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STABILITY OF ORBITS NEAR
LARGE MASS RATIO BINARY SYSTEMS

Natasha Bosanac∗, Kathleen C. Howell† and Ephraim Fischbach‡

With recent scientific interest into the composition, origin and dynamical environment of
small bodies in the solar system, binary asteroids present a potential target for manned and
robotic missions. In this investigation, periodic motions near a large mass ratio binary are ex-
plored within the context of the circular restricted three-body problem. Specifically, stability
analysis is used to evaluate the effect of the mass ratio on the structure of families of peri-
odic orbits. Such analysis is useful in a variety of applications, including trajectory design
in a binary asteroid system or determining possible motions for exoplanets in the vicinity of
binary star systems.

INTRODUCTION

With recent scientific interest into the composition, origin and dynamical environment of small bodies in
the solar system, asteroids have become the target of an increasing number of manned and robotic mission
concepts. Among the expansive array of asteroids that have been observed and catalogued, approximately
16% are members of binary or triple systems, none of which have yet been visited by a spacecraft.1 Many of
these observed binaries possess significantly larger mass ratios than pairs in the Sun-planet and planet-moon
systems commonly examined within the solar system. In addition, the absolute mass of each companion may
not be accurately inferred from orbit observations without further information about the composition of the
asteroid. Similar uncertainties also occur in mass estimates for bodies that exist beyond the solar system,
including binary star systems with large mass ratios. Since the dynamical environment in the vicinity of
a binary is inherently chaotic, uncertainties in the relative mass of each body may significantly affect the
trajectory followed by a small object.

In this investigation, periodic motions of a spacecraft in the vicinity of a large mass ratio binary system are
explored within the context of the circular restricted three-body problem. Although asteroids possess irregular
shapes, the restricted problem offers a reasonable approximation to higher-order gravitational models. In
other studies, this simplified model has proven invaluable in a preliminary exploration of the infinite variety
of behaviors that a spacecraft can exhibit within a binary system.2 Of particular interest are periodic orbits,
which contribute to an underlying structure including the potential for attracting or repelling trajectories in
their vicinity. Accordingly, an analysis of the stability of families of orbits in the restricted problem can
be employed to guide trajectory design. For instance, stable orbits might be preferred for long scientific
observation of a binary asteroid. If there are significant uncertainties in the companion masses and the orbital
stability is not observed to be sensitive to the mass ratio, the corresponding orbit may be a good candidate
for further analysis in higher-fidelity models. Similar analysis could also be insightful to identify possible
pathways for capture of an exoplanet around a binary star. In such extrasolar systems, the masses of the
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two stars are often approximated from observational data, and may vary over time due to mass exchange,
producing an uncertainty in the mass ratio. Additionally, stability analysis is also used to locate a bifurcation
along a family of orbits, which can indicate either a structural change or the formation of a new family. If a
well-known family of orbits disappears at a nearby mass ratio, it might not exist for the true masses in the
target binary system. The detection of a new family of orbits may offer alternative options for examination
that are both insensitive to changes in the mass ratio and satisfy a given set of requirements.

To visualize the stability across a given family of orbits at various mass ratios, a two-dimensional rep-
resentation, similar to an exclusion plot, is employed. Exclusion plots are often used in physics to depict
constraints on combinations of parameters.3 This concept is extended to represent the stability of periodic
orbits in the vicinity of binary systems, with each orbit characterized by two parameters: the orbital period
and the mass ratio. From Floquet’s theorem, reciprocal pairs of eigenvalues are frequently employed to qual-
itatively classify the stability of a periodic orbit. Through analysis of the stability index, i.e., the sum of each
pair of eigenvalues, three cases emerge: stability, positive instability and negative instability.4 Each periodic
orbit can, therefore, be represented on an exclusion plot as a point colored by the type of linear stability it
exhibits. The resulting composite stability representation corresponding to a specified family, over a range
of mass ratios, offers a simple visualization of the orbital stability of members across the family, thereby
enabling the detection of any structural changes, or bifurcations. The figures constructed in this investigation
resemble Benest’s stability diagrams.5 However, key differences exist, including: the use of the orbital period
as a constant comparable quantity and the application to a wider variety of families. In fact, this investigation
examines exclusion plots for the following simply-periodic families at mass ratios in the range, µ = [0.1, 0.5]:
Lyapunov orbits about the L1 collinear equilibrium point; distant retrograde orbits about each primary; dis-
tant and low prograde orbits about the larger primary; and retrograde orbits that orbit both primaries. As
a comparison to the Sun-planet and planet-moon systems commonly examined in the solar system, as well
as binaries with less evenly distributed masses, composite stability representations are extended to include,
where applicable, mass ratios in the range µ = [1× 10−6, 0.1].

DYNAMICAL MODEL

To facilitate exploration of the dynamical structure in the vicinity of a binary, the circular restricted three-
body problem (CR3BP) is employed. This dynamical model, which serves as a reasonable first approximation
to the actual gravitational field, reflects the motion of a massless particle under the influence of the point-mass
gravitational attractions of two primaries. By convention, the body of interest, P3, moves in the vicinity of
the larger and smaller primaries, P1 and P2, each body Pi possessing a mass mi. In the CR3BP, a rotating
coordinate frame, x̂ŷẑ, is introduced and oriented relative to an inertial frame, X̂Ŷ Ẑ. In the frame that rotates
with the motion of the two primaries, the location of P3, measured with respect to the barycenter, is written
in terms of the nondimensional coordinates (x, y, z). Length quantities are nondimensionalized such that the
distance between P1 and P2 is equal to a constant value of one. In addition, time is nondimensionalized such
that the mean motion of the primaries is equal to one, while the characteristic mass quantity, m∗, is the sum
of the masses of the primaries. The characteristic mass quantity yields nondimensional mass values for P2

and P1 equal to µ and (1− µ), respectively. In the rotating frame, the equations of motion for the spacecraft
can be written as:

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
(1)

where the pseudo-potential function, U = 1
2 (x2 + y2) + 1−µ

d + µ
r ; then, d =

√
(x+ µ)2 + y2 + z2 and

r =
√

(x− 1 + µ)2 + y2 + z2. This pseudopotential function can be exploited to develop the energy integral
that corresponds to the equations of motion as formulated in the rotating frame. Since the pseudopotential
is autonomous, its derivative with respect to time is always equal to zero. A constant energy integral, C,
therefore, exists and is equal to:

C = x2 + y2 +
2(1− µ)

r1
+

2µ

r2
− ẋ2 − ẏ2 − ż2 (2)

This energy integral is the well-known Jacobi constant in the CR3BP.6
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Figure 1: Zero velocity curves in the
CR3BP at an energy level C = 3.885
in a system with µ = 0.3.

