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Abstract
When a spacecraft operating in cislunar space possesses a continuous-thrust propulsion system, the trajectory design
process becomes more complex. To address this challenge, this paper applies a motion primitive approach to
continuous-thrust trajectory design. First, motion primitives are generated to summarize continuous-thrust arcs that
approach or depart selected periodic orbits in the Earth-Moon circular restricted three-body problem. These thrust arcs
use a constant thrust direction in the velocity-normal-conormal axes defined relative to the Moon, as well as a specified
spacecraft with various initial masses. Then, a hierarchical motion primitive graph is used to summarize their potential
for sequential composability in the phase space and mass. Each component of this graph is searched to generate
multiple traversable primitive sequences. These primitive sequences are translated into initial guesses and corrected to
produce continuous thrust-enabled trajectories. Distinct sequences produce geometrically distinct initial guesses with
various propellant mass requirements and flight times. This approach is demonstrated in the foundational problem of

designing planar transfers from an L1 Lyapunov orbit to an L, Lyapunov orbit.
Keywords: motion primitive, continuous-thrust trajectories, trajectory design, multi-body system

1. Introduction

When a spacecraft operating in cislunar space
possesses a continuous-thrust propulsion system, the
trajectory design process becomes more complex.
Traditionally, trajectory design within multi-body
systems has relied on fundamental solutions, computed
via dynamical systems theory, in low-fidelity models to
support manual initial guess construction [1]. However,
in the presence of an additional acceleration with an
evolving direction and/or magnitude, motion is no longer
governed by fundamental solutions. Accordingly, these
existing approaches offer limited support for designing
and predicting thrust-enabled trajectories.

In recent years, Smith and Bosanac have introduced a
motion primitive approach to spacecraft trajectory design
within multi-body gravitational systems [2,3]. This work
has since been substantially extended by Miceli and
Bosanac [4], as well as Gillespie, Miceli, and Bosanac
[5]. Consistent with their use in robotics, motion
primitives supply building blocks of motion that can be
assembled to form complex paths [6-8]. When applied to
spacecraft trajectory design, a set of arcs are sampled
from trajectories with various predefined behaviors or
parameters [2,4,5]. These arcs are clustered based on
geometric similarity [4,5]. A single representative
member of each cluster then serves as the motion
primitive [2]; behavioral motion primitives also encode
the associated behaviors and parameters [5]. A motion
primitive graph is constructed to capture the sequential
composability of pairs of these primitives [3,4]. This
graph is then searched to generate unique primitive
sequences that can supply geometrically distinct initial
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guesses [3,4]. This approach has previously been used to
design complex trajectories with impulsive maneuvers in
the Earth-Moon [3] and Neptune-Triton systems [4].

This paper focuses on using this motion primitive
approach to design low-thrust trajectories for a SmallSat
in cislunar space. First, a library of motion primitives is
generated to summarize continuous-thrust trajectories
approaching or departing selected libration point orbits
with various spacecraft masses and thrust directions in
the Earth-Moon circular restricted three-body problem
(CR3BP). Then, a motion primitive graph is constructed
and searched to automatically generate geometrically
distinct initial guesses for planar trajectories from an L
Lyapunov orbit to an L. Lyapunov orbit. This approach
is intended to support exploring the associated trade
spaces for spacecraft with low-thrust propulsion systems
operating in cislunar space.

2. Background
2.1 Dynamical Model

The dynamical environment governing the motion of
a spacecraft in cislunar space is approximated using the
Earth-Moon CR3BP, with a continuous-thrust
acceleration added. In this model, the Earth and Moon are
modeled using constant masses with gravitational fields
identical to point masses [9]. In addition, the spacecraft
is assumed to possess a negligible mass of m in
comparison. Finally, the Earth and Moon are assumed to
follow circular orbits about their barycenter [9].

In this paper, the spacecraft is assumed to be a
SmallSat with a continuous-thrust propulsion system.
The initial wet mass of the spacecraft is between 170-180

Page 1 of 12



76™ International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
Copyright ©2025 by Dr. Natasha Bosanac. Published by the IAF, with permission and released to the IAF to publish in all forms.

kg with up to 40 kg of propellant [10]. The propulsion
system is assumed to apply a constant thrust magnitude
T = 13mN and constant specific impulse I, = 1390s,
consistent with a Busek BHT-200 engine [11].

