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ABSTRACT

Trajectories that exist within a multi-body dynamical envi-
ronment offer low-cost options to develop a long-term human
presence within the solar system. Representing the dynam-
ical accessibility of regions in a multi-body regime, as well
as enabling access to specific solutions, is nontrivial for dy-
namically sensitive environments such as the Earth-Moon and
Sun-Earth systems. The concept of an interactive design en-
viroment is explored and analyzed as a framework to enable
rapid and well-informed construction of complex trajectories
that leverage natural arcs. The design environment is prac-
tically implemented in the form of a graphical user interface
that consists of several modules that offer guidance into the
active selection of known dynamical structures. The capabili-
ties for the prototype trajectory design suite are demonstrated
via an application to a preliminary design concept, i.e., pre-
liminary trajectory selection and construction within a multi-
body regime for a mission to a variety of Earth-Moon and
Sun-Earth libration point orbits.

Index Terms— Multi-body systems, Three-body prob-
lem, Trajectory design, Libration points, Periodic solutions

1. INTRODUCTION

For rapid trajectory design in a multi-body regime, knowledge
of the dynamical structures in a simplified model may facil-
itate a better understanding of the design space than a set of
point solutions in the complete ephemeris model. Many soft-
ware packages, such as Systems Tool Kit (STK) and NASA’s
General Mission Analysis Tool (GMAT), offer a graphical
environment for trajectory design incorporating various grav-
itational fields at various levels of fidelity [1, 2]. However, the
focus is generally directed towards the delivery of trajectory
point designs and other operational mission support capabil-
ities. Thus, they may not be specifically structured to offer

guidance and insight into the available dynamical structures
throughout the region. To supply a framework for incorporat-
ing knowledge of the sensitive dynamics in the Earth-Moon
and Sun-Earth systems, Purdue University and NASA God-
dard Space Flight Center are collaborating to develop the
interactive trajectory design environment, Adaptive Trajec-
tory Design (ATD), to exploit natural dynamical structures
from the Circular Restricted Three-Body Problem (CR3BP)
with the capability to add fidelity during the design process.
In the simplified model, periodic and quasi-periodic orbits,
as well as any associated manifolds, govern the underlying
dynamics and are approximately retained in higher-fidelity
models. The current effort is devoted to creating direct links
between the problem understanding and its practical appli-
cation by exploiting these structures within the Earth-Moon
and Sun-Earth systems. In particular, there exist a wide array
of known orbits with significant potential for parking, stag-
ing and transfers within both systems. Previously developed
software tools, such as AUTO, can also supply a selection of
these solutions as well as some insight into the local dynam-
ics and the evolution of a set of orbits along any family [3].
In fact, AUTO enables the computation of periodic orbits and
their numerical continuation into orbit families, as well as the
detection and analysis of bifurcations. However, such tools
do not offer a basic “blueprint” to support rapid, efficient and
well-informed decisions regarding the use of fundamental so-
lutions to construct end-to-end trajectories within multi-body
dynamical environments for various mission scenarios.

To overcome the challenges associated with identifying
candidate trajectories in a chaotic multi-body regime, avail-
able dynamical structures can be actively incorporated into
the trajectory construction process. This process is demon-
strated via the ATD design suite, which offers an interac-
tive environment to assemble trajectories via point-and-click
arc selection for exploration of mission design options within



multi-body systems [4]. First, the fundamental dynamics in
the Earth-Moon and Sun-Earth systems are approximated us-
ing the CR3BP. Dynamical structures in the form of periodic
and quasi-periodic orbits, as well as their associated mani-
folds, may be computed on-demand to construct an initial
guess for an end-to-end trajectory, including impulsive ma-
neuvers. This initial guess can then be corrected both in the
CR3BP and in an ephemeris model, and even exported to
GMAT [2]. As a supplement to ATD, a ‘dynamic’ catalog
has also been created to identify and characterize periodic and
quasi-periodic orbits that may aid in trajectory design and se-
lection within the Earth-Moon system [5]. This information
is compiled into a graphical environment, allowing the user
to directly interact with data that cannot be adequately repre-
sented by a static database. As a result, a dynamic and inter-
active catalog may overcome some of the challenges associ-
ated with constructing a predefined trade space to analyze a
large set of solutions for a general mission concept [6]. To-
gether, these capabilities enable guided exploration of the so-
lution space for trajectory design within chaotic multi-body
systems and, potentially, the identification of innovative or-
bital options. The various modules available within ATD are
demonstrated via a sample mission application.