In the absence of an analytical solution to the nonlinear differen-
tial equations, significant insight into the dynamics in the CR3BP
emerges from particular solutions. In this dynamical model, there
exist five equilibrium points, labelled Li, for i = 1, 2, 3, 4, 5 and their
relative locations are depicted by red diamonds in Figure 1 for a sys-
tem with a mass ratio of µ = 0.3. Also displayed in this figure are
sample zero velocity curves at a Jacobi constant value of 3.885. The
gray shaded area represents a forbidden region where a particle would
possess an imaginary velocity, while white regions of allowable mo-
tion are labelled as displayed in Figure 1. The curve bounding this
forbidden region is constructed numerically by the intersection of an
infinite set of points that possess a velocity of zero, relative to the
rotating frame, with the xy-plane.4 Within the bounds of these zero-
velocity curves, there are infinite possible sets of initial conditions. At
various values of the energy constant, four types of steady-state solu-
tions exist: equilibrium points, periodic orbits, quasi-periodic orbits,
and chaotic motion.7 Each of these motions can be examined using
concepts developed from dynamical systems theory.8

PERIODIC ORBITS

Of particular interest in this investigation are planar, periodic solutions, which lie within the plane of
motion of the two primaries and repeat after a period, T . In fact, the dense set of periodic orbits in the
CR3BP, which exist in continuous families, form the underlying structure of the phase space: a stable orbit
attracts trajectories in its vicinity, while trajectories near an unstable orbit flow away from the orbit.12 In
the vicinity of stable periodic orbits are quasi-periodic orbits, which trace out the surface of a torus. This
boundedness may be approximately retained in a higher-fidelity gravitational environment. Accordingly, the
search for stable periodic orbits may be useful in the design of parking orbits for observation of surface
activities during a mission to a binary asteroid, for example. Unstable orbits, however, are often utilized as
transfer mechanisms between various regions of the phase space. This saddle-like behavior can be exploited
during exploratory missions to collect scientific data about both primaries in a binary asteroid system, as well
as in modeling the capture or ejection of exoplanets from binary star systems. Thus, identifying periodic
orbits and evaluating their stability delivers significant insight into the underlying structures in their vicinity.

Periodic orbits can encircle either one or both primaries in any direction in the rotating frame. For clarity,
some definitions are useful. At any instant, a trajectory in the rotating frame with an angular momentum
vector with respect to one of the primaries in the +ẑ direction is defined as prograde.4 Correspondingly,
a state along a retrograde path possesses an angular momentum vector directed in the −ẑ direction. In the
rotating frame, a periodic orbit can appear to wind about one of the primaries in an entirely prograde or
retrograde direction, or alternate between the two directions as it encircles one or both primaries.

Stability

The stability of a periodic orbit is typically deduced from the monodromy matrix, defined as the state
transition matrix (STM) propagated for precisely one period of the orbit.9 Given a reference planar periodic
orbit, the solution that approximates a nearby arc is determined using the linear variational equations of
motion. The solution describing the relative neighboring arc is written as δx̄(t) = Φ(t, 0)δx̄(t0) where
δx̄(t0) is the vector variation with respect to the initial state along the orbit and Φ(t, 0) is the state transition
matrix, essentially a linear mapping from t0 to a time t.10 Via Floquet theory, the monodromy matrix of the
reference periodic orbit is decomposed into the following form:

Φ(T, 0) = V(0)eΩTV(0)−1 (3)

where the diagonal elements of Ω are the Poincaré exponents, Ωi, for i = 1...6.10 Since eΩT is a diagonal
matrix, V(0) is a matrix that is formed from the eigenvectors of the monodromy matrix, Φ(T, 0), and the
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Poincaré exponents are related to its eigenvalues such that λi = eΩiT . The eigenvalues of the monodromy
matrix reflect the characteristics of the linear approximation to the dynamics; however, the nontrivial eigen-
values also supply insight into the stability of the original, nonlinear reference solution.

Each planar, periodic orbit, any of which may exist in the full three-dimensional space, possesses a mon-
odromy matrix that can be decomposed into six eigenvalues and their associated eigenvectors.10 Two of the
eigenvalues are equal to unity due to periodicity; the other four nontrivial eigenvalues may be represented in
the form λ = a± bi, in terms of two real numbers, a and b. Depending on the value of a and b, three specific
types of eigenvalues emerge: real, complex, and imaginary. Regardless of the form of these eigenvalues,
however, they appear as reciprocal pairs due to the symplectic properties of the state transition matrix. A
stability index is defined as the sum of each pair of reciprocal eigenvalues, equal to s = λ + 1

λ .4 From the
Lyapunov definition of stability, a periodic orbit that exhibits stability has a pair of complex or imaginary
eigenvalues, λ1, λ2 = a± bi, and therefore a stability index between s = −2 and s = 2. A pair of reciprocal
eigenvalues, |λ1| = a > 1 and |λ2| = 1/a < 1, however, correspond to instability.9 Unstable periodic
orbits can, therefore, be identified by at least one stability index with a magnitude greater than two. Since
the stability of a planar periodic orbit reflects the behavior of solutions within its vicinity, the parameter s
reduces the complexity in visualizing the stability of orbits along a family at various values of the mass ratio.

Bifurcations

In the CR3BP, periodic orbits exist in families that, for a given mass ratio, depend upon the energy constant,
C. Varying C, the natural parameter, directly modifies the vector field and, therefore, its infinite set of
solutions. A local bifurcation occurs if a change in the energy constant results in a change in the qualitative
behavior of trajectories in the vicinity of a periodic orbit. In dynamical systems, a bifurcation may result in a
change in the stability of the periodic orbits along a family, the formation of a new family of periodic orbits,
or termination of the current family.11 Since the stability of a periodic orbit reflects the behavior of nearby
trajectories, local bifurcations are detected and characterized by monitoring the pairs of nontrivial eigenvalues
of the monodromy matrix corresponding to each periodic orbit along a family. Possible bifurcations are
detected through changes in the stability of the periodic orbits comprising a family, reflected by the parameter
s as it passes through any critical values.

Although many possible bifurcations exist, two types emerge within the dynamical environment that is
the focus of this investigation: tangent and period-multiplying bifurcations. A family of periodic orbits
undergoes a tangent bifurcation when the qualitative stability characteristics of its orbits change with the
energy constant. During this type of local bifurcation, one pair of nontrivial eigenvalues from the monodromy
matrix passes through the critical values λ1 = λ2 = +1. Simultaneously, the stability index passes through
s = 2. Depending on the type of tangent bifurcation, the change in stability may be accompanied by the
creation of families of similar period or by the intersection with another family of orbits. Across each form
of tangent bifurcation, the eigenvalues that reflect the stability of the orbits along a family transition between
the unit circle and the real axis. During a period-multiplying bifurcation of multiplicative factor m, a family
of period-mq orbits emerges from a family of period-q orbits. Here, q is the integer corresponding to the
number of times a periodic orbit encircles a reference location. At the critical value of the natural parameter,
the orbit located at the intersection of the two families is equivalently described as a period-mq orbit or a
period-q orbit traced out m times. Employing properties of the STM, this bifurcation is detected when the
eigenvalues of the period-q orbits along a family pass through the first and (m−1)-th complex roots of unity,
or, equivalently, when the stability index passes through the critical value, s = 2 cos

(
2π
m

)
. Since the stability

index does not reflect the imaginary components of any complex conjugate eigenvalues, confirmation of a
period-multiplying bifurcation requires verification that the eigenvalues do not split off the unit circle after
passing through the corresponding roots of unity. Note that the special case of a period-doubling bifurcation
occurs when the stability index passes through the critical value of s = −2.

