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TRANSITIONS BETWEEN QUASI-PERIODIC ORBITS
NEAR RESONANCES IN THE

CIRCULAR RESTRICTED THREE-BODY PROBLEM

Stefano Bonasera∗, Natasha Bosanac†

Natural transitions between near-resonant orbits occur throughout our solar sys-
tem and are exploited during mission design. To study the vast solution space
associated with these natural transitions, this paper focuses on constructing hete-
roclinic connections between families of quasi-periodic orbits near resonances in
the Earth-Moon circular restricted three-body problem. The hyperbolic invariant
manifolds associated with quasi-periodic orbits are examined using an alternative
representation of a Poincaré map that is constructed using manifold learning, a
technique used for dimension reduction, to simplify visualization and analysis.
Initial guesses, identified from this map, are corrected and input to a continuation
scheme to examine the existence of natural transfers with a similar geometry be-
tween various quasi-periodic orbits along each family. This approach and analysis
is demonstrated for natural transitions from quasi-periodic orbits near the interior
3:2 resonance to quasi-periodic orbits near the exterior 1:2 resonance.

INTRODUCTION

Natural transitions between resonant and near-resonant orbits, existing in multi-body gravita-
tional environments, are of much interest in astrodynamics and celestial mechanics. Recent missions
such as the Interstellar Boundary Explorer (IBEX) and the Transiting Exoplanet Survey Satellite
(TESS) missions leveraged orbits near the 3:1 and 2:1 resonances, respectively, in the Earth-Moon
system.1, 2 In these scenarios, natural motion approaching or departing a specific resonance supplies
low-cost transfers to new orbits for mission extensions or even an explanation for distinct changes
in a natural trajectory during long-term analyses.3 In the field of celestial mechanics, the natural
transitions between resonances offer fundamental insights into the dynamical mechanisms govern-
ing small bodies throughout the solar system; examples include the transit of comet Oterma in the
Sun-Jupiter system4 and the “resonant sticking” of Kuiper Belt Objects (KBOs).5

Low-fidelity models, in combination with dynamical systems theory, provide an approximate, yet
representative, framework to analyze the mechanisms governing resonance transitions in multi-body
systems. For instance, the Circular Restricted Three-Body Problem (CR3BP) admits a variety of
dynamical structures that are approximately retained in many higher-fidelity models of multi-body
systems. In the CR3BP, heteroclinic connections between periodic or quasi-periodic orbits offer
a rapid and informed approach to preliminary analysis of the fundamental mechanisms governing
resonance transitions. The intersections between hyperbolic invariant manifolds from two different
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resonant or near-resonant orbits indicate the existence of heteroclinic connections. State-of-the-art
approaches to rapidly identifying these intersections via dynamical systems techniques tend to lever-
age Poincaré maps to reduce the dimensionality of the problem. For instance, Koon et al. employ
Poincaré maps to study the transit of comet Oterma in the Sun-Jupiter system via a comparison to
the planar hyperbolic invariant manifolds of resonant orbits.4 Later, Haapala and Howell extend this
analysis by studying three-dimensional natural motion between these resonances.6

The set of bounded trajectories that exist near a resonance in the CR3BP includes both periodic
and quasi-periodic orbits. Previous efforts in studying resonance transition tend to focus on tra-
jectories connecting periodic motions obtained in approximate models, constraining the examined
solution space. However, a recent approach presented by Olikara and Scheeres enables efficient
numerical computation of quasi-periodic orbits.7 This procedure also supports computation of the
associated invariant hyperbolic manifolds, following a similar approach to that presented by Jorba.8

With these tools, Olikara develops two techniques to calculate heteroclinic trajectories between two
quasi-periodic orbits near libration points. In the first method, connections are constructed from
a departing torus to an a posteriori defined arrival torus using arcs that remain bounded within a
specified neighborhood of the secondary. In the second example, Olikara recovers a connection
between two spatial quasi-periodic orbits via continuation from a heteroclinic connection between
two nearby planar orbits.

To study the natural transitions between quasi-periodic orbits near resonances, this paper en-
hances traditional dynamical systems approaches to designing heteroclinic connections by employ-
ing data mining methods. A primary challenge in constructing spatial transfers in the CR3BP is that
the resulting Poincaré maps are higher-dimensional; this task is even more challenging for the com-
plex stable and unstable manifold structures associated with a torus. To effectively visualize the hy-
perbolic invariant manifold structures associated with quasi-periodic orbits via Poincaré mapping, a
technique from Big Data is employed: manifold learning. Specifically, the higher-dimensional state
information encoded in each map crossing is projected onto a lower-dimensional manifold that is
calculated via the Uniform Manifold Approximation and Projection (UMAP) method. This unsuper-
vised learning technique minimizes the topological distance between the high- and low-dimensional
spaces.9 Due to this theoretical foundation, UMAP has been used to study a wide variety of non-
linear systems, including visualizing complex proteins in single cell biology,10 studying genetic
structures in cohorts11 and categorizing the origin of solar wind.12

This paper constructs natural transitions between quasi-periodic orbits near resonances in the
CR3BP using dynamical systems theory and manifold learning. This approach is demonstrated
through the design of natural transfers between spatial quasi-periodic orbits associated with the
internal 3:2 and external 1:2 resonances in the Earth-Moon CR3BP. First, families of spatial quasi-
periodic orbits near these two selected resonances are computed. Then, the hyperbolic invariant
manifolds associated with two members of these quasi-periodic orbit families are calculated and
reduced to a sequence of intersections with a surface of section. The resulting higher-dimensional
crossings of the Poincaré map are projected onto a two-dimensional manifold that is calculated via
UMAP. The crossings associated with the stable and unstable manifolds of the two quasi-periodic
orbits are displayed using this alternative representation of a Poincaré map. Then, two crossings
from each manifold structure, that are located nearby in the lower-dimensional space, are used to
seed an initial guess for a heteroclinic connection. Since UMAP calculates a lower-dimensional
embedding with a similar topological structure to the original higher-dimensional space, these two
crossings are likely to be located nearby in the phase space; thus, this alternative representation
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of a Poincaré map offers a useful starting point for identifying candidate arcs for constructing a
heteroclinic connection. The discontinuous arcs are refined numerically to produce a continuous
solution. Continuation is then used to compute a family of similar heteroclinic connections between
other members of the same quasi-periodic orbit families. The resulting natural transfers supply
preliminary insight into the existence and properties of natural transitions between quasi-periodic
orbits near resonances in multi-body systems. Such insight is valuable for astrodynamicists to
either leverage in low-cost transfer design in a multi-body system or to avoid distinct changes in the
trajectory of a spacecraft over the lifetime of a mission. In celestial mechanics, such analysis also
offers insight into the conditions that may lead to natural transits for comets and KBOs as well as
an explanation of the associated dynamical mechanisms.

