries: f0 = [0, π/6, 5π/24, π/4, 7π/24,
π/3, π/2, 13π/24, 7π/12, 2π/3]. Each of these perigee maps is clustered individually using HDB-
SCAN with the selected input parameters, as described in Section 5.1, and noise points reassigned
as appropriate, as described in Section 5.2. These individually clustered datasets are then processed
to form a global cluster summary as described in Section 5.3. During this procedure, clusters with a
minimum average distance of tavg = 1.5 are considered sufficiently close in the lower-dimensional
embedding to be correlated; of course, this is a tunable parameter that is selected iteratively and
may influence the results. Nevertheless, following this procedure with the selected minimum av-
erage distance for cluster correlation produces a global clustering of 26 unique clusters across the
perigee maps constructed at the specified values of the initial true anomaly in the ER3BP. Figure 3
displays a subset of the generated maps, constructed with distinct values of the initial true anomaly
for the primaries. In these figures, clusters are labeled and uniquely colored in shades of red and
blue; clusters that are correlated across multiple perigee maps are indicated with the same color and
cluster ID. The gray arrow in this figure indicates the increasing value of f0 used to generate the
trajectories associated with each map crossing. Recall that the equilibrium points and ZVCs are
calculated in the CR3BP, but displayed in these figures only for reference. To support analysis of
these results, the representatives of clusters 4 to 7 and 17 to 20 are plotted in Figure 4, colored in
shades of blue based on the originating initial system anomaly: darker shades are associated with
lower values of f0. Each trajectory starts from the associated green marker. In Figure 4, the Earth
is represented as a grey circle, while L1 and L2 are indicated by red diamonds.

The persistence of trajectories that are generated in the ER3BP and admit a similar geometry
across various values of the initial true anomaly is studied using the specific, fixed set of initial
conditions used in this paper. The first two maps, corresponding to f0 = 0 and f0 = π/4, admit
clusters of similar solutions that do not shift or distort significantly as the true anomaly is set equal
to these two values and for this specific set of initial conditions. Clusters 0 to 9 exist within a narrow
region of the configuration space, while clusters 10 and 11 encompass a significant region of the
configuration space. Note that an alternative feature vector definition or input parameter selection
may produce more or fewer clusters. Two small white lobes appear close to the Earth in these first
two perigee maps. These lobes represent trajectories that naturally depart the Earth vicinity before
completing at least one apse: for this reason, these trajectories are excluded from the dataset.

As the initial true anomaly is increased to f0 = π/2, new clusters of solutions emerge. Analysis
of the third map at f0 = π/2 reveals that new clusters appear in the regions of the configuration
space previously encompassed by clusters 10 and 11 at lower values of the initial true anomaly.
Some of these clusters, including clusters 17, 19 and 20 depart the Earth vicinity through either
the L1 and L2 gateways before completing 7 apses with respect to the secondary. As displayed
in Figure 4, trajectories in these clusters are similar to those governed by the stable manifolds
associated with the L1 and L2 Lyapunov orbits in the Sun-Earth CR3BP. Other clusters, such as 4
to 7, maintain their overall shape and size between these first three perigee maps.
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Figure 3. Clustered perigee maps for various values of the initial true anomaly in the
Sun-Earth ER3BP. Clusters of similar solutions are correlated across maps.

4)                    5)                    6)                    7)

17)                  19)                  18)                  20)

Figure 4. Selected cluster representatives from the maps in Figure 3; darker trajecto-
ries are associated with maps constructed at lower values of the initial true anomaly.
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When the initial true anomaly increases beyond f0 = π/2, the solution space associated with the
perigee maps in Figure 3 admits more significant changes. For instance, clusters of trajectories that
depart the Earth vicinity after 5 apses, such as clusters 17 and 20, encompass a larger region of the
configuration space. A new group, cluster 18, also emerges in a nearly anti-symmetric configura-
tion to cluster 19: as depicted in Figure 4, trajectories in cluster 19 resemble the stable manifold
associated with an L1 Lyapunov orbit in the Sun-Earth CR3BP, while trajectories in cluster 18 are
similar to those governed by an L2 Lyapunov orbit in the Sun-Earth CR3BP. Interestingly, cluster
18 emerges at a higher value of the true anomaly than cluster 19. Clusters 17 to 20 appear to en-
compass a wider region of the configuration space, clusters 10 and 11 shrink while clusters 2 to 7
remain relatively unchanged.