Manifolds

Manifold structures departing and approaching unstable periodic orbits can guide the flow in various re-
gions of the phase space, as well as influence the formation and existence of families of periodic orbits. A

4



periodic orbit that is unstable, within or out of the plane, possesses both stable and unstable modes, indi-
cated by the eigenvalues |λ1| < 1 and |λ2| > 1, respectively. Introducing a small step in the direction of
the corresponding eigenvectors at various points along the periodic orbit, the unstable and stable manifold
structures are computed by propagating these initial conditions forward or backward in time, respectively.9

When propagated for a sufficiently long time interval, the resulting manifolds trace out complex paths in the
six-dimensional phase space and are usually difficult to visualize over time. Accordingly, manifold structures
can generally be adequately represented by their successive intersections with a surface of section, such as
the plane Σ : y = 0 in configuration space. Consider, for example, the manifolds emanating from an unstable
L1 Lyapunov orbit in a system with mass ratio µ = 0.26, as portrayed in Figure 2(a). Stable manifolds,
propagated to their first crossing with the y = 0 plane, such that ẏ > 0, are colored blue, while unstable
manifolds are colored red, with the primaries indicated by gray diamonds and the L1 Lyapunov orbit plotted
in black. Although the manifolds are only propagated for one return to the surface of section, their represen-
tation in configuration space is complex when integrated for a longer time interval. As plotted in Figure 2(b),
each manifold crossing of the surface of section defined by y = 0 forms a curve in a two-parameter space,
such as (x, ẋ). This reduction in the dimension of the manifolds simplifies visualization of the stable and
unstable manifolds associated with the L1 Lyapunov orbit, and facilitates the examination of the dynamics in
the vicinity of the manifolds.

Formation and Existence of Periodic Orbits

Two types of periodic orbit families exist, and are distinguished by their formation process: regular and
irregular periodic orbits. As described by Contopoulos, regular orbits are those emerging as a result of
bifurcations from a central periodic orbit. Irregular orbits, however, are formed close to the homoclinic
tangles corresponding to unstable periodic orbits.12 Such families are generated at a tangent bifurcation as
a pair of stable and unstable periodic orbits. Such knowledge that some families are formed in the complex
tangles of periodic orbit manifolds may guide any investigation into the existence of families that do not
reduce to a singularity or equilibrium point. Furthermore, this observation suggests that manifolds may also
play a key role in governing the evolution of a family.

COMPOSITE STABILITY REPRESENTATION

To visualize the stability of a planar family of periodic orbits across a range of mass ratios, a simple
composite representation is constructed using the stability index. At a specified value of the mass ratio,
the in-plane and out-of-plane stability indices corresponding to periodic orbits along a family are plotted as a
function of a continuously-varying natural parameter. Although it is nonunique, the orbital period serves as an
intuitive characteristic quantity. In fact, in the search for exoplanets about binary systems using eclipse-timing
or pulse-detection, the period may be the only orbital parameter that can be accurately deduced, to within a
multiplicative factor, without significant limiting assumptions. The in-plane and out-of-plane stability indices

(a) Manifolds in configuration space. (b) Manifold intersections with y = 0.

Figure 2: Sample L1 stable and unstable manifolds.
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across a family of orbits at a given mass ratio each form a single curve when plotted against the orbital period.
Often, the stability index along these curves exhibits a number of turning points and a large range of values.
Simultaneously plotting these complex curves at various values of the mass ratio can hinder any exploration of
the stability characteristics along the family. Accordingly, a simplified representation of the stability in a two-
parameter space, such as (µ, T ), enables clearer visualization, and aids in the examination of the evolution of
the family.

The composite stability representation is constructed by simply assessing a qualitative measure of the
stability along a family. To demonstrate this process, consider the stability index along the retrograde family
of orbits in the exterior region, encircling both primaries, given a mass ratio µ = 0.1. Sample orbits along
this family are plotted in Figure 3(a) using three different colors to provide clarity. The direction of motion
along these orbits is indicated by an arrow and the primaries are located by gray-filled diamonds. A zoomed-
in view of the in-plane stability along this family is displayed on the right in Figure 3(b). As evident from
the figure, this family possesses an intricate stability curve. A composite stability representation is then
constructed by simply assessing a qualitative measure of the stability along a family. Since the eigenvalues of
the monodromy matrix reflect a linear approximation of the dynamics, they can only be used to qualitatively
determine the type of stability exhibited by a periodic orbit. In particular, each orbit is classified using the
stability index, s: stable, for s = [−2, 2]; positive unstable, for s > 2; and negative unstable, for s < −2.
The point representing a single periodic orbit in the two-parameter space, (µ, T ), can, therefore, be colored
by the type of stability it exhibits. In this investigation, a stable orbit is assigned the color blue, a positive
unstable orbit is colored red and negative instability is represented by the color purple. A composite stability
representation, for a single value of the mass ratio, appears in Figure 4 to summarize the stability information,
with the stable orbits brought to the front of the figure when multiple orbits possess the same period. Through
examination of the stability curve, the retrograde exterior family consists of members with each of the three
types of stability. Accordingly, at a mass ratio of 0.1, this family will contribute a single line including blue,
red and purple points to the composite stability representation, as displayed in Figure 4. Thus, a complex
curve encompassing a large range of values of s is reduced to a single line that is overlaid for mass ratios
within a specified range, forming a useful composite stability representation. These plots are developed
further and examined within the context of two examples.

(a) Selected orbits along the retrograde exte-
rior family for a mass ratio of µ = 0.10.

(b) Zoomed-in view of the in-plane stability index
along the retrograde exterior family for a mass ratio
of µ = 0.10.

Figure 3: Transfer examples.

Figure 4: Colored representation of the in-plane stability of the retrograde exterior family at µ = 0.10.
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APPLICATIONS OF COMPOSITE STABILITY REPRESENTATIONS

Composite representations of the in-plane and out-of-plane stability indices are employed to examine the
evolution with the mass ratio for a variety of simply-periodic families that exist in various regions of the
space in the CR3BP. The observations are initially focused on systems with large mass ratios, i.e., within
the range µ = [0.1, 0.5], with additional comparisons made to smaller mass ratios, µ = [10−6, 0.1], that are
indicative of the Sun-planet and planet-moon combinations within the solar system. The composite stability
representations for various families are presented within the context of two examples: the search for parking
orbits for extended observation of a binary asteroid, and the identification of possible motions of an exoplanet
about a binary star system. For the purposes of demonstrating the use of composite stability representations,
the focus in both examples is on the search for stable periodic orbits near large mass ratio systems. Since the
stability within and out of the plane is decoupled for planar periodic orbits, the two corresponding stability
indices are isolated and examined separately. Accordingly, observations on the evolution of the stability of
periodic orbits with the mass ratio requires two composite stability representations per family.

