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ADAPTIVE DATA-DRIVEN SUMMARY OF NATURAL MOTION
IN CISLUNAR SPACE

Miguel Rebelo*, Natasha Bosanac†

This paper introduces an adaptive clustering framework for summarizing planar
trajectories by their geometry in the Earth-Moon circular restricted three-body
problem. First, a coarse grid of initial states is defined using the surface formed
by maxima in the curvature along a trajectory. Their trajectories are generated
and clustered by geometry. New initial conditions are then sampled to balance
1) global exploration, using the curvature of the surface, and 2) local exploita-
tion, using the change in the total absolute curvature along trajectories and null
cluster assignments. This process is repeated to adaptively generate a data-driven
summary of a complex solution space.

INTRODUCTION

Planning, operating, and protecting a diverse array of spacecraft in cislunar space will benefit
from a comprehensive understanding of possible motions. However, in a multi-body gravitational
environment, an analytical solution does not exist and the solution space is chaotic, diverse, and
high-dimensional. These characteristics can challenge manual analysis and design tasks, or demand
sufficient a priori expertise to bound the analysis. These challenges are exacerbated when using
higher-fidelity dynamical models or considering motion across a large array of energies with di-
verse control profiles. To address these challenges, data-driven approaches have the capacity to
automatically summarize the solution space in support of trajectory design and prediction.

Data mining methods, in particular, have found success across multiple disciplines that encounter
complex and high-dimensional datasets. One popular tool is clustering, an unsupervised technique
used to partition a dataset into groups based on their similarity.1 For example, in air traffic man-
agement, Gallego et al.2 used density-based clustering to extract primary air traffic flows from a
large dataset whereas in biology, Paccanaro et al.3 devised a spectral clustering scheme to iden-
tify proteins that share a common evolutionary origin. Other notable applications of clustering for
analysis and knowledge discovery have occurred in fields such as astronomy, medicine and human
movement analysis.4–6 In astrodynamics, clustering has been used by Nakhjiri and Villac to detect
regions of stability near distant retrograde orbits on a Poincaré map7 as well as by Villac, Anderson
and Pini8 to categorize ballistic orbits around small bodies. Smith and Bosanac9 as well as Gille-
spie, Miceli, and Bosanac10 have also used clustering to extract motion primitive sets as summaries
of periodic orbits families, their hyperbolic invariant manifolds, and thrust-enabled approaches and
departures.

*Graduate Research Assistant, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineer-
ing Sciences, University of Colorado Boulder, Boulder, CO, 80303.

†Associate Professor, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineering Sci-
ences, University of Colorado Boulder, Boulder, CO, 80303.

1



Recently, clustering has been used to automatically summarize the prominent geometries of a
diverse array of trajectories across a multi-body system. Early proofs of concepts were developed
by Bosanac11 followed by Bonasera and Bosanac12 to summarize key geometries of trajectories that
begin from perigees in the Sun-Earth circular restricted three body problem (CR3BP). Since then,
Bosanac has developed an improved framework that has been applied to natural and low-thrust
trajectories in the Earth-Moon CR3BP13, 14 and an ephemeris model of cislunar space.15 This im-
plementation consists of three major steps: 1) constructing a training dataset by sparsely sampling
trajectories across the solution space using differential geometry and a predefined grid of initial
position vectors and energy levels, 2) describing the diverse array of continuous trajectories with a
finite-dimensional feature vector that consistently captures their geometry, and 3) using distributed
clustering to group trajectories by their geometry. Representative members of the resulting clusters
then supply a summary of a diverse and complex solution space. This paper builds upon this clus-
tering framework by improving the generation of the training dataset and reducing the dependence
on predefined parameters for discretizing the solution space.

This paper introduces an adaptive and automated scheme for sampling the trajectories that form
the training dataset for the clustering-based summarization framework. First, a coarse grid of initial
state vectors is sampled from the surface formed by maxima in the curvature along a trajectory at
a single energy level. Then, the trajectories associated with these initial conditions are generated,
characterized, and clustered by their geometry using the framework developed by Bosanac.15 This
information is used to automatically refine the grid of initial state vectors in a manner that balances
global exploration with local exploitation. To support global coverage of the solution space, con-
cepts from shape interrogation are used to place more samples in regions of high curvature along
the surface that defines the initial conditions. In addition, to encourage local exploitation, samples
are added 1) between neighboring trajectories that possess a significant change in the total absolute
curvature along their paths and 2) near trajectories that are not assigned to a cluster. This process
is repeated to produce a training dataset that better captures the diverse array of trajectory geome-
tries across a chaotic multi-body system and, as a result, supports a more accurate clustering-based
summary of the prominent geometries. This original contribution is demonstrated by adaptively
sampling and summarizing planar trajectories at a single energy level in the Earth-Moon CR3BP.

BACKGROUND

Circular Restricted Three-Body Problem

The dynamics of a spacecraft in cislunar space are approximated by the CR3BP, with the Earth
and Moon serving as the primary bodies. These two primaries are modeled using spherically sym-
metric gravity fields and are assumed to travel on circular orbits about their barycenter.16 The
spacecraft is the third body, with a negligible mass compared to the primaries.16

The state of the spacecraft is typically expressed in nondimensional form in the Earth-Moon
rotating frame. The characteristic quantities used to normalize length, mass, and time quantities are
defined as follows: the characteristic length l∗ = 384, 400 km is selected as the average distance
between the primaries; the characteristic mass is the total mass of the system, m∗ = 6.045626×1024

kg; and the characteristic time t∗ = 3.751903 × 105 sec, sets the mean motion of the primaries to
unity.17, 18 In addition, the Earth-Moon rotating frame is centered at the system barycenter with
the axes x̂ŷẑ defined as follows: x̂ points from the barycenter to the Moon; ẑ is aligned with the
primaries’ orbital angular momentum vector; and ŷ completes the orthogonal, right-handed triad.16

The nondimensional state vector is then defined in the rotating frame as x = [x, y, z, ẋ, ẏ, ż].
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Using these definitions, the equations of motion for the spacecraft in the CR3BP are written in
the rotating frame. These second-order differential equations are equal to16

ẍ = 2ẏ + Ux ÿ = −2ẋ+ Uy z̈ = Uz (1)

where U(x, y, z) is the pseudo-potential function, equal to

U(x, y, z) =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
(2)

and Ui is the partial derivative of U with respect to position coordinate i. In addition, µ ≈ 0.012151
is the mass ratio, r1 =