DYNAMICAL MODEL

This work leverages the CR3BP to model the motion of a point mass due to the gravitational
influence of two primary bodies. In this model, two point mass primaries, P1 and P2, are assumed
to move along circular orbits about their barycenter. The third body P3, representing a spacecraft
or a small body, is assumed to possess a negligible mass with respect to P1 and P2; P3 is often
referred to as test particle throughout this work.13 Then, mass, length and time parameters are
nondimensionalized. Following normalization, a mass parameter µ emerges to represent the ratio
between the mass of the smallest primary and the total mass of the system; in the Earth-Moon sys-
tem, µ ≈ 0.01215. In addition, a rotating orthogonal reference frame is defined by the right-handed
unit-vector sequence (x̂, ŷ, ẑ). This frame rotates with the two primaries, enabling the construction
of an autonomous set of equations of motion for the test particle. In this rotating frame, the x̂-axis is
directed from P1 to P2, the ẑ-axis is parallel to the orbital angular momentum of the system, while
the ŷ-axis completes the right-handed triad. The nondimensional state of the test particle is defined
in the rotating frame and relative to the system barycenter as x = [x, y, z, ẋ, ẏ, ż]T . Then, the
nondimensional equations of motion in the CR3BP for the test particle are written as

ẍ− 2ẏ = Ux, ÿ + 2ẋ = Uy z̈ = Uz (1)

where the pseudo-potential function is U(x) = (x2 + y2)/2 + (1− µ)/r1 + µ/r2 and Ux, Uy and
Uz denote the partial derivatives of U with respect to x, y and z, respectively. The distances of P3

from the two primaries are r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1 + µ)2 + y2 + z2. In this
system, the Jacobi constant, an energy-like quantity, is defined as JC(x) = 2U(x)−ẋ2− ẏ2− ż2.13

At a fixed value of JC, a wide variety of fundamental solutions exist, including: five Lagrange
points, labelled Li for i = [1, 5]; periodic and quasi-periodic orbits; and chaos.

RESONANT ORBITS

The definition of a mean-motion orbital resonance is inherited from two-body dynamics, where
two assumed massless test particles, B and C, are subject to the gravitational influence of a single
point-mass central body, A. The test-particle B is in resonant motion with C when B completes
exactly p orbits about A in the same time C revolves q times around A, with p, q,∈ N+. The p : q
resonance is classified as interior when p > q or exterior when p < q. When this definition is transi-
tioned to the CR3BP, the body B is the test particle, body A is P1 and C is P2, e.g. the Earth and the
Moon, respectively. However, body B possesses a non-negligible mass in the CR3BP, therefore the
ratio between the periods of the test particle and P2 in their motion around P1 is only approximately
equal to the p : q ratio. In this paper, an initial guess for a planar p : q resonant periodic orbit is
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constructed using the two-body model. The obtained solution, which is not periodic in the CR3BP,
is transformed into the barycentric rotating coordinate system. Differential corrections is then used
to recover a periodic orbit in the CR3BP. Using this single periodic orbit, pseudo arc-length contin-
uation is used to generate additional members of the same family of resonant orbits.14–16

The stability characteristics of a periodic orbit are used to gain insight into the nearby flow. A
resonant orbit is uniquely defined by a state x(t) ∈ R6 and orbital period T . Then, the State
Transition Matrix (STM) Φ(t, t0) supplies a linear mapping between a deviation from the initial state
δx(t0), to a deviation from a future state δx(t) = Φ(t, t0)x(t0). The monodromy matrix is defined
as the STM evaluated over an orbital period, i.e., [M ] = Φ(t0+T, t0). Spectral decomposition of the
monodromy matrix produces six eigenvalues and associated eigenvectors.17 Due to the symplectic
nature of the underlying dynamical model, the monodromy matrix admits three pairs of reciprocal
or complex conjugate eigenvalues. One trivial eigenvalue pair, associated with the periodicity of
the orbit, always equals unity. For planar orbits, the remaining two pairs reflect the characteristics
of nearby in-plane and out-of-plane motion: an eigenvalue with a magnitude larger than one is
associated with the unstable mode; an eigenvalue with magnitude lower than one identifies the
stable mode; and a complex conjugate pair of eigenvalues with unitary magnitude is associated with
nearby oscillatory motion.13

Two fundamental motions emerge when a periodic orbit is perturbed along one of the nontrivial
eigenvalues. When a single state along the orbit is perturbed along the locally stable (unstable)
mode, the perturbed state x(t) produces a trajectory that naturally approaches the periodic orbit as
t → +∞ (t → −∞). The collection of all the trajectories exhibiting this characteristic are labeled
the stable (unstable) invariant manifold. Heteroclinic transfers exist when the stable and unstable
invariant manifolds of two distinct periodic orbits intersect: these arcs naturally transfer the test
particle between two periodic orbits in infinite time. When an oscillatory mode is excited, however,
the perturbed state x(t) produces bounded oscillatory motion, i.e., a quasi-periodic orbit. The
collection of every perturbed state presenting oscillatory motion comprises the central manifold.18

QUASI-PERIODIC ORBITS

A quasi-periodic orbit is a bounded trajectory that traces out the surface of an invariant torus;
this paper focuses specifically on spatial tori governed by two fundamental frequencies. A state
on the surface of a two-torus is described by two angular quantities [θ1(t), θ2(t)], associated with
the longitudinal and transverse directions, respectively. The associated fundamental frequencies,
ω1 and ω2, of a bounded quasi-periodic orbit are incommensurate. This paper uses the approach
presented by Olikara and Scheeres to compute quasi-periodic orbits in the CR3BP.7, 19 Olikara and
Scheeres build their method upon previous studies from Jorba, Gómez and Mondelo by calculating
the invariant curve associated with a torus via a stroboscobic mapping.8, 20 Then, an invariant curve
v(·) represents an equilibrium solution of the mapping under the flow governed by Equation (1).
After a stroboscopic mapping time T = 2π/ω1, a state x(θ1, θ2) that begins on the invariant curve
undergoes a rotation on the curve by an angle ρ = 2πω2/ω1. An invariance condition is then
mathematically described as:

R−ρv (x(θ1, θ2))− x(θ1, θ2) = 0 (2)

where R−ρ is a rotational operator. For computational efficiency, the invariant curve is approxi-
mated by a sequence of N points along the invariant curve, equally spaced in θ2. These states are
approximated via a truncated Fourier series. As a result, the operator R−ρ is transformed into a
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combined sequence of matrices, [R(−ρ)]. By aggregating the points sampled along the invariant
curve into a matrix as [U ] ∈ RN×6, a numerical equivalent of the invariance condition becomes:

S = vec([R(−ρ)]v ([U ](θ1, θ2))− [U ](θ1, θ2)) = 0 ∈ R6N (3)

where the condition is vectorized by the vec(·) operator. To compute an initial torus that lies close
to a periodic orbit with oscillatory modes, a location x0 along the periodic orbit is defined, corre-
sponding to a longitudinal angle θ1 = 0. The eigenvector vC , associated with the complex unitary
eigenvalue λC of [M ], defines N points along an initial guess for an invariant curve as:

x(θ1, θ2,i) = x0 + ε(Re[vC ] cos θ2,i + Im[vC ] sin θ2,i) (4)

where an odd number of equally spaced values of the transverse toroidal angle θ2 are used and ε is a
small scalar value. To construct the initial guess, the period of the underlying periodic orbit is used
as an approximation for the stroboscopic mapping time T , while the rotational angle is approximated
as ρ = Re[−i lnλC ]. The resulting initial guess, specified by the approximated states along the
invariant curve x(θ1, θ2,i), the stroboscopic time T and the rotational angle ρ, is corrected using
the multiple-shooting formulation of the method presented by Olikara and Scheeres.7 Q equally-
spaced locations along θ1 are identified to retrieve approximated invariant curves along the same
torus, following Equation (4). Continuity at each mesh point and the invariance condition at the
final node guide the torus correction process. Of course, as with many current numerical procedures
for computing fundamental solutions, the tori that exist in the CR3BP are not exactly recovered due
to the approximation introduced by the discrete Fourier transform, the small discontinuities between
nodes, and the nonzero tolerance used to assess whether the constraint vector is satisfied. However,
the resulting numerical solutions are expected to lie sufficiently close to the true solution. An
additional constraint is incorporated to compute a one-parameter family of quasi-periodic orbits at a
specified Jacobi constant. Then, pseudo-arclength continuation is employed to compute additional
members of the quasi-periodic orbit family. In this paper, quasi-periodic orbit families are calculated
using two formulations of a constraint on the energy level: 1) by constraining the exact Jacobi
constant of each state on the invariant curve, to produce a result labeled a ‘JC-family’; and 2)
constraining only the average Jacobi constant of states along the invariant curve, producing members
that are labeled a ‘JCA-family’. Each approach produces trajectories that could, potentially, be
deemed members of the quasi-periodic orbit family at the specified energy level.

Once a quasi-periodic orbit has been computed, the linearized dynamical flow near a torus sup-
plies useful information on the stability of the associated quasi-periodic orbit. Specifically, the
stability of a torus is evaluated by inspecting the eigenstructure of the differential of the invariance
condition, labeled [DS]. Following the work of Jorba, the eigenvalues of [DS] correspond to con-
centric circles about the origin in the Gauss plane. Each of these circles is associated with a radius
R in the complex plane. Analogous to the stability of periodic orbits, these radii exist in reciprocal
pairs, and always includes the trivial radiusR = 1. If non-unitary radii exist, the torus possesses sta-
ble and unstable modes. When the approximated invariant curve is perturbed along the locally stable
(unstable) mode, the perturbed curve will naturally approach the torus for t → +∞ (t → −∞).7

The collection of all the states naturally approaching (departing) the underlying torus in forward
time is the stable (unstable) hyperbolic invariant manifold of the torus. This paper leverages the
hyperbolic stable and unstable manifolds of different tori to compute natural transfers.
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ENHANCING POINCARÉ MAP VISUALIZATION VIA DIMENSION REDUCTION

Poincaré Maps

In dynamical systems theory, Poincaré maps reduce the complexity of visualizing a large variety
of trajectories by transforming a continuous solution into a sequence of discrete states. The first
step in constructing a Poincaré map is defining a surface of section that is transverse to the flow
of interest. There exist a variety of useful definitions of a surface of section to capture the flow in
the CR3BP: events such as the minimum or maximum distance from a central body (i.e., apses);
functions of state coordinates; and stroboscopic maps that capture the flow at specific constant
times.18 Once a surface of section has been defined, trajectories are propagated, either forward or
backward in time, from a specified set of initial conditions. The intersections of these generated
arcs with the surface of section are recorded and visualized in a lower-dimensional space via a
Poincaré map. Selecting a surface of section is a key step in rapidly and thoroughly analyzing the
underlying dynamics.17 For instance, a well-constructed map may reveal the existence of patterns
that correspond to specific types of fundamental motion, or the lack thereof.

Poincaré maps are a valuable technique for locating heteroclinic connections in the CR3BP, with
an established record of success for planar periodic orbits. Following a similar methodology to Koon
et al., consider two planar periodic orbits near the resonances of interest, as displayed in Figure 1(a).
This figure displays periodic orbits in the interior 3:2 (magenta) and exterior 1:2 (blue) resonant or-
bit families in the Earth-Moon CR3BP at the same Jacobi constant of JC = 2.73. The Earth and
Moon are indicated using gray circles, while the equilibrium points are indicated by red diamonds.
These two periodic orbits each admit stable and unstable manifolds. To visualize these manifolds,
a surface of section is defined as y = 0. Trajectories along the unstable manifold associated with
the 3:2 resonant orbit and stable manifold associated with the 1:2 resonance are propagated, with
up to 10 intersections in any direction with the surface of section recorded. Figure 1(b) displays
these intersections of the unstable manifold of the 3:2 orbit (magenta) and the stable manifold for
the 1:2 resonant orbit (blue) on a Poincaré map where each crossing is visualized in the (x, ẋ)
plane. Each map crossing in this example is two-dimensional. Thus, each intersection between the
curves formed out by the blue and magenta colored crossings indicates the existence of a hetero-
clinic connection that departs the 3:2 orbit and approaches the 1:2 resonant orbit. This heteroclinic
connection is straightforwardly computed by locating two nearby crossings of the map – one from
each hyperbolic invariant manifold – and correcting for continuity via multiple shooting.

When the trajectories of interest are spatial, the Poincaré map may appear as a dense set of higher-
dimensional crossings that are challenging to analyze via a two- or three-dimensional projection.
Gomez et al. study a four-dimensional Poincaré map by introducing two more constraints on the
phase space variables at each crossings: the resulting bijective, two-dimensional visualization of the
map is used to obtain transit trajectories with predefined behaviours.21 Using a different approach,
Haapala and Howell extend the planar investigation to analyse the path of temporally captured jovian
comets in their spatial transit between distinct Sun-Jupiter resonances.6 To aid visualization, they
leverage glyph representations of multivariate data. Selecting nearby points on the map with similar
glyphs, a discontinuous initial guess for a cometary transit is constructed and then corrected. In these
examples, these approaches to Poincaré map visualization have led to new fundamental insights
about dynamical mechanisms. In this paper, an alternative approach to visualization is presented to
accommodate increasingly complex scenarios, while avoiding data obscuration, over-constraining
the solution space and an increased workload for the human analyst. Specifically, manifold learning
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Figure 1. Examples of periodic orbits in the (a) 1:2 resonant family (blue) and 3:2
resonant family (magenta) in the Earth-Moon CR3BP at JC = 2.73 and (b) the inter-
sections of the associated invariant manifolds with the y = 0 plane.

techniques are used to project higher-dimensional data associated with map crossings onto a lower-
dimensional embedding. As a result, a human analyst may be able to rapidly and effectively analyze
the solution space.

