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A DATA MINING APPROACH TO USING POINCARÉ MAPS IN
MULTI-BODY TRAJECTORY DESIGN STRATEGIES

Natasha Bosanac∗

Poincaré maps representing two-dimensional data sets are a powerful tool
for rapid trajectory design in multi-body systems. However, projections of
higher-dimensional data sets onto a map are challenging to analyze. To re-
duce their complexity, a density-based clustering algorithm is employed to
cluster map crossings by the geometry of their associated trajectories. By
grouping the data into clusters and identifying representative trajectories
in each cluster, a reduced data set is constructed. This smaller data set re-
duces the complexity of analysis. This data mining approach to leveraging
Poincaré maps in the trajectory design process is explored in the circular
restricted three-body problem.

INTRODUCTION

Rapid and informed trajectory design strategies for applications within multi-body sys-
tems often benefit from the use of Poincaré maps. Specifically, Poincaré mapping enables
visualization of a large set of trajectories, generated in a given dynamical system, via their
intersections with a hyperplane.1 This technique simplifies representation of the fundamen-
tal motions in chaotic systems such as the Earth-Moon and Sun-Earth systems. Patterns or
features on Poincaré maps reveal dynamical structures that may serve as mission orbits or
the regions of existence of desired trajectory segments.2 This insight is employed when
selecting individual arcs directly from these maps to construct an initial guess for an end-
to-end trajectory in a higher-fidelity dynamical model.3,4,5

The ease of using Poincaré maps in the trajectory design process depends on the dimen-
sion and complexity of the data set. When the maps uniquely represent planar trajectories at
a single energy level in an autonomous system on a two-dimensional map, they are straight-
forward to analyze and interpret.4,6,7,8 Quantities such as chaos indicators may be added to
a map and represented in the color of each crossing to provide some insight into the relative
behavior of two nearby solutions.9 However, they do not typically reflect any differences in
the geometry of solutions across the map. In addition, Poincaré maps constructed for planar
trajectories at a variety of energy levels, in a nonautonomous system, or for spatial motion
in autonomous systems, are higher-dimensional.10,11,12 The higher dimensionality of the
data creates numerous challenges for analysis via a two-dimensional or three-dimensional
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projection – even for an expert astrodynamicist. These challenges impede the human-in-
the-loop data analysis tasks required for trajectory design. The focus of this work is to use
data mining to both simplify and enhance the use of Poincaré maps in rapid and informed
trajectory design strategies within chaotic, multi-body systems.

This work builds upon previous contributions to applying data mining, specifically clus-
tering, to the Circular Restricted Three-Body Problem (CR3BP) and other chaotic dynam-
ical models. For instance, Nakhjiri and Villac used k-means clustering to separate stable
motion from chaos on a Fast Lyapunov Indicator (FLI) map in the planar CR3BP, with a
focus on the specific region near distant retrograde orbits.13 This approach is also leveraged
by Nakhjiri and Villac to govern automated map generation in this specific region. Had-
jighasem, Karrasch, Teramoto and Haller apply spectral clustering to Lagrangian vortex
detection in several generalized flow problems.14 They demonstrate that such an approach
can effectively cluster trajectories based on their geometry, with similarity between two
trajectories defined using a weighted sum of the distances between two particles sampled
at regular times along the solutions. Another example of the use of clustering in trajectory
design within multi-body dynamical systems includes the work of Villac, Anderson and
Pini.15 These authors leveraged k-means clustering to organizing periodic orbits, computed
in the vicinity of an irregular body, into sets that are analogous to families. Building upon
these previous works, this investigation applies a different method for clustering, specif-
ically Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-
SCAN) to a more general Poincaré map in the CR3BP that encompasses a wider region in
the phase space.16 This density-based clustering algorithm is well-suited to the data asso-
ciated with a general Poincaré map due to its ability to accommodate: a number of clusters
that is not known a priori; clusters of various shapes; clusters of various density; and an
unknown or constant value of the maximum separation between data points within a single
cluster in a higher-dimensional space.17