The state of a spacecraft in the Earth-Moon CR3BP is
typically expressed using nondimensional coordinates in
a frame that rotates with the Earth and Moon [9]. Length,
time, and mass quantities are normalized by the
following characteristic quantities: [* = 384,400 km,
t* ~ 3.751903 x 10°s, and m*. These values result in
the distance between the Earth and Moon, the mean
motion of the Earth-Moon system, and total system mass
all possessing nondimensional values of unity [9]. The
Earth-Moon rotating frame is defined using an origin at
the barycenter of the Earth-Moon system and the
following axes: % is directed from the center of the Earth
to the center of the Moon, Z is aligned with the orbital
angular momentum vector of the Earth and Moon, and y
completes the orthogonal right-handed triad [9].

The equations of motion governing a spacecraft with
a continuous-thrust propulsion system are written in the
rotating frame using nondimensional coordinates [9].
The state of the spacecraft is defined as
[x,y,2,%,y,2,m]T. The dot notation indicates a time
derivative with an observer fixed in the rotating frame.
Using these definitions, the differential equations
governing the spacecraft are written as [9,12]
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where u = 1.215058439470971 x 1072 is the mass
ratio of the Earth-Moon system; u,,u,,u, are the
components of the thrust vector in the axes of the Earth-
Moon rotating frame; 1, = +/(x + )% + y2 + z2 and
r=y@&x—-1+w?2+y>*+2z> ; and g, is the
gravitational acceleration on the surface of Earth. The
final equation produces a quantity in kg per
nondimensional time units. In the natural CR3BP, the
Jacobi constant is defined as
21— 2
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and supplies a constant of motion.
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2.2 Thrust Vector Definition

When the spacecraft propulsion system is activated,
the thrust vector direction must be specified. In this
paper, the velocity-normal-conormal (VNC) axes are
used and defined in the inertial frame relative to the
Moon. Consider the nondimensional position and
velocity vectors of the spacecraft relative to the Moon in
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the inertial frame, defined as R, ¢, and V, ;.. The VNC
axes relative to the Moon are calculated as
17 _ M 5o RL,s/c X VL,s/c
VL,s/c ' ”RL,s/c X VL,s/c” ’
In the two-body problem, these axes supply an intuitive
representation of the thrust vector based on strategically
changing the energy or the orbit plane relative to the
Moon. However, geometric intuition is limited in the
CR3BP where multiple celestial bodies gravitationally
interact with the spacecraft. An additional limitation is
that a singularity exists when the position and velocity
vectors of the spacecraft, relative to the Moon and in the
inertial frame, are parallel. The thrust vector is defined in
these axes as @ = u,V + u,N + u.C. Then, the thrust
vector is transformed into the rotating frame at each
epoch during numerical integration.

C=VxN

2.3 Curvature

Concepts from differential geometry are useful for
describing and sampling curved paths in three-
dimensional space [13,14]. Consider a path generated
over a time interval t € [to, tf] with position, velocity,
and acceleration vectors denoted as 7 = [x,y,z]T, v =
[%,9,2]T , and @ = [%,7,Z]7 . The path traverses a
distance equal to the arclength, calculated as [13]

tr tr
s=f ds=f (X2 +y?+22)dt
t t

0 0
At any state along the curved path at time ¢, the scalar,

unsigned curvature captures the deviation from a straight
line. This quantity is calculated as [14]
o lrxal
l73]]
with a singularity when the speed is equal to zero.
Maxima in this curvature occur when x(t) =0,
indicating that the shape is changing most rapidly [14].

2.3 Density-Based Clustering

To discover groupings of geometrically similar arcs,
density-based clustering is employed. This unsupervised
method identifies groups of data points that exist in
sufficiently dense regions within a feature vector space
[15]. This paper uses two clustering methods: Density-
Based Clustering of Spatial Applications with Noise
(DBSCAN) [16] and Hierarchical Density-Based
Clustering of Spatial Applications with Noise
(HDBSCAN) [17].