2. EXAMPLE MISSION

To demonstrate the capabilities of ATD, consider a potential
formation of spacecraft located near the Earth-MoonL2 libra-
tion point, labeled a Multi-Purposed Lunar Fractionated Sys-
tem (MPLFS). The vehicles that constitute the MPLFS could
conduct operations in cislunar and/or interplanetary space:
Fueling depots, multiple on-orbit storage vehicles, as well
as a communications relay are possible services provided by
a MPLFS architecture. Furthermore, stationing the MPLFS
near the L2 gateway could be strategic for either rendezvous
with the formation or commissioning any of the individual
modules to their final destination. Depending upon the mis-
sion scenario, it may be necessary to establish continuous
communications with Earth or, equivalently, to include a ge-
ometrical constraint on the path such that the MPLFS should
maintain a constant line-of-sight to the Earth. Additionally,
a vehicle departing the Earth vicinity may leverage a low-
energy transfer that passes through the L1 gateway to ren-
dezvous with the MPLFS. To enable such links, the energy
level for the MPLFS orbit may be loosely constrained. Specif-
ically, the Jacobi constant values (which is analogous to the
trajectory energy level within the CR3BP) for the MPLFS or-
bit and orbits near the L1 libration point should be similar.
Since the MPLFS is comprised of multiple vehicles, bounded
motion is desirable to retain a formation. Orbit configura-
tions that meet the mission requirements and enable formation
flying may be constructed by leveraging periodic and quasi-
periodic dynamical structures that are rapidly selected within
the ATD design suite.

Fig. 1. Comparison for the range of Jacobi constant values
for families of periodic orbits near L1 and L2

3. SELECTING A MISSION ORBIT

The challenges associated with directly exploring a generic
mission concept in a high-fidelity ephemeris model may be
offset by an interactive design environment that grants access
to known dynamical structures, thereby revealing a variety of
orbital options. To aid in the selection of natural structures, a
dynamic catalog of known solutions is included as a module
within the design environment. This catalog facilitates rapid
and guided identification of periodic and quasi-periodic orbits
that may be leveraged by a baseline trajectory for a given mis-
sion concept. Within the Catalog module, user-defined trade
spaces are available to guide decisions during the selection
process. For example, statistical representations of quanti-
ties of interest that reflect desired orbit characteristics may be
compared between various families of orbits. For an applica-
tion to the MLPFS mission concept, for example, the range
of Jacobi constant values for families of periodic orbits near
the L1 and L2 libration points within the Earth-Moon sys-
tem, including halo, Lyapunov, and vertical orbits, may be
explored and compared. A simple bar plot from the catalog
module, depicted in Figure 1, reveals that the values of Jacobi
constant ranges along the families generally overlap, indicat-
ing the potential existence of low-cost transfers between the
L1 andL2 regions. Thus, several families, as identified within
the catalog, may satisfy the loose constraint on the Jacobi con-
stant value for the MPLFS. The user may also select alternate
statistical representations and quantities, such as the orbital
period or representative station-keeping and transfer costs, to
obtain a preliminary comparison between a large set of orbits.

In addition to exploring a large set of trajectories via a sta-
tistical description, the evolution of selected quantities along a
family of orbits can be examined. Within the catalog, a family
of orbits may be visualized in a two-dimensional trade space.
Information on a third parameter may be displayed by color.
Using this representation, Figure 2 reflects the dimension of
the center subspace of candidate families of periodic orbits