A strategy is developed to efficiently and effectively visualize a higher-dimensional
Poincaré map representing trajectories within the autonomous CR3BP via density-based
clustering. First, the trajectories associated with each map crossing on a Poincaré map
are summarized via their apses over several revolutions to balance the fidelity-level of the
geometrical representation with the dimensionality of the description.18 HDBSCAN is
then used to group map crossings that correspond to trajectories with a similar geometry.16

Each cluster is summarized by a single representative trajectory or map crossing to pro-
duce a representative reduced data set. Crossings on the map associated with an arc of
interest may then be identified from the representative reduced data set via a global view
and then used to isolate the corresponding individual cluster of trajectories for further ex-
amination. This approach enables a trajectory designer to rapidly assess the design space
and simultaneously gain insight into the sensitivity of a given arc and, therefore, the ro-
bustness of a solution. This reduction in the complexity of using Poincaré maps has the
potential to: enhance trajectory design for upcoming missions or extensions; support rapid
concept development for large spacecraft and SmallSats; support the incorporation of low-
thrust-enabled arcs or nonpropulsive adjustments into the trajectory design process; and aid
with the enhancement of trajectory design tools for multi-body dynamical systems.
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DYNAMICAL MODEL

To construct a Poincaré map that captures a sufficiently complex set of trajectories with a
wide variety of geometries, the dynamics in the CR3BP are leveraged. This CR3BP reflects
the motion of an assumed massless particle, P3, under the point mass gravitational inter-
actions of two massive primaries, P1 and P2.19 Each of these two primaries, with a mass
Mi, where i = 1, 2, is assumed to follow circular orbits around their mutual barycenter. In
addition, a nondimensionalization scheme is introduced to enable comparison between sys-
tems with similar relative masses and to reduce the potential for ill-conditioning. Typically,
length quantities are normalized by the constant distance between the two primaries, while
mass parameters are nondimensionalized by the total mass of the system. Then, µ is de-
fined as the ratio of the mass of the smaller primary, P2, to the total mass of system. Finally,
time quantities are normalized such that the mean motion of the primary system is equal
to unity. Following nondimensionalization, a rotating frame, x̂ŷẑ, is introduced to reduce
the complexity of visualization and to enable construction of an autonomous dynamical
system. This rotating frame is defined with the x̂-axis directed from P1 to P2, ẑ parallel to
the orbital angular momentum vector of the primaries, and ŷ completing the right-handed
triad. With these definitions, the state of P3 is written in nondimensional coordinates rel-
ative to the system barycenter and in the rotating frame as x̄ = [x, y, z, ẋ, ẏ, ż]. Then, the
nondimensional equations of motion in the CR3BP, expressed in the rotating frame, are
written as:

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
(1)

where U = 1
2
(x2+y2)+ 1−µ

d
+ µ

r
is a pseudo-potential function, while the distances between

P3 and the primaries are d =
√

(x+ µ)2 + y2 + z2 and r =
√

(x− 1 + µ)2 + y2 + z2.
This dynamical model is nonlinear, chaotic and autonomous. However, it admits a constant
of motion, commonly labeled the Jacobi constant and equal to CJ = 2U − ẋ2 − ẏ2 − ż2.
At a single value of the Jacobi constant, a set of trajectories may exhibit a large variety of
characteristics. These solutions tend to correspond to one of the following types of mo-
tion: equilibrium points, periodic orbits, quasi-periodic orbits, stable/unstable manifolds
or chaos. While the first four types of solutions may be generated directly via dynamical
systems techniques, it is often challenging to sufficiently capture the infinite variety of tra-
jectories that exist in families – or even those that exist solely at a single value of the Jacobi
constant. Furthermore, traditional techniques do not currently support comparison of the
geometry of two solutions over finite time intervals. Accordingly, trajectory summarization
techniques may be employed along with a useful visualization strategy to reflect the wide
variety of geometries of solutions at a fixed value of the Jacobi constant.