DBSCAN constructs clusters from data points that
possess at least a specified number of members within a
fixed radius. First, for each member of a dataset, its my,s-
neighborhood is defined to possess a radius equal to the
distance to its my,; neighbor in the feature vector space.
Then, three types of points are defined [16]:

1. A core point possesses an m,,;-neighborhood with a
radius that is less than or equal to €.
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2. A border point lies within a distance of € of a core
point but does not possess at least m,;; neighbors in
its own e-sized neighborhood.

3. A noise point does not lie within a distance of € of
any core points.

Then, each cluster is formed by core points that lie within

a distance of € from other core points, along with their

border points [16]. Noise points are not assigned to any

clusters. A modification of this algorithm, spatio-
temporal DBSCAN (ST-DBSCAN) [18], updates the

condition of a core point to possess at least M,

neighbors within a radius of €; in one feature vector

space and €, in a second feature vector space. DBSCAN
is implemented in this paper using the built-in dbscan

function in MATLAB [19].

HDBSCAN selects clusters from a hierarchy [17],
eliminating the dependence on a single, constant value of
€. To achieve this goal, the distance between two points
is transformed to a mutual reachability distance to
capture density information [17]. First, the core distance
of the ith member of a dataset, d ( ﬁ), is the distance
to its my,th nearest neighbor. The mutual reachability
distance is then defined between members i and j as

dmrcl (fu f}) = max(dcore (fl)' dcore (f})' d(fu f]))
where d(f;, f;) is the Euclidean distance between the two
points in the specified feature vector space. A cluster
hierarchy is then constructed to summarize all possible
groupings as the threshold on this mutual reachability
distance is varied, analogous to varying € in DBSCAN.
The selected clusters are most persistent across the
hierarchy with at least My, ;,cse members [17]. A
threshold €,¢rg. can also be defined to limit the distance
between members in distinct clusters [20]. Through this
clustering approach, members are either assigned to a
unique cluster or designated as noise. HDBSCAN is
accessed using the Python-based Ahdbscan library [21].

3. Technical Approach

This section supplies a brief overview of the motion
primitive approach to designing continuous-thrust
transfers. The motion primitive library is constructed by
following an approach recently presented by Gillespie,
Miceli, and Bosanac [5]. Then, the remaining steps of this
framework follow the general procedure developed by
Miceli and Bosanac [4]. Recent modifications to reduce
computational complexity in the graph construction step
were outlined by Bosanac [22].

3.1 Step 1: Generate Motion Primitive Library

The motion primitive library is constructed to
summarize the prominent geometries exhibited across
planar trajectories that approach or depart specified
families of periodic orbits. In this paper, the selected
periodic orbits are 31 L: Lyapunov orbits and 12
members of the L2 Lyapunov orbit families with a Jacobi
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constant greater than 3.0 and less than 3.2. Trajectories
that approach or depart these periodic orbits are
generated in the Earth-Moon CR3BP for a duration equal
to the perturbation doubling time [23] plus three months
[5]. However, propagation is terminated early if 1) the
trajectories impact the Earth or Moon; 2) the trajectories
exceed a distance of 1 from the Moon [5]; or 3) the
position and velocity vectors relative to the Moon are
within 0.1 degrees of being parallel or anti-parallel,
corresponding to a singularity in the definition of the
VNC axes. Trajectories that approach or depart any
periodic orbit with continuous thrust are generated by
assuming 1) a constant thrust vector in the VNC axes
defined relative to the Moon and 2) a specific initial mass
at the arrival or departure location along the periodic
orbit [5]. The thrust vector is varied in 45 degree
increments within the VC-plane and the initial mass is
varied in 1 kg increments between 180 kg and 170 kg.

The trajectories that approach or depart the selected
periodic orbits are sampled to produce smaller arcs,
following the approach presented by Gillespie, Miceli,
and Bosanac [5]. These arcs are defined using curvature-
based windows to ensure consistency as the trajectories
visit various regions of the system. Each window that
defines an arc begins at either a curvature maximum or
the initial state along a trajectory. The window is then
defined to encompass three more curvature maxima and
either a fourth curvature maximum or an early
termination state. If termination occurs before three more
curvature maxima, the window is shortened to produce a
smaller arc. When sampled from a long trajectory, one
arc begins where the previous arc ends.