The last two maps, at the bottom of Figure 3, possess a significantly different cluster configuration
to those constructed at low values of the initial true anomaly. First, clusters 17 to 20, encompass a
larger region of the configuration space in the f0 = 7π/12 map. When the initial true anomaly is
increased further to f0 = 2π/3, clusters 18 and 19 each split clusters 23 and 24, respectively, into
two regions on the map. As a result, new clusters emerge, namely clusters 22 and 25. Clusters 2
to 7, however, remain relatively unchanged through these increases in the initial true anomaly. In
addition, the central white lobes that correspond to trajectories departing the Earth vicinity before
completing one additional apsis encompass a larger region of the configuration space.

From a global perspective, this data-driven approach to assessing the persistence of trajectories
across various values of the initial true anomaly supplies valuable insights into the solution space.
Two distinct behaviors are evident. First, the size and shape of the clusters associated with escaping
trajectories are significantly impacted by changes in the initial true anomaly, for the single, fixed
initial condition set examined in this paper. Conversely, the regions of the configuration space
encompassed by clusters 2 to 7 remain relatively unaffected by these changes in the independent
variable. Extending this example to encompass the full range of possible values of the initial true
anomaly is a work in progress and would likely provide a more thorough understanding of the
persistence of trajectories with a specific geometry in the ER3BP as this quantity is changed.

6.2 Cluster Persistence Across Epochs in the Point Mass Ephemeris Model

The map crossings associated with several perigee maps in a point mass ephemeris model of the
Sun-Earth system, each constructed for various values of the initial epoch, are clustered individu-
ally. Recall that only the gravitational influence of the Sun and the Earth are included in this initial
analysis. Consider 8 initial epochs t0 = [29020, 29023, 29025, 29028, 29030, 29033, 29035, 2940]
MJD, spanning 20 days, from Jun 19, 2020 at 12:00pm to Jul 9, 2020 at 12:00pm UTC. This par-
ticular time frame and discretization is selected consistent with the sensitivity of the solution space
in the point mass ephemeris model to changes in the initial epoch. Using the same initial condition
set employed in the CR3BP and ER3BP, each prograde perigee is propagated forward in time in
the point mass ephemeris model of the Sun-Earth system. Since this dynamical model includes the
ephemerides of the Sun and Earth in their true orbits, a planar initial condition results in trajecto-
ries that eventually extend slightly out of the plane of the primaries. The out-of-plane components
[z, ż] do not appear in the feature vector in eq. (5) and are not considered in the presented imple-
mentation. However, this is a specific setup due to the presented planar map: indeed, including
the out-of-plane components would extensively separate solutions reporting a modest out-of-plane
displacement, leading to a different cluster differentiation of the maps and a subsequent erroneous
final UMAP output.
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Figure 5. Clustered perigee maps for various values of initial epoch in the Sun-Earth
point mass ephemeris model. Clusters of similar solutions are correlated across maps.

After each map is individually clustered and noise points reassigned where appropriate, UMAP
is employed, with tavg = 1, to correlate clusters of similar solutions. Figure 5 displays the resulting
global cluster assignments across 6 of these perigee maps, labeled with their associated initial epoch,
in the point mass ephemeris model of the Sun-Earth system; the gray arrow indicates an increasing
initial epoch. Each cluster is uniquely labeled and colored in shades of red and blue; the equilibrium
points are displayed as red diamonds and the ZVCs bound the gray forbidden regions. Similar to the
previous example, clusters of trajectories with a similar geometry and the same initial conditions
exist across multiple initial epochs and encompass different regions of the configuration space.
Figure 6 displays the representative solutions for several clusters at each initial epoch over which
the cluster exists, colored in shades of blue based on the initial date; darker shades are associated
with low values of t0. Each trajectory begins at the green marker. In this figure, the Earth is
represented as a gray circle, while L1 and L2 are indicated by red diamonds.
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2)                    1)                    7)                    8)

9)                    10)                   21)                  22)

Figure 6. Selected cluster representatives from the maps in Figure 5; darker trajec-
tories are associated with maps constructed at lower values of the initial epoch.

