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Abstract

Upcoming missions and prospective design concepts in the Earth-Moon system are extensively leveraging
multi-body dynamics that may facilitate access to strategic locations or reduce propellant usage. To
incorporate these dynamical structures into the mission design process, Purdue University and the Goddard
NASA Flight Space Center have initiated the construction of a trajectory design framework to rapidly
access and compare solutions from the circular restricted three-body problem. This framework, based
upon a ‘dynamic’ catalog of periodic and quasi-periodic orbits within the Earth-Moon system, can guide
an end-to-end ephemeris design. In particular, the inclusion of quasi-periodic orbits further expands the
design space, potentially enabling the detection of additional orbit options. To demonstrate the concept of
a ‘dynamic’ catalog, a prototype graphical interface is developed. Strategies to characterize and represent
periodic and quasi-periodic information for interactive trajectory comparison and selection are discussed.
A sample application is explored to demonstrate the efficacy of a ‘dynamic’ catalog for rapid trajectory
design and validity in higher-fidelity models.

INTRODUCTION

With the increasing complexity of space missions,
there is significant interest in trajectory design ap-
proaches that require fewer resources and deliver re-
sults sustainable over long term scenarios. Such goals
may be achieved by leveraging the natural dynami-
cal structures in the Earth-Moon system to guide the
selection of a baseline trajectory. A well-informed
trajectory design process may be particularly benefi-
cial for several upcoming mission concepts including
exoplanet observatories, in-situ exploration of aster-
oids as well as redirect concepts, and lunar cubesat
missions.[1, 2, 3, 4, 5] The design of a baseline trajec-
tory is nontrivial in a dynamically sensitive environ-
ment. In fact, in a higher-fidelity multi-body regime,
the comparison of a large set of candidate solutions
demands significant, and often prohibitive, time and
computational resources. However, the well-studied
Circular Restricted Three-Body Problem (CR3BP)
can provide a reasonable approximation to the actual
dynamical environment. The dynamical structures
available in this model have been successfully lever-
aged by several missions in the Sun-Earth system as
well as in early demonstrations in the Earth-Moon
system.[6, 7, 8]

For rapid trajectory design in a multi-body regime,
knowledge of the dynamical structures in a simplified
model may facilitate a better understanding of the
design space than a set of point solutions in the com-
plete ephemeris model. Many software packages, for
example, Systems Tool Kit (STK) and NASA’s Gen-
eral Mission Analysis Tool (GMAT), offer a graphical
environment for trajectory design incorporating grav-
itational fields at various levels of fidelity.[9, 10] How-
ever, the focus is generally directed towards the deliv-
ery of trajectory point designs and other operational
mission support capabilities. Thus, they may be not
specifically structured to offer guidance and insight
into the available dynamical structures throughout
the region. To supply a framework for incorporat-
ing knowledge of the dynamical accessibility in the
Earth-Moon system, Purdue University and NASA
Goddard Space Flight Center have been developing
an interactive adaptive design process exploiting a
reference catalog of solutions from the CR3BP to en-
hance efficient trajectory design in such complex en-
vironments. In this simplified model, periodic and
quasi-periodic orbits govern the underlying dynam-
ics and are approximately retained in higher-fidelity
models. The current effort is devoted to creating di-
rect links between the problem understanding and
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its practical application by exploring the Earth-Moon
design space. There exists a wide array of known or-
bits with significant potential for parking, staging and
transfers within the Earth-Moon system. Previously
developed software tools, e.g., AUTO, can also supply
a selection of these solutions as well as some insight
into the local dynamics and the evolution of a set
of orbits along any family.[11] In particular, AUTO
enables the computation of periodic orbits and their
numerical continuation into orbit families, as well as
the detection and analysis of bifurcations. Neverthe-
less, such tools do not provide a basic “blueprint” to
support rapid, efficient and well-informed decisions
regarding the use of fundamental solutions in multi-
body dynamical environment for any mission prior to
an end-to-end trajectory design.

To overcome the challenges associated with identi-
fying candidate trajectories in a chaotic multi-body
regime, the available dynamical structures may be
explored interactively. Previous studies on the ap-
plication of interactive visual analytics to trajectory
design has been conducted by Schlei for various ap-
plications in multi-body regimes [12]. In addition, a
prototype software to assemble trajectories via point-
and-click arc selection in multi-body scenarios is in-
troduced by Haapala et al.[13] This design suite,
Adaptive Trajectory Design (ATD), offers an inter-
active interface to facilitate exploration of mission
design options. First, the dynamics in the Earth-
Moon and Sun-Earth systems are approximated us-
ing the CR3BP. Dynamical structures in the form
of periodic and quasi-periodic orbits and manifolds
may be computed on-demand to construct an initial
guess for an end-to-end trajectory, along with maneu-
vers. Ultimately, the constructed initial guess can be
corrected both in the CR3BP and in an ephemeris
model, and even exported to NASA’s GMAT. [10] As
a supplement to ATD, a ‘dynamic’ catalog has been
constructed to identify and characterize periodic or-
bit that may aid in trajectory design and selection
within the Earth-Moon system.[14] This information
and a preliminary classification of orbits are com-
piled into a graphical environment, allowing the user
to directly interact with data that can not be ade-
quately represented by a static set of tabular data.
As a result, a ‘dynamic’ and interactive catalog may
overcome some of the challenges associated with con-
structing a predefined trade space to analyze a large
set of solutions for a general mission concept. [15]

In this investigation, the Earth-Moon catalag of
periodic solutions is expanded to include nearly
bounded motion. Quasi-periodic motion, which in-
herits the behavior of a nearby periodic orbit, fur-
ther expands the set of design options, thereby al-

lowing identification of trajectories that may satisfy
the mission requirements when transitioned to an
ephemeris model. Families of quasi-periodic solu-
tions are precomputed numerically and sampled to
construct a representative set, which the user can
immediately access in the catalog. [16, 17] While
a quasi-periodic orbit may partially retain the char-
acteristics of a nearby periodic solution, it may also
possess unique and independent features that may be
exploited in the mission design process. Accordingly,
quasi-periodic motions are characterized in terms of
quantities that may be used for a preliminary eval-
uation of the mission constraints. The utilization of
this information within a user graphical interface is
discussed and a prototype is demonstrated via appli-
cation to a sample mission concept.