Each continuous arc is then sampled using a discrete
sequence of states that are distributed geometrically [5].
First, the initial and final states along with the
intermediate curvature maxima are retained. Then, two
additional samples are added between subsequent
samples and distributed equally in the arclength [5].
Accordingly, each arc is sampled using up to 13 states.

The state vectors at the discretely sampled states
along an arc are used to construct two finite-dimensional
feature vectors that captures its geometry [5,24]. A
position-based feature vector is defined using the
position vectors in the Earth-Moon rotating frame at
these samples as [5,24]

fo = |7 o o o i
In addition, a shape-based feature vector is defined using
the velocity unit vectors in the Earth-Moon rotating
frame at these samples as [5,24]

fo =01, 92 B o1, O
Each feature vector is 3N-dimensional for an arc sampled
using N < 13 states.
Clustering is used to construct a coarse, initial

grouping of these arcs by their shape [24]. At this stage,
the arcs sampled from trajectories that either approach or
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depart a single periodic orbit with any thrust vector and
any initial mass are identified [5]. This set is further
subdivided to produce groups of arcs that are sampled by
the same number of states. Partitions of up to 10,000 arcs
are constructed from each group. Then, the shape-based
feature vectors are input to HDBSCAN for initial, coarse
clustering. In this paper, the governing parameters of this
algorithm are selected to prioritize discovering localized
geometric  variations between arcs: mp =19 ,
Moninctust= 20, and Emerge = 25in(10°). In addition, the
Euclidean distance is used to compare two feature vectors
for computational efficiency. This step produces a set of
coarse groups, labeled CY, for the ith set of arcs and noise
points, labeled V't. However, because this step uses only
the shape of the entire trajectories and the Euclidean
distance between two sequences of vectors does not
capture the time at which any differences occur, these
coarse groups are further refined.

The cluster refinement process is used to generate
clusters of trajectories that consistently follow a similar
path in each other’s neighborhoods for their entire
duration. This procedure, developed by Bosanac [24], is
modelled after convoy detection schemes from trajectory
clustering and uses both feature vector spaces, similar to
ST-DBSCAN [18]. Specifically, consider the coarse
shape-based group C’ji. The kth state sampled along all ¢
trajectories in this group is described by two three-
dimensional feature vectors: ﬁ and f,. Then, DBSCAN
is used to cluster the ¢ ﬁ, vectors to produce a single
clustering result in the position-based feature vector
space as well as record the feature vectors that lie in each
other’s neighborhoods. This step is repeated in f; to
produce a second clustering result for state k. This
process is also repeated across all N states along the arc
to produce 2N clustering results. If any two trajectories
are consistently clustered together and lie in each other’s
neighborhoods in all 2N clustering results, the trajectories
are assigned to a candidate cluster. Then, if at least
Mpinciust trajectories are grouped together, the candidate
cluster is retained as a refined cluster [24]. This process
produces a set of refined clusters R* for the ith set of
arcs and updated noise points N'¢. Noise points are
discarded at this step.

When using DBSCAN in the cluster refinement
process, the governing parameters must be selected. First,
Mys = 19 to ensure consistency with the coarse
clustering step when defining the neighborhood
membership that governs the assessment of density. In
addition, the neighborhood radius & is selected
heuristically based on the data in the coarse cluster [24].
This value is challenging to select with traditional
methods, e.g., the elbow method, to balance avoiding
excessive differentiation with excessive overgrouping. In
this paper, the heuristic is defined as follows: € =
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max(min(elmpts, empts) , sthreshold). In the first term,
e, and epps are the My -largest value of the
distance to the first and my. th nearest neighbor,
respectively. Accordingly, the first term estimates a
suitable radius for the m,;;-neighborhood based on the
actual data while avoiding biasing from outliers [24].
Then, €.yesnoq i defined as 2sin(5°) and 1 X 1072 in
the shape- and position-based feature vector spaces to
encode a minimum tolerance on the separation between
two trajectories.