Fig. 2. Number of nontrivial modes associated to a center
subspace across sample families in the CR3BP denoted by
color (Blue = 0, Green = 1, Red = 2)

that may be employed for the MPLFS mission concept. The
dimension of the center subspace supplies a preliminary indi-
cation of the existence of nearby manifold or quasi-periodic
structures. Within the MPLFS scenario, stable and unstable
manifolds may be employed to construct low-cost transfers to
other destinations. Additionally, a quasi-periodic torus may
serve as dynamical support framework for the deployment of
a formation of servicing vehicles. As displayed within Figure
2, a user-defined trade space within the catalog reveals the ex-
istence of tori near the L2 Lyapunov, vertical, and halo fam-
ilies. A quasi-periodic selection tool is also available within
the catalog. Accordingly, each candidate family may be an-
alyzed individually to identify any solutions that satisfy the
line-of-sight constraint, and thus have the potential for con-
stant communications with Earth. To satisfy this constraint,
the cone angle from Earth relative to the x-axis in the rotating
frame must be larger than 0.25◦ to avoid occultation behind
the Moon. An interactive interface, as depicted in Figure 3,
enables the user to rapidly verify this simple mission require-
ment on several quasi-periodic structures that exist within the
CR3BP, and may be approximately retained within a higher-
fidelity model. As detailed in [7], quasi-periodic halo orbits
may enable a formation of vehicles to maintain a constant
line-of-sight with the Earth. Accordingly, a quasi-periodic L2

halo orbit with a Jacobi constant equal toC ≈ 3.14 is selected
to facilitate the demonstration of the ATD software tool.

4. EXPLOITING INVARIANT MANIFOLD ARCS

Within ATD, the user can design and construct transfers
that actively leverage natural manifold structures from the
CR3BP. To demonstrate this process, consider a scenario
that requires a vehicle from the MPLFS to transfer from the
selected Earth-Moon L2 quasi-halo orbit to the Earth-Moon

Fig. 3. Analysis and selection of quasi- periodic arcs

Fig. 4. A selection of unstable manifold arcs (magenta)
departing an Earth-Moon L2 halo and stable manifold arcs
(green) approaching an L1 halo orbit, viewed in the Earth-
Moon rotating frame

L1 vicinity; such an example could include servicing a mal-
functioning spacecraft or delivering resources to a depot. To
construct a low-cost transfer from the selected L2 holding
orbit to the L1 vicinity, invariant manifold structures are em-
ployed. Although manifolds may be computed directly from
the quasi-halo, they can be challenging and computationally
intensive to generate. As a simpler approach, manifold arcs
associated with a nearby L2 halo orbit at the same Jacobi
constant value as the quasi-halo are employed. These arcs
can then be corrected to link directly to the quasi-periodic
structure. A selection of unstable manifold arcs departing the
L2 halo are depicted in magenta in Figure 4. An L1 halo
orbit with the same Jacobi value as the reference quasi-halo
is selected as the destination orbit; stable manifold arcs that
approach this orbit appear in green in Figure 4.

A transfer between the L2 and L1 regions is facilitated by
locating an intersection between an unstable and stable mani-
fold arc. Once these arcs are selected, each can be trimmed, or
“clipped”, within the design environment to minimize the dis-



x (km) ×10
5

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

y
 (

k
m

)

×10
4

-4

-2

0

2

4

Moon

L1 L2

To Earth

Fig. 5. An end-to-end, initial transfer design between an
Earth-Moon L2 quasi-halo structure (gold) and an L1 halo or-
bit (magenta), represented in the Earth-Moon rotating frame

tance between the end points. The transition from the quasi-
halo structure to the L2 halo manifold is enabled by clipping
the quasi halo such that its end-point approximately coincides
with the beginning of the unstable manifold arc. Similarly, an
arc is constructed to link the stable manifold arc to the initial
state along the L1 halo orbit. An initial guess for an end-to-
end transfer, in Figure 5, is assembled by re-ordering the arc
segments in the design environment to be consistent with the
following itinerary:

1. Loiter for 270 days in an L2 quasi-halo structure

2. Depart L2 quasi-halo along an unstable manifold arc

3. Transfer to stable manifold arc to approach L1 halo

4. Arrive at L1 halo orbit to conduct operations

This process can be followed within the ATD design envi-
ronment to produce various initial guesses for transfers that
satisfy the design constraints.