DYNAMICAL
BACKGROUND

The rapid and intuitive exploration of the dynamical
structures in the Earth-Moon system is first based on
the CR3BP. This dynamical model, which serves as a
reasonable approximation to the actual gravitational
field, reflects the motion of a massless spacecraft un-
der the influence of the point-mass gravitational at-
tractions of the Earth and Moon. These two primary
bodies are assumed to move in circular orbits about
their mutual barycenter. The motion of the vehicle
is described relative to a coordinate frame, x̂ŷẑ, that
rotates with the motion of the Earth and Moon. In
this frame, the spacecraft is located by the nondimen-
sional coordinates (x, y, z). By convention, quantities
in the CR3BP are nondimensionalized such that the
Earth-Moon distance, as well as the mean motion of
the primaries, are both equal to a constant value of
unity. In addition, the Earth and Moon have nondi-
mensional masses equal to 1− µ and µ, respectively,
where µ equals the ratio of the mass of the Moon to
the total mass of the system. In the rotating frame,
the equations of motion for the spacecraft are written
as:

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
(1)

where the pseudo-potential function,

U =
1

2
(x2 + y2) +

1− µ
d

+
µ

r
,

while

d =
√

(x+ µ)2 + y2 + z2

and

r =
√

(x− 1 + µ)2 + y2 + z2 .
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This gravitational field admits five equilibrium
points: the collinear points L1, L2, and L3 are lo-
cated along the Earth-Moon line; and two equilateral
points, L4 and L5, form equilateral triangles with the
two primaries. Since the CR3BP is autonomous, a
constant energy integral exists in the rotating frame
and is equal to the Jacobi constant, JC:

JC = 2U − ẋ2 − ẏ2 − ż2 (2)

At any specific value of the Jacobi constant, there
are infinite possible trajectories exhibiting a wide ar-
ray of behaviors. However, any trajectory may be
generally classified as one of four types of solutions:
equilibrium point, periodic orbit, quasi-periodic or-
bit, and chaotic motion. Each of these solutions can
be identified using numerical techniques and subse-
quently characterized using concepts and quantities
from dynamical systems theory.

CATALOG OF PERIODIC
ORBITS

To capture the dynamical structures available in the
CR3BP, families of periodic orbits are exploited. The
characteristics of a periodic orbit generally reflect
qualities of the nearby dynamics, potentially indi-
cating the presence of additional structures, such as
nearby manifolds or bounded motions. The charac-
terization and classification of families of periodic so-
lutions is, therefore, valuable in creating an efficient
framework for mission design and preliminary mis-
sion trade-offs.[15]

The catalog adopts the classification system for
CR3BP periodic orbits, the one most currently ac-
cepted in the astrodynamics community. Families of
periodic orbits in the CR3BP are gathered into four
classes: Libration Point Orbits (LPO), Resonant Or-
bits (RES), Moon-Centered Orbits (P2), and Earth-
Centered Orbits (P1). Classes are designated accord-
ing to the dynamical origin of the families. Orbits
identified as LPO emanate from the vicinity of the
equilibrium points, such as the sample of axial, halo,
Lyapunov, and vertical families in Figure 1(a). Reso-
nant orbits, i.e., RES families, are each derived from
an integer ratio between the orbital period and the
period of the Moon’s motion around the Earth; the
resonance is denoted p : q, where p is the number of
Moon revolutions about the Earth by the time that
the vehicle accomplishes q orbits along the reference.
Some representative orbits from the 3:1, 3:2, 2:1 fam-
ilies are depicted in Figure 1(b). Orbits classified as
P2 originate from the Moon’s dynamical neighbor-
hood; this class includes distant prograde orbits, low

prograde orbits and distant retrograde orbits such
those displayed in Figure 1(c). Similarly, P1 fami-
lies originate from the Earth’s dynamical neighbor-
hood. The families currently included in the cata-
log are listed in Table 1 along with the abbreviations
adopted to identify each set of orbits. Presently, conic
arcs and P1 families are not included in the catalog,
but may be considered for future expansion of the
data set.

Table 1: List of families of periodic orbits currently
available in the catalog.

Class Family Tag

LPO Li Lyapunov Lyi
Li Halo Hi
Li Axial Ai
Li Vertical Vi
Li Short Period SPi
Li Long Period LPi
Li Horseshoe HS

RES Planar Resonant n:m rpnm
Spatial Resonant n:m rsnm

Moon- Planar Distant Retrograde DRO
Centered Spatial Distant Retrograde DRO3D

Distant Prograde DPO
Low Prograde LoPO

For each family of periodic orbits, characteristic
parameters can be analyzed by the user to identify
orbits that exhibit a desired behavior. Such quanti-
ties enable the creation of user-defined design spaces
for the rapid performance of simple trades. The ap-
plication of Keplerian parameters to a preliminary
design framework may be ineffectual due to the time
variation along a generic arc and the dependence on
the selected central body. A characterization of pe-
riodic orbits in the CR3BP for mission design is dis-
cussed in [14]. The focus is a set of quantities that
includes the geometrical amplitudes of the orbit, its
orbital period and Jacobi constant. As a first approx-
imation, the geometrical amplitudes may be useful
in evaluating preliminary size and constraints, while
the period of the orbit provides an approximate time
scale for use in maneuver and communications plan-
ning. In addition, the Jacobi constant, as defined in
Eq. (2), indicates the energy level of the trajectory
and can be linked to the minimum transfer cost be-
tween two orbits. These quantities are complemented
by estimates for the operational costs. Accordingly,
simple periodic orbit insertion and station keeping
costs for a large variety of families are included, en-
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(a) Libration Point Orbits.
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(b) Resonant Orbits.
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(c) Moon-Centered Orbits.

Figure 1: Sample members of well-known orbit families in the Earth-Moon system, plotted in the rotating
frame.

abling rapid estimation of the deterministic DV. Such
insight is valuable in preliminary identification of re-
gions in the Earth-Moon system that are accessible
for a given mission scenario. In the catalog, a se-
lected set of periodic orbit insertion costs are based on
simple straightforward transfers from LEO, including
direct transfers and powered flyby transfers. The sta-
tion keeping maneuvers implemented to predict the
orbit maintenance costs are based on the long-term
strategy discussed in [15].