Manifold learning

Manifold learning techniques, such as the Uniform Manifold Approximation and Projection
(UMAP), are a form of dimension reduction algorithms. Dimension reduction is founded in the
premise that the descriptions used to form high-dimensional dataset contain redundant information
and a key set of latent features exists.9 UMAP, in particular, approaches this problem by construct-
ing a low-dimensional representation of a nonlinear dataset to minimize the topological distance
between the manifolds associated with the high- and low-dimensional descriptions. To implement
this process, concepts from algebraic and fuzzy topology are leveraged. First, the algorithm as-
sumes that the high-dimensional dataset is uniformly distributed on a local manifold; UMAP seeks
to infer the Riemannian metric on the high-dimensional manifold that would result in such a distri-
bution. Under the assumption of a locally connected manifold, UMAP leverages fuzzy simplicial
sets to construct these local metrics and define a weighted graph that captures the fuzzy topological
structure of the high-dimensional dataset. Then, the algorithm leverages optimization to identify
a low-dimensional representation with a similar fuzzy topological structure to that of the high-
dimensional dataset. UMAP initializes the lower-dimensional projection with spectral embedding
techniques and then refines it by minimizing the cross entropy between the 1-simplicies of the high-
and low-dimensional representations. This optimization step leverages stochastic gradient descent
for computational efficiency. However, to support reproducibility of the results, the user can fix a
random state for a minor increase in computational time. This algorithm is accessed in this work
via the umap-learn library available in Python.

To apply UMAP to a particular dataset, several user-selected input parameters must be defined;
the exact combination of selected parameters impacts the characteristics of the dataset projected
onto the constructed lower-dimensional embedding. The three most significant input parameters in-
clude nneigh,mdist and ncomp: nneigh ∈ N+ balances the local versus global structure in the dataset
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with low values providing a final embedding favouring the local manifold structure; mdist ∈ [0, 1]
balances the density level of the embeddings, ranging from low values and highly dense solutions
to large values and sparse embeddings; and ncomp ∈ N+ defines the dimension of the lower-
dimensional Euclidean representation. In this work, to aid the identification of regions where pos-
sible intersections between manifolds exist, large values of nneigh and low values for mdist are
selected: this parameterization favors a compact visualization of the overall global structure, while
also minimizing the effects of data obscuration. Moreover, the obtained datasets are projected into
a two-dimensional Euclidean space to simplify visualization.

COMPUTING TRANSITIONS BETWEEN SPATIAL QUASI-PERIODIC ORBITS

This paper leverages data mining to construct natural transitions between quasi-periodic orbits
near distinct resonances and at the same energy level. This methodology is comprised of two fun-
damental phases. The first phase focuses on constructing a discontinuous initial guess for a hetero-
clinic connection between two spatial quasi-periodic orbits. This phase begins by computing two
families of quasi-periodic orbits near distinct resonances and at a constrained value of the Jacobi
constant. The crossings of the hyperbolic manifolds associated with two selected members of these
families with a common surface of section are used to generate a higher-dimensional Poincaré map.
Then, UMAP is used to project the higher-dimensional crossings onto a low-dimensional represen-
tation. Using this alternative lower-dimensional representation of a Poincaré map, initial guesses
for a heteroclinic connection are identified from nearby crossings of the two manifold structures.
In the second phase, the initial guess is numerically corrected to produce one continuous natural
transfer that connects two specific quasi-periodic orbits. This heteroclinic connection is then used
in a continuation scheme to construct similar transfers between other members of each spatial quasi-
periodic resonant orbit family.

Initial Guess Generation

Poincaré mapping and manifold learning are leveraged, in combination, to design an initial guess
for a natural transition between spatial quasi-periodic orbits at the same energy level and near dis-
tinct resonances. The process used in this paper is summarized as follows:

1) Compute each family of quasi-periodic orbits: Two distinct planar resonant orbits at the same
value of JC are selected. The orbits must admit both hyperbolic and center manifolds to
ensure that a nearby family of quasi-periodic orbits exists and, through inheriting the stability
of the periodic orbit, admit trajectories that naturally depart and approach the torus. The
numerical approach presented by Olikara and Scheeres is used to calculate these two families
of quasi-periodic orbits using each of the two formulations of the Jacobi constant constraint.
This step produces two sets of families of quasi-periodic orbits near each resonance: a JC-
family and a JCA-family.

2) Define the surface of section: A surface is first defined to capture the flow associated with
the hyperbolic invariant manifolds of the selected families of quasi-periodic orbits; in this
work, a y = 0 plane is employed with no additional constraints on the sign of the velocity
components at each crossing of the surface of section.

3) Generate the Poincaré map: One quasi-periodic orbit is selected from each family to pos-
sess a similar maximum out-of-plane component. The stable and unstable manifolds associ-
ated with each of the selected quasi-periodic orbits are generated using a small displacement
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(equivalent to 50 km in the configuration space) along the stable and unstable eigenvectors,
respectively. Then, up to 14 crossings with the surface of section are recorded. Since the
hyperbolic invariant manifolds associated with these two quasi-periodic orbits tend to remain
in the vicinity of the orbit for approximately 7 revolutions, only the 8th to 14th crossing of
the manifolds with the surface of section are analyzed.

4) Construct a lower-dimensional projection via UMAP: The map crossings associated with the
hyperbolic manifolds are used to form a six-dimensional dataset. UMAP is used to project
the data onto a two-dimensional Euclidean space. The two input parameters used to govern
UMAP are selected as nneigh = 200 and mdist = 0.0 to supply a compact representation that
focuses on retaining the global structure of the Poincaré map crossings.

5) Use the alternative representation of the Poincaré map to construct an initial guess: An inter-
section between a stable and unstable manifold in the six-dimensional phase space indicates
the existence of a heteroclinic connection. Recall that UMAP projects each intersection of
these structures onto an lower-dimensional approximation of an underlying surface. Thus,
two map crossings intersecting in the six-dimensional space may not exactly intersect in the
lower-dimensional representation. However, since UMAP preserves the structure of the data,
areas of the projected space where the hyperbolic manifolds have a low relative distances are
investigated as candidate regions for locating heteroclinic connections. In these areas, two
crossings (one from each of the stable and unstable manifolds) that lie nearby in the alternative
representation are selected to construct an initial guess. These map crossings are propagated
backward and forward in time to generate the associated unstable and stable manifold arcs,
respectively. Then, five revolutions of the associated quasi-periodic orbits are concatenated
to the beginning and end of the transfer to form a suitable initial guess.