Several clusters exist across the entire range of initial epochs, but appear to shift and change in
their shape. For instance, clusters 13 and 14 encompass a significant range of map crossings near the
center of each perigee map; at the boundaries of these clusters, clusters 7 to 10 also tend to persist
throughout the range of epochs. Clusters 1 and 2 occupy a significant region of the perigee map
at lower initial epochs, and gradually shrink as the epoch increases; these clusters are composed of
trajectories that naturally depart the Earth vicinity after completing 5 apses.

Some clusters only appear across a limit range of initial epochs, under the assumptions used
to create the initial condition set for each perigee map. For instance, consider cluster 21, which
corresponds to trajectories that naturally depart through the L1 gateway after one revolution, similar
to the trajectories that lie inside the stable manifold ofL1 orbits in the CR3BP. This particular cluster
emerges at an epoch of t0 = 29028 MJD. However, trajectories exhibiting this kind of motion are
present in the t0 = 29025 MJD perigee map, although the number of trajectories is lower than the
threshold of mclSize = 200; thus these trajectories are not associated by HDBSCAN to a cluster.
Another example is cluster 22 that exists at epochs including and after t0 = 29033 MJD. This cluster
represents trajectories that naturally depart through the L2 gateway. These two types of trajectories,
captured within clusters 21 and 22, encompass a wider region of the configuration space across the
initial condition set as the initial epoch is increased; thus, a wider variety of trajectories lead to
departure through the L2 gateway.

This set of perigee maps demonstrates the existence and persistence of clusters of trajectories
with a similar geometry as the initial epoch in the point mass ephemeris model evolves. The size,
shape and existence of a few clusters across the initial epoch range remains relatively unchanged,
particularly for clusters 7 to 10 which correspond to bounded prograde motion. However, the ex-
istence and persistence of trajectories that leave the Earth vicinity, such as those contained within
clusters 1, 2, 21 and 22, depends strongly on the initial epoch. Some trajectories pose challenges for
the clustering framework under the selected initial condition discretization, input parameters, and
feature vector definition; this is especially true for trajectories associated with the map crossings
near Sun-Earth L1 and L2 points, at the boundaries of central oval-shaped map and in proximity
of the Earth. In fact, clusters 0, 5, 6, 9, 18, 17 and 23 tend to be constituted by underrepresented
trajectories, rapidly changing in time throughout the different map representations. Their existence,
as well as their time evolution, is an effect of the employed discretization for the initial map grid and
the subsequent UMAP correlation. A finer grid would better partition and correlate this structure,
at the expense of a significant adjunct computational effort; such analysis is an ongoing effort.
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6.3 Cluster Persistence Across Distinct Dynamical Models

In this final example, clusters of trajectories, generated in distinct dynamical models from the
same initial condition set, are correlated to study their persistence as the underlying dynamics
evolve. This example analysis uses three datasets: the perigee map generated and clustered in the
CR3BP, a map generated in the ER3BP and a map generated in the Sun-Earth point mass ephemeris
model, all using the same set of initial conditions. Following implementation of the cluster correla-
tion process with tavg = 1, the resulting maps are displayed in Figure 7, labeled by the dynamical
model and the value of the input parameter. Note that the bottom left map, is generated in the ER3BP
using f0 = 7π/12, while the ephemeris map at the bottom right is constructed with t0 = 29035
MJD. Simultaneous analysis of these three maps reveals useful insights. For example, clusters asso-
ciated with escaping motion are successfully correlated: clusters 0 and 1 group trajectories naturally
departing the Earth vicinity before 3 apses. Similarly, clusters 4 and 5 group trajectories naturally
departing after 5 apses. Other clusters of solutions, which exist across different true anomalies and
initial epochs, for the ER3BP and ephemeris models, respectively, are again linked and numbered,
e.g., clusters 2 and 3, 6 and 8. Interestingly, these same solutions also exist across each of the three
dynamical models. Other solutions, such as those in clusters number 10 and 11 also appear to exist
across different dynamical models.