The trade spaces in the ‘dynamic’ catalog use sim-
ple statistical indexes, such as mean, range or stan-
dard deviation to provide a compact global represen-
tation of a large set of orbits. For example, con-
sider Figure 2. Each box in the figure represents a
family of orbits (identified by the associated label);
the boxes are portrayed in a two dimensional design
space, where the horizontal axis corresponds to an
estimate of the annual station-keeping cost and the
vertical axis represents the direct insertion transfer
DV. Within this space, each box is centered at the
mean value of the associated quantities along the fam-
ily. The size of each box is proportional to the stan-
dard deviation of the quantities computed along the
family. Using this simplified representation, the user
can simultaneously estimate and compare the station-
keeping and transfer costs for multiple families of or-
bits. Since this representation is implemented in an
interactive graphical interface, the user can modify
the visible information, such as the quantities on each
axis or the families included in the plot. For a com-
plete representation of the characteristic quantities
along the family, the actual characteristic curve can
be displayed on-demand. Allowing the user to display
information only when desired, reduces the complex-
ity in visualizing multiple characteristic curves that
are overlaid on a single two-dimensional plot. A more
detailed description of this representation of periodic

orbits and its implementation appear in [15].
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Figure 2: Simplified representation of transfer and
station-keeping cost of each family using boxes.

EXISTENCE OF
QUASI-PERIODIC ORBITS

In the CR3BP, the existence of important dynami-
cal structures, such as manifolds and quasi-periodic
orbits, is associated with the linear stability of a pe-
riodic orbit. Upon linearization of the equations of
motion for the CR3BP, in Eq. (1), the general so-
lution to the linear variational equations is written
as

δx(t) = eA(t−t0)δx(t0) , (3)

where δx(t) is the variation relative to some reference
solution, A = A(t) is the Jacobian matrix of first par-
tial derivatives of Eq. (1) evaluated along the refer-
ence (A is generally not constant). The state transi-
tion matrix (STM) is defined as Φ(t, t0) = eA(t−t0),
essentially indicating (in linear approximation) the
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(a) Libration Point Orbits. (b) Moon-Centered Orbits. (c) Resonant Orbits.

Figure 3: Number of nontrivial modes associated to a center subspace across sample families in the CR3BP
denoted by color (Blue = 0, Green = 1, Red = 2).

sensitivity of a given state along the reference path
at time t to any variations in the initial state at t0.
For a periodic orbit, the STM integrated for exactly
one orbital period, known as monodromy matrix, is
leveraged to predict the orbital stability.

The eigenvalues λi of the monodromy matrix,
which occur in reciprocal pairs, reveal the stability of
the reference periodic orbit and, therefore, the behav-
ior of the nearby flow. For each eigenvalue, there is
a corresponding eigenvector, vi; together, all 6 eigen-
vectors span R6. In the CR3BP, the monodromy ma-
trix for a periodic orbit possesses two trivial eigenval-
ues equal to unity, due to periodicity of the solution
and the existence of a family. The eigenvectors as-
sociated with |λi| > 1 define an unstable invariant
subspace, where the nearby trajectories depart the
vicinity of the orbit. The eigenvectors corresponding
to |λi| < 1, however, identify a stable invariant sub-
space, with trajectories that asymptotically approach
the orbit. Each of these subspaces include manifolds
that may connect the orbit to other regions of the
Earth-Moon system. Families of quasi-periodic or-
bits are incorporated in an invariant center subspace,
EC, which is predicted by the existence of eigenval-
ues that lie along the unit circle, i.e., |λi| = 1. Each
quasi-periodic motion in the center subspace traces
out a closed surface or torus. Although these tra-
jectories do not exactly repeat over time, they are
bounded solutions. If the monodromy matrix pos-
sesses a pair of nontrivial eigenvalues that lie on the
unit circle, one family of quasi-periodic orbits exists.
Two pairs of unitary nontrivial eigenvalues, however,
indicate the existence of two quasi-periodic families.
In this case, nearby motions at the same energy level
neither depart nor approach the reference, but, rather
remain in its vicinity indefinitely. Similar to the evo-
lution of periodic orbits along a family, quasi-periodic
orbits also evolve along a family. In designing trajec-

tories that satisfy a given set of mission constraints,
quasi-periodic orbits supply structures that may offer
a better alternative than the corresponding periodic
orbit. Furthermore, the boundedness of a torus may
be retained in an ephemeris model when combined
with small maintenance maneuvers.

As the stability of a periodic orbit evolves along
a family, so too does the number of associated fam-
ilies of quasi-periodic orbits. In Figure 3, the num-
ber nm of pairs of unitary nontrivial eigenvalues is
summarized, and, equivalently, the number of quasi-
periodic families. In this figure, each plot corresponds
to sample members of a class of periodic orbits. In
Figure 3, each periodic orbit is represented by a sin-
gle marker in a two-dimensional space: the vertical
location corresponds to the Jacobi constant of the
periodic orbit, while the horizontal axis indicates the
associated period. Marker colors indicate the value of
nm and, therefore, the number of quasi-periodic fam-
ilies corresponding to a periodic orbit: none (blue),
1 (green), and 2 (red). Examination of Figure 3 pro-
vides a simple overview of the qualitative stability of
sample of periodic orbits in the CR3BP for the Earth-
Moon system. First, consider the resonant 1:3 planar
family (rp13). The absence of red markers indicates
that each member of the resonant 1:3 planar family
possesses stable/unstable manifolds, potentially en-
abling relative low ∆V transfers to the orbits. Fur-
thermore, green markers identify members of the res-
onant 1:3 planar family with nearby quasi-periodic
motion, that may be exploited during mission design.
Conversely, the L4/L5 short period family (SP45) is
comprised solely of members with two quasi-periodic
family in their vicinity. The L1 axial orbits, how-
ever, possess no quasi-periodic motion along the en-
tire family. Accordingly, L1 axial orbits (A1) do not
provide feasible options for missions that leverage the
boundedness of motion along a torus, e.g., a forma-
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tion of spacecraft. Considering these examples, the
description in Figure 3 enables preliminary identifi-
cation of reference orbits that produce quasi-periodic
motions, that may be incorporated into the mission
design process.