Selection of Parking Orbit for Extended Observation of a Binary Asteroid

Recent mission concepts have identified asteroids as a scientifically interesting target for both robotic and
manned exploration. Among the large number of asteroids that have been observed, 16% exist in systems
consisting of multiple bodies. In fact, many of the binary asteroids that have been discovered possess mass
ratios that are much larger than the systems commonly examined within the solar system. In the absence of
a close approach to the Earth-Moon system, an accurate determination of the composition and mass distri-
bution of the asteroids in a binary system is often difficult. Accordingly, the mass ratio of a binary asteroid
is typically an estimate that may be subject to change as the dynamical and geological environment is better
characterized. Prior to sending a spacecraft to the vicinity of a binary asteroid for extended periods of obser-
vation and measurement, it may be advantageous to select a type of parking orbit that is stable over a range of
mass ratios close to the estimated value. The benefit to preselecting an orbit family that is relatively insensi-
tive in terms of the stability to variations in the mass ratio is that it is simpler to perform smaller adjustments
to ensure near-periodicity of a parking orbit in the same family than it is to identify an entirely new type
of parking orbit mid-mission. In this example, composite stability representations are employed to identify
stable periodic motions near a binary asteroid.

Observation of an Entire Binary Asteroid If both components of a binary asteroid are the subject of ob-
servation and measurement, a family of periodic orbits that encircle both primaries in the CR3BP, such as
the retrograde orbits that exist in the exterior region, may be examined. This family of orbits is employed to
motivate the utility of composite stability representations, and is also used to demonstrate the construction
of each plot. The corresponding stability representation for a portion of this family is depicted in Figures
5(a) and 5(b) for the in-plane and out-of-plane stability, respectively. To limit the computational time and
effort, only orbits that possess periods below 18 nondimensional time units are sought. Of course, since this
is a nonlinear system, the family may possess turning points that introduce stable members with periods less
than 18 nondimensional time units. Recall that stable orbits are located within the blue regions of these com-
posite representations, while negative instability is indicated by purple points and positive unstable orbits are
located within the red regions. Colored structures, therefore, reflect the stability of periodic orbits along a
family, as well as the occurrence of some bifurcations. If the family is closed or reduces to an equilibrium
point, for example, these “dynamical barriers” are represented via gray shading, which indicates that the
family cannot extend into a particular region of the (µ, T ) space. Since the CR3BP is inherently nonlinear,
it may not be possible to accurately predict the stability index across any portions of the family that are not
computed. Accordingly, any white regions of space, at a given value of µ, indicate that the family is not
computed in its entirety. To facilitate comparison of the orbital stability across a large variety of mass ratios,
a mixed linear-log scale is employed to represent µ on the vertical axis. Specifically, mass ratios in the range
µ = [0.1, 0.5] are plotted as a linear scale, while mass ratios in the range µ = [10−6, 0.1) are displayed using
a log scale. The boundary between these two scales is indicated by a black dashed line. For comparison,
selected systems with a specific mass ratio are also indicated on the plots that represent the three-dimensional
stability index, such as in Figure 5(b). In particular, the mass ratio that corresponds to the binary asteroid 809
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(a) In-plane stability.

(b) Out-of-plane stability.

Figure 5: Stability representation for the family of retrograde orbits in the exterior region.

Lundia is highlighted on the stability representation. This system, which consists of two V-type asteroids of
approximate diameter 6.4 km separated by a distance of 15.8 km, possesses a mass ratio that is approximately
equal to 0.41.13 In addition, the binary star system PSR B1620 is also indicated on the stability representation
in Figure 5(b). Consisting of a pulsar and white dwarf separated by a distance of 0.77 AU, this binary system
is known to possess a small captured planet. Although the mass ratio of PSR B1620 is not exactly known, it
is approximately equal to 0.20.14 In addition, sample periodic orbits are displayed in the margins at selected
mass ratios and periods to reflect the configuration of selected members in physical space.

Using the composite representations presented in Figures 5(a) and 5(b), observations about the stability
can be used to assess the sensitivity of the retrograde exterior family of orbits to changes in the mass ra-
tio. First, consider the in-plane stability along this family of orbits. Below periods of approximately 10.5
nondimensional time units, the majority of members of the retrograde exterior family are stable. There does,
however, exist a small region of negative instability centered about T = 9.5, where the stability curve plunges
below s = −2, creating two period-doubling bifurcations. Since the blue region to the left of this structure is
bound on its other side by a red region, the retrograde exterior family undergoes a variety of planar period-
multiplying bifurcations. In addition, as the period of the retrograde exterior family decreases to its limiting
value, the stability index approaches a value of s = +2. In fact, this family is formed at its minimum period
within the homoclinic tangle of the manifolds of the L2 Lyapunov orbits. At the formation of this family,
a branch of stable and unstable orbits is created, as typical in the formation of irregular orbits.12 Since the
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Jacobi constant at the formation of this family is below the value corresponding to L3, the L2 manifolds can
pass through the L3 gateway. Accordingly, the homoclinic tangle that forms the retrograde exterior family
of orbits may also involve the manifolds of the L3 Lyapunov orbits. Such a distinction, however, is difficult
to visualize at such large energies. Beyond a period of approximately 10.5 time units, the retrograde exte-
rior family is predominantly unstable in the plane of motion of the primaries, for large values of the mass
ratio. There is, however, a thin blue and purple structure that indicates the presence of stable members, as
the stability curve plunges below s = −2. Since this stable region occurs at increasing values of the period
as the mass ratio is decreased, this portion of the family is considered sensitive to changes in large values of
µ. As the retrograde family of orbits in the exterior region is continued further, turning points occur, which
may contribute additional structures to the stability representation in Figure 5(a). For large mass ratios in the
range µ = [0.1, 0.5], Figure 5(b) reflects that members of this family are predominantly stable in a direction
that is perpendicular to the plane of motion of the primaries. There are, however, thin structures of negative
and positive instability that are embedded within this figure. The presence of these structures, which appear
to divide the blue stable regions approximately every 3 time units, indicates that the out-of-plane stability
index is oscillatory with respect to the orbital period.