Each refined cluster is used to generate a motion
primitive and its region of existence [2,4]. The motion
primitive is a single trajectory that summarizes the
geometry of the cluster’s members. This trajectory is
selected as the cluster medoid calculated using fp
evaluated over the entire trajectory [4]. The region of
existence summarizes the region of the phase space
spanned by arcs with a similar geometry. This region of
existence is approximated by up to 20 trajectories
sampled from the cluster and roughly evenly distributed
in the position-based feature vector space [4].

To produce a condensed summary, the clusters from
each set of arcs is then aggregated across an entire
dataset. Aggregation is performed across arcs
approaching or departing neighboring periodic orbits
along the same family with various thrust vectors and
initial masses. This procedure is performed using the
approach developed by Bosanac [24]. First, the motion
primitives of clusters from distinct sets are compared
coarsely using their position and shape-based feature
vectors. The nearest neighboring clusters to the ith cluster
in each feature vector space from sets of arcs approaching
the same or neighboring periodic orbits are then
considered as two candidates for aggregation. All
members of each neighbor candidate and the original
cluster are then input to the cluster refinement process. If
any trajectories from two distinct clusters are grouped
together, the clusters are merged. These pairwise
merging decisions are then used to identify groups of
local clusters that are connected to form a single global
cluster. This global cluster consists of arcs that are
geometrically similar but may approach or depart the
same or neighboring orbits, may be generated with
different control histories, or may use a distinct initial wet
mass. The motion primitive and region of existence of
each global cluster is recomputed.

This approach is used to summarize continuous-
thrust, planar arcs that depart an L1 Lyapunov orbit or
approach an L. Lyapunov orbit. Each of the members of
the Li Lyapunov and L. Lyapunov orbit families are
discretized with at least 200 states or to produce a
separation of no more than 1072 in the configuration
space. At each of these initial or final states, the
spacecraft mass is varied within the range [170, 180] kg
in increments of 1 kg. The thrust direction is also varied
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in increments of 45 degrees. Once the thrust direction,
mass, and initial state are specified, the trajectories are
propagated forward or backward in time, discretized, and
the arcs clustered.

This approach produces a library of 2,335 primitives
summarizing motion departing an L1 Lyapunov orbit and
1,539 primitives summarizing motion approaching an Lz
Lyapunov orbit. Examples of these primitives are
displayed in Figure 1 for the arcs departing an L
Lyapunov orbit and Figure 2 for the arcs approaching an
L2 Lyapunov orbit. Analysis of Figures 1 and 2 reveals
that, even in the presence of continuous thrust, the motion
primitives successfully summarize arcs of similar
geometry while separating arcs of distinct geometry.
Sometimes this separation occurs with obvious
differences in the shape or region of the configuration
space that is traversed. In other cases, distinct clusters can
be formed by similarly shaped and nearby groups of
trajectories because they form localized dense regions
with a sufficient separation between them. This
separation is due to the small values selected for the
governing parameters as well as the static sampling of a
periodic orbit to define initial states and other parameters.
Interestingly, the majority of individual clusters tend to
include trajectories with a wide range of initial masses.
This observation is consistent with the expectation that a
SmallSat, applying a small continuous-thrust
acceleration, may follow geometrically similar paths
with only small differences in the initial mass.

3.2 Step 2: Identify Sequentially Composable Primitives

To support constructing complex paths from
sequences of motion primitives, the sequential
composability of two primitives must be defined.
Consistent with prior work by Miceli and Bosanac [4],
two primitives are considered sequentially composable if
the primitives pass sufficiently close in the configuration
space with a similar direction of motion. The sequential
composability is then quantified using a cost function that
reflects the change in velocity at each overlapping region.

Each region of existence is discretized into multiple
segments to support identifying multiple overlapping
locations [4,25]. These segments are defined via the
geometrically distributed samples generated in Step 1
[4,25]. The ith segment along a single arc is defined
between the ith and (i+/)th sampled state. For an arc that
completes three additional curvature maxima between
the initial and final state and is, therefore, sampled with
13 states, 12 segments are formed. As a spacecraft
traverses the trajectory forward in time, the segment
number increases from 1 to 12. Repeating this approach
for all representative trajectories that span the region of
existence of a primitive, the associated volume of the
phase space is discretized into 12 segments.