At negative values of y, some solution geometries persist between the CR3BP and ER3BP, but
not in the ephemeris model. For instance, consider clusters 12 and 13 which exist in the CR3BP and
ER3BP. In the ephemeris map, cluster 17 occupies the part of the configuration space associated
with clusters 12 and 13 in the CR3BP and ER3BP. To explore this observation further, Figure 8
displays the UMAP projections of the reduced dataset [P ], colored according to the final clustering

Figure 7. Clustered perigee maps for the same initial conditions in the: (top) CR3BP,
(bottom-left) ER3BP at f0 = 7π/12, (bottom-right) Sun-Earth point mass ephemeris
model at t0 = 29035 MJD. Clusters of similar solutions are correlated across maps.
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Figure 8. UMAP projection of the global reduced dataset in Figure 7.

and consistent with Figure 7. The points associated with each of these three clusters are labelled
with the associated cluster ID and appears in the zoomed-in view. While many solutions appear
condensed and well-grouped in a specific region of the projected space, cluster 17, in the lower part
of the figure, is split in two halves. Two zoomed-in regions in the neighborhood of clusters 12 and
13 are displayed in the right part of the figure, highlighting the splitting of cluster 17. The adopted
color scheme associates the light-blue color to cluster 12, the darker red shade to cluster 13 and
the lighter red shade to cluster 17. Clearly, cluster 17 can be linked to both cluster 12 and 13, i.e.
its representative members are located in a neighborhood of these two clusters. Thus, these three
clusters could reasonably be considered as merged into either 1 or 2 unique clusters. However, the
current cluster correlation approach does not make this decision, likely due to the selected value
of tavg. A larger value may potentially produce a different result; investigation into this result is
ongoing. Additional ongoing work is focusing on exploring whether similar results appear as the
feature vector definition and aggregation process is modified.

7 CONCLUDING REMARKS

In this paper, we use clustering to group trajectories based on geometrical similarity and study
their evolution throughout progressively higher-fidelity dynamical models. In particular, we focus
on trajectories associated with the crossings of a planar periapsis map near the Earth and generated in
three distinct dynamical models of the Sun-Earth system: 1) the circular restricted three-body prob-
lem (CR3BP); 2) the elliptic restricted three-body problem (ER3BP), governed by the initial true
anomaly of the primary system as an independent variable and 3) the point mass ephemeris model
governed by the initial epoch. First, the initial conditions leveraged to construct the CR3BP map
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are used across all dynamical models and several values of the independent variables in the ER3BP
and point mass ephemeris model. These maps are first clustered individually using HDBSCAN
and projected onto a three-dimensional reduced space with UMAP, in a completely unsupervised
manner. The UMAP projection is used to correct the clustering result from HDBSCAN and de-
crease the amount of generated noise for each map. Then, the clusters in each map are reduced to a
smaller set of representative members. The resulting global summary of all clusters across all maps
is projected onto a three-dimensional space calculated by UMAP. This process enables clusters of
similar trajectories to be correlated between different maps in a computationally efficient manner.
Three examples are used to demonstrate this approach: 1) periapsis maps at different initial true
anomalies in the ER3BP; 2) periapsis maps at different initial epochs in the Sun-Earth point mass
ephemeris model; and 3) periapsis maps generated in each of the CR3BP, ER3BP and point mass
ephemeris models. The first two scenarios enable an analysis of the influence of the independent
variable on the proprieties of the solution space near the Earth in each dynamical model. The third
example supports analysis of the persistence of trajectories with a specific geometry as the fidelity
of the dynamical model is increased.

The procedure and analysis presented in this paper supply two fundamental contributions. First,
the developed data-driven approach successfully correlates trajectories in progressively higher-
fidelity dynamical models to support analysis of their persistence and existence. The resulting
insight is useful for astrodynamicists selecting low-fidelity dynamical models for rapid initial guess
construction in multi-body systems. Furthermore, this insight supplies the trajectory designer with
a mechanism for understanding how the design space evolves as the model fidelity is increased.
Second, UMAP and HDBSCAN, dimension reduction and clustering techniques in the field of
unsupervised learning, are successfully used to improve the analysis and visualization of higher-
dimensional Poincaré maps in a computationally efficient manner. In fact, UMAP is used in this
work as an effective post-processing mechanism, to either improve the clustering output or correlate
data across different datasets. The combined use of HDBSCAN and UMAP also enables a reduction
of large datasets into smaller set of representative solutions for simplified analysis.
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