5. DIFFERENTIAL CORRECTIONS PROCESSES

Once an end-to-end trajectory is constructed in the CR3BP
Design module, it can be discretized and loaded into the
CR3BP Corrections Module. The discretized transfer is rep-
resented by a series of nodes and arc segments, as displayed in
Figures 6 and 7. Depending upon the trajectory requirements,
a variety of constraints can be applied to the discretized trans-
fer. The user may fix the state, altitude, or Jacobi constant
value corresponding to any of the nodes. Additionally, nodes
can be constrained to be apses relative to either primary and
can incorporate a maneuver, i.e., a ∆V . Finally, the to-
tal ∆V and time-of-flight of the end-to-end transfer can be
constrained to be equal to user-specified values.

For the MPLFS-based example, consider the following
constraints: first, the L1 halo orbit is constrained to be pe-
riodic by enforcing perpendicular crossings of the xz-plane

Fig. 6. CR3BP Corrections module: The discretized trans-
fer design is decomposed into individual segments (colored
lines), each beginning at a node (colored dots). The interface
supplies tools to constrain nodes and adjust the corrections
algorithm’s settings
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Fig. 7. Constraints are enforced during corrections: two state
constraints (gold circles) to preserve L1 halo periodicity, one
Jacobi Constant constraint to preserve the L2 quasi-halo (ma-
genta circle), and three maneuver locations (red asterisks)

at two distinct points. Second, the L2 quasi-halo structure
is required to maintain a constant value of the Jacobi con-
stant, which allows spatial flexibility in the corrections pro-
cess without compromising the energy of the quasi-halo. Fi-
nally, maneuvers are located at three nodes: a node at the
beginning of the clipped unstable manifold arc, the node at
the interface between the stable and unstable manifold arcs,
and a node at the end of the clipped stable manifold segment.
These constraints and maneuver locations are illustrated in
the design environment in Figure 7. The state constraints at
the perpendicular crossings are represented by gold circles,
the Jacobi constant constraint by a magenta circle, and the
maneuver locations by red asterisks.

The CR3BP Corrections module employs a Newton-
Raphson process in the form of a multiple-shooting algo-
rithm to adjust the baseline solution such that all constraints
are satisfied, along with continuity. This module includes an
option to use Matlab’s built-in fsolve algorithm or ATD’s
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Fig. 8. A corrected transfer in the Earth-Moon CR3BP with
a total ∆V of 39 m/s including an xy-projection (top) and
xz-projection (bottom)

custom multiple-shooting algorithm. An initial application
of the corrections scheme yields a solution with a total ∆V
of over 120 m/s. A constraint on the total ∆V is imposed to
reduce the transfer cost to 100 m/s. Subsequent corrections
with a decreasing allowable ∆V reduce the transfer cost to
39 m/s. This corrected design is plotted in Figure 8.

Next, the corrected CR3BP solution is transitioned to the
Ephemeris Corrections module. This module numerically in-
tegrates an imported trajectory under the influence of a variety
of gravitational fields. Since the transfer of interest has been
designed in the Earth-Moon CR3BP, both the Earth and Moon
are automatically included in the ephemeris model. Addi-
tional bodies, such as the Sun and other planets, can be added
to the model to increase its fidelity. The ATD package em-
ploys NAIF SPICE data sets to compute the precise locations
of these bodies during the propagation [8]. Accordingly, the
user selects an epoch associated with the initial node in the
CR3BP design. For this example, let the initial epoch be Jan-
uary 1, 2020, 00:00:00.00 UTC.

Similar to the CR3BP Corrections Module, the Ephemeris
Corrections module offers a number of node constraint op-
tions. The state, apsis, altitude, total ∆V , and total time-of-
flight constraints retain the same functionality as described
previously. In addition, the inclination of a node can be
fixed relative to the equatorial plane for any body included
in the model, and the epoch time associated with a node
can also be fixed. Note that it is no longer possible to con-
strain the Jacobi constant value associated with a node as
the ephemeris model admits no such integration constant.
Furthermore, the ephemeris corrections scheme also employs