√
(x+ µ)2 + y2 + z2 is the distance between the spacecraft and the Earth,

and r2 =
√
(x− 1 + µ)2 + y2 + z2 is the distance between the spacecraft and the Moon. The

CR3BP possesses one integral of motion,16 labeled the Jacobi constant CJ = 2U − v2, where
v =

√
ẋ2 + ẏ2 + ż2 is the speed of the spacecraft. Furthermore, there are five equilibrium points,

labeled L1 through L5.16

Fast Lyapunov Indicators

In dynamical systems theory, chaos indicators are typically used to distinguish between regular
and chaotic motion.19 Moreover, they provide a quantitative measure of how rapidly nearby trajec-
tories diverge, which can be interpreted as the strength of chaos in the system near a given initial
condition.19 In the astrodynamics community, Froeschlé, Gonczi, and Lega19 used a special class
of these indicators, the Fast Lyapunov Indicator (FLI), to study the stability of asteroids orbits over
finite time horizons. Later, Nakhjiri and Villac demonstrated that the FLI is also useful for refining
a grid of initial conditions to identify trajectories that are bounded near a distant retrograde orbit.7

For a trajectory generated from an initial state vector x0 at t0 and perturbed by a small vector δx0,
the FLI is calculated over a propagation time τ as20, 21

FLI(x0, δx0; τ) = max
t0≤t≤τ

log10
||δx(t)||
||δx0||

where δx(t) is the perturbation from the reference trajectory associated with x0 at time t. This
quantity is computed from the state transition matrix, Φ(t, t0), as δx(t) = Φ(t, t0) δx0. The FLI
definition is often expanded to capture the maximum growth of a generic initial perturbation as20, 21

FLIT (x0, {δxi
0}; τ) = sup

i
FLI(x0, δx

i
0; τ) (3)

where {δxi
0} is a set of initial perturbation vectors, selected as unit vector perturbations in each

dimension of the phase space, consistent with the approach used by Lega, Guzzo, and Froeschlé.21

Differential Geometry for Curves

Differential geometry is used to mathematically describe and computationally discretize curved
trajectories based on their geometry. Consider a spatial trajectory that forms a curve C over a time
interval t ∈ [t0, tf ] and is described by its position r(t) = [x(t), y(t), z(t)]T, velocity ṙ(t) =
[ẋ(t), ẏ(t), ż(t)]T and acceleration r̈(t) = [ẍ(t), ÿ(t), z̈(t)]T vectors. The arclength of this curve,
s, is the distance traveled along its path, equal to22

s =

∫ sf

s0

ds =

∫ tf

t0

√
ẋ2 + ẏ2 + ż2dt (4)
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The instantaneous unsigned curvature, κC(t), measures the rate of rotation of the velocity vector
with respect to the arclength, i.e., the extent to which the trajectory deviates from a straight line, at
a time t. This scalar and nonnegative curvature is calculated as23

κC(t) =
||ṙ(t)× r̈(t)||

||ṙ(t)||3
(5)

and possesses a singularity when the speed is zero; the subscript ‘C’ emphasizes that this quantity
is calculated along a curve. The total curvature of the trajectory is calculated using the integral of
the curvature along its arclength as24

κC,tot(t0, tf ) =

∫ sf

s0

κC(s)ds =

∫ tf

t0

κC(t)
√
ẋ2 + ẏ2 + ż2dt (6)

and captures the angle traced out by the path within its evolving osculating plane.

Differential Geometry for Surfaces

The concept of curvature is useful for describing the geometric properties of a surface near a
specified point. Consider a surface in three dimensional space, S ⊂ R3, implicitly described by
the equation f(x1, x2, x3) = 0, where f is differentiable and xi are general coordinates. At any
point p ∈ S, the normal vector n̂p to the surface is calculated using the vector gradient of f as23

n̂p = gp/||gp||, where gp = ∇f(p). This vector locally orients the surface and is perpendicular
to the tangent plane Tp.

The surface curvature at p measures the local deviation from Tp.23 Consider an arbitrary direction
in the tangent plane, denoted as û ∈ Tp. A plane M is then formed using the basis vectors û and
n̂p. As depicted in black in Figure 1, the intersection of M , colored blue, with the surface S ,
colored gray, is a curve. The normal curvature, KS , is defined as the component of the curvature of
this curve along n̂p. The subscript ‘S’ emphasizes that this curvature corresponds to a surface. The
value of KS captures the surface curvature in the û direction.

The shape operator Sp mathematically encodes the evolution of the normal vector and, therefore,
the tangent plane when stepping away from a specified point along a specified direction.23 This
shape operator is calculated using the directional derivative of n̂p along û as23

Sp(û) = −∇un̂p = −∇n̂p · û = − (∇n̂p)
T û (7)

Figure 1. Conceptual definition of variables used to describe the curvature of a sur-
face S near a point p.
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The gradient of the normal vector is calculated as25

∇n̂p = ∇
(

gp
||gp||

)
=

(
∇gp
||gp||

−
∇||gp|| gT

p

||gp||2

)
=

1

||gp||

(
Hp −

∇(gT
p gp)

1/2 gT
p

||gp||

)

=
1

||gp||

(
Hp −

Hpgpg
T
p

||gp||2

)
=

1

||gp||
Hp

(
I −

gpg
T
p

||gp||2

)
=

1

||gp||
HpPp

(8)

where Hp = ∇2f is the Hessian of f calculated at p and Pp = I3×3− n̂pn̂
T
p projects vectors onto

Tp.25 Because Hp and Pp are symmetric matrices, Sp simplifies to

Sp(û) = − 1

||gp||
PpHpû (9)

Furthermore, because (∇uû) = KSn̂,23 the normal curvature of a curve passing through p in the
direction û is derived as23

0 = ∇u(n̂ · û) = (∇uû) · n̂+ (∇un̂) · û = KSn̂ · n̂− Sp(û) · û ⇒ KS = Sp(û) · û (10)

Stepping in different directions û may result in distinct values of the normal curvature.