COMPUTATION OF
QUASI-PERIODIC ORBITS

Given the complexity involved in numerically defin-
ing a torus in a chaotic dynamical system, the com-
putation of quasi-periodic orbits in the CR3BP also
presents numerous challenges. One of the earliest
proposed methods for locating quasi-periodic orbits
near libration points leverages analytical approxima-
tions (from first- to fourth-order).[18, 19, 20] How-
ever, these approximations are only accurate in a
small neighborhood of the libration point, and are
not applicable in other regions of configuration space.
Several numerical algorithms have been proposed by
previous researchers to compute quasi-periodic orbits
in any region of the CR3BP.[21, 20, 22] However, the
range of validity of existing numerical methods for
computing families of quasi-periodic orbits is limited
and depends on both the family and the complex-
ity of the nearby flow. Nevertheless, two recently
developed strategies are employed in combination to
compute quasi-periodic orbits for this investigation.
The first method, introduced by Pavlak, involves only
enforcing continuity constraints to compute bounded
motion that likely lies near a quasi-periodic orbit.[16]
Although the computed solutions are not precisely
quasi-periodic, this methodology yields relatively ac-
curate predictions of the existence and shape of tori
within a family of quasi-periodic orbits. A second
approach employed by Olikara and Scheeres, recov-
ers the exact tori that emanate from a periodic orbit
with little computational difficulty. However, the nu-
merical detection of precisely quasi-periodic solutions
is limited to tori that can be described by two nonres-
onant frequencies. Thus, such limitations may yield
few quasi-periodic motions in a region with nearby
higher-order periodic orbits. These two approaches
can be used in combination to produce a vast selec-
tion of quasi-periodic orbits for use in a dynamical
catalog of ordered motions in the Earth-Moon sys-
tem.

The differential corrections algorithm described by
Pavlak supplies a relatively robust and computa-
tionally inexpensive method for computing approx-
imately quasi-periodic motions in various regions of
configuration space.[16] In particular, this strategy
is based on a similar scheme used to compute peri-

odic orbits, and can be straightforwardly extended to
higher-fidelity models. This methodology begins with
a periodic orbit, possessing a nontrivial center mani-
fold, that is decomposed into several arcs. These arcs
are repeated several times and result in multiple revo-
lutions of the periodic orbit as the initial guess. Next,
a perturbation is applied to the initial state along the
first arc in either the y- or z-direction of the rotat-
ing frame. An approximately quasi-periodic solution
can be generated from this slightly perturbed solution
by using a multiple shooting algorithm that enforces
continuity between neighboring arcs and the value of
the Jacobi constant. For subsequent solutions along
the family, a natural parameter continuation scheme
is employed, and the initial state along the first arc is
increasingly displaced from the original periodic or-
bit. Since the converged solutions are not precisely
quasi-periodic, the last several revolutions along the
solution are discarded. Nevertheless, the resulting
trajectory generally reflects the structure and behav-
ior of quasi-periodic orbits along a given family.

An alternative method for locating a quasi-periodic
orbit in the CR3BP relies on numerical computa-
tion of the corresponding two-dimensional invariant
torus using a stroboscopic mapping, as presented by
Olikara and Scheeres [23]. In particular, each torus is
described by two frequencies. One frequency, ω0, cor-
responds to motion along the associated periodic or-
bit and possesses a value that is near the inverse of the
orbital period. The second frequency, ω1, indicates
rotation in the transverse direction and is related to
the complex eigenvalue of the limiting periodic or-
bit. This numerical method employs the concept of
an invariant circle, formed by the intersection of the
torus and a higher dimensional plane. States that lie
along this invariant circle, when propagated forward
for a time equal to T0 = 2π/ω0, return to the circle
and also experience a rotation related to the trans-
verse frequency, ω1. To numerically compute the two-
dimensional torus using this stroboscopic mapping
constraint, an odd number of states along the invari-
ant circle are differentially corrected, along with the
corresponding frequencies. Although this procedure
produces an exact torus, it experiences numerical dif-
ficulties when the frequencies pass through low-order
resonances. In such cases, alternate numerical strate-
gies may be employed. Nevertheless, to construct an
initial guess, a periodic orbit that possesses a nontriv-
ial center subspace, along with the eigenvalues and
eigenvectors of its monodromy matrix, is employed.
In particular, at a selected location along the refer-
ence periodic orbit, an eigenvector that corresponds
to the center subspace is scaled by a small number
and rotated by 360 degrees, forming an initial guess
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for the invariant circle. Upon computing a small torus
near the reference periodic orbit, the differential cor-
rections process is continued to produce additional
tori along the family of quasi-periodic orbits at a
given energy level. Both procedures by Pavlak and
Olikara are implemented to compute quasi-periodic
orbits at various energy levels for different families in
the catalog, including halo, Lyapunov, vertical, dis-
tant retrograde, 2:1 and 3:1 resonant trajectories.

CHARACTERIZATION OF
QUASI-PERIODIC ORBITS

In addition to families of periodic orbits within the
Earth-Moon system, the existence of nearby quasi-
periodic motions significantly expands the design
space. In particular, these tori possess additional
degrees of freedom, while still retaining the bound-
edness that may be valuable in the design of long-
term space applications. Quasi-periodic orbits along
a family may exhibit a larger range of in-plane and
out-of-plane amplitudes than their periodic counter-
parts, enabling significant flexibility in the trajectory
design process. In fact, while a periodic orbit may
fail to meet a desired set of mission requirements,
arcs along a torus may provide viable alternatives.
Furthermore, the boundedness of quasi-periodic mo-
tion can be approximately retained when the selected
arcs are transitioned to a higher-fidelity model, such
as ephemeris. For instance, NASA’s ARTEMIS mis-
sion successfully exploited segments of quasi-periodic
trajectories near L1 and L2 in the Earth-Moon sys-
tem for the science orbits of its two spacecraft.

Similar to the inclusion of periodic orbits in an ef-
ficient trajectory design framework, the characteriza-
tion of quasi-periodic motions is warranted to facili-
tate their inclusions in simple trade spaces. First con-
sider a geometric description of a quasi-periodic orbit,
essentially describing the shape and size of the asso-
ciated torus. Such geometric quantities may include
orbit box sizes, cone angles, periapsis and apoapsis
distances. This information may be useful in the de-
sign of trajectories for missions that are constrained
by requirements on altitude or even directionality for
communications, line-of-sight or shadow avoidance.
Each of these quantities that may characterize quasi-
periodic orbits can be equally applied to the exactly
periodic motion.