Each segment along a region of existence is coarsely
approximated using a collection of states and circular
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neighborhoods in the configuration space [4].
Specifically, the ith segments of all arcs in a region of
existence are sampled using an additional four states that
are equally distributed in arclength. Then, similar to the
approach presented by Miceli and Bosanac [4], circular
neighborhoods are defined in the configuration space
around each sampled state with radii equal to the
maximum of 1) the distance to their 2" nearest neighbor,
and 2) a threshold of 5 x 1073 [22].

The coarse approximation of each region of existence
is used to determine whether two primitives are
sequentially composable. This definition is slightly
adapted from the approach used by Miceli and Bosanac
[4] to support thrust-enabled arcs. For continuous thrust
trajectories, it is important to substantially limit any
velocity changes between arcs along composable
primitives. In this paper, primitives 1 and 2 are
sequentially composable at their ith and jth segments if
they satisfy the following conditions:

1) Any circular neighborhoods of the two
segments overlap in the configuration space.
2) The velocity vectors of two overlapping
neighborhoods possess an angular separation of
less than 45 degrees, and a difference with a
magnitude less than a specified tolerance.
3) The change in the Jacobi constant is below a
specified threshold.
Note the difference in the spacecraft mass is not
considered due to the limited sensitivity of most
geometries to the initial spacecraft mass. Nevertheless,
two primitives may be sequentially composable at
multiple unique combinations of segments.

The cost of sequentially composing two primitives is
quantified using the minimum difference in the velocity
vectors at any composable states within the overlapping
segments [22]. This cost to transition from segment i
along primitive 1 to segment j along primitive 2 is
defined as w ; , ; and calculated as

Wiz, = min (| |P10i = Tam,] |)
In this expression, the notation ¥,,; indicates the
velocity vector at the /th sample within segment i along
primitive 1.

3.3 Step 3: Construct Motion Primitive Graph

A hierarchical motion primitive graph is constructed
to summarize the sequential composability of each
motion primitive and, therefore, construct traversable
sequences of primitives. Due to the large number of
motion primitives in the library, two graphs are created
to support computational feasibility. First, a high-level
graph is constructed to summarize the composability of
primitives. This graph is modeled after the first
implementation by Smith and Bosanac [3]. Then, a low-
level graph is constructed to summarize the traversability
of a primitive sequence. This graph is modeled after the
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Figure 1: Selected motion primitives summarizing arcs that depart an L1 Lyapunov orbit with the associated initial
masses at the periodic orbit departure state and thrust directions listed to the right.
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Figure 2: Selected motion primitives summarizing arcs that approach an L. Lyapunov orbit with the associated initial

masses at the periodic orbit arrival state and thrust directions listed to the right.
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more recent implementation by Miceli and Bosanac [4].
These two graph formulations were combined in a two-
step process by Bosanac [22].

The high-level graph is used to generate candidate
primitive sequences that are composable, without
information about whether they are traversable, i.c., can
a spacecraft travel forward in time along part of primitive
1, then part of primitive 2, followed by part of primitive
3 [4]. Accordingly, each node of this high-level graph
represents a single primitive and its region of existence
[3]. Bidirectional edges connect the nodes of primitives
that are sequentially composable. The weight of an edge
that connects two primitives is the minimum value of w
along any combination of overlapping segments.
Searching this high-level graph produces a candidate
primitive sequence that requires further analysis [22].

The low-level graph is constructed to assess the
traversability of a candidate sequence of primitives.
Specifically, each node represents a segment of a
primitive that appears in a candidate sequence. As
formulated by Miceli and Bosanac [4], unidirectional,
zero weight edges are added from the ith segment to the
(i+1)th segment along the same primitive. Then, an edge
is added from a node correspond to a segment along the
jth primitive to a node of a segment along the (j+1/)th
primitive if those two segments are sequentially
composable. In that case, the edge weight is defined as
the value of w for the associated primitives and segments.
If a solution exists, the result is a sequence of segments
of primitives [4,22]. If a solution does not exist, that
means that the candidate primitive sequence cannot be
traversed in forward time.