To summarize the range of values of the normal curvature of a surface at point p, two principal
curvatures are defined. Specifically, KS,max and KS,min are defined as the vectors in the direc-
tions û that are associated with the maximum and minimum values of KS , respectively.23 These
directions are depicted conceptually in Figure 1 using orange and blue arrows, respectively. From
Equation 9, these principal curvatures occur when Sp(û) and û are parallel, i.e., when there exists
a constant α such that

Sp(û) = αû ⇐⇒ − 1

||gp||
PpHpû = αû (11)

Because û is a unit vector, α = KS . Therefore, the principal directions and curvatures correspond
to the eigenvectors and eigenvalues, respectively, of the shape operator.23

The principal curvature directions form an orthonormal basis for the tangent plane.23 Accord-
ingly, the principal curvatures supply a local description of the surface shape near p. Consider the
orthonormal local reference frame Blocal at p defined using the basis vectors {Kmin,Kmax, n̂p}
and corresponding coordinates χ, η, ζ. From the Implicit Function Theorem, S is locally described
near a sufficiently small neighborhood around p in terms of a height function ζ = h(χ, η) that is
defined as follows:26, 27

ζ = h(χ, η) = Kminχ
2 +Kmaxη

2 (12)

This expression supplies a local quadratic approximation of the surface at p.

Triangulation and Adaptive Mesh Refinement

Surface discretization has been used to describe and render surfaces computationally across vari-
ous disciplines, from computational fluid dynamics (CFD) to computer graphics. In these domains,
triangulations focus on approximating a curved surface by a set of triangles T that together define a
mesh.28 These triangulations are typically used due to their simple and robust capability to describe
complex surfaces embedded in three-dimensional space. Furthermore, structured meshes, such as
those generated by triangulation, have a regular, predictable arrangement of elements that simplifies
the computational implementation of algorithms designed to operate over a surface.28

5



Adaptive mesh refinement involves adapting a mesh to local properties of the surface, typically
via subdivision. For example, in CFD, it is common to subdivide the mesh near areas with high flow
complexity,29 whereas in computer graphics, regions of the mesh at locations of higher curvature
are subdivided to better capture the local surface characteristics.28 In these examples, the adaptive
mesh refinement process may result in higher numerical simulation accuracy, greater space and
memory efficiency, or improved surface representation fidelity.28, 29

Although a variety of techniques for mesh subdivision exist, one foundational approach is the
red-green refinement technique.30 This method consists of the following steps:

1. Select the initial triangles to be refined.
2. Divide all edges of the selected triangles in half.
3. For all triangles that have a divided edge, subdivide the longest edge.
4. Insert new points at the midpoints of all divided edges.
5. Construct the new triangles. If three sides of a triangle are divided, new triangles are formed

by joining the side midpoints. If two sides are divided, the midpoint of the longest edge
is joined with the opposing corner and with the other midpoint. If only the longest edge is
divided, its midpoint is joined with the opposing corner.

This refinement technique is conforming, meaning that the mesh is topologically consistent every-
where, allowing the refinement algorithm to operate recursively at any region of the mesh.30

Clustering

This paper leverages two density-based clustering algorithms to summarize the geometries of tra-
jectories in the CR3BP: Density-Based Spatial Clustering of Applications with Noise (DBSCAN)31

and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN).32 Both
algorithms act on a dataset with N members, described by m-dimensional feature vectors, to pro-
duce a set of 1) clusters C as members that form high-density groupings and 2) null assignments N
that exist in low-density regions within the feature vector space. DBSCAN is accessed via MAT-
LAB33 whereas HDBSCAN is accessed using the hdbscan Python library.34

DBSCAN Without a-priori knowledge of the number of clusters, DBSCAN was developed by
Ester et al.31 to identify arbitrarily-shaped clusters and label outliers as noise. The grouping is based
on identifying density-connected neighborhoods in the m-dimensional dataset. The algorithm relies
on two user-defined parameters, the neighborhood radius ϵ and a number of points mpts.31 A data
point qualifies as a core point if its ϵ-neighborhood contains at least mpts points.31 Clusters are then
composed of interconnected core points with overlapping ϵ-neighborhoods.31 Border points exist in
the ϵ-neighborhoods of core points but their own ϵ-neighborhood have fewer than mpts members;31

accordingly, they are added to the clusters of those core points. The remaining points which do not
satisfy these conditions are labeled as noise and correspond to null assignments.31

HDBSCAN Expanding on DBSCAN,31 HDBSCAN was developed by Campello, Moulavi, and
Sander32 to eliminate the need for a constant value of ϵ. First, the radius of the mpts-neighborhood of
point i in a selected feature vector space is denoted as its core distance dcorei . The mutual reachability
distance, dMRD

i,j = max(dcorei , dcorej , di,j), is then calculated between any two data points i and j.
Here, di,j is the Euclidean distance between the feature vectors of points i and j. This mutual
reachability distance further separates points in low-density regions. HDBSCAN then constructs a
minimum spanning tree (MST) between all the points in the dataset using the mutual reachability
distance to the define the edge weights. By progressively removing edges in decreasing order of
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their edge weights, a hierarchical tree is built using the resulting connected components present in
the modified MST. Finally, clusters that contain at least mmin,clust points and are most persistent
across the range of mutual reachability distances, are selected as the final output. Points that are not
assigned as clusters are designated as noise.32 More recently, the algorithm was refined by Malzer
and Baum35 to merge any two points within a distance of ϵmerge.

Clustering-Based Framework for Summarizing Trajectories

Recently, clustering has been used to automatically summarize the prominent geometries of a
diverse array of trajectories across a multi-body system. The most recent implementation of this
framework has been developed by Bosanac using concepts from differential geometry and dis-
tributed clustering.15 A brief overview of this procedure is presented in this section.

First, a continuous trajectory is described by a finite-dimensional feature vector.36 Given an
initial state vector, a trajectory is propagated for up to 21 days or until impact with the Moon. This
continuous solution is then discretely sampled in a geometry-based manner using the total absolute
curvature in the Earth-Moon rotating frame.14 A trajectory completing up to n = ⌈κC,tot(t0, tf )/π⌉
half-revolutions is first sampled at the initial condition. Then, samples are placed every π/Na in the
total absolute curvature for the first n − 1 half-revolutions. The last half-revolution is sampled by
Na equally spaced states in the remaining total absolute curvature. Accordingly, longer trajectories
are sampled by more states and these states tend to be located closer together in regions of high
curvature. Following Bosanac’s implementation,36 Na = 3 sufficiently describes each trajectory
while limiting the number of total samples. A continuous trajectory, sampled using Ns states is then
summarized by the following position-based fp and a shape-based fs, feature vectors:

fp =
[
rT1 , r

T
2 , . . . , r

T
Ns

]T
fs =

[
v̂T
1 , v̂

T
2 , . . . , v̂

T
Ns

]T
(13)

where ri and vi are the position and velocity vectors of the sampled states in the rotating frame.