Given the evolution of the retrograde exterior family of orbits over the examined range of mass ratios, as
represented by the composite stability representation, the suitability of members of this family for parking
orbits during a mission observation phase is assessed. Since small perturbations can influence the motion
of a spacecraft both within and out of the plane, both stability indices must be considered simultaneously.
Assuming that parking orbits that are stable in the CR3BP are sought, the overlap of blue regions in both
Figures 5(a) and 5(b) are identified. Note that the purple regions corresponding to orbits with negative
instability for both in-plane and out-of-plane modes occur at similar periods near T = 9.5 across the range
of mass ratios examined in this investigation. Aside from this small region, orbits in the retrograde exterior
family with periods below approximately 10.5 nondimensional time units are, predominantly, stable both
within and out of the plane. Such orbits, which exist far from the two primaries, may, therefore, be examined
further for extended observation of the two components in a binary asteroid. Recall that one nondimensional
length unit is equal to the distance between the two primaries; for 809 Lundia, these retrograde exterior orbits
exist over 24 km from the system barycenter. Within the binary environment, orbits that are unstable within
the plane of motion of the primaries exist and might be exploited. In fact, previous missions have successfully
employed unstable orbits for transfer design. These orbits, located in the red regions of Figure 5(b) at large
values of the orbital period, possess stable and unstable manifolds that can potentially facilitate low cost
transfers to the P1 or P2 regions. Since this unstable region persists over the entire range of large mass ratios,
large period retrograde orbits in the exterior region may serve as transfer mechanisms to the interior region
for a system with a poorly known mass ratio. Using the composite stability representation presented in this
paper, this insight into the stability of a family of orbits can also be obtained rapidly and straightforwardly
for multiple candidate binary systems at a variety of inaccurately known mass ratios.

Periodic Orbits Near a Single Component in a Binary Asteroid Retrograde orbits that emanate from the
singularity at P1 also exist and may be useful for further insight into the behavior in the vicinity of one
member of a binary pair. This family of orbits, which can grow quite large in size at high orbital periods,
exhibits a wide range of values for the in-plane stability index. Composite stability representations for the
in-plane and out-of-plane stability indices across this family are plotted in Figure 6. At low periods, these
orbits are close to circular with low altitudes, as depicted in the left margins of the stability representations.
Note that for the example of the binary asteroid 809 Lundia, its components are separated by a distance of
15.8 km, which represents one nondimensional length unit. Although the small circular orbits plotted on the
left of Figure 6(a) may be defined by an altitude lower than the radius of the largest asteroid in 809 Lundia,
these orbits may not intersect the surface of a primary body in an alternative system that possesses a similar
mass ratio. These smaller orbits are, therefore, retained in the composite stability representation.

As evident by the in-plane stability representation in Figure 6(a), there exists a set of retrograde orbits that
are stable at large mass ratios. In fact, the family is formed at the singularity corresponding to the location
of P1, indicating that the stability index approaches the value s = +2 as the period decreases. As the period
increases, however, the orbits along this family appear more nonlinear in shape, extending further towards P2
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and beyond the locations of the equilateral points L4 and L5. At periods close to T = π, a purple structure
corresponding to negative instability appears. The left and right bounds of this purple structure indicate
the presence of two planar period-doubling bifurcations at s = −2 that exist for mass ratios in the range
µ = [0.1, 0.5]. The presence of this purple region at small mass ratios may be related to the appearance of
a purple region in the out-of-plane stability representation in Figure 6(b), which occurs at a similar value
of the orbital period. The period-doubling bifurcation that occurs in three-dimensional space may influence
the flow within the plane, inducing negative instability along the retrograde exterior family at nearby values
of the mass ratio. This potential correlation between the two period-doubling bifurcations may cause the
stability curve to plunge below the value s = −2; such correlation warrants further examination. Increasing
the period even further, well beyond the value T = π, a region of positive instability exists, where the
stability index evolves to a value greater than s = +2. Within the blue region, a wide variety of period-
multiplying bifurcations apparently occur. At these bifurcations, higher-order planar, periodic orbits intersect
this family. Such orbits may possess a physical configuration similar to the simply-periodic retrograde orbits
about P1, but with different stability properties that warrant further investigation. Note that at periods larger
than T = 7 nondimensional time units, the orbits closely approach the smaller primary and are difficult to
compute without large computational effort. From the observations using composite stability representations,
it is evident that the in-plane stability of the retrograde P1 family across the range µ = [0.1, 0.5] is relatively
insensitive to changes in the mass ratio. For smaller mass ratios, however, the family becomes predominantly
stable within the xy-plane. Over the computed portion of the family, the purple, blue and red structures that
exist at larger periods converge as the mass ratio approaches µ = 10−5, which is close to the mass ratio of
the Uranus-Titania system. At these smaller mass ratios, the family exhibits more sensitivity in terms of the
in-plane stability index than at larger mass ratios.

(a) In-plane stability.

(b) Out-of-plane stability.

Figure 6: Stability representation for retrograde orbits about P1.
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The retrograde family about P1 exhibits a simple variation in the out-of-plane of stability, as depicted in
Figure 6(b). In fact, this figure is predominantly blue with one large purple structure corresponding to negative
instability. Accordingly, there are two period-doubling bifurcations that bound this large region and exist for
all mass ratios in the range µ = [0.1, 0.5]. The stable region corresponding to smaller periods, therefore,
undergoes a wide variety of period-multiplying bifurcations that evolve out of the plane. At smaller mass
ratios, below µ = 10−4, which is close to the mass ratio of the Sun-Saturn system, the two period-doubling
bifurcations disappear within the range of computable orbits along the family. Thus, for mass ratios smaller
than this critical value, the members of this portion of the family appear to be stable. Above this critical
value, however, it is evident that, for large periods, the family is quite sensitive to changes in the mass ratio.

Combining the observations from both the in-plane and out-of-plane stability assessments in the retrograde
P1 orbits, portions of this family may be further examined for exploration and scientific observation of a bi-
nary asteroid system with an inaccurately known mass ratio. In particular, it is observed that the stable regions
of each exclusion plot overlap for periods below approximately 2.5 nondimensional units. Accordingly, or-
bits with a period below this value exhibit stability in all directions and may be less sensitive to perturbations
than larger retrograde orbits. In addition, this region of stability appears to persist across the entire range of
mass ratios that appear in Figure 6. For the example of 809 Lundia, where the radius of each body is quite
large relative to their separation distance, there are some members of the retrograde family of orbits about
P1 that do not intersect the surface of either primary. At slightly larger orbital periods, just above T = π
nondimensional time units, there is an additional region of orbits that possesses two stable modes at large
values of the mass ratios. However, this region of overlap appears to narrow as the mass ratio is decreased.
In any case, the family of retrograde orbits that encircle P1 are simply represented via composite stability
plots, which are used to identify members that are stable both within and out of the plane. Since periodic
orbit families vary continuously with both natural parameters - µ and T - the stable retrograde P1 orbits that
possess a given period at nearby values of the mass ratio may appear similar in the phase space.