POINCARÉ MAPPING

Poincaré mapping techniques offer a discrete-time representation of a continuous-time
flow, reducing the complexity and dimensionality of visualizing motion within a chaotic
dynamical system. To construct these maps, a hyperplane must first be defined transverse
to the solutions of interest, requiring some a priori knowledge of the dynamics.20 There
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are numerous possibilities for defining a useful hyperplane, Σ, in the CR3BP including:
a physically interpretable plane expressed in configuration space variables; a stroboscopic
map that captures the flow at constant time intervals; or a known event that occurs along a
trajectory, such as the locally minimum distance from a reference location (i.e., periapsis).
Given an appropriately selected hyperplane, initial conditions are seeded within a desired
region of the phase space. Each initial condition, x̄0, is propagated forward or backward in
time until its first intersection with the hyperplane in a desired direction. This intersection
is labeled P 1(x̄0), as illustrated in Figure 1. This process is repeated for a desired number
of successive intersections with the hyperplane in a specified direction, with each crossing
captured and represented on a lower-dimensional map. Patterns formed in the resulting
one-sided map – or lack thereof – enable the detection of various types of fundamental
motions, distinguishing order from chaos.

x̄0

P 1(x̄0)

Σ

Figure 1. Poincaré mapping, capturing the intersections of a trajectory with a hyperplane, Σ.

To demonstrate the map construction process, consider planar motion near the Earth
vicinity in the Sun-Earth CR3BP, described by a mass ratio of µ = 3.00348 × 10−6. At
a single value of the Jacobi constant, trajectories may potentially exhibit a large variety of
geometries with behaviors including: captured motion near the Earth vicinity, impacting
the Earth, or passing through either the L1 or L2 gateways to visit other regions of the Sun-
Earth system.4 Such a diverse solution space in a chaotic flow regime may be visualized
via Poincaré maps. First, a hyperplane is defined such that:

(x− 1 + µ)ẋ+ yẏ + zż = 0 (2)

and
(x− 1 + µ)ẍ+ yÿ + zz̈ + ẋ2 + ẏ2 + ż2 > 0 (3)

capturing the perigees occurring along each trajectory.21 At a single value of the Jacobi
constant, feasible initial conditions are seeded directly from this hyperplane, possessing
the form x̄C = [x, y, 0, ẋ, ẏ, 0] for Nx values of the x-coordinate between the L1 and L2

gateways and Ny values of the y-coordinate in the range y = [ymin, ymax]. At the perigee
locatio along a trajectory, the velocity and position vectors, relative to the Earth, are perpen-
dicular; thus, a unit vector aligned with the in-plane velocity vector is identified directly
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from this orthogonality condition.21 A consistent direction of motion is selected: either
(1) prograde, with P3 instantaneously possessing an angular momentum vector relative to
the Earth that is aligned with the orbital angular momentum of the primaries; or (2) retro-
grade, with P3 traveling in a clockwise direction around the Earth at that instant of time.
This direction of motion is used to select the correct direction of the unit vector. Then,
the Jacobi constant relationship is rearranged to provide the following expression for the
velocity magnitude, v, as a function of the position and CJ,d, the desired Jacobi constant:
v =

√
2U − CJ,d. If this speed corresponds to a real number at a given position relative to

the Earth, the value of v is used to scale the velocity unit vector and directly recover the ve-
locity components, ẋ and ẏ. This process is implemented for each initial condition, seeded
along the map, and only apses that satisfy the periapsis conditions in Eq. (2) and (3) are
retained as initial conditions. Each of the remaining initial conditions is then propagated
forward in time until either: completing Nret positive intersections of the map; passing
within a distance of 10−6 nondimensional units to the Earth; or upon departure from the
vicinity of the Earth as defined by the x-coordinate passing through the values associated
with L1 or L2. The collection of crossings of the hyperplane that satisfy these conditions
are then displayed on a two-dimensional plot reflecting the x- and y-coordinates in the ro-
tating frame to visualize the behavior of solutions in the Earth vicinity. Since each perigee
occurs along a planar trajectory at a single value of the Jacobi constant, the values of x and
y uniquely specify the full state vector.