To select the initial state vectors that are used to generate the set of trajectories to be summarized,
a static grid definition and differential geometry have previously been employed.36 First, the initial
position vectors are defined using a uniform grid. Prespecified values of the Jacobi constant are
then used to calculate the speed at each initial condition. For each initial position vector and speed,
the velocity direction is selected to produce a maximum in the curvature along the trajectory, κC ,
at the initial condition.14 Similar to the traditional use of apses, maxima in the curvature offer a
geometrically meaningful definition for automatically and robustly sampling initial conditions in
a multi-body system.37 For planar trajectories, up to four curvature maxima exist at any position
vector. After combining these initial velocities with their position vector, the associated trajectories
are generated, summarized, and stored in the training dataset. However, for spatial trajectories, these
velocity vectors exist in continuous families that are discretely approximated.37 Thus, the associated
trajectories are generated and grouped in a local clustering step. Representative members of these
local clusters supply the trajectories that are stored in the training dataset.14

The training dataset is then distributed across multiple, smaller partitions of trajectories that are
sampled using the same number of states and clustered by their geometry. The trajectories within
each partition are coarsely clustered via HDBSCAN using the shape-based feature vectors evalu-
ated over their entire duration.15 These coarse clusters are then processed by a cluster refinement
technique inspired by a convoy detection scheme.38 The ith states along all the trajectories within a
coarse group are independently clustered in each of the position- and shape-based three-dimensional
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feature vector spaces using DBSCAN with ϵ heuristically selected as ϵ = mptsmax (e, ϵthresh).15

Here, e is the median nearest neighbor distance between the ith states and ϵthresh is a user defined
threshold. This process is applied to all Ns sampled states to produce 2Ns clustering results. Any
trajectories that are consistently grouped together correspond to a refined cluster. The result of this
process is a set of local clusters and noise for each partition. Each local cluster is summarized by
a representative member, equal to the medoid in the position-based feature vector space.11 Fol-
lowing Bosanac’s implementation,15 mmin,clust = 5 and mpts = 4 for both clustering steps and
ϵmerge = 2 sin (10°/2) for HDBSCAN. The threshold values ϵthresh for the position- and shape-
based feature vectors are, respectively, 0.001 and 2 sin (10◦/2).

Consistent with distributed clustering, local clusters are aggregated across partitions if they con-
tain trajectories with a similar geometry.14 Candidate cluster pairs are first coarsely identified using
nearest neighbors in the position- and shape-based feature vector spaces. Then, the trajectories
within these candidate cluster pairs are input to the cluster refinement process. If any members are
grouped together, the associated clusters are merged.15 The connected sets of local clusters then
form the global clusters that summarize the entire training dataset.

TECHNICAL APPROACH

This paper focuses on expanding the existing clustering framework to adaptively summarize the
prominent geometries of trajectories originating within a specified region of the phase space in the
CR3BP. There are three main steps in this process, as depicted in Figure 2. The input is a user-
defined, initial coarse grid of position vectors. These position vectors are used to generate the initial
conditions of trajectories in the training dataset; these initial conditions lie on a surface of curvature
maxima. At each iteration of the framework, this grid is automatically refined in a manner that
balances 1) global exploration of the array of prominent geometries across the solution space, at
a desired resolution; and 2) local exploitation to ensure sufficient sampling to improve the quality
of the clustering results. The trajectories generated at each iteration are then clustered using the
procedure previously developed by Bosanac.15 To support a proof of concept, this paper focuses on
summarizing planar motion at a single value of the Jacobi constant in the Earth-Moon CR3BP.

Figure 2. Condensed flowchart of the new adaptive clustering framework.

Defining Initial Conditions

Following the implementation by Bosanac,15 the initial conditions are defined to produce maxima
in the curvature along a trajectory. However, this paper presents an analytical approach to generating
these initial state vectors for planar motion. While avoiding numerical inaccuracies of a root-finding
scheme, this analytical method also reduces the required computational time.

The maximum curvature condition, evaluated in the rotating frame for planar trajectories, is ex-
pressed in terms of the spacecraft state vector. To simplify the derivation, the velocity vector is
expressed in polar coordinates (v, θ) as v = [ẋ, ẏ] = [v cos θ, v sin θ] where v is the speed of the
spacecraft and θ is the angle between the velocity vector and x̂. Accordingly, v =

√
ẋ2 + ẏ2 and
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θ = arctan (ẏ/ẋ). The differential equations governing the spacecraft are rewritten as

ẋ = v cos θ v̇ =
ẋẍ+ ẏÿ

v
=

ẋUx + ẏUy

v
= Ux cos θ + Uy sin θ

ẏ = v sin θ θ̇ =
ẋÿ − ẏẍ

v2
=

Uy cos θ − Ux sin θ

v
− 2

(14)

in terms of v and θ. The second and third time derivatives of (v, θ) are calculated as

v̈ = v
[
θ̇(θ̇ + 2) + Uxx cos

2 θ + Uyy sin
2 θ + Uxy sin 2θ

]
(15)

θ̈ = Uxy cos 2θ +
1

2
(Uyy − Uxx) sin 2θ −

2v̇
(
θ̇ + 1

)
v

(16)

...
θ = θ̇ [(Uyy−Uxx) cos(2θ)−2Uxy sin(2θ)]−

2v
(
v̈θ̇+v̇θ̈+v̈

)
−v̇2

(
θ̇+1

)
v2

+

v

4

[
(3Uxyx − Uyyy)cos(3θ)+(3Uxyy−Uxxx)sin(3θ)+(Uxyx+Uyyy)cos(θ)

− (Uxxx+Uxyy)sin(θ)
] (17)

where Uij = ∂2U/∂xi∂xj and Uijk = ∂3U/∂xi ∂xj ∂xk for i, j, k ∈ {x, y}.