In the vicinity of the smaller primary, there exist planar orbits that encircle the body in a retrograde di-
rection, commonly denoted the distant retrograde orbits (DROs). At small mass ratios, such as µ ≈ 0.012
in the Earth-Moon system, these orbits exhibit in-plane stability across the entire family. Using Figure 7(a)
as a reference, it is clear that the stability across the DRO family is more varied for many binary asteroid
systems. In particular, for large mass ratios, a purple structure corresponding to negative instability appears
near T = π. This orbital period corresponds to a 2:1 resonance with the period of the primaries. As the value
of µ decreases, the two period-doubling bifurcations along the edge of this purple structure occur at larger
periods. In addition, the left and right bounds of the purple region merge at a critical value of the mass ratio.
This evolution of the period-doubling bifurcations corresponds to the local minimum of the in-plane stability
index occurring at less negative values of s, and passing through s = −2 at µ ≈ 0.11. At this critical mass
ratio, the purple structure connects to another structure of negative instability that exists at larger periods, for
µ > 0.048. As a reference, this value of µ is larger than the mass ratio corresponding to the Earth-Moon
system. Between the two regions of negative instability, the in-plane stability index passes through s = +2
twice, creating a large red region of positive instability. As the mass ratio is decreased to a value of µ ≈ 0.22,
the maximum in the stability index decreases and passes through s = +2 as the two tangent bifurcations
meet. Below this critical value of the mass ratio, the two tangent bifurcations disappear. Thus, the variation
in the in-plane stability index that occurs at large mass ratios is significantly more complex than the stability
exhibited by the DROs at the mass ratios for the Sun-planet or planet-moon systems within the solar system.

In contrast to the planar behavior, the out-of-plane stability for orbits in the DRO family is largely homo-
geneous across all mass ratios. As displayed in Figure 7(b), the out-of-plane stability index predominantly
possesses values in the range s = [−2,+2]. Noticeably, there is a small region of negative instability at mass
ratios close to µ = 0.5, centered at a period of T ≈ 4. This structure reflects a stability index that plunges
below s = −2, thereby forming two period-doubling bifurcations. Additionally, a structure correspond-
ing to positive instability appears at small mass ratios below 0.11, for the largest periods along the regions
of this family that are computationally reasonable (the maximum period approaches a value close to 2π as
µ→ 10−6). This range of µ encompasses the value of µ corresponding to the Earth-Moon system, and many
of the Sun-planet combinations in the solar system.
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(a) In-plane stability.

(b) Out-of-plane stability.

Figure 7: Stability representation for retrograde orbits about P2.

For motion in the vicinity of the smaller primary, the combined stability of the retrograde family of orbits
about P2 is quite useful. Since this orbit family is predominantly stable in the ẑ direction, its in-plane stability
essentially governs the complete stability of its members. At each value of the mass ratio, large and small,
there is a significant range of orbits that are stable in the CR3BP. Depending upon the physical configuration
of the components of the desired binary, some of the stable members of this simply-periodic retrograde
family of orbits may not intersect or pass too close to the surface of either primary. Such orbits could
serve as candidates for further examination in a higher-fidelity gravitational model that also incorporates any
eccentricity of the inner binary orbit.

Possible Motions of an Exoplanet About a Binary Star System

In determining potential orbits for an exoplanet within the vicinity of a large mass ratio binary star system,
composite stability representations may facilitate the identification of potentially stable periodic motions.
Given that it is often difficult to directly observe an exoplanet, the only knowledge of its orbit may be in the
form of eclipse timing or variations in the pulses emanating from a pulsar, if present within the binary star
system. These observations of the two stars can usually be correlated to an estimate of the orbital period
of the exoplanet. Quantification of additional orbital parameters may require the introduction of numerous
assumptions based on heuristics. Some orbital quantities may not even be known, such as the inclination of
the exoplanet’s orbit, which is not resolvable using many of the observation methods commonly employed
to detect the possible presence of exoplanets. Since the orbit of an exoplanet may not necessarily trace out a
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conic, a wide variety of periodic orbits in a three-body gravitational environment may approximately describe
its motion. For preliminary identification of potential orbits of an exoplanet for a given value of its period, it
is reasonable to assume that if an exoplanet persists along a periodic orbit for an extended period of time, the
motion is likely stable. Given this assumption, the search for potential motions of an exoplanet may be guided
by the composite stability representations, as demonstrated for simply-periodic prograde motions about the
larger primary.

Figure 8: Sample members of prograde orbits in
‘family 1’ and ‘family 2’.

The simply-periodic motion that encircles the
larger primary, P1, includes two families of prograde
orbits. These two families, plotted in Figure 8 at a
sample mass ratio equal to µ = 0.30, are labelled
‘family 1’ and ‘family 2’ in this investigation. The
location of the largest primary is marked by a gray
filled circle and the direction of motion for both fam-
ilies is indicated by the arrows. Each family evolves
with the mass ratio in an intriguing manner that is
evident in their composite stability representations
and clarified using the stable and unstable manifolds
emanating from the L1 Lyapunov orbits. Assuming
the simplified and autonomous dynamical regime de-
scribed by the CR3BP, composite stability represen-
tations are used to identify stable periodic orbits and,
subsequently, hypothesize whether such orbits could
describe the motion of an exoplanet in the vicinity of
a large mass ratio binary star system.

To determine the viability of an exoplanet exhibiting motion corresponding to ‘family 1’, the evolution of
the in-plane stability index over various mass ratios is examined. As evident in the stability representation
in Figure 9(a), the family becomes closed (with the upper and lower bounds on the period indicated by the
gray shaded regions) and disappears as the mass ratio approaches the value of µ ≈ 0.26284. The in-plane
stability curves for selected mass ratios close to this critical µ value are plotted as a function of the period
in Figure 10, with dotted lines located at s = +2 and s = −2. In this figure, it is clear that, for each
period, two orbits exist in ‘family 1’. For a system with a mass ratio of µ = 0.27, stable members of the
family exist close to the upper and lower bounds of the period. As the mass ratio is decreased towards the
critical value, however, the minimum of the curve rises and passes through s = −2. At a nearby value of
the mass ratio, the two period-doubling bifurcations at s = −2 disappear and result in a stable periodic orbit
existing at each value of the period across the family. Thus, small blue structures appear at the bottom of the
composite stability representation in Figure 9(a). This family may or may not be closed at all mass ratios;
computational difficulties preclude examination of the family as the orbits closely approach P1 for large mass
ratios. Eventually, the two tangent bifurcations at the minimum and maximum period of the family meet, and
the family no longer exists. Assuming that the dynamical environment near a binary star system is adequately
modeled via the CR3BP, this observation of the disappearance of ‘family 1’ at the critical µ value suggests that
an exoplanet would not exhibit the behavior typical of this family for mass ratios below µ = 0.26284. Since
the composite stability representation in Figure 9(a) displays large red regions, this family is predominantly
unstable in the plane of motion of the primaries. There is one small blue region corresponding to stable
periodic orbits that occur at increasing values of the period as the mass ratio is decreased. In contrast, the
composite stability representation in Figure 9(b) reveals that a large portion of the family, with orbital periods
above 4.5 nondimensional time units, consists of members that are stable to perturbations that only excite
out-of-plane modes. Using the insight gained from the composite stability representation, a small body that
is, at some instant, captured in an orbit belonging to ‘family 1’ is unlikely to persist over long time intervals
in the presence of perturbations within the plane of motion of the primaries, or variations in the mass ratio.

The disappearance of ‘family 1’ at the critical value of the mass ratio, µ ≈ 0.26284, is predictable through
examination of nearby manifolds. The crossings of the manifolds of the L1 Lyapunov orbit with the plane
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(a) In-plane stability.

(b) Out-of-plane stability.

