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Abstract 

When a spacecraft operating in cislunar space possesses a continuous-thrust propulsion system, the trajectory design 
process becomes more complex. To address this challenge, this paper applies a motion primitive approach to 
continuous-thrust trajectory design. First, motion primitives are generated to summarize continuous-thrust arcs that 
approach or depart selected periodic orbits in the Earth-Moon circular restricted three-body problem. These thrust arcs 
use a constant thrust direction in the velocity-normal-conormal axes defined relative to the Moon, as well as a specified 
spacecraft with various initial masses. Then, a hierarchical motion primitive graph is used to summarize their potential 
for sequential composability in the phase space and mass. Each component of this graph is searched to generate 
multiple traversable primitive sequences. These primitive sequences are translated into initial guesses and corrected to 
produce continuous thrust-enabled trajectories. Distinct sequences produce geometrically distinct initial guesses with 
various propellant mass requirements and flight times. This approach is demonstrated in the foundational problem of 
designing planar transfers from an L1 Lyapunov orbit to an L2 Lyapunov orbit. 
Keywords: motion primitive, continuous-thrust trajectories, trajectory design, multi-body system  
 
1. Introduction 

When a spacecraft operating in cislunar space 
possesses a continuous-thrust propulsion system, the 
trajectory design process becomes more complex. 
Traditionally, trajectory design within multi-body 
systems has relied on fundamental solutions, computed 
via dynamical systems theory, in low-fidelity models to 
support manual initial guess construction [1]. However, 
in the presence of an additional acceleration with an 
evolving direction and/or magnitude, motion is no longer 
governed by fundamental solutions. Accordingly, these 
existing approaches offer limited support for designing 
and predicting thrust-enabled trajectories.   

In recent years, Smith and Bosanac have introduced a 
motion primitive approach to spacecraft trajectory design 
within multi-body gravitational systems [2,3]. This work 
has since been substantially extended by Miceli and 
Bosanac [4], as well as Gillespie, Miceli, and Bosanac 
[5]. Consistent with their use in robotics, motion 
primitives supply building blocks of motion that can be 
assembled to form complex paths [6-8]. When applied to 
spacecraft trajectory design, a set of arcs are sampled 
from trajectories with various predefined behaviors or 
parameters [2,4,5]. These arcs are clustered based on 
geometric similarity [4,5]. A single representative 
member of each cluster then serves as the motion 
primitive [2]; behavioral motion primitives also encode 
the associated behaviors and parameters [5]. A motion 
primitive graph is constructed to capture the sequential 
composability of pairs of these primitives [3,4]. This 
graph is then searched to generate unique primitive 
sequences that can supply geometrically distinct initial 

guesses [3,4]. This approach has previously been used to 
design complex trajectories with impulsive maneuvers in 
the Earth-Moon [3] and Neptune-Triton systems [4]. 

This paper focuses on using this motion primitive 
approach to design low-thrust trajectories for a SmallSat 
in cislunar space. First, a library of motion primitives is 
generated to summarize continuous-thrust trajectories 
approaching or departing selected libration point orbits 
with various spacecraft masses and thrust directions in 
the Earth-Moon circular restricted three-body problem 
(CR3BP). Then, a motion primitive graph is constructed 
and searched to automatically generate geometrically 
distinct initial guesses for planar trajectories from an L1 
Lyapunov orbit to an L2 Lyapunov orbit. This approach 
is intended to support exploring the associated trade 
spaces for spacecraft with low-thrust propulsion systems 
operating in cislunar space. 
 
2. Background  
2.1 Dynamical Model 

The dynamical environment governing the motion of 
a spacecraft in cislunar space is approximated using the 
Earth-Moon CR3BP, with a continuous-thrust 
acceleration added. In this model, the Earth and Moon are 
modeled using constant masses with gravitational fields 
identical to point masses [9]. In addition, the spacecraft 
is assumed to possess a negligible mass of m in 
comparison. Finally, the Earth and Moon are assumed to 
follow circular orbits about their barycenter [9].  

In this paper, the spacecraft is assumed to be a 
SmallSat with a continuous-thrust propulsion system. 
The initial wet mass of the spacecraft is between 170-180 
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kg with up to 40 kg of propellant [10]. The propulsion 
system is assumed to apply a constant thrust magnitude 
𝑇 = 	13𝑚𝑁 and constant specific impulse 𝐼!" = 1390s, 
consistent with a Busek BHT-200 engine [11].  

The state of a spacecraft in the Earth-Moon CR3BP is 
typically expressed using nondimensional coordinates in 
a frame that rotates with the Earth and Moon [9]. Length, 
time, and mass quantities are normalized by the 
following characteristic quantities: 𝑙∗ = 384,400  km, 
𝑡∗ ≈ 3.751903 × 10$s, and 𝑚∗. These values result in 
the distance between the Earth and Moon, the mean 
motion of the Earth-Moon system, and total system mass 
all possessing nondimensional values of unity [9]. The 
Earth-Moon rotating frame is defined using an origin at 
the barycenter of the Earth-Moon system and the 
following axes: 𝑥6 is directed from the center of the Earth 
to the center of the Moon, 𝑧̂  is aligned with the orbital 
angular momentum vector of the Earth and Moon, and 𝑦6 
completes the orthogonal right-handed triad [9].  

The equations of motion governing a spacecraft with 
a continuous-thrust propulsion system are written in the 
rotating frame using nondimensional coordinates [9]. 
The state of the spacecraft is defined as 
[𝑥, 𝑦, 𝑧, 𝑥̇	, 𝑦̇, 𝑧̇, 𝑚]% . The dot notation indicates a time 
derivative with an observer fixed in the rotating frame. 
Using these definitions, the differential equations 
governing the spacecraft are written as [9,12] 

𝑥̈ − 2