The curvature of a trajectory, κC , is calculated in terms of the coordinates (x, y, v, θ). Because
v̇ = v̇êv + vθ̇êθ, Equation 5 is rewritten as

κC =
||v × v̇||
||v||3

=
|θ̇|
v

=
θ̇

v
sign(θ̇) (18)

where the time dependence is omitted to simplify notation. Due to the change in the coordinates
describing the velocity vector, this expression for the curvature along a trajectory offers an intuitive
interpretation: higher curvature occurs when traveling at low speed with rapid directional changes.

Extrema in the curvature are calculated as stationary points in the curvature along the trajectory.
Using Equation 18, the time derivatives of κC are expressed as

κ̇C =

(
θ̈v − θ̇v̇

v2

)
sign(θ̇) (19)

κ̈C =

v
( ...
θ v − θ̇v̈

)
− 2v̇

(
θ̈v − θ̇v̇

)
v3

 sign(θ̇) (20)

The condition κ̇C = 0 is rewritten as the following trigonometric function by substituting Equations
14 and 16 into Equation 19, and performing algebraic manipulation:

A cos 2θ +B sin 2θ + C cos θ +D sin θ = 0 (21)

where

A = Uxy −
3UxUy

v2
B =

1

2

(
Uyy − Uxx +

3(U2
x − U2

y )

v2

)
C =

4Ux

v
D =

4Uy

v
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For given values of the Jacobi constant and mass ratio, the coefficients A,B,C,D are a function of
only the position because v =

√
2U(x, y)− CJ . By using Euler’s identity and defining Z = eiθ =

cos θ + i sin θ, Equation 21 is rewritten as

(A− iB)Z4 + (C − iD)Z3 + (C + iD)Z + (A+ iB) = 0 (22)

This expression is a quartic equation of the form aZ4+bZ3+cZ2+dZ+e = 0 where a = (A−iB),
b = (C−iD), c = 0, d = (C+iD), and e = (A+iB). From the Fundamental Theorem of Algebra,
Equation 22 has exactly 4 complex roots: Z∗

1 , Z
∗
2 , Z

∗
3 , Z

∗
4 ∈ C. One of the methods to obtaining

these solutions was first presented by Ferrari39 as

Z∗
1,2 = − b

4a
− S ± 1

2

√
−4S2 − 2p+

q

S
Z∗
3,4 = − b

4a
+ S ± 1

2

√
−4S2 − 2p− q

S
(23)

where

p =
8ac− 3b2

8a2
q =

b3 − 4abc+ 8a2d

8a3

∆0 = c2 − 3bd+ 12ae ∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace

Q =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
S =

1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)
This formulation yields all possible complex roots of the quartic equation for any given coefficients.

From the Fundamental Theorem of Algebra, there are at most four curvature extrema per position
vector for each value of CJ and µ in the planar CR3BP. To justify this result, the Ferrari method39

is used to obtain the solutions Z∗ ∈ C of Equation 22. These solutions correspond to the velocity
directions θ∗ = −i lnZ∗, where only real valued θ∗ are considered, i.e., those for which |Z∗| = 1.
Finally, only values of θ∗ that yield κ̈C < 0 are retained to produce four or fewer maxima in the
curvature at any given position vector for a single Jacobi constant and mass ratio.

Initial Condition Surface Triangulation

For fixed values of CJ and µ, κ̇C is only a function of the position coordinates x, y and the
velocity direction θ. As such, the equation κ̇C(x, y, θ) = 0 implicitly defines a surface embedded
in R3. Thus, differential geometry of surfaces is leveraged to analyze this complicated surface of
initial conditions. Accordingly, the triangulation procedure presented in this paper to approximate
the surface of initial conditions is performed through a sequence of steps.

First, an initial triangulation, Tpos, is defined over an initial, coarse, and uniform grid of posi-
tion vectors using MATLAB’s built-in triangulation functions.33 Effectively, this step identifies the
configuration space neighbors of each state vector in the initial condition grid. The procedure is
depicted in Figure 3a) for CJ = 3.14, where the triangulation is shown in light blue, the initial
positions are marked with blue points, the zero velocity curves are plotted in gray, the Moon is
represented by the gray circle, and the L1 and L2 Lagrange points are indicated by red diamonds.
Next, the speed at a desired value of CJ is calculated at each position vector. Then, as depicted in
Figure 3b), the up to four values of θ that define the velocity directions of curvature maxima are
calculated for each position using the methodology described in the previous subsection. The next
step is to extend the triangulation across the full state description.
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Consider an initial condition IC∗ = [x∗, y∗, θ∗]T at a point p on the surface of initial conditions.
In Tpos, IC∗ may be connected to up to six neighboring position vectors in the uniform grid within
the configuration space. Because each position vector can produce up to four states that are maxima
in curvature, up to 24+ 3 = 27 candidate states could be connected to IC∗; these states are denoted
as ICcand.. However, not all candidates exist near IC∗ on the surface defined by curvature maxima.

To identify neighboring states along the surface, this paper leverages curvature-based criteria.27

Specifically, candidates that are sufficiently close to IC∗ are identified using a quadratic approxima-
tion of the local surface curvature using Equation 12. First, the shape operator at IC∗ is obtained via
Equation 9 and defining f = κ̇C(x, y, θ). The eigenvalues and eigenvectors of the shape operator
are then used to define a transformation matrix Blocal = [Kmin,Kmax, n̂p]

T and extract the prin-
cipal curvatures at IC∗. These basis vectors are used to rewrite ICcand. = [x, y, θ]T relative to IC∗

in the local frame via the following transformation:[
χ, η, ζ

]T
= Blocal (ICcand. − IC∗)

Then, as depicted in Figure 3c), a local quadratic approximation to the surface is constructed at
IC∗ with Equation 12, and the local coordinates {χ, η} of the candidates are used to produce the
approximate height values ζ̃. When compared to the true height value ζ, the local height error is
defined as δh = |ζ − ζ̃|. The candidate states ICcand. that are considered triangulation neighbors
of IC∗ must satisfy the following two conditions: 1) δh is below a user defined threshold ∆hmax,

Figure 3. Flowchart depicting the initial condition surface triangulation scheme:
a) position triangulation, b) initial condition generation, c) local quadratic surface
approximation to identify neighboring states and d) surface triangulation.
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and 2) their separation distance ℓ = ||IC∗ − ICcand.|| is below a user defined threshold ∆ℓmax.
These curvature-based criteria adapt to the local characteristics of the surface, ensuring that only
the immediate, true neighbors of each initial condition are considered for the triangulation.