This procedure for initial guess generation is demonstrated in this paper by constructing a transfer
between spatial quasi-periodic orbits near the 3:2 and 1:2 resonances in the Earth-Moon CR3BP;
thus, the transfer is constructed using the unstable manifold associated with a torus near the 3:2
resonance and the stable manifold associated with a torus near the 1:2 resonance.

Trajectory correction and continuation

The constructed initial guess is used to recover a family of continuous and natural transfers be-
tween spatial quasi-periodic orbits at the same energy level and near two distinct resonances. The
corrections scheme is designed to: 1) ensure continuity between each hyperbolic invariant manifold
arc; 2) ensure the transfer flows away from and into the selected tori; and 3) constrain the energy
level. In this paper, a multiple shooting algorithm is formulated as an optimization problem that
is implemented using Matlab’s fmincon function. The objective function is designed to minimize
the discontinuity between each torus and the transfer’s initial and final states; along with equality
constraints that enforce continuity and the energy level, solutions that minimize this objective below
a specified threshold are deemed to sufficiently reflect a nearby heteroclinic connection. Of course,
this procedure is conceptually equivalent to implementing a multiple shooting algorithm using only
equality constraints. However, formulating this problem as an optimization problem is observed to
exhibit less numerical sensitivity than a traditional Newton’s method. Mitigation of the sensitivities
observed in a traditional equality constraint formulation is an ongoing effort to be addressed in fu-
ture work. Nevertheless, the presented approach supplies solutions that correspond to heteroclinic
connections, within a numerical tolerance.
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To define the optimization problem for implementing corrections, the free variable and constraint
vectors are defined, along with the objective function. First, the initial guess is discretized into M
nodes. To completely describe these nodes, the free variable vector is defined as

X = [x1, x2, . . . , xM , t1, 2, t2, 3, . . . , tM−1,M ]T ∈ R7M−1 (5)

with xi for i ∈ [1,M ] representing the states at each node and tj, j+1 denoting the propagation
time from node j to node j + 1. Each solution, described by this free variable vector, must satisfy
continuity and energy constraints summarized by the constraint vector as:

F (X) =
[
JC(x1)− J̄C, x1(t1, 2)− x2, x2(t2, 3)− x3, . . . , xN−1(tN−1, N )− xM

]T ∈ R6M+5

(6)
where J̄C is the selected Jacobi constant. Then, the optimization problem is stated as:

min
X

f(X) s.t. F (X) = 0 (7)

for a scalar objective function f(X). This objective function is designed to ensure minimization of
the discontinuity between the terminal states along the transfer and the associated tori; conceptually,
this corresponds to the requirement that the beginning of the transfer naturally flows away from the
initial torus and the end of the transfer naturally flows into the final torus. Mathematically, this
objective function is written as:

f(X) = ‖x1 − xT1‖2 + ‖xN − xT2‖2 (8)

where xT1 and xT2 represent the closest states along the associated torus to the initial and final
states x1 and xN along the transfer. Single shooting is leveraged to compute xT1 and xT2 at each
iteration of the optimization scheme from the approximate invariant curves along the initial and final
tori. For example, to evaluate the first term of the cost function, the closest invariant curve [V ](t0)
on the approximated departing torus to x1 at the beginning of the transfer is located. The single
shooting algorithm is then used to obtain the closest point on the torus to x1, i.e. xT1. Specifically,
the invariant curve [V ](t0) is propagated for a time τ ; the resulting approximated invariant curve
at the end of this propagation, i.e. [V ](τ + t0), is rotated by an angle of α. Therefore, this single-
shooting scheme uses a free variable vector Y = [α, τ ] ∈ R2. Then, the single shooting constrains
the first state along this invariant curve to equal x1 via the constraint vector:

G(Y ) = x1 − vec([R(α)][V ](τ + t0))|1 = 0 (9)

The same procedure is repeated to evaluate the second term in the objective function using the ar-
rival torus. This optimization problem is then solved using the MATLAB routine fmincon. While
the JC-family is used to generate the heteroclinic transfer, only solutions that correspond to an
objective below a value of 10−18 are considered to be sufficiently indicative of a heteroclinic con-
nection: this threshold corresponds to an estimate of the position and velocity displacement from
the departing and arrival torus of approximately 0.4 m and 10−3 mm/s. This is deemed reasonable
given the impact of numerical errors in a relative long propagation in the CR3BP. When leveraging
the JCA-families to construct the heteroclinc connection, this threshold is raised to 10−12, corre-
sponding to an approximate displacement of 400 m and 1 mm/s. The increased threshold is due
to the average Jacobi constant constraint in the generation process of the families and the fixed
Jacobi constant throughout the transfer, as expressed in Equation (6). Of course, the original de-
parting and arrival states that correspond to the stable and unstable manifold arcs may potentially
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have a slightly different Jacobi constant; thus, an exact natural connection would be impossible to
numerically generate.

Once the optimization strategy recovers a transfer between the two selected tori, a continuation
scheme is used to generate similar transfers between other members of the two families of quasi-
periodic orbits. This continuation approach follows a grid-like structure: initially, the departing
torus is held fixed, while the arrival torus is gradually adjusted to step along the family. At each
step of this continuation process, the transfer connecting one combination of tori is used to seed the
initial guess for the next combination of tori. This process terminates when there are either no more
members along the arrival torus family or a feasible transfer cannot be computed. Then, a similar
procedure is repeated for each new departure torus. This procedure straightforwardly enables com-
putation of a heteroclinic connection, with a similar geometry to the initial guess, between spatial
quasi-periodic orbits along the two selected families. Note that this paper only seeks the existence
of one transfer between each combination of quasi-periodic orbits and within the neighborhood of
the initial guess. Similar solutions may also be generated by varying the departure and arrival loca-
tions along each torus. Such an analysis may also, potentially, expand the combinations of arrival
and departure tori that admit a heteroclinic connection. Nevertheless, the implemented approach
enables a preliminary analysis of the natural transitions between bounded motions near resonances.
This complete procedure is demonstrated using spatial quasi-periodic orbits near the 3:2 and 1:2
resonances in the Earth-Moon CR3BP.

NATURAL TRANSITIONS BETWEEN TORI NEAR THE 1:2 AND 3:2 RESONANCES

In this section, natural transfers between two families of quasi-periodic orbits near resonances
in the Earth-Moon CR3BP are constructed and analyzed. Specifically, the focus of this example is
transfers from bounded motion near the 3:2 resonance to bounded motion near the 1:2 resonance.
Following the technical approach outlined in the previous section, a point solution is constructed
using Poincaré mapping and dimension reduction, in combination. This point solution is then used
in a continuation scheme to recover similar transfers between other members of the quasi-periodic
orbit families.