To characterize the size of a quasi-periodic or-
bit in configuration space, a simple geometric box is
be employed. In particular, consider the smallest box
that encloses the entire quasi-periodic orbit with each
side aligned and parallel to the x̂, ŷ, ẑ unit vectors in

Figure 4: Box sizes schematics.

the CR3BP, as depicted in Figure 4. The length of
each box dimension is defined as Bx, By and Bz, rep-
resenting the maximum end-to-end excursion of the
trajectory in each spatial direction as defined in the
rotating frame. Note that, by this definition, each
box dimension does not directly correspond to the
orbit amplitudes Ay and Az, which are defined as
the maximum magnitudes of the y and z variables
along the trajectory. For example, consider an L1

northern halo orbit, which is not symmetric across
the xy-plane. In this case, the value of Az is equal
to the maximum excursion of the trajectory in the
positive ẑ direction. This quantity is greater than
the maximum extension of the trajectory in the neg-
ative ẑ direction. In contrast, the value of Bz is equal
to the difference between the most positive and most
negative values of z along the trajectory. Accord-
ingly the value of Bz is not equivalent to twice the
amplitude Az, i.e., Bz 6= 2Az. Despite the simplic-
ity of this geometric representation, Bx, By, and Bz,
supply a straightforward characterization of the ‘size’
of the quasi-periodic solution. Consider, for exam-
ple, quasi-periodic orbits within the center subspace
of an L1 vertical orbit. As the family evolves away
from the periodic orbit, the trajectories expand in the
ŷ direction. This variation in the size of the quasi-
periodic orbit may be straightforwardly visualized by
an increasing value of By. Similarly, a planar peri-
odic orbit may possess an associated family of quasi-
periodic orbits that extend out of the Earth-Moon
plane. The parameter Bz offers an estimate of the
maximum variation of z along each trajectory. Such
information may be valuable in preliminary evalua-
tion of geometrical mission constraints.

In addition to size, the maximum angular devia-
tion from a given direction is included in the geomet-
rical description of a quasi-periodic orbit. Such in-
formation can be represented using cone angles, with
an axis of symmetry aligned along the x̂ axis of the
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Figure 5: Cone angles schematics.

rotating frame. The base point for each cone is lo-
cated at one of the primary bodies: either the Earth
or the Moon. Using this reference point, two cones
are defined: one external cone and one internal cone.
The external cone, as depicted in Figure 5 is con-
structed as the smallest conical surface that encom-
passes the entire trajectory. The corresponding cone
angle is equivalent to the largest angular deviation of
the orbit with respect to the x-axis of the rotating
frame. Similarly, the internal cone is constructed as
the largest cone about the x-axis that lies inside the
entire trajectory path. As portrayed in Figure 5, the
associated cone angle denotes the minimum angular
deviation of the orbit with respect to the x-axis. For
orbits that pass directly through the x-axis, an inter-
nal cone cannot be constructed. Additionally, if the
base point of the cone lies within the orbital path,
neither the internal nor external cones can be com-
puted. Despite the simplicity of this geometric rep-
resentation, cone angles supply valuable information
for preliminary assessment of directional constraints
such as visibility requirements, possibly due to sci-
ence, communication or power requirements. For ex-
ample, consider an L2-based orbit. A constraint on
continuous communication can be translated to a re-
quirement on lunar occultation avoidance. To main-
tain this direct link to the Earth the spacecraft must,
therefore, remain outside a small 0.25 degree internal
cone. By characterizing quasi-periodic motions via
cone angles, such constraints can be rapidly evalu-
ated for a large set of trajectories, thereby allowing
the user to explore the design space.

Characterization of quasi-periodic motions via sim-
ple geometrical quantities facilitates the comparison
of a large set of periodic and quasi-periodic orbits. To
visualize that comparison, plots such as Figure 6 are
employed. Displayed on this plot, dots correspond
to periodic orbits in a given family, colored by the

corresponding Jacobi constant. The value of Bz for
each periodic orbit, i.e., a dot in the figure, is plotted
as a function of an integer index that simply repre-
sents the order the trajectories appear in the dataset,
without any sorting. For the case of the DROs, each
member is planar, resulting in a series of periodic
orbits that aligns with the horizontal axis, Bz = 0.
Using Figure 6 as a reference, each family of quasi-
periodic solutions is represented as a single vertical
line originating at the periodic orbit and encompasses
the range of values of Bz along the computed portion
of the quasi-periodic family. The color of each ver-
tical bar reflects the number of nontrivial complex
modes nm within the center subspace. By employing
simple representations such as the plot in Figure 6,
the potential for quasi-periodic motions to satisfy a
given set of mission constraints may be rapidly evalu-
ated. For instance, three-dimensional periodic DROs
only exist for a limited range of y-amplitudes, Jacobi
constants and periods. However, three-dimensional
quasi-periodic DROs can significantly expand the set
of solutions that both exhibit the motion typical of
the DRO family and extend out of the xy-plane.

Figure 6: Comparison of the out-of-plane excursion
in terms of Bz for periodic and quasi-periodic DRO
orbits.

Arcs along the complete quasi-periodic trajectory
are often more valuable than the entire torus. As
demonstrated in previous applications, history pro-
files for selected variables are an effective way to iden-
tify portions of a quasi-periodic orbit that may sat-
isfy certain mission requirements.[24] These time his-
tory plots depict the temporal evolution of a param-
eter of interest; a high number of revolutions is war-
ranted to sufficiently capture the global behavior of
the quasi-periodic motion. Mission requirements can
often be translated into thresholds on variables of in-
terest. Such variables may vary significantly along
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a quasi-periodic orbit, especially in comparison to
the reference periodic solution. For example, Fig-
ure 7 depicts the time history for the y-component
of the state along an L2 vertical quasi-periodic orbit.
The y-component oscillates within a [-40000,40000]
km range for the quasi-periodic solution, which is re-
markably larger than the [-13000,13000] km range
for the periodic motion. For some time intervals
along the quasi-periodic orbit, the variable may re-
main within some of the given thresholds. Such in-
tervals are quickly identified on a time history plot.
An approximate envelope curve may also be numeri-
cally computed and overlaid on the time history, as in
Figure 7. To calculate the envelope the extreme val-
ues over 1-3 revolutions are detected. Then, the en-
velope is estimated using a spline interpolating those
extreme values. The spline approximation becomes
inaccurate at the boundaries of the history profile,
due to extrapolation from the last available interpo-
lating point. In general, the selected time intervals
correspond to arcs of the quasi-periodic orbit that
meet some of the mission specifications and can aid
in the construction of a feasible trajectory.
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Figure 7: Representative history plot for a L2 vertical
quasi-periodic orbit.