The triangulation Tpos is then extended to the full phase space using this information from the
neighboring states along the surface of initial conditions. First, each state IC∗ defines a node in
the triangulation. Then, edges are added between the node associated with IC∗ and the nodes of
candidate states ICcand. that satisfy the neighborhood criteria. Repeating the process for every
initial condition in the coarse grid produces a triangulation T for the surface, as depicted in Figure
3d). Here, the initial conditions are represented by blue dots, connected by black edges that define
the triangulation, plotted as light blue triangles. Figure 3d) also exhibits two current limitations of
the algorithm: 1) some initial conditions are excluded in the triangulation, as exemplified by the
set of isolated points near the top of the figure and 2) there are no edge connections between points
near θ = −180° and θ = 180°, which correspond to similar velocity directions. Addressing these
limitations is an avenue of ongoing work.

Adaptive Mesh Refinement

Given an initial triangulation of the surface, the mesh of initial conditions is refined. Similar
to the exploration-exploitation tradeoff in machine learning,40 the goal of mesh refinement is to
both improve the resolution of poorly sampled regions, i.e., global exploration, and improve the
clustering result, i.e., local exploitation. In this paper, each of these goals in the mesh refinement
process is defined using information from differential geometry and the clustering output.

In the global exploration phase, the goal is to capture the overall shape of the surface of initial
conditions and, therefore, increase the likelihood that the array of prominent trajectories geometries
appears within the training dataset with sufficient density. To achieve this goal, the root-mean-

squared surface curvature value, Krms=
√
K2

min+K2
max, is calculated at each of the initial condi-

tions in the current mesh. At any given point, a high value of Krms indicates that the surface is more
curved and, therefore, more complex. Thus, every initial condition for which Krms is larger than a
user-defined value ∆Krms,max, is flagged for refinement by adding initial conditions in its vicinity.

In the local exploitation phase, the goal is to improve the clustering results by increasing the
resolution in dynamically sensitive regions and/or areas where initial conditions correspond to tra-
jectories that were labeled as noise. Two criteria are examined in this paper to locate dynamically
sensitive regions: geometric changes, detected heuristically using the total absolute curvature along
the trajectory; and relative trajectory stability, measured via the Fast Lyapunov Indicator defined
in Equation 3. These quantities are calculated for all initial conditions by propagating the total
curvature and the STM alongside the equations of motion. Note that for planar motion, the total
curvature adds one differential equation to the propagation whereas the STM adds 16 first order
differential equations. Then, for any given initial condition IC∗, the variance of these quantities is
calculated over its neighborhood, defined as the set N (IC∗) of initial conditions belonging to every
triangle containing IC∗ in the current surface triangulation. This set consists of N members includ-
ing IC∗. Then, for any scalar quantity q associated with each initial condition, its variance over the
neighborhood of IC∗ is

VarN (IC∗)(q) =
1

N − 1

∑
ICi∈N (IC∗)

(q(ICi)− q)2 q =
1

N

∑
ICi∈N (IC∗)

q(ICi)
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Here, q denotes either κC,tot or FLIT . Initial conditions for which this variance is greater than
user-defined thresholds σ2

max(κC,tot) or σ2
max(FLIT ) are flagged for refinement. Finally, initial

conditions of trajectories that are labeled as noise during clustering are also flagged.

Given a set of flagged initial conditions, the mesh refinement algorithm is implemented using
red-green refinement, with minor modifications. In step 2, instead of refining entire triangles, the
procedure used in this paper only marks for subdivision the edges between flagged initial conditions
and their triangulation neighbors, as depicted in Figure 4a). Here, the red star is the flagged initial
condition, the solid blue lines represent triangulation edges between other initial conditions, shown
as black dots, while the dashed lines indicate edges marked for subdivision.

Whenever an edge is divided during refinement, the new initial condition, ICnew, must be pro-
jected back onto the surface defined by the curvature maxima. The position vector at the center
of this edge is first calculated between IC∗ and its neighbor ICneigh as rnew = (r∗ + rneigh) /2.
Because up to four curvature maxima may exist at this position, the resulting set of actual curvature
maxima ICnew are compared with the approximated state ĨCnew as depicted in Figure 4b). Then,
only the initial condition in ICnew that lies on the surface but possesses a distance d to ĨCnew that is
lower than a user defined threshold ∆dnew is retained as the new sample for this specific edge. This
new initial condition is then propagated to obtain its associated trajectory.

Finally, two mesh resolution thresholds are applied. One threshold governs the minimum sepa-
ration between initial conditions in position, ∆rmin, whereas the other threshold governs the mini-
mum separation in velocity direction ∆θmin. During any subsampling step, if the distance between
IC∗ and ICneigh. is less than 2∆rmin in the configuration subspace and less than 2∆θmin in the
velocity angle subspace, the edge is not subdivided.

Adaptive Clustering Framework

The three components of adaptive mesh refinement are leveraged to construct an adaptive cluster-
ing framework as shown in Figure 5. Given a single value of the Jacobi constant and a coarse, initial
position grid, the surface of initial conditions is calculated and triangulated using the methodology
described above. Then, in a global exploration phase, the resolution of the surface is improved by
performing mesh refinement, governed by the root mean squared surface curvature. This step is
repeated for up to Ngeo iterations. Once the surface of initial conditions has been sufficiently re-
solved, the local exploitation phase begins. This mesh is first refined using the variance of the total
absolute curvature along the trajectory or FLIT within each initial conditions’ neighborhood. This
refinement is performed for up to Npre clust iterations. The result is an initial condition mesh MIC

which is sufficiently dense to begin the adaptive clustering loop.

For the first iteration of adaptive clustering, the dataset is summarized using the clustering frame-

Figure 4. a) Modified step 2 of red-green mesh refinement and b) projection onto the
surface of initial conditions.
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Figure 5. Flowchart describing the full adaptive clustering framework.

work by Bosanac,15 to extract the first set of clusters and noise. Then, MIC is refined sequentially
by first using the noise assignments as well as the local variance of κC,tot or FLIT . The set of trajec-
tories associated to this new initial condition mesh is passed through the clustering framework again
to update the summary of motion, and the process repeats. The adaptive clustering loop terminates
upon either 1) reaching a maximum number of iterations NAC or 2) no initial conditions are added
because either the mesh satisfies the resolution thresholds or no more initial conditions are flagged.
Thus, the mesh has converged and the clustering results supply the final summary of motion.