3.4 Step 4: Search Motion Primitive Graph

To generate traversable primitive sequences, the
hierarchical motion primitive graph is searched [22].
First, the high-level graph is searched using Dijkstra’s
algorithm to produce a candidate primitive sequence that
minimizes the cumulative edge weight [22,25]. Then,
additional candidate primitive sequences that produce
suboptimal cumulative edge weights are generated using
Yen’s algorithm, a k-best paths search algorithm, similar
to the approach presented by Miceli and Bosanac and
used by Bruchko and Bosanac [4,22,25,26]. Each
candidate primitive sequence is used to construct a low-
level primitive graph. The low-level graph is searched
using Dijkstra’s algorithm to generate a single path that
minimizes the cumulative edge weight [22]. The result is
multiple sequences of segments of motion primitives that
are traversable. Because the motion primitives are
generated to be geometrically distinct, these sequences
can produce geometrically distinct initial guesses.

Dijkstra’s algorithm was developed by Edsger
Dijkstra and produces a single sequence of nodes and
edges through the graph that connects a start node to an
end node [27]. First, a priority queue is initialized using
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the start node with a zero cost. The lowest edge weight
path in the priority queue is accessed and removed from
the queue, with the last node in this incomplete path
supplying the current node n; to explore. The neighbors
of n; that have not yet been visited are identified using
the edges of the graph. The cost of transitioning from n;
to a new node n;,, is defined as g(n;, n;,,) where g is
simply calculated from the edge weight. The cost to reach
this new node from the start node, by following the path
selected from the priority queue, is calculated as
g(ng,niyy) = gngny) + g(ng,niy,). This new path
and its cost are then added to the priority queue. This
process is repeated until either the end node is reached,
to produce a solution, or the priority queue is empty,
producing no solution.

Yen’s algorithm was developed by Jin Yen to
generate the next k-1 best paths through a graph [28].
After the first path has been generated using Dijkstra’s
algorithm, the edge between subsequent nodes n; and
N;41 in the path are removed from the full graph. Node
n; is labelled the spur node whereas the segment of the
path from the start node to node n; is labeled the root
path. This subgraph is searched using Dijkstra’s
algorithm to generate an optimal path from the spur node
to the end node, labelled the spur path. This spur path is
concatenated to the root path to produce a new path
connecting the start and end nodes, with its cost
calculated using the cumulative edge weights. Repeating
this process for all a edges in the original path of length
a + 1 produces a subgraphs and up to a new solutions.
The solution with the lowest cost is then added to a list as
the next best path. This process is repeated until either 4-
1 best paths are generated, or no additional solutions are
identified. However, after the first iteration, the subgraph
is modified to remove all edges from node n; that appear
in any of the prior best paths with a shared root path.

3.5 Step 5: Generate Initial Guess

A traversable primitive sequence is used to generate
an initial guess for a trajectory, if one exists. This
procedure, developed by Miceli and Bosanac [4], is
constructed as a localized graph using the representative
arcs from the region of existence of each primitive in the
sequence. If a solution is generated by searching this
localized graph with Dijkstra’s algorithm, an initial guess
is formed as the sequence of segments along the
representative arcs that globally minimize a function of
the state discontinuity [4].

The localized graph is constructed to capture the
sequential composability of the representative arcs from
each region of existence in a sequence of traversable
primitive segments [4]. Each node corresponds to one
segment of one arc sampled across the region of
existence of a primitive. Unidirectional, zero weight
edges are added between nodes that lie along the same
arc. No edges are added between distinct arcs sampled
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from the same region of existence, to ensure that the
associated portion of the initial guess retains the
geometry of the primitive. Unidirectional, weighted
edges are added between composable segments of arcs
from two sequential primitives. These edges are weighted
by the velocity discontinuity between states along
composable segments.

365 Step 6: Correct Initial Guess

A multiple-shooting scheme is implemented using a
free variable and constraint vector formulation to correct
each initial guess to produce a continuous trajectory. In
this paper, the continuous-thrust trajectory is discretized
into n arcs. Each arc is then described by the initial state,
initial mass, constant thrust, and integration time. The
arcs are constrained to enforce state and mass continuity
as well as nonzero integration times along arcs generated
with the specified thrust magnitude. Natural arcs are also
added to perform up to two revolutions near L and Lo,
resembling Lyapunov orbits. However, the boundary
conditions are not constrained. The variables describing
the trajectory are updated via Newton’s method until they

a) \
10

. Natural

b)

produce a constraint vector with a norm that is less than
10719, The result is a continuous trajectory.