Following the outlined procedure for implementation, a periapsis map is constructed for
planar motion in the Sun-Earth system at a Jacobi constant of CJ = 3.00088. At this value
of the Jacobi constant, both the L1 and L2 gateways are open. Thus, the solution space is
comprised of trajectories that exhibit a wide variety of geometries, offering a complex data
set for testing the proposed clustering approach. For this map, the initial conditions are
seeded on the hyperplane via 200 x-coordinates between L1 and L2 and 200 y-coordinates
in the range y = [−0.1, 0.1]. Only a subset of these initial conditions will produce viable
state vectors that satisfy the periapsis condition and correspond to a real-valued velocity
magnitude. Nevertheless, the feasible initial conditions are propagated forward in time in
the CR3BP, with up to 20 returns to the map recorded. The resulting map is depicted in
Figure 2 with each map crossing displayed via a black point and the x- and y-coordinates
of the state at each hyperplane crossing are represented on the horizontal and vertical axes
of the figure, respectively. Each of the two equilibrium points is located by red diamonds
while the Earth is identified, not to scale, at the center of the figure via a dark green circle. In
addition, the gray shaded regions represent ‘forbidden regions’ where, for a Jacobi constant
of CJ = 3.00088, the speed of the spacecraft does not possess a real value and, therefore,
the spacecraft cannot travel within the phase space. Since this map captures periapses along
planar solutions, each crossing of the map uniquely defines the entire state at perigee. Yet,
this map still captures a complex solution space.

The patterns that form on the sample Poincaré map, as well as the stable and unstable
manifolds associated with L1 and L2 Lyapunov orbits, provide only preliminary insights
into the behavior of trajectories in the Earth vicinity at this value of the Jacobi constant.
First, the periapsis map in Figure 2 admits regions where the data aggregate with various
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Figure 2. Periapsis map constructed in the Sun-Earth system at a Jacobi constant of CJ = 3.00088.

densities. Dark regions correspond to an aggregation of map crossings during subsequent
returns to the map. Regions with a low density of data points, however, indicate that the
map crossings do not return to the same region after subsequent revolutions. The bound-
aries of the low-density regions on the map in Figure 2 tend to correspond to the unstable
manifolds associated with the L1 and L2 Lyapunov orbits at the same Jacobi constant of
CJ = 3.00088.21 Accordingly, to possess periapses within this region at this energy level,
trajectories must pass through the L1 or L2 gateways; thus, low-density regions correspond
to solutions that have completed fewer revolutions around the Earth after passage through
either gateway.

Overlaying the stable manifolds of the L1 and L2 Lyapunov orbits at the associated value
of the Jacobi constant provides further information that is not currently possible to extract
from the original Poincaré map in Figure 2.5,21 To explore this additional insight, Figure 3
displays in blue the periapsis locations of the stable manifolds associated with each of the
L1 and L2 Lyapunov orbits at a Jacobi constant of CJ = 3.00088, overlaid on the original
map. Regions on the map corresponding to the first three crossings of the stable mani-
folds are also labeled with the number of the crossing indicated. When a periapsis occurs
within the region defined by the i-th crossing of one of these stable manifold structures, the
trajectory will pass through the corresponding gateway within approximately i revolutions
around the Earth. Note that the region bounded by the first crossing of the stable manifolds
of the L1 and L2 Lyapunov orbits is white; that is, no trajectories with a periapsis in that
region produce a subsequent crossing of the map within the Earth vicinity, as expected.
However, such insight cannot be gained from the original Poincaré map to locate regions
inside subsequent crossings of the stable manifold due to the absence of any associated
patterns in the data. Furthermore, neither the stable and unstable manifolds nor the original
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L1 Lyapunov stable: 2
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L1 Lyapunov stable: 1

L2 Lyapunov stable: 2
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Figure 3. Periapsis map (black) constructed in the Sun-Earth system at a Jacobi
constant of CJ = 3.00088 with stable manifolds (blue) associated with L1 and L2
Lyapunov orbits overlaid.