IMPLEMENTATION IN
INTERACTIVE GRAPHICAL

INTERFACE

Using a simple set of characteristic quantities, quasi-
periodic solutions are incorporated into an efficient
framework for orbit comparison and design. This ad-
ditional framework extends a pre-existing interactive
catalog of periodic orbits for the quick selection of tra-
jectories. The interactive catalog serves as a resource

to obtain preliminary arcs prior to the use of an end-
to-end design tool for complete path construction and
transition to ephemeris. For demonstration, the cata-
log is implemented as a prototype Graphical User In-
terface (GUI).[15] The prototype is assembled in the
MATLAB R© environment. A supplemental and inter-
active module is built to visualize and compare quasi-
periodic solutions from the CR3BP, as displayed in
Figure 8. The analysis originates in the upper-left
panel, where selected characteristics for a family of
periodic orbits and their corresponding quasi-periodic
motions are displayed in the form of a representation
similar to Figure 6. Relevant characteristics are dis-
played on the vertical axis and can be selected by the
user. The subplot within this panel displays the num-
ber of quasi-periodic families associated with each
periodic orbit. A selector, such as a sliding bar on
the graph allows the user to select the quasi-periodic
family of interest. A quasi-periodic trajectory that is
representative of the selected family of tori appears in
the upper-right panel and is plotted in configuration
space. The lower panel reports the time history for
a selected quantity of interest. Using the functions
associated with this panel, the user can set thresh-
olds on a given variable and enable automatic detec-
tion of the time intervals along a quasi-periodic orbit
satisfying these pre-defined limits. Time intervals of
interest can also be manually selected. Ultimately,
the time history enables the selection of segments or
arcs along a quasi-periodic solution that satisfy the
mission requirements. Following arc selection, the
user can export any candidate solutions for use in an
advanced trajectory design suite for further exami-
nation. Given the iterative nature of the trajectory
design process, such a catalog may be used interac-
tively to explore additional candidate orbits.

Figure 8: Screenshot of the GUI prototype for the
quick comparison and selection of quasi-periodic arcs.
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SAMPLE APPLICATIONS

Since the dynamical environment in the Earth-Moon
system is reasonably approximated by the CR3BP,
an interactive catalog of periodic and quasi-periodic
solutions can be used for preliminary trajectory de-
sign in various mission scenarios. Given a mission
concept and a set of constraints on the path of the
spacecraft, the interactive catalog can be employed
to reveal a variety of orbital options, thereby allevi-
ating the complexity of searching the design space in
a higher-fidelity ephemeris model. Based on the in-
tended region in the Earth-Moon space for the space-
craft, the user can first reduce the set of candidate
orbits by identifying feasible regions of configuration
space, e.g., in the vicinity of a given libration point
or near the Moon. The user can then simultaneously
explore two-dimensional trade-spaces involving each
family to examine whether any of the members sat-
isfy the given mission constraints. For periodic orbit
families that possess a nontrivial center subspace, the
user may also explore one family at a time and ana-
lyze the characteristics of any nearby quasi-periodic
motion. Through this selection strategy, the user can
identify and export orbit options for analysis in a
higher-fidelity model. This process is demonstrated
for two mission design applications.

L2 Gateway Operations

Consider a long-term Multi-Purpose Lunar Fraction-
ated System (MPLFS) consisting of a formation of
spacecraft stationed near the Earth-Moon L2 gate-
way. The spacecraft comprising the MPLFS could
provide various services for operations in cislunar
and/or interplanetary space. Locating the MPLFS
near L2 could enable the exploitation of natural
multi-body dynamics either for a spacecraft that may
rendezvous with the formation or upon deployment of
any of the individual modules to their final destina-
tion. For instance, an MPLFS that may facilitate
lunar operations could consist of several spacecraft
including a fueling depot, multiple on-orbit storage
vehicles, as well as a communications relay. Since
the MPLFS must be located near the L2, the set
of candidate orbits for this mission can be signif-
icantly reduced. Depending upon the mission sce-
nario, it may be crucial to maintain continuous con-
tact with the Earth. This requirement can be trans-
lated into a geometrical constraint on the path, such
that the MPLFS should maintain a constant line-of-
sight to the Earth. In addition, the L1 gateway may
be used as a low-cost transfer mechanism between
the Earth and lunar vicinities. Accordingly, a vehicle

that originates near the Earth may pass through the
L1 gateway in order to rendezvous with the MPLFS.
To ensure that any such transfers for a crewed ve-
hicle, for example, are possible and not prohibitive
in terms of fuel consumption, a loose constraint can
be placed on the energy level of the candidate orbit
for the MPLFS. Specifically, the Jacobi constant of
the MPLFS orbit should be comparable to the Ja-
cobi constant value of L1. Operationally, it is also
convenient for all the vehicles to remain in a close
formation. Orbit options that satisfy each of these
constraints can be rapidly identified using the inter-
active catalog.

The interactive catalog enables rapid identification
of a preliminary baseline solution for the MPLFS con-
cept. First, consider the ranges of Jacobi constant
values for the L1 and L2 families of periodic orbits
available in the catalog. The simple bar plots in the
catalog reveal that the JC ranges along these families
generally overlap.[15] This correspondence in Jacobi
constant is indicative of potentially low-cost transfers
between the L1 and L2 regions. Thus, each of the
families of L2 orbits possesses members that satisfy
the loose constraint on the Jacobi constant. Next,
the type of baseline motion for the MPLFS - periodic
or quasi-periodic - is selected. For multiple space-
craft that lie along the same periodic orbit, there are
limited orbital geometries that enable a configura-
tion where the first and last spacecraft remain close
over time. Alternatively, placing several spacecraft
along the surface of a quasi-periodic orbit may en-
sure that each member of the spacecraft formation
remains in sufficiently close proximity to the other
modules. The feasibility of leveraging quasi-periodic
motion in formation flight has been demonstrated
by previous researchers.[25] Accordingly, the quasi-
periodic selection tool within the catalog is employed.
Recall from Figure 3, that quasi-periodic solutions
are only available along the L2 Lyapunov, vertical,
and halo orbits. Since the L2 axial family does not
possess any members with a center subspace, these
orbits are discarded from the set of candidate solu-
tions. Instead, each of the L2 Lyapunov, vertical,
and halo orbit families are analyzed individually to
identify any solutions that satisfy the continual line-
of-sight constraint.