Figure 9: Stability representation for ‘family 1’, comprised of of prograde orbits about P1.

Figure 10: In-plane stability index for ‘family 1’ at selected values of the mass ratio close to µ = 0.26284.

described by y = 0, are plotted in the (x, ẋ) space in Figures 11(a) and 11(b). These manifolds are computed
for a system with mass ratio µ = 0.26284, close to the critical mass ratio, and a Jacobi constant value equal to
C = 3.165. In Figure 11(a), crossings of the stable manifold with ẏ < 0 are colored blue, unstable manifold
crossings with ẏ < 0 are colored red, and the black diamond locates P1. In Figure 11(b), a similar color
scheme applies for crossings that posses a positive value of ẏ. These two zoomed-in views of the manifold
crossings appear separately to supply sufficient visual clarity and to separate crossings of the hyperplane in
each of the two possible directions. Although the manifold crossings form closed curves, these curves appear
to resemble dotted lines of larger spacing with subsequent revolutions of the two primaries. For both of these
figures, there are two open circles that are located at similar values of x, with ẋ = 0, that correspond to the
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crossings of y = 0 for the two periodic orbits in ‘family 1’ at the specified value of the Jacobi constant. As
evident from these two figures, these two periodic orbits are nestled between the stable and unstable manifolds
of the L1 Lyapunov orbits. Accordingly, these manifolds are examined at mass ratios lower than the critical
value to explain the disappearance of ‘family 1’. Figure 12(a) portrays the stable and unstable manifolds,
plotted with the same color scheme as in Figure 11, of an L1 Lyapunov orbit with Jacobi constant value
equal to C = 3.155 in a system with mass ratio µ = 0.26. For periodic orbits in ‘family 1’ to exist at this
mass ratio, such an orbit must possess two crossings of the surface of section y = 0 with ẋ = 0 in a similar
region along the x-axis. This requirement of two perpendicular crossings corresponds to the symmetry of
orbits within this family. It is generally difficult to distinguish the regions which lie within the crossings of a
manifold as it encircles the primary. Thus, to search for periodic orbits with such crossings, that also lie close
to the manifolds, initial conditions are seeded along the x-axis with x = [0.15, 0.25] and ẋ = 0. The value
of ẏ at each point is selected to possess a magnitude that supplies the correct Jacobi constant, and a positive
sign to ensure prograde motion about P1. These initial conditions, plotted as dark gray points in Figure 12(a),
are integrated forward in time to their subsequent intersection of the hyperplane y = 0. The resulting map
crossings, with ẏ < 0, are also displayed in Figure 12(b) as dark gray points. Note that the curve formed by
these crossings does not intersect the hyperplane defined by ẋ = 0. Accordingly, the manifolds of the L1

Lyapunov orbit no longer the guide the flow in a manner that allows the symmetric, simply periodic orbits of
‘family 1’ to exist. Thus, the existence and evolution of this family is governed by the manifolds of the L1

Lyapunov orbits.

(a) Zoomed-in view of manifold crossings
near P1 with ẏ < 0.

(b) Zoomed-in view of the manifold crossings
near P1 with ẏ > 0.

Figure 11: Visualization of flow in the vicinity of the manifolds of the L1 Lyapunov orbit with C = 3.165
in a system with µ = 0.26284 to demonstrate the existence of ‘family 1’.

(a) Initial conditions seeded along y = ẋ = 0,
with ẏ < 0.

(b) First return to y = 0, with ẏ > 0.

Figure 12: Visualization of flow in the vicinity of the manifolds of the L1 Lyapunov orbit with C = 3.155
in a system with µ = 0.26 to demonstrate the disappearance of ‘family 1’.
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In contrast to the disappearance of ‘family 1’ at µ ≈ 0.26284, ‘family 2’ continues to exist across the
entire range of mass ratios examined within this investigation, and may supply potential orbits to describe
the motion of an exoplanet near a binary star system with a mass ratio below this critical µ value. A similar
analysis of the manifolds of the L1 Lyapunov orbits reveals that orbits in ‘family 2’ are not destroyed at the
previously identified critical mass ratio. This observation is straightforwardly visualized using the composite
stability representation displayed in Figure 13(a). In particular, this family is predominantly stable within the
plane of motion of the primaries with two key purple structures emerging at sufficiently large periods, and
meeting at µ ≈ 0.236. Recall that these structures represent regions of negative instability and the purple
regions in the composite representation are bounded by period-doubling bifurcations. Slightly above the mass
ratio µ ≈ 0.236, there exists a small oscillation in the in-plane stability index, centered about s = −2, that
results in three period-doubling bifurcations. As the mass ratio is increased, the oscillation in the stability
curve disappears to leave only one period-doubling bifurcation, and only one region of negative instability
within the range of computable orbits along the family. The purple structure that exists at smaller periods
disappears at µ ≈ 10−3, just above the mass ratio of the Sun-Jupiter system. Below this critical value,
‘family 2’ exhibits stability for both in-plane and out-of-plane behavior. For the out-of-plane stability index,
this prograde family of orbits is predominantly stable at large mass ratios. There is, however, one small
region of negative instability that occurs just below the resonant period of T = π, and one small region of
positive instability close to T = 2π. For both stability indices, members of ‘family 2’ with larger orbital
periods display more sensitivity to variations in large values of the mass ratio than the smaller mass ratios

(a) In-plane stability.

(b) Out-of-plane stability.

Figure 13: Stability representation for ‘family 2’, consisting of prograde orbits about P1.
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corresponding to the Sun-planet combinations within the solar system. At smaller values of the orbital period,
however, the composite representation of the orbital stability displays little sensitivity to variations in the mass
ratio. In its entirety, the prograde orbits in ‘family 2’, are predominantly stable across the family, both in and
out of the plane, and over a range of mass ratios. Since the mass ratio of a binary star system is usually not
accurately known, or may change over time due to mass exchange, the composite stability representations
reveal that a large portion of this family may supply orbits that could describe the motion of captured small
bodies which persist in the vicinity of a binary star system for longer periods of time.