Fig. 9. Ephemeris Corrections Module

a multi-dimensional Newton-Raphson method to satisfy all
constraints. The partial derivatives that form the Jacobian
matrix for this process can be computed analytically, nu-
merically, or by either method on a node-by-node basis. To
demonstrate the ephemeris corrections scheme, three maneu-
vers are allowed in the same locations as in the CR3BP cor-
rections process and the transfer is corrected for continuity;
analytical derivatives are employed to maximize computa-
tional speed. Perturbations from solar gravity are included in
the model, with perturbations from all other celestial bodies
neglected. The corrected transfer, plotted in the Ephemeris
Corrections module in Figure 9, retains a geometry that re-
sembles the original solution constructed within the CR3BP.
Although the total ∆V has increased to approximately 125
m/s, this transfer cost is reduced by iteratively decreasing the
maximum allowable ∆V and by exploring alternate epochs.

6. TRANSITION TO OPERATIONAL EPHEMERIS

As a final step in the corrections process, the Ephemeris Cor-
rections module creates a script that can be opened by GMAT,
which provides operational-level ephemeris modeling and is
fully verified and validated. By default, the GMAT script pro-
duced by ATD includes gravity harmonics of degree and or-
der one for the central body in the force model and treats all
other bodies as point masses. Thus, in this example, simple
lunar gravity harmonics are included and the Earth and Sun
are incorporated as point masses. These settings are straight-
forwardly modified by editing the default script and further
perturbations such as solar radiation pressure can be incorpo-
rated. To recreate the transfer, GMAT performs minor correc-
tions on each arc segment to enforce continuity, with small
maneuvers permitted in the same locations as specified in the
ATD design. A converged solution is depicted in the xy- and
xz-planes in Figure 10. Note that the number of revolutions
around the quasi-halo structure have been reduced to lessen
the numerical difficulties associated with transitioning the so-
lution from ATD to GMAT; additional revolutions along the
quasi-periodic structure may be recovered in GMAT by prop-
agating in reverse time. As in the ATD ephemeris-corrected



Fig. 10. Trajectory in GMAT: xy-projection (top) and xz-
projection (bottom), Earth-Moon rotating coordinates

solution, the geometry of the GMAT solution resembles the
desired baseline trajectory. With this export capability, the
advanced suite of tools available in GMAT can be leveraged
to further analyze and validate the transfer design within a
higher-fidelity dynamical environment.

7. TRANSFERS BETWEEN CR3BP SYSTEMS

A scenario that requires a vehicle from the MPLFS to transfer
from the Earth-Moon L2 vicinity to the L1 region has been
designed in ATD and transitioned to an operational ephemeris
tool. This transfer exists solely within the Earth-Moon vicin-
ity and does not leverage Sun-Earth dynamical structures.
To demonstrate additional design capabilities incorporated
within ATD, consider a similar mission that requires a space-
craft to transfer from the Earth-Moon L2 quasi-halo to the
Sun-Earth L2 vicinity to service an observation platform. The
System Blending module in ATD facilitates such system-to-
system transfer designs and is employed here to construct the
transfer. As an example, assume the destination orbit is a
Sun-Earth L2 southern halo. Recall that manifold arcs from
an Earth-Moon L2 halo supply reasonable approximations for
the quasi-halo manifolds. These manifold arcs are once again
leveraged to depart the quasi-halo and are represented by
magenta contours in Figure 11. A set of stable manifold arcs,
in green, asymptotically approach the destination Sun-Earth
halo orbit. A transfer is constructed by linking an Earth-
Moon L2 halo unstable manifold arc to a Sun-Earth L2 halo

Fig. 11. System Blending Module: Unstable manifolds (ma-
genta) emanate from an Earth-Moon L2 halo orbit and flow
into stable manifolds (green) that asymptotically approach a
Sun-Earth L2 halo orbit

stable manifold. In contrast to the halo-halo transfer within
the Earth-Moon system, as described in the previous sec-
tions, these manifold arcs originate in two different CR3BP
systems. In fact, the unstable manifold arcs exist naturally
in the Earth-Moon system, while the stable arcs occur in
the Sun-Earth system. The module reflected in Figure 11 in-
cludes two views of the design space: an Earth-Moon rotating
view on the left, and a Sun-Earth rotating view on the right.
The Sun-Earth view provides a clearer and more intuitive
representation of the transfer. The spacecraft originates on
the magenta structure and proceeds counter-clockwise to the
“mouth” of the tube-like structure, where the spacecraft may
leverage a maneuver to transition onto the green manifold
tube to approach the Sun-Earth halo orbit.