The quasi-periodic orbits that lie in the center sub-
space of the L2 Lyapunov family are examined using
the catalog to identify whether any solutions can pro-
vide continuous communications to the Earth. A con-
tinuous line-of-sight to the Earth from a spacecraft in
the MPLFS is possible when the formation lies out-
side of the lunar Earth shadow. This requirement
is straightforwardly translated to a simple geomet-
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ric constraint that the candidate orbit must not pass
within the angular radius of the Moon as observed
from Earth, i.e., the orbit must remain outside a 0.25
degree cone constructed with an axis of symmetry
aligned with the x-axis and its base point located at
the Earth. Consider first an L2 Lyapunov periodic
orbit. Since this orbit lies within the xy-plane, it
periodically passes through the lunar shadow every
half revolution. The out-of-plane oscillations associ-
ated with nearby quasi-periodic orbits may enable re-
peated passages that are outside of this shadow cone.
In fact, Figure 9 depicts the out-of-plane extension
via the box size, Bz, for the largest available quasi-
periodic solutions associated to each L2 Lyapunov
orbit with a center subspace. For this family of or-
bits, the evolution of the nearby quasi-periodic orbits
exhibits one of two behaviors. For Jacobi constant
values within the range JC = [3.15, 3.17], the cor-
responding families of quasi-periodic tori connect a
member of the L2 Lyapunov orbit to a member of the
L2 vertical family at the same energy level. Accord-
ingly, quasi-periodic orbits along a family initially
resemble a Lyapunov orbit. As the family evolves,
however, the tori gradually transform to resemble a
vertical orbit, as depicted in Figure 9(a). For an in-
terval of Jacobi constant values JC = [2.95, 3.00], the
L2 Lyapunov and vertical orbits are no longer linked
via a family of tori. Rather, the quasi-periodic orbits
evolve towards the geometry depicted in Figure 9(b).
For brevity, only quasi-periodic orbits with a Jacobi
constant in the interval JC = [3.15, 3.17] are inves-
tigated to identify orbits that satisfy the continuous
line-of-sight requirement for the MPLFS mission.

index

(a)

(b)

Figure 9: Out-of-plane extension and geometry of
available quasi-periodic solutions associated to dif-
ferent L2 Lyapunov orbits (indentified by the catalog
index).

To assess whether L2 Lyapunov quasi-periodic

motion may satisfy the mission constraints for the
MPLFS, the angular time histories for the tori that
exist at JC = 3.17 are rapidly examined using the
catalog. In addition to enabling visualization of the
configuration space, the catalog interface also dis-
plays the time history of a user-selected variable of
interest. In this sample mission scenario, the in-
stantaneous angular deviation of the spacecraft from
the x-axis, as measured from the Earth, is leveraged
to determine whether continuous communication to
Earth is possible for a given quasi-periodic orbit. For
the selected torus, the catalog includes a capability
for automatic detection of segments of the orbit that
satisfy a given constraint on one of the included char-
acteristic parameters. As an example, this automatic
detection is applied to an L2 quasi-periodic orbit that
exists at a Jacobi constant of JC = 3.17, as dis-
played by the gray toroidal surface in Figure 10(b).
The time history for the angular deviation of motion
along this torus is displayed in Figure 10(a). A seg-
ment of the quasi-periodic orbit that remains outside
of the lunar shadow cone is highlighted in red. Recall
that for the MPLFS mission scenario, the baseline
orbital motion must allow a continuous line-of-sight
to the Earth. However, the highlighted segment in
Figure 10(a) only spans 150 days. For a different
mission scenario, 150 days may be a sufficiently long
visibility window and, therefore, render this quasi-
periodic orbit a candidate solution. Nevertheless, for
the MPLFS example, the L2 Lyapunov quasi-periodic
orbits do not provide a solution that remains perma-
nently outside of the lunar shadow cone.

(a) Angle separation history. (b) y − z view of the
torus.

Figure 10: L2 Lyapunov quasi-periodic arc that sat-
isfies the continuous coverage requirement for the
MPLFS mission example.

Quasi-periodic motions emanating from the three-
dimensional L2 vertical families may also provide
candidate orbits for the MPLFS spacecraft forma-
tion. Using the catalog interface, several L2 vertical
quasi-periodic motions are examined. Similar to the
L2 Lyapunov family, quasi-periodic orbits near some
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members of the L2 vertical family only slightly de-
viate from the originating periodic solution. Other
L2 vertical orbits, however, possess nearby tori that
exhibit significantly different geometries across the
family. Despite this variability in the behavior of the
L2 quasi-periodic orbits, each torus still passes be-
hind the Moon. Accordingly, the MPLFS formation
would pass within the lunar shadow cone. For in-
stance, consider a sample L2 vertical quasi-periodic
orbit as displayed in Figure 11. The corresponding
time history for this quasi-periodic motion is depicted
in Figure 11(a). Since the angular deviation along the
trajectory passes within the lunar shadow cone angle
twice within the plotted time period, only a 100 day
segment along the L2 vertical quasi-periodic orbit sat-
isfies the line-of-sight constraint. Accordingly, the L2

vertical family does not provide a viable candidate
solution for the MPLFS mission concept.

(a) Angle separation history. (b) y−z view of
the torus.

Figure 11: L2 vertical quasi-periodic arc that satisfies
the continuous coverage requirement for the MPLFS
mission example.