Recovering a Point Solution

Families of quasi-periodic orbits near each of the 3:2 and 1:2 resonances are generated in the
Earth-Moon CR3BP. First, the planar resonant orbits depicted in Figure 1(a) are employed to com-
pute the family of associated quasi-periodic orbits. These planar 3:2 and 1:2 resonant orbits exist
at a Jacobi constant of JC = 2.73 with a period of ≈ 55.92 days and ≈ 50.54 days, respectively;
at this energy level, periodic orbits in both families admit planar stable and unstable manifolds and
a spatial center manifold. Families of quasi-periodic orbits are then generated at this same Jacobi
constant. To construct an initial guess for torus computation, a perturbation of ε = 5 × 10−5 in
Equation (4) is used to step along the eigenvector associated with the oscillatory mode. Then, each
torus is computed using N = 25 states along the invariant curve and Q = 3 patch points along the
orbit. Using the torus computation method presented by Olikara and Scheeres, two sets of quasi-
periodic orbits are constructed for each resonance: one corresponding to a JC-family and another
corresponding to a JCA-family. To compare the geometrical differences, 20 members per family
are generated and represented using a color scheme that is consistent with Figure 1(b). Figure 2(a)
displays one of the first members of the 1:2 family at the top; below this torus, the last members
of the JC- and JCA-families are plotted. While the initial members of the JC-family are geo-
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(a) (b)

Figure 2. Example tori along the JC- and JCA-families in the Earth-Moon CR3BP
at JC = 2.73 for (a) 1:2 family of quasi-resonant orbits (blue) and (b) 3:2 family of
quasi-resonant orbits (magenta).

PO

PO

(a)                                         (b)

Figure 3. Sample invariant curves projected onto the configuration space for selected
tori in the Earth-Moon CR3BP at JC = 2.73 for the (a) 1:2 (b) and 3:2 JC-families.

metrically equivalent to the associated JCA members, the difference becomes evident at the family
extrema: the last computed member of the JCA-family, for the specific discretization used, extends
twice as far out of the plane of the primaries as the last member of the JC-family. Similarly, Fig-
ure 2(b) displays similar information for the 3:2 resonant quasi-periodic orbit family. Each figure
indicates the Earth and the Moon as gray circles, together with the Earth-Moon Lagrange points as
red diamonds. Then, Figure 3(a) displays sample invariant curves associated with a few members
of the 1:2 JC-family of quasi-periodic orbits: the figure reports as blue markers the states used
to approximate the invariant curves, as well as the fixed point associated with the nearby periodic
solution. Figure 3(b) supplies similar information for the 3:2 quasi-periodic orbit family.

A point solution for a natural transfer is constructed using the unstable manifold of a quasi-
periodic orbit near the 3:2 resonance and the stable manifold associated with a torus near the 1:2
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resonance. Specifically, this transfer is constructed between the last members of the JC-family,
displayed in Figure 2(a-b). The unstable manifold of the quasi-periodic orbit near the 3:2 resonance
and the stable manifold of the quasi-periodic orbit near the 1:2 resonance are generated using invari-
ant curves at 101 values of θ1, i.e., in the longitudinal direction along the quasi-periodic orbit. The
manifolds associated with each torus are calculated using an initial displacement of 50 km along the
associated unstable/stable eigenvectors of the [DS] matrix used during torus construction. These
manifolds are propagated for up to 14 returns to the y = 0 surface of section, in any direction; recall
that the first 7 map crossings for each trajectory are excluded from this analysis as they tend to re-
main close to the quasi-periodic orbit. These selected intersections of the manifolds with the surface
of section produce a total of 40,239 and 38,934 crossings for the 3:2 and the 1:2 resonances, respec-
tively. Figure 4(a) displays the intersections of the generated subset of the invariant manifolds with
the y = 0 surface of section via a projection onto the [x, ẋ] plane. In this projection, the manifolds
associated with the quasi-periodic orbits resemble the crossings of the stable and unstable mani-
folds associated with the planar periodic orbits in Figure 1(a). However, the increased complexity
of these four-dimensional map crossings becomes apparent in a three-dimensional projection on the
[x, ẋ, z] space, as depicted in Figure 4(b); the manifolds possess a significant out-of-plane compo-
nent. Both the two-dimensional and three-dimensional representations do not completely represent
the higher-dimensional intersections of the invariant manifolds with the surface of section. Thus,
two map crossings that are located nearby in either of these two- or three-dimensional projection
may not be close in the full six-dimensional phase space. Including a fourth dimension or intro-
ducing further constraints in the problem could mitigate this problem. However, including a fourth
dimension would further complicate the visualization and analysis of the Poincaré map, while the
design space would significantly shrink with additional constraints.

UMAP is employed to reduce the complexity of visualizing a large set of four-dimensional data
via a projection onto a two-dimensional Euclidean space. The map crossings associated with both
the stable and unstable manifolds are combined to form the complete dataset that is input to UMAP.
The input parameters for UMAP are selected as nneigh = 200 and mdist = 0.0; using these values,
UMAP produces a projection onto a two-dimensional space as displayed in Figure 5. The projection

(a)                                   (b)

Figure 4. Poincaré map of the hyperbolic invariant manifolds associated with the in-
tersections of the selected tori with the y = 0 plane in the 1:2 (blue) and 3:2 (magenta)
quasi-periodic orbit family at JC = 2.73: (a) projection onto the (x, ẋ) plane and (b)
projection onto the (x, ẋ, z) space.
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Figure 5. Center: projection of the invariant manifold dataset in Figure 4 onto the
two-dimensional Euclidean space calculated by UMAP. Boundaries: zoomed-in per-
spectives of four regions of intersections between the stable and unstable manifolds of
each quasi-periodic orbit.

of the entire dataset is depicted in the center of this figure; the blue markers indicate map crossings
of the stable manifold associated with the quasi-periodic orbit near the 1:2 resonance, while the ma-
genta markers correspond to the unstable manifold associated with the quasi-periodic orbit near the
3:2 resonance. The two axes, labeled U1 and U2, correspond to two variables that define the two-
dimensional space calculated by UMAP to produce a similar fuzzy topological structure to that of
the higher-dimensional data. Recall that, in this computational procedure, the projection calculated
by UMAP preserves the structure of the data, but not the density. As a result, two map crossings that
are close in the full phase space are expected to be located nearby in the two-dimensional projection.
Analysis of this projection at the center of Figure 5 reveals that there are multiple regions of both
blue and magenta points where the stable and unstable manifolds may potentially cross the y = 0
surface of section with similar state vectors. It is these regions that are used to straightforwardly
identify suitable map crossings to generate an initial guess for a nearby continuous transfer between
the two quasi-periodic orbits. Four interesting regions appear in the zoomed-in plots at the bound-
aries of Figure 5 and are used to generate four distinct transfers. Additional regions of overlapping
magenta and blue point clouds that appear in the center of Figure 5 are identified and may enable
the construction of natural transfers of alternative geometries.