Poincaré map provide sufficient insight into the variation of the geometry of trajectories
associated with crossings of the map. Such a limitation becomes increasingly significant
when the map captures spatial motion, a higher-dimensional solution space or trajectories
in a nonautonomous system – and serves as the motivation for this analysis.

DATA ANALYSIS VIA CLUSTERING

Clustering algorithms are a valuable tool for implementing an unsupervised grouping
of data with similar properties. While there are a large variety of clustering algorithms
available in the literature, the selected algorithm must be able to accommodate the proper-
ties of the data generated via Poincaré mapping: a number of clusters that is not known a
priori; clusters of various shapes; clusters of various density; and an unknown or constant
value of the maximum separation between data points within a single cluster in a higher-
dimensional space. Given these properties of the data generated via Poincaré mapping,
this preliminary investigation leverages an algorithm known as HDBSCAN, developed by
Campello, Moulavi and Sander.16 This algorithm leverages a density-based approach to
construct clusters each corresponding to data points that are densely located within the
same neighborhood of a higher-dimensional space. These clusters are assigned hierarchi-
cally to capture the most significant clusters that possess a number of data points above
a user-defined minimum threshold. This section offers a brief conceptual overview of the
HDBSCAN algorithm outlined by Campello, Moulavi and Sander; for further details and
proofs, see their original published article.16

Prior to implementing the clustering process, HDBSCAN leverages a quantity labeled
the mutual reachability distance to compare data points within a set and locate regions
of higher density. To explore the definition of this quantity, first consider a data set, [S],
consisting of N vectors such that [S] = [s̄1, ..., s̄N ]. Each component, s̄i, of this data set
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is an M -dimensional vector that reflects the properties of the associated data. The core
distance of the i-th data point is then defined as the distance between that data point and
its Nmin,core-th nearest neighbor. The quantity Nmin,core is a user-selected parameter that
defines the number of points required for a data point to be considered a core point, i.e.,
there is a sufficient number of points in its vicinity. Furthermore, the distance may be
calculated via one of many possible distance metrics, e.g., a Euclidean distance, infinity-
norm, l1-norm, etc. Using this quantity as a foundation, a mutual reachability distance
between the i-th data point and the j-th data point is defined as the maximum of three
distances: (1) the core distance of the i-th data point; (2) the core distance of the j-th data
point; and (3) the distance between the i-th and j-th data points. The mutual reachability
distance for each of the N data points to the remaining data in the set is then used to
construct a distance matrix, [D]. Using this matrix, a mutual reachability graph may be
constructed with each of the N data points serving as vertices and the edges weighted
by the computed mutual reachability distance. This graph reflects the similarity between
neighboring data points and supports cluster identification.

Using the mutual reachability distance as a foundation, HDBSCAN produces a tree of
all possible clusters that is hierarchically simplified to remove noise and retain only the
significant clusters with a number of data points above a threshold value. The outlined
procedure here summarizes the primary steps in Algorithm 1 in Campello, Moulavi and
Sander.16 First, a minimum spanning tree is constructed for the mutual reachability graph,
retaining only a subset of the edges that produces the minimum total weight; use of a
minimum spanning tree reduces the complexity of identifying clusters. This minimum
spanning tree is then condensed to a summarized tree via the definition of a minimum
cluster size, Nmin,cluster, a user-selected parameter that significantly influences the number
and membership of recovered clusters. Using this quantity, the tree is traversed to locate
splits that correspond to new groupings of data being formed with a number of data points
that is above the threshold Nmin,cluster. Using this condensed tree, HDBSCAN identifies
stable clusters as groups of data that persist over a large range of minimum threshold values
in the mutual reachability distance. Points that are not assigned to a cluster are noise points.