Identifying a connection between the two manifold struc-
tures is nontrivial due to the non-planar nature of the man-
ifold arcs and the time-dependent geometry of the problem.
In particular, during one synodic month, the Earth-Moon sys-
tem completes one revolution relative to the Sun-Earth line
(the x-axis in the Sun-Earth rotating frame). Thus, a variety
of relative geometries can be achieved by selecting an appro-
priate epoch. Accordingly, a strategy capable of exploring
multiple geometries is required to identify suitable links be-
tween manifold segments. This example demonstrates the use
of a higher dimensional Poincaré map to locate connections.
A “hyperplane” is employed and defined as a physical plane
normal to the xy-plane; in the Sun-Earth system the xy-plane
coincides with the ecliptic and in the Earth-Moon system, it
represents the Earth-Moon orbital plane. The hyperplane is
constrained to include a common point between systems and
is oriented by some angle θ relative to the positive x-axis in
the working frame. In this case, the Earth represents a com-
mon point between the Sun-Earth and Earth-Moon systems.
Let Σ1 represent the Earth-Moon hyperplane with orientation
θ1 relative to the Earth-Moon line, as illustrated in Figure 12,
and let Σ2 represent the Sun-Earth hyperplane with orienta-
tion θ2 relative to the Sun-Earth line. The angles θ1 and θ2 are
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Fig. 12. Two hyperplanes, Σ1 and Σ2 are chosen to construct
an inter-system Poincaré map

selected independently and an appropriate epoch is identified
to achieve a system geometry such that the two hyperplanes
coincide with one another.

A map is constructed by recording the points where the
Earth-Moon unstable manifold arcs cross Σ1 and then not-
ing the points where the Sun-Earth stable manifold arcs cross
Σ2. The two sets of points are then overlaid and compared to
identify links between manifold segments. However, due to
the six-dimensional nature of the problem, a single 2D map
is insufficient to represent the full state of the map crossings.
Additional information is represented on the Poincaré map
via glyphs, e.g., vectors or arrows as seen in Figure 13 [9].
The choice of a hyperplane reduces the full state from six di-
mensions to five. Vectors represent an additional four states:
the vector base point represents the y and z map crossing co-
ordinates, and the horizontal and vertical vector components
represent ẏ and ż, respectively. Note that these states are all
represented in the Sun-Earth rotating coordinate frame. The
final dimension is incorporated by coloring each crossing by
its Jacobi constant value in the Sun-Earth system. The Sun-
Earth manifold arcs all possess the same Jacobi value in this
system, but the Earth-Moon manifold arcs, which do not oc-
cur naturally in the Sun-Earth CR3BP, span a range of Jacobi
constant values.

A Poincaré map is now constructed for the Earth-Moon to
Sun-Earth transfer with θ1 = 270◦ and θ2 = 300◦. The Sun-
Earth manifold crossings, plotted in Figure 13 as red-brown
vectors with square base points, exist at a Jacobi constant
value of approximately 3.0009. The Earth-Moon manifold
crossings, on the other hand, span a range of energies from
below 3.0005 to 3.0009 and are represented by colored dots
and vectors on the map. Candidate low-cost connections be-
tween manifold arcs are identified by locating map crossings
that meet the following criteria:

1. Map crossings, represented by squares and circles, are
near each other on the map

2. The direction and magnitude of the vectors associated
with nearby points are similar

Fig. 13. Poincaré mapping tool to facilitate the identification
of links between Earth-Moon and Sun-Earth manifold arcs

3. The color of the candidate map crossings are similar

If all three criteria are met, the manifold arcs represented by
the glyphs are guaranteed to pass near each other in space
with similar velocities. A zoomed view of the Poincaré map
appears in Figure 14 with a potential low-cost link between
manifold arcs. The long, red-brown vector located in the cen-
ter of the map represents a Sun-Earth manifold arc. Several
Earth-Moon manifold arcs cross the map nearby with veloc-
ities oriented similarly in the (ẏ, ż) space. Additionally, the
similarity in color between the points indicates that the states
along the two manifolds are at approximately the same en-
ergy level on the map; since the map crossings are nearly col-
located spatially, a common Jacobi constant value indicates
that the velocity magnitudes are very similar. Thus, an inter-
face between the two manifold arc segments requires only a
change in velocity direction.