Each of the four regions of overlapping map crossings on the two-dimensional projection calcu-
lated by UMAP is used to generate point solutions for a natural transition between quasi-periodic
orbits associated with the 3:2 and 1:2 resonances in the Earth-Moon CR3BP. Within each of the
zoomed-in regions displayed at the boundaries of Figure 5, map crossings that exist nearby on the
projected space are selected from each of the unstable manifold associated with the quasi-periodic
orbit near the 3:2 resonance and the stable manifold associated with the quasi-periodic orbit near
the 1:2 resonance. As described in the previous section, each pair of map crossings is propagated
towards the generating quasi-periodic orbit. Five revolutions around the quasi-periodic orbits are
appended to the beginning and end of the transfer to generate a discontinuous initial guess. The
numerical corrections procedure described earlier is implemented to recover a nearby natural trans-
fer, as displayed in Figure 6. In this figure, each transfer is labeled to correspond to the associated
zoomed-in view in Figure 5, marked by the identifier T1 to T4. Each of the depicted transfer is cal-
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(c) T3 (d) T4

Figure 6. Selected natural transfers between quasi-periodic orbits in the 1:2 and 3:2
resonant orbit families. The transfers are labeled by the region in Figure 6 used to
identify suitable map crossings.

culated with a value of the objective function, used to assess whether the trajectory has flowed into
or away from the quasi-periodic orbits, equal to f(X) ≈ 10−18, and satisfying the dynamics and
adjunct constraints with ‖F (X)‖ ≈ 10−13 in a computational time of approximately 15 seconds
per trajectory. Furthermore, each transfer lies close to the initial guess. The selected transfers each
begin at the magenta circle marker on the quasi-periodic orbit associated with the 3:2 resonance and
terminate at the blue circle marker on the quasi-periodic orbit associated with the 1:2 resonance.
Each trajectory is colored in magenta for the portion of the transfer corresponding to the first quasi-
periodic orbit and the unstable manifold arc; the rest of each trajectory is colored in blue. These
point solutions for natural transitions between the two selected quasi-periodic orbits each exhibit a
slightly different geometry due to the specific manifold arcs used to construct the initial guess. The
intersections of these trajectories with the surface of section at y = 0 are displayed in the traditional
Poincaré map representation in Figure 7. The general set of intersections of the 3:2 unstable mani-
fold (magenta) and the 1:2 stable manifold (blue) in Figure 4 are displayed as transparent, while the
intersections of the T1 to T4 transfers appear in gray. This figures supplies further verification that
constructed transfers lie near the intersections of the two manifolds on the surface of section in the
traditional representation of a Poincaré map.

Family continuation

Continuation is used to generate similar natural transfers across multiple quasi-periodic orbits
within each of the JC-families at JC = 2.73 near the 3:2 and 1:2 resonances. To demonstrate this
approach, consider the natural transfer T1 in Figure 6(a). Continuation is applied to compute trans-
fers with a similar geometry between unique combinations of quasi-periodic orbits; note, continu-
ation is not used to find similar transfers connecting the tori at various longitudinal and transverse
angles. Following application of this continuation procedure, Figure 8 presents a summary of the
computed natural transfers for this particular transfer geometry from quasi-periodic orbits near the
3:2 resonance to quasi-periodic orbits near the 1:2 resonance. In the top-right plot of this figure, the
horizontal and vertical axes depict the maximum out-of-plane component of the position vector at
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T4

Figure 7. Crossings of the transfers (gray) in Figure 6 overlaid on the Poincaré map
of the hyperbolic invariant manifolds from the selected quasi-periodic orbits in the
1:2 (blue) and 3:2 (magenta) resonant orbit families at JC = 2.73, using a surface of
section at y = 0.

A1

A2

A3 A4

Figure 8. Summary of the T1 natural transfers continued from Figure 6(a). Each
black marker indicates a transfer from a departing 3:2 quasi-periodic orbit and an
arrival 1:2 quasi-periodic orbit in the JC-families, each identified by the maximum z-
coordinate at apoapsis. Sample transfers are indicated in the boundaries of the figure.

apogee along the departure and arrival tori, respectively. Each point in this two-dimensional space
indicates that a feasible natural transfer is computed to satisfy the optimization problem summarized
in Equation (7) with f(X) < 10−18 and ‖F (X)‖ < 10−12. Four sample transfers, labelled as A1
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to A4, are also displayed. Each figure displays the Earth and the Moon as gray circles, together with
the Earth-Moon Lagrange points as red diamonds. Each figure demonstrates that the overall transfer
geometry is consistent throughout the family. However, as observed in the gray lateral xz- and yz-
projections, each transfer connects quasi-periodic orbits with different out-of-plane displacements.
For example, transfer A1 connects the last members of the 3:2 and 1:2 quasi-periodic orbit JC-
families, which admit the largest out-of-plane displacement. For this reason, this transfer exhibits
the largest out-of-plane motion. Conversely, transfer A3 connects the second members of these
two families, representing an almost planar transfer. Transfer A2 starts from an almost planar 3:2
quasi-periodic orbit and approaches the last member of the arrival 1:2 quasi-periodic orbit family.
Transfer A4 exhibits an initially relatively large out-of-plane displacement, culminating with almost
planar motion. Analysis of Figure 8 reveals useful insights into the existence of natural transitions
between quasi-periodic orbits within each family. Specifically, given a fixed initial quasi-periodic
orbit near the 3:2 resonance, a transition only exists to selected quasi-periodic orbits near the 1:2
resonance and vice versa. The existence of these transitions, for this particular transfer geometry,
appears to be linked to the relative difference in the maximum out-of-plane component along each
quasi-periodic orbit. For initial quasi-periodic orbits near the 3:2 resonance with a small out-of-
plane deviation, only tori near the 1:2 resonance with a small out-of-plane component are naturally
accessible in the CR3BP. As the tori evolve along each family, natural transitions occur at a larger
range of differences in the maximum out-of-plane components.