RESULTS

The presented adaptive clustering framework is used to summarize planar motion in the vicinity
of the Moon in the Earth-Moon CR3BP at CJ = 3.12. The region of interest is defined by: R =
{(x, y) | 0.8 ≤ x ≤ 1.2, −0.2 ≤ y ≤ 0.2}. This section analyzes the results of two main steps in
Figure 2: the pre-clustering adaptive sampling and the adaptive clustering loop. For this application,
Table 1 lists the selected values of the hyperparameters that govern the adaptive sampling scheme.
The coarse position grid is initially defined by sampling the region R with a step of 0.01 in each
configuration space variable, producing 4,342 initial state vectors.

Triangulation Adaptive Sampling Mesh Resolution Maximum iterations

∆hmax ∆lmax ∆dmax ∆Krms,max σ2
max(κC,tot.) σ2

max(FLIT ) ∆rmin ∆θmin Ngeo Npre−clust NAC

0.05 0.5 0.1 80 0.25 0.015 5× 10−4 0.5° 6 2 3

Table 1. Selected values of parameters governing the adaptive sampling framework.

Mesh Refinement via Surface Curvature

Once the surface of initial conditions has been generated and triangulated for the first time, the
mesh is refined using the surface curvature. This step corresponds to the global exploration phase
of the adaptive sampling framework, where the goal is to discretize the initial condition surface
efficiently while obtaining a sufficient representation of its geometric features. After the Krms-
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based refinement, the initial condition mesh is plotted in Figure 6a), where the color indicates the
value of the root-mean-squared surface curvature at each point.

The refinement process at this step successfully adapts to the geometry of the surface of initial
conditions. For instance, the region labeled with the annotation “b)” is visualized in a zoomed-in
view in Figure 6b). In this region, the surface possesses a saddle shape, which is not visible without
refinement. The refinement process successfully captures the geometric features of the surface,
strategically adding samples where necessary. However, there are other portions of the surface that
are less geometrically complex. For instance, in the local region plotted in Figure 6c), the surface
appears to be relatively flat and requires no refinement under the selected curvature threshold. With
the surface geometry better captured through adaptive sampling, there is a higher likelihood that the
trajectories generated from these initial conditions better capture the array of prominent geometries.

Comparing Mesh Refinement via Total Absolute Curvature and Chaos Indicators

Following Krms-based refinement, the mesh is passed through two refinement steps using either
the total trajectory absolute curvature or the chaos indicator FLIT . In Figure 7, panels a) and c) show
the mesh before and after refinement using κC,tot, whereas panels b) and d) show the mesh before
and after refinement using FLIT . Initial conditions are colored by κC,tot or FLIT , respectively. The
values of σ2

max(κC,tot.) and σ2
max(FLIT ), listed in Table 1, are selected to produce approximately

the same number of initial conditions after refinement, i.e., approximately 27,700.

Using the total curvature along a trajectory to refine the mesh effectively resolves regions where
the quantity changes rapidly. In Figures 7a) and c), the yellow initial conditions near the Moon
result in trajectories with high values of κC,tot.. These trajectories are quasi-periodic trajectories
that perform multiple revolutions around the Moon. Moreover, mesh refinements are observed
where the stable manifolds of the Lyapunov and direct prograde orbits at this CJ intersect the initial
condition surface. Ongoing work includes further analyzing this observation.

Using the chaos indicator to refine the mesh effectively resolves regions where the dynamics are
more sensitive. For instance, Figure 7d) features ridges in the value of the chaos indicator along
the surface of initial conditions. Similar to a separatrix in phase space diagrams, these ridges form
the boundary between regions of distinct dynamical behavior.20 The adaptive sampling scheme
successfully resolved these features, which were not clearly visible in the initial coarse grid.

Figure 6. a) Initial condition mesh after Krms-based refinement with zoomed-in view
of selected b) curved and c) flat regions.
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Figure 7. Initial condition mesh a) before refinement colored by κC,tot, b) before
refinement colored by FLIT , c) after refinement using κC,tot, colored by κC,tot, d)
after refinement using FLIT , colored by FLIT .

The meshes refined using either κC,tot or FLIT are similar. In each case, the areas where new
initial conditions are placed are closely correlated. This result is consistent with the expectation
that a trajectory located near another path that is sensitive to small changes in the initial condi-
tion, as quantified by FLIT , will likely exhibit a different shape, leading to a different value of
κC,tot. However, κC,tot offers an interesting benefit for performing refinement: 15 fewer ordinary
differential equations must be integrated, compared with calculating the FLI, speeding up trajectory
propagation. As such, κC,tot is used throughout the adaptive clustering loop.

Adaptive Clustering

The grid depicted in Figure 7c) is used to initialize the adaptive clustering loop. Figure 8 displays
two views of the grid: a) and c) after the first clustering step and b) and d) after three iterations of
the adaptive clustering loop. Cluster labels are indicated with color and noise is displayed in brown.
Note that the colors may change through the adaptive clustering refinement.

Initial conditions are added only where and when needed, depending on the clustering results.
Near the L2 gateway, the initial mesh is coarse and produces many unlabeled trajectories. Thus,
the adaptive clustering scheme places more initial conditions in that area, leading to the successful
clustering of the associated trajectories and reducing the number of unlabeled trajectories. Similarly,
the grid in the region {(x, y, θ) |0.8≤x≤0.85, 0.15≤y≤0.2,−180°≤θ≤−160°} is also coarse.
However, the sample density there is sufficient for clustering, so no initial conditions are added.

Even after refinement, noise tends to persist near cluster boundaries. Due to the density-based
nature of clustering and the lack of clear, separable boundaries between trajectory geometries in a
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Figure 8. Initial condition mesh a), c) before and b), d) after adaptive clustering loop.
Inset shows the persistence of noise between cluster boundaries.

continuous system, the designation of some trajectories as noise cannot be completely eliminated.
However, the adaptive clustering scheme successfully reduces the noise in these areas, as depicted
in the inset of Figure 8. This noise reduction leads to better defined clusters across the dataset.