As evident in the composite stability representations, there also exist discontinuities in the stability indices
corresponding to ‘family 1’ and ‘family 2’ at a common critical mass ratio. These discontinuities occur at
an approximate mass ratio value µ = 0.4232 and, again, appear correlated with the manifolds of the L1

Lyapunov orbits. First, it is valuable to view the stability curves for ‘family 1’ and ‘family 2’ at mass ratios
just above and below the critical value, as plotted in Figure 14. From this figure, it is evident that as the mass
ratio passes through the critical value, the two tangent bifurcations at s = +2, that occur in each of the two
families meet. In fact, in the local neighborhood of the tangent bifurcations in both families, the stability
curve appears to resemble a set of ‘asymptotes’ that meet at s = +2. For mass ratios below µ = 0.4232,
the top two branches of these ‘asymptotes’ are connected to form ‘family 1’, and vice versa for ‘family 2’.
As the mass ratio is increased beyond the critical value, ‘family 1’ consists of the two left branches of these
‘asymptotes’, while ‘family 2’ is formed by the righthand ‘asymptote’ branches. This exchange of periodic
orbits between ‘family 1’ and ‘family 2’ is reflected by the discontinuities in the in-plane stability index
in Figures 9(a) and 13(a). To explain this structural change in the two families, the manifolds of the L1

Lyapunov orbits are examined at a value of the Jacobi constant equal to C = 3.61, which is close to the
energy at which the two tangent bifurcations merge. At µ = 0.42, below the critical mass ratio, the stable
and unstable manifolds are plotted in blue and red, respectively, in Figure 15(a) for crossings with ẏ < 0.
The crossings of the stable and unstable manifolds with ẏ > 0 are plotted using the same color scheme in
Figure 15(b). In Figure 15(a), purple circles represent the corresponding crossings of three periodic orbits:
one that exists in ‘family 2’, and two that exist in ‘family 1’ (one of which possesses a large negative value
of s within the plane of motion of the primaries). A set of initial conditions can be seeded along the x-axis
of this figure, for the specified value of the Jacobi constant, and propagated forward in time until their next
intersection with the y = 0 surface of section. The returns to this map are overlaid in gray on Figure 15(b),
with intersections of the line ẋ = 0 indicated by purple circles. Since the resulting curve intersects the x-axis
of this figure three times, three symmetric prograde orbits exist at this mass ratio and are nestled between the
successive crossings of the manifolds of the L1 Lyapunov orbit. Using Figure 14 as a reference, it is noted
that for a mass ratio above the critical value, e.g., µ = 0.43, only one periodic orbit should exist at C = 3.61,
with a large negative value of s. This observation reflects the fact that branches of ‘family 1’ and ‘family 2’
have reconnected such that there is a gap between, respectively, the local maximum and local minimum of
these two families; this gap appears to be located near C = 3.61. A set of initial conditions corresponding
to perpendicular crossings of the hyperplane y = 0, near the expected locations of the crossings of prograde

Figure 14: In-plane stability index for ’family 2’ at selected values of the mass ratio close to µ = 0.4232.

17



periodic orbits, are plotted in Figure 16(a). Upon return to the map, with ẏ > 0, the resulting crossings form
a curve that only intersects the line ẋ = 0 once. As such, the manifolds of the L1 Lyapunov orbits no longer
guide the flow in their vicinity to produce three symmetric, simply periodic orbits. These dynamics in the
vicinity of the manifolds clarify the changes in the structural configuration of both prograde families about P1

at the observed critical mass ratio. Such exchange of the branches of these prograde families may influence
the search for periodic orbits that possess a given orbital period and encircle the larger primary in a binary
star system with an inaccurately-known mass ratio near µ = 0.4232.

(a) Zoomed-in view of manifold cross-
ings near P1 with ẏ < 0.

(b) Zoomed-in view of the manifold
crossings near P1 with ẏ > 0.

Figure 15: Visualization of flow in the vicinity of the manifolds of the L1 Lyapunov orbit with C = 3.61 in
a system with µ = 0.42 to demonstrate the exchange of branches between ‘family 1’ and ‘family 2’.

(a) Zoomed-in view of manifold cross-
ings near P1 with ẏ < 0.

(b) Zoomed-in view of the manifold
crossings near P1 with ẏ > 0.

Figure 16: Visualization of flow in the vicinity of the manifolds of the L1 Lyapunov orbit with C = 3.61 in
a system with µ = 0.43 to demonstrate the exchange of branches between ‘family 1’ and ‘family 2’.

Another type of periodic motion that could be examined via exclusion plots in the context of binary star
systems is the planar family of L1 Lyapunov orbits. In the Earth-Moon system, these Lyapunov orbits are
known to exhibit instability within the plane of motion of the primaries and create three-dimensional orbits,
such as the halo and axial families, through bifurcations along the out-of-plane stability index. However, the
behavior of the stability indices for large mass ratios appears to exhibit more variability than at the small mass
ratios typically examined within the solar system.

The L1 Lyapunov orbits, which are located between the two primaries, are not solely unstable in the xy-
plane for large values of the mass ratio. Using the composite stability representation in Figure 17(a) as a
reference, it is evident that for period below 5 nondimensional units, members of the L1 Lyapunov family
possess stabilities with a magnitude greater than two. At larger values of the period, however, the in-plane
stability curve plunges into and beyond the range of stability indices s = [−2, 2]. Accordingly, a purple region
of negative instability appears, and is surrounded by blue regions corresponding to stable orbits. Although
computational difficulties prohibit continuation of the entire family, it is likely that unstable orbits also exist
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at the same periods as the stable orbits. The presence of stable motion near the L1 gateway may complicate
the design of transfers to various regions in the vicinity of a binary with a large mass ratio. Out of the plane of
motion of the primaries, however, the stability across the L1 Lyapunov family is less sensitive to changes in
the mass ratio. From Figure 17(b), it is evident that the tangent bifurcations that form the well-known halo and
axial families persists for large mass ratios. Additionally, the period doubling bifurcation that occurs at larger
values of the orbital period is also present. One notable feature in this composite stability representation is
the presence of an additional blue, stable region for mass ratios larger than the value µ ≈ 0.238. Above this
critical value, the two period-doubling bifurcations approach with increasing values of µ. Combining both
the in-plane and out-of-plane stability information for the L1 Lyapunov family, there are some small regions
that indicate the presence of stable orbits. From the computable portions of this family, these regions exist
for mass ratios above µ = 0.174 and form small slivers at small periods within the range T = [5.28, 6.02].
There is also a small region of total stability corresponding to larger orbital periods. Given that the period
corresponding to these small regions evolves with the mass ratio, it is unlikely that an exoplanet could remain
in anL1 Lyapunov orbit for an extended period of time. However, in a binary star system with a poorly known
mass ratio, or that is subject to mass exchange, the orbit of an exoplanet may appear temporarily captured in
an L1 Lyapunov orbit, prior to ejection from the system or collision with one of the primaries. Such insight,
as gained from the composite stability representations of a variety of families in the CR3BP, may allow for a
rapid identification of potential motions of an exoplanet traveling near a low-eccentricity binary star system,
thereby guiding more numerically intensive analyses.

(a) In-plane stability.

(b) Out-of-plane stability.

Figure 17: Stability representation for L1 Lyapunov orbits.
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CONCLUDING REMARKS

The composite stability representation in this investigation offers a clear and simple method for visualizing
the stability of a family of orbits over a range of mass ratios. These figures, which resemble the exclusion
plots often employed in physics, allow for the detection of structural changes in a family and an evaluation
of the sensitivity of its members to variations in the mass ratio. In particular, such an analysis is completed
for the in-plane and out-of-plane stability of a variety of families at large values of the mass ratio, lying in the
range µ = [0.1, 0.5]. The results of this analysis are easily comparable to the stability properties of systems
with small mass ratios via the composite stability representation. Such observations about the stability of
families of periodic orbits may be particularly useful during the design of missions to binary asteroids, or
even in the modeling of exoplanet orbits near binary star systems.
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