Computing the quasi-periodic orbits near each resonance using only an average Jacobi constant
constraint, for a fixed discretization, enables an expanded exploration of the solution space asso-
ciated with the natural transfer in Figure 6(a). Specifically, JCA-families of quasi-periodic orbits
are computed for each of the 1:2 and 3:2 resonances. Each of the computed tori is constrained to
possess an average Jacobi constant JC = 2.73 across the invariant curve with N = 25 and Q = 5.
Constraining the average Jacobi constant across the states sampled along the invariant curve, rather
than constraining JC at all states, produces a wider range of members across the family for the same
discretization. In fact, at the selected discretization, the last computed members of each JCA-family
possess a larger maximum out-of-plane extension at apogee than members of the JC-families, as
shown in Figure 2. Using the computed ranges of tori, the point solution from Figure 6(a) is used to
compute similar natural transitions between members of the JCA-families of quasi-periodic orbits
near each of the 1:2 and 3:2 resonances. These natural transfers satisfy the presented optimization
problem with f(X) < 10−12 and ‖F (X)‖ < 10−12; during continuation, the Jacobi constant
along the transfer is constrained to match only the average value along the tori. A summary of
the existence of these natural transfers between quasi-periodic orbits in the JCA-families near each
of the 1:2 and 3:2 resonances is displayed in Figure 9 with a configuration that is consistent with
Figure 8. This set of transfers that resemble the point solution in Figure 6(a) are calculated for a
wider array of combinations of tori near each of the 3:2 and 1:2 resonances. Yet, the observation
noted in the previous example still applies: the existence of these natural transitions, for this partic-
ular transfer geometry, appears to be linked to the relative difference in the maximum out-of-plane
component along each quasi-periodic orbit. In addition, the presence of a close pass to the smaller
primary likely contributes to the wide array of quasi-periodic orbits that admit a natural transition,
even between tori with significant differences in the maximum out-of-plane component at apogee.
Figure 9 displays four examples of the computed transfers at a combination of departure and arrival
tori that are located by the red circles in the top-right plot. The left side of the figure reports transfers
B1 and B2, associated with the last row of the top-right plot. These natural transitions connect the
fifth and last member, respectively, of the departing 3:2 quasi-periodic orbit family to the last mem-
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Figure 9. Summary of the T1 natural transfers continued from Figure 6(a). Each
black marker indicates a transfer from a departing 3:2 quasi-periodic orbit and an
arrival 1:2 quasi-periodic orbit in the JCA-families, each identified by the maximum
z-coordinate at apoapsis. Sample transfers are indicated in the boundaries.

ber of the arrival 1:2 quasi-periodic orbit family. Both transfers exhibit a large arrival out-of-plane
motion: however, B1 admits a larger departing out-of-plane displacement when compared to B2.
Transfers B3 and B4 are displayed on the bottom of Figure 9: B3 connects the second members of
the quasi-periodic orbit families, exhibiting a small out-of-plane motion. Transfer B4 connects a
large out-of-plane departing torus to an almost planar arrival 1:2 quasi-periodic orbit, as highlighted
by the xz- and yz-projections. Since a low-amplitude arrival quasi-periodic orbit is targeted, the
arc connecting the departing and arrival quasi-periodic orbit for transfers B3 and B4, which extends
far from the Earth, tends to lie close to the xy-plane, unlike transfers B1 and B2 where the con-
necting arc admits a large out-of-plane displacement. Nevertheless, each transfer exhibits a similar
geometry of the planar projection, consistent with the point design displayed in Figure 6(a).

Analysis of the existence of natural transfers with a similar geometry to the T2 transfer in Fig-
ure 6(b) is performed for the JC-families of quasi-periodic orbits at JC = 2.73 near the 3:2 and
1:2 resonances. This point solution naturally connects the last computed members of the JC-family
near the 3:2 and 1:2 resonances. However, this transfer exhibits a distinct geometry from the pre-
vious example: the test particle spends more time in proximity of the L4 and L5 points before
approaching the 1:2 quasi-periodic orbit. Continuation is used to compute similar natural transfers
between members of each family, with the results summarized in Figure 10 using a configuration
consistent with Figure 8. Each colored point represents a viable natural transfer with f(X) < 10−18

and ‖F (X)‖ < 10−12, with a similar geometry to Figure 6(b). Two natural transfers are highlighted
in the figure: the bottom-right transfer naturally connects two tori with a relative low out-of-plane
component, while the top transfer connects two tori with a significant out-of-plane extension. Anal-
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ysis of Figure 10 reveals that these transfers exist across a smaller range of the two families than in
the previous example. Such an observation is likely due to the absence of a close pass to the smaller
primary in this particular type of transfer. In fact, the existence of natural transitions between spatial
quasi-periodic orbits near two distinct resonances appears to be influenced by the transfer geometry.

Figure 10. Summary of the T2 natural transfers continued from Figure 6(a). Each
black marker indicates a transfer from a departing 3:2 quasi-periodic orbit and an
arrival 1:2 quasi-periodic orbit in the JC-families, each identified by the maximum z-
coordinate at apoapsis. Sample transfers are indicated in the boundaries of the figure.

CONCLUDING REMARKS

Natural transitions between quasi-periodic orbits that exist near resonances in the Earth-Moon
CR3BP are computed and analyzed. First, families of quasi-periodic orbits are computed at a fixed
value of the Jacobi constant near two resonances: the 3:2 and 1:2 resonances. Then, the associated
hyperbolic invariant manifolds are generated for two members of each family: the unstable mani-
fold associated with a quasi-periodic orbit near the 3:2 resonance and the stable manifold associated
with a quasi-periodic orbit near the 1:2 resonance. Each trajectory along a manifold is reduced to a
discrete sequence of points and examined via a Poincaré map. This multi-dimensional dataset, com-
prised of the intersections of these manifolds with a surface of section, is challenging to visualize
on a traditional two- or three-dimensional projection composed of the phase space variables. Thus,
Uniform Manifold Approximation and Projection, a form of manifold learning used for dimension
reduction, is leveraged. Specifically, each four-dimensional manifold crossing is projected onto a
two-dimensional Euclidean manifold. This projection enables straightforward visualization of the
data and a rapid analysis to construct an initial guess for a natural transfer formed using trajectories
on the unstable and stable manifolds. In the projected space, nearby crossings from each manifold
structure in distinct regions are used to construct initial guesses for transfers with distinct proper-
ties. A numerical correction procedure is then used to recover nearby continuous solutions. Two
of these point solutions are used in a continuation scheme to calculate natural transitions with a
similar geometry between other members of the computed families of quasi-periodic orbits. Study-
ing the existence and properties of these natural transitions between quasi-periodic orbits that exist
near resonances enables an expanded analysis of the general phenomenon of resonance transition
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in multi-body gravitational environments; such insight is valuable in both trajectory design and
celestial mechanics. In fact, analysis of the expanded solution space associated with resonance tran-
sitions in the CR3BP may supply insight into the dynamical mechanisms governing the long-term
behaviour of spacecraft trajectories, comets and Kuiper belt objects in higher fidelity models.
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