Following the general procedure for HDBSCAN, several input and output parameters
emerge. Input parameters that are provided by the user are the data set, [S], the distance
metric to be used as well as the quantities Nmin,core and Nmin,cluster. The data set possesses
a dimension of N ×M , and the M -dimensional data vectors must be constructed to suffi-
ciently capture the properties of the data, while balancing the computational complexity and
data storage requirements. In addition, Campello, Moulavi and Sander suggest selecting
Nmin,core = Nmin,cluster to reduce the number of parameters governing the performance
of HDBSCAN.16 However, these quantities are often selected iteratively based on user-
intuition on a test data set, the number of identified clusters and the number of noise points.
The outputs of this clustering procedure are the number of clusters, Nclusters, and the la-
bels, li, identifying the cluster that the i-th data point is assigned to: 0 ≤ li ≤ Ncluster if the
data point belongs to a cluster or li = −1 if it is a noise point. As discussed by Campello,
Moulavi and Sander, the computational complexity of this algorithm is O(MN2) in time
and O(MN) in memory storage when the algorithm is provided an M × N dimensional
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data set.17 Depending on the user-defined properties and methods used at each step of the
clustering algorithm, the computational complexity may be reduced even further. In this in-
vestigation, a fast and efficient implementation of HDBSCAN is accessed using the freely
available hdbscan Clustering Library in Python.22

APPLICATION OF CLUSTERING TO A POINCARÉ MAP

In this section, the HDBSCAN algorithm is leveraged to organizer the crossings on a
Poincaré map, constructed in the planar CR3BP, into clusters based on the geometry of the
associated trajectories. First, the trajectory summarization process employed in this inves-
tigation is outlined. Then, the process for generating map data is discussed, followed by the
selection of input variables for clustering. While there may be several options for generat-
ing and summarizing the data, as well as selection of the clustering algorithm properties,
this preliminary analysis is focused on a proof of concept in the CR3BP. Subsequent papers
will detail comparisons of the clustering process for various options and with application
to various dynamical models. Nevertheless, the approach presented here is applied to a
Poincaré map constructed in the Sun-Earth planar CR3BP at the same Jacobi constant as in
Figure 2, i.e., CJ = 3.00088.

Trajectory Summarization

The objective of trajectory summarization is to pre-process the data set by constructing
a compressed description, T̄i, of the trajectory associated with the i-th map crossing. Each
crossing on a discrete-time map is associated with a nonlinear trajectory that is described
by a vector of reasonable dimensionality, while still capturing the solution geometry: this
problem is commonly encountered in moving object database applications. In the absence
of a closed form solution to a chaotic dynamical system, a trajectory could be represented
with a high fidelity via discretization into a large time sequence of state vectors. However,
such an approach would require prohibitively large data storage resources. Thus, reducing
the dimensionality of each data point reduces the storage requirements for the entire data
set, while pre-processing reduces the computation time during clustering.

In pursuit of a low-dimensional, yet representative, description of each data point, a
curve-based representation is constructed via a subset of apses sampled along the trajec-
tory for a finite number of subsequent crossings of the map. As a preliminary approxima-
tion of the entire nonlinear trajectory, reduction to a sequence of apses or turning points
offers a low-dimensional summarization that captures the general shape of the solution.
Furthermore, the integration time along the associated trajectory is limited to either three
subsequent returns to the hyperplane (i.e., perigee), passage through the L1 or L2 gateways,
or impact with the Earth – whichever event occurs first. Given the geometry of the solu-
tions in the sample dynamical model, subsampling a continuous trajectory for a finite time
interval at its apses will produce only a small number of states in a small computational
time; for three returns to the periapsis map, up to 7 apses occur. Of course, increasing
the maximum integration time will reveal further differences between trajectories and in-
crease the number of different geometries exhibited by the solutions associated with the
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map crossings. However, for this preliminary investigation, three returns to the map suffi-
ciently differentiates the geometry of the solutions. The compressed description vector, T̄i,
for the i-th trajectory is then formed using the map crossing and associated apses. The j-th
apse is described by a vector R̄i,j that captures the time, state and direction information and
is written as:

R̄i,j =
[
τi,j, xi,j, yi,j, ẋi,j, ẏi,j, sign(ĥi,j · ẑ)/7

]
(4)

where τi,j is the time at each apse after the initial condition for the i-th trajectory, normal-
ized by the total integration time along the solution; xi,j , yi,j , ẋi,j , ẏi,j are the state vector
components at periapsis or apoapsis; and sign(ĥi,j · ẑ)/7 indicates the direction of motion
at that apse, captured by the sign of the component of the orbital angular momentum unit
vector in the ẑ-direction and normalized by the maximum number of apses, i.e., 7. While
the final component of R̄i,j is not independent to other parameters, it does help to further
separate the data during clustering. If the solution passes through either of the L1 or L2

gateways or impacts the Earth after the k-th apse, R̄i,j is assigned an arbitrary value, e.g.,
R̄i,j = [10, 0, 0, 0, 0, 0], for j > k. Then, the complete compressed description vector for
the i-th trajectory is formed as:

T̄i =
[
R̄i,1, ..., R̄i,7

]
(5)

The data descriptions, T̄i, recovered by this trajectory compression strategy for all map
crossings are combined to form the rows of the data set, [D]. This information is input to the
clustering algorithm and ensures a reasonable dimensionality for the data point representing
each map crossing.

Map Data Generation

The data set, [D], is constructed to consist of the map crossings associated with the
prograde periapses that produce at least one crossing of the hyperplane along with a sum-
mary of the associated trajectory integrated for threesubsequent returns via its apses. Since
data is only generated for crossings that produce at least one crossing of the hyperplane,
up to 400 values of the x-coordinate between L1 and L2 as well as up to 400 values of
the y-coordinate between -0.01 and 0.01 are used. From all possible combinations of x
and y that produce feasible perigees at a Jacobi constant of CJ = 3.00088, 31, 500 initial
perigees are constructed. Then, the map and associated trajectories are generated in MAT-
LAB to produce a data set of dimension 31, 500 × 42 that is written to a text file. This
text file is then read into a Python script that implements the clustering process via the
hdbscan library.22 Following iterative adjustment of the parameters governing the cluster-
ing algorithm, Nmin,core and Nmin,cluster are set to 5 and 200, respectively. These values
are observed to provide a reasonable number of clusters while also limiting the number
of noise points. In addition, the HDBSCAN algorithm is customized in this preliminary
investigation to use the Euclidean distance metric to compare the vectors describing each
data point in [D]. Together, these parameter selections are leveraged by HDBSCAN to dis-
cover groupings in the data and identify similarity in the solutions associated with nearby
crossings on the map.
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Results and Analysis

The outlined approach is employed to cluster prograde periapses in the Earth vicinity for
the Sun-Earth planar CR3BP at a Jacobi constant of CJ = 3.00088, based on the geometry
of their associated trajectories. As a result, the algorithm, with the selected parameteri-
zation and trajectory summarization strategy, uncovers 34 clusters with only 1857 of the
31,500 data points labeled as noise in 6.33 seconds on a computer with a 1.2 GHz Intel
Core m5 processor. The result of this clustering procedure is displayed in Figure 4 with
map crossings uniquely colored by their cluster: clusters with an even-numbered label are
colored by shades of red, while those with an odd-numbered label are colored in shades of
blue. Noise points are colored white. Note that this view is zoomed-in to the main region of
crossings for clarity and does not capture the crossings near the L1 and L2 gateways. Anal-
ysis of this figure, and comparison to Figure 3 reveals that, at a minimum, the clustering
process can separate the regions inside subsequent crossings of the stable manifolds of the
L1 and L2 Lyapunov orbits – without knowledge of these manifold structures. Furthermore,
additional differentiation between trajectories and their geometry appears: some separation
reflects the intersection between the regions defined by the map crossings associated with
the stable and unstable manifolds, and other subdivisions occur within these regions.