4. Results

The presented technical approach is applied to a
continuous-thrust trajectory design problem in the Earth-
Moon CR3BP: generating initial guesses for planar
trajectories that depart an Li Lyapunov orbit and
approach an Lo Lyapunov orbit at distinct values of the
Jacobi constant. To generate these initial guesses, the
motion primitive graph is searched using selected
primitives in the library as the boundary conditions. Due
to the limited influence of the spacecraft mass for a
SmallSat on the trajectory geometry, the mass constraint
is not applied to the sequential composability assessment.
Accordingly, the spacecraft mass for the initial guess is
assumed to vary linearly in time with no discontinuities
between arcs from distinct primitives.

Figure 3 displays an initial guess between selected
primitives, via its a) discontinuous path in the Earth-
Moon rotating frame, along with b) the corrected
trajectory and c) the associated control history via the

\

. Natural

. Thrusting . Thrusting
¢) § I
o
g 05
Q Uy
° o
: @ «
45'0.5’
0 5 10 15 20
Time (days)

Figure 3: Trajectory departing an Li Lyapunov orbit and approaching a higher-energy L. Lyapunov orbit with
continuous thrust: a) initial guess, b) corrected trajectory, c¢) thrust vector direction for corrected trajectory.
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component of the thrust unit vector in the velocity and
conormal directions, relative to the Moon. In Figures 3 a)
and b), natural arcs are plotted in blue whereas thrust-
enabled arcs are colored red. In this example, the
corrected trajectory geometrically resembles the initial
guess; note, however, that the size of the revolution
around L: changed through corrections, consistent with
the absence of required boundary conditions. In Figure 3
¢), the velocity component of the thrust vector is plotted
in gray whereas the conormal component is plotted in
blue. Initially, the thrust vector is directed along the anti-
velocity direction to decrease the spacecraft energy
relative to the Moon. Then, the thrust vector is directed
in the velocity direction, to increase the spacecraft energy
relative to the Moon. This trajectory requires 1.56 kg of
propellant, for an initial wet mass of nearly 180 kg, and a
transfer time of 18.97 days.

Figure 4 displays two additional corrected transfers
between selected primitives with distinct geometries. In
Figure 4a), the transfer completes one revolution around

a)

‘ Natural

. Thrusting

c)

] p—

Q

=

2,

g 05

o

(3]

5 0

8

Z-05

0 5 10 15
Time (days)

the Moon but with a distinct geometry compared with
Figure 3. This trajectory requires 1.39 kg of propellant
over a transfer time of 16.83 days. In Figure 4 b), the path
completes six revolutions around the Moon, gradually
varying the orientation of the line of apsides as well as
the perilune and apolune distances. This trajectory
requires 4.36 kg of propellant with a transfer time of 52.9
days. Across these examples, the transfers possess
geometrically distinct paths, consistent with their
construction from distinct motion primitive sequences.

6. Conclusions

This paper used a motion primitive approach to
generate initial guesses for planar, continuous-thrust
trajectories. First, motion primitives were generated
using  density-based  clustering to  summarize
geometrically similar arcs that approach or depart
libration point orbits with various thrust directions and
initial masses. The sequential composability of a pair of
primitives is then calculated by assessing their proximity
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Figure 4: Selected initial guesses departing an L1 Lyapunov orbit and approaching a higher-energy L. Lyapunov orbit

with continuous thrust.
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in the phase space. A hierarchical motion primitive graph
is then constructed to discretely summarize the
continuous trajectory design problem. Searching each of
the two levels of this hierarchical motion primitive graph
can produce a sequence of segments along motion
primitives that connect an initial and target orbit. These
primitive sequences are used to generate initial guesses
for both the trajectory and their control history. Multiple-
shooting is then used to correct each initial guess to
produce a continuous path This approach is used to
design multiple, geometrically distinct and continuous-
thrust transfers from natural motion near an L; Lyapunov
orbit to natural motion around an L2 Lyapunov orbit in
the Earth-Moon CR3BP.
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