When analyzing the final summary of motion, some interesting geometries are detected. As
displayed in Figure 9, selected clusters of trajectories are colored blue, with the blue dots locating
the initial condition. Figures 9a), c) show paths with segments that resemble trajectories in the
stable manifold of an L2 Lyapunov orbit and Figures 9b), d) show paths with segments that resemble
trajectories in the stable manifold of a direct prograde orbit. The respective reference periodic orbits
are plotted as dashed black lines. Other clusters in the final summary contain paths with segments
that resemble trajectories in the stable manifold of an L1 Lyapunov orbit. These geometries emerge
without any explicit guidance from the user; the implemented scheme extracts them automatically.
This recovery of governing transport mechanisms may be valuable in higher-fidelity models where
there is less a priori knowledge of the solution space.

Figure 10 summarizes statistics of the dataset throughout the adaptive clustering process. The a)
number of initial conditions, b) noise percentage, and c) number of local clusters are plotted across
each iteration, marked by bars of different colors. The vertical axes are displayed on a logarithmic
scale. The bars are grouped together by the number of half-revolutions n, completed by each of
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Figure 9. Clusters whose geometry resembles motion in the stable periodic manifold
associated with a), c) L2 Lyapunov and b), d) direct prograde orbit.

the trajectories in the total dataset. With the exception of n = 10, the noise percentage generally
decreases throughout the refinement process. For example, for n = 1, the number of local clusters
slightly decreases, as does the noise percentage, as more initial conditions are added. Ongoing work
includes investigating the high number of trajectories designated as noise when n = 10.

Through the adaptive clustering process, the percentage of trajectories designated as noise drops
from 11% to 2% across the entire dataset. The final number of initial conditions is 187, 470, result-
ing in 1,205 local clusters which are aggregated to produce 955 global clusters. For comparison, a
uniform initial position grid with a resolution of ∆rmin = 5× 10−4, would produce 1,688,528 ini-
tial conditions, 9 times larger than the size of the dataset after the adaptive clustering scheme. This
increase in the size of the dataset would have significant implications for data storage requirements
and computational time.

Figure 10. Data set statistics throughout the adaptive clustering loop.
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CONCLUSIONS

This paper expands on the clustering framework developed by Bosanac15 to summarize trajecto-
ries in the planar Earth-Moon CR3BP by introducing an adaptive and automated scheme for gen-
erating the training dataset. This paper demonstrates that, for planar motion, the set of curvature
maxima belongs to a surface. This surface is discretized based on its geometric features using
differential geometry. The clustering framework is then embedded in a loop where the summary
of motion is iteratively improved through the strategic addition of samples near noise points and
dynamically sensitive regions, governed by the total absolute curvature of the trajectories. This
algorithm supplies an automatic and adaptive sampling procedure, densely sampling areas with
greater dynamical complexity while sampling simpler regions more sparsely. As a result, the ap-
proach reduces the reliance on prior expertise about the specific environment and decreases the time
required from a human analyst to generate the dataset. These properties may facilitate the study of a
wider range of systems while producing motion summaries that more accurately capture the diverse
geometries exhibited by trajectories in a chaotic solution space.

ACKNOWLEDGMENT

This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-24-1-0217. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
United States Air Force.

REFERENCES
[1] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, ch. 10. New York, NY: Elsevier

Science Technology, 3rd ed., 2011.
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[29] M. J. Berger and P. Colella, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” Journal of

computational Physics, Vol. 82, No. 1, 1989, pp. 64–84.
[30] R. Bank and A. Sherman, “Some Refinement Algorithms And Data Structures For Regular Local Mesh

Refinement,” Applications of Mathematics and Computing to the Physical Sciences, 1999.
[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise,” Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, KDD’96, AAAI Press, 1996, p. 226–231.

[32] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based Clustering Based on Hierarchical
Density Estimates,” Advances in Knowledge Discovery and Data Mining, Springer Berlin Heidelberg,
2013, pp. 160–172.

[33] T. M. Inc., “MATLAB version: 24.1.0 (R2024a),” 2024.
[34] L. McInnes, J. Healy, S. Astels, et al., “hdbscan: Hierarchical Density Based Clustering,” J. Open

Source Softw., Vol. 2, No. 11, 2017, p. 205.
[35] C. Malzer and M. Baum, “A Hybrid Approach to Hierarchical Density-Based Cluster Selection,” 2020

IEEE international conference on multisensor fusion and integration for intelligent systems, 2020.
[36] N. Bosanac, “Data-Driven Summary of Natural Spacecraft Trajectories in the Earth-Moon System,”

AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Montana, 2023.
[37] N. Bosanac, “Curvature Extrema Along Trajectories in the Circular Restricted Three-Body Problem,”

AAS/AIAA Astrodynamics Specialist Conference, Broomfield, CO, August 2024.
[38] Y. Zheng and X. Zhou, Computing with Spatial Trajectories, ch. 1,5. Springer Publishing Company,

Incorporated, 1st ed., 2011.
[39] G. Cardano, The Great Art or The Rules of Algebra (Ars Magna). Cambridge, MA and London: The

MIT Press, 1968. Originally published in 1545 as Ars Magna.
[40] H. Liu, Y.-S. Ong, and J. Cai, “A Survey of Adaptive Sampling for Global Metamodeling in Support

of Simulation-Based Complex Engineering Design,” Structural and Multidisciplinary Optimization,
Vol. 57, No. 1, 2018, pp. 393–416.

20

https://ssd.jpl.nasa.gov/horizons/

	Introduction
	Background
	Circular Restricted Three-Body Problem
	Fast Lyapunov Indicators
	Differential Geometry for Curves
	Differential Geometry for Surfaces
	Triangulation and Adaptive Mesh Refinement
	Clustering
	DBSCAN
	HDBSCAN

	Clustering-Based Framework for Summarizing Trajectories

	Technical Approach
	Defining Initial Conditions
	Initial Condition Surface Triangulation
	Adaptive Mesh Refinement
	Adaptive Clustering Framework

	Results
	Mesh Refinement via Surface Curvature
	Comparing Mesh Refinement via Total Absolute Curvature and Chaos Indicators
	Adaptive Clustering

	Conclusions
	Acknowledgment