Additional candidate quasi-periodic orbits em-
anate from the L2 halo family. Since the major-
ity of members in this family that possess a non-
trivial center subspace also satisfy the continuous
line-of-sight constraint for the MLPFS mission con-
cept, quasi-periodic solutions near the reference pe-
riodic orbit also remain continuously visible from
Earth. As a family of L2 halo quasi-periodic or-
bit evolves away from the reference periodic solu-
tion, however, some tori may pierce the lunar shadow
cone. Accordingly, an interactive catalog of periodic
and quasi-periodic solutions provides a straightfor-
ward and rapid method for identifying the space of
feasible solutions. Consider the large L2 halo quasi-
periodic orbit in Figure 12(b), which possesses a Ja-
cobi constant of JC = 3.15. For this orbit, the cata-
log automatically highlights trajectory segments that
provide a line-of-sight to the Earth. As portrayed in

Figure 12(a), the MPLFS can maintain a 550 day-
long Earth-visibility window. While this time inter-
val may be feasible for many mission scenarios, the
selected quasi-periodic orbit does not provide contin-
uous line-of-sight for a multi-year mission. To iden-
tify a baseline trajectory with indefinite visibility at
this same energy level, the torus size may be reduced.
For instance, consider the smaller torus displayed in
Figure 13(b). As evident from the angular deviation
time history in Figure 13(a), motion along the quasi-
periodic orbit never passes within the lunar shadow
cone. Accordingly, this quasi-periodic orbit supplies
a candidate baseline orbit for the MPLFS mission
scenario. To identify an alternate candidate orbit
that satisfies the continuous visibility requirements,
tori near other members of the L2 halo family are
explored. Near rectilinear halo orbits, for example,
produce viable candidate tori. For instance, motion
along the torus depicted in Figure 14(a) remains en-
tirely outside the lunar shadow cone. The quasi-
periodic motion along this torus, identified and ex-
ported from the catalog, can be transition to a higher-
fidelity design environment such as ATD. The result-
ing solution, differentially corrected for continuity in
an point mass ephemeris model of the Earth, Moon
and Sun, is plotted in Figure 14(b) and requires no
maintenance maneuvers. As demonstrated through
this example, a catalog of periodic and quasi-periodic
solutions in the CR3BP facilitates exploration of or-
bit options that satisfy the constraints associated
with a general mission concept in the Earth-Moon
system. Furthermore, the resulting analysis reflects
the dynamical structures that are retained in a high
fidelity ephemeris model.

In-Orbit Lunar Facility

Rapid access and visualization of families of quasi-
periodic solutions also supports a well-informed ex-
amination of natural trajectories that enables mis-
sion scenarios for a single spacecraft. Consider, for
example, the preliminary selection of a baseline orbit
for a long-term human habitat in the lunar vicinity.
In addition to establishing a long-term lunar pres-
ence, exploration of the polar regions of the Moon
has recently garnered interest for its scientific return.
Accordingly, a space-based infrastructure that orbits
the Moon should also support manned excursions to
the lunar poles. This requirement can be translated
into a constraint that the spacecraft must be able to
view the north (or south) polar regions from above (or
below). Due to their favorable stability properties,
members of the DRO family are frequently proposed
as reference orbits for lunar infrastructure. Smaller
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(a) Angle separation history.

(b) y − z view of the torus.

Figure 12: L2 halo quasi-periodic arc that satisfies
the continuous coverage requirement for the MPLFS
mission example.

periodic members of the DRO family lie entirely
within the Earth-Moon orbital plane, limiting the vis-
ibility of the polar regions. In a preliminary analysis
of orbit options, the interactive catalog is used to
identify any nearby quasi-periodic DRO orbits that
regularly possess an out-of-plane extension above the
lunar radius. Thus, the geometric size of a candi-
date quasi-periodic solution in the z-direction, Bz,
should be greater than the diameter of the Moon. In
fact, some quasi-periodic members of the DRO fam-
ily do extend out-of-plane, as depicted by the nonzero
values of Bz corresponding to the shaded regions in
Figure 15. While periodic members of the DRO fam-
ily may not support the described lunar infrastruc-
ture mission, a catalog of orbits and their character-
istics rapidly reveals that quasi-periodic orbits can
certainly meet the mission requirements. Consider,
for example, a small DRO with an orbital period of
13.2 days, similar to the proposed reference orbit for
the asteroid redirect mission.[2] Since this orbit pos-
sesses a two-dimensional center subspace, there are
three-dimensional quasi-periodic orbits that exist in
its vicinity. Using the catalog, a large torus from this
family of quasi-periodic orbits is selected. The auto-
matic detection feature in the quasi-periodic module
of the catalog is employed to identify arcs along the
quasi-periodic trajectory that pass above the lunar
radius in the z-direction. These segments are high-
lighted in the z-component time history of the three-
dimensional quasi-periodic motion, portrayed in Fig-
ure 16(a). As evident in this figure, a spacecraft in
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(a) Angle separation history.

(b) y − z view of the torus.

Figure 13: L2 halo quasi-periodic torus that satisfies
the continuous coverage requirement for the MPLFS
mission example.

(a) Quasi-periodic torus in
CR3BP.
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(b) Solution converged in
ephemeris.

Figure 14: Comparison of near rectilinear halo tra-
jectory for different Earth-Moon system models.
Ephemeris solution converged in ATD for Jan 1, 2023,
including Earth, Moon, and Sun gravity.

this reference orbits frequently passes above the north
pole, potentially supporting crewed or robotic excur-
sions to these regions. In fact, these passages provide
8 days of continuous coverage every 10 days. A sam-
ple segment along the gray torus is highlighted in
red in Figure 16(b). Longer or more frequent polar
viewing windows may be obtained by selecting an al-
ternate torus, or varying the reference periodic DRO.
This complex design space is rapidly explored using a
catalog of periodic and quasi-periodic solutions. The
resulting analysis can be verified by correcting the se-
lected solutions in a higher-fidelity ephemeris model.
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Figure 15: Out-of-plane extension and geometry of
available quasi-periodic solutions associated to differ-
ent DROs (indentified by the catalog index).

(a) Out-of-plane component history.

(b) x− z view of the torus.

Figure 16: DRO quasi-periodic arc that enables cov-
erage of the lunar poles for an in-orbit space habit
near the Moon.

CONCLUDING REMARKS

To support the design of trajectories in the Earth-
Moon system, a graphical environment for the com-
parison and selection of candidate orbits is explored.
This framework is based on an interactive catalog of
solutions for the CR3BP, a simplified gravitational
model that enables preliminary trajectory design the
Earth-Moon system. The set of readily available so-
lutions incorporated in the catalog include both pe-
riodic and quasi-periodic orbits. These bounded mo-
tions are straightforwardly characterized via simple
geometrical quantities that reflect both the size and
behavior. Along with interactive visualizations of
the trade space, these characteristics parameters are
useful in identifying ordered motions that satisfy a
given mission constraint. In fact, the capabilities of
an interactive framework for exploring and conduct-

ing trade-offs during the preliminary mission design
phase are apparent in the design of mission concepts
that support operations within either cislunar or in-
terplanetary space. Furthermore, this early analysis
of candidate orbits in the CR3BP is validated when
transitioned to an ephemeris model, thereby demon-
strating the utility of a catalog framework.
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