For further insight into the ability of this clustering approach to differentiate trajectories
of various geometries on the periapsis map, an analysis of the solutions in each cluster
is useful. To aid visualization and interpretation, Figure 5 displays a translucent version
of the map, colored by clusters, with each cluster labeled using integers from 0 to 33.
One representative solution from each cluster is then plotted in Figure 6 with the number
indicating the associated cluster label. All solutions in this grid generally revolve around

Figure 4. Zoomed-in view of the periapsis map constructed in the Sun-Earth system
at a Jacobi constant of CJ = 3.00088 with 31,500 data points organized into 34 clus-
ters with 1857 noise points indicated via white. Even-numbered clusters are colored
using shades of red while odd-numbered clusters are indicated by shades of blue.
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Figure 5. Zoomed-in view of the periapsis map constructed in the Sun-Earth system
at a Jacobi constant of CJ = 3.00088 with 34 clusters numbered.
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Figure 6. Key for cluster numbers, with sample trajectories from each cluster plotted
in the rotating frame for up to 3 revolutions around the Earth.
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the Earth in a prograde manner since the initial conditions are defined as prograde; along
some solutions, the direction of motion does change temporarily. Nevertheless, analysis of
Figures 5 and 6 reveals that, in general, solutions of various geometry – as defined by their
apses for three crossings of the hyperplane, assembled chronologically into a sequence –
are separated to distinctly different clusters. For solutions with a similar geometry, such as
those in clusters 24 and 25, the clusters are considered separate and distinct based on the
location of the first and last periapses. Of course, based on the use of a Euclidean distance
to differentiate between two trajectories via chronological time sequences of apses, such
a result is expected. Future work will explore the use of a more general distance metric
capturing differences between the entire solutions, regardless of start time. In any case, the
results in Figures 5 and 6 suggest that density-based clustering approaches can organize
map crossings into clusters based on the geometry of the associated trajectories. Some
of these clusters can be used to locate the regions within the stable manifold structures
associated with L1 and L2 Lyapunov orbits at the same Jacobi constant. These results
suggest that a density-based clustering procedure has the potential to serve as a valuable
tool in assisting the trajectory designer in interpreting a Poincaré map, both in the planar
CR3BP and in more complex or higher-dimensional dynamical systems.

CONCLUSION

A density-based clustering algorithm, HDBSCAN, is employed to implement an auto-
mated clustering of map crossings on a general Poincaré map based on the geometry of the
associated solution. As opposed to other clustering algorithms, this particular method is
selected due its ability to accommodate the properties of the data generated via Poincaré
mapping: a number of clusters that is not known a priori; clusters of various shapes; clus-
ters of various density; and an unknown or constant value of the maximum separation
between data points within a single cluster in a higher-dimensional space. Furthermore,
data is generated by associating each map crossing with its trajectory integrated for a few
revolutions around the Earth and summarizing the solution via the location of each peri-
apsis and apoapsis, as well as the associated epoch and direction of motion. Solutions are
considered similar if the vectors describing the finite set of apses are close, as calculated
by the Euclidean distance metric. HDBSCAN, implemented in Python via the hdbscan
library, is used to cluster the map crossings based on the geometry of the solutions. The
result of this preliminary analysis is a map with individual clusters indicated by distinct
colors, and each cluster sufficiently capturing only solutions of similar geometry as defined
by a chronological sequence of apses. The results of this analysis motivate future work to
update the distance metric input to HDBSCAN and to analyze the impact of various tra-
jectory summarization approaches. Furthermore, this investigation provides a foundation
for future applications to maps of higher dimensional data and for dynamical models of
increased complexity.
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