The design environment allows the user to click on map
crossings and subsequently investigate candidate transfers.
The aforementioned transfer candidate is selected and plot-
ted in configuration space in Figure 15. In the Earth-Moon
rotating view (left), a gold unstable manifold arc departs the
blue Earth-Moon L2 quasi-halo and links to a light blue Sun-
Earth manifold arc directly below the Earth in the xy-plane,
i.e., at θ1 = 270◦. The same motion is also depicted in the
Sun-Earth rotating view (right). The gold Earth-Moon un-
stable manifold arc interfaces with the blue Sun-Earth stable
manifold arc on a plane oriented at θ2 = 300◦ relative to the
Sun-Earth x-axis. The blue, stable manifold arc proceeds to
asymptotically approach the Sun-Earth L2 halo orbit, com-
pleting the transfer.

The system transfer design can be transitioned to an
ephemeris model by following the steps similar to those in
the previous sample mission scenario. To complete the blend-
ing, the Ephemeris Corrections Module is leveraged with a
Sun-Earth-Moon model to constrain and correct the path.
Following ATD ephemeris corrections, the blended transfer
design is again transitioned to GMAT or another operational



Fig. 14. A zoomed-in view of the higher-dimensional
Poincaré map: circles represent Earth-Moon manifold cross-
ings and squares represent Sun-Earth manifold crossings

trajectory design software for final adjustments.

8. CONCLUDING REMARKS

Representing the dynamical accessibility of various regions
in a multi-body regime, as well as enabling access to spe-
cific solutions, is nontrivial for dynamically sensitive envi-
ronments such as the Earth-Moon and Sun-Earth systems.
Trajectory design in such dynamical environments is facili-
tated by the Adaptive Trajectory Design (ATD) tool, devel-
oped by Purdue University and NASA Goddard. ATD in-
cludes an interactive catalog of solutions for the CR3BP, a
simplified gravitational model that facilitates preliminary tra-
jectory design in the Earth-Moon and Sun-Earth systems. To
demonstrate the capabilities of this tool, sample trajectories
for a Multi-Purposed Lunar Fractionated System (MPLFS)
are designed. First, the catalog of Earth-Moon periodic and
quasi-periodic structures is leveraged to identify ‘holding’ or-
bits that meet specific mission constraints. Next, an end-to-
end trajectory is constructed from a selected quasi-halo struc-
ture near the Earth-Moon L2 libration point to an L1 halo
orbit within the Earth-Moon system. Invariant manifold arcs
are rapidly generated and leveraged to demonstrate low-cost
transfer options between the originating and destination struc-
tures. Constraints on the transfers are applied and enforced
in a multiple-shooting corrections scheme within the CR3BP.
The end-to-end trajectory is then transitioned to an ephemeris
module within ATD for higher-fidelity corrections. The tra-
jectory design is exported to and corrected in NASA’s General
Mission Analysis Tool (GMAT), which supplies operations-
level ephemeris tools. As a final demonstration of the tools
available in ATD, a transfer from the Earth-Moon quasi-halo

Fig. 15. An end-to-end transfer from an Earth-Moon L2

quasi-halo structure to a Sun-Earth L2 halo orbit.

to a Sun-Earth L1 halo is designed. Poincaré maps are con-
structed and leveraged to identify connections between Earth-
Moon and Sun-Earth manifold arcs. Such system-to-system
transfers can be corrected in the ephemeris model and transi-
tioned to operational tools such as GMAT. Ultimately, the de-
sign framework available as part of ATD facilitates rapid and
well-informed construction of complex trajectories within a
multi-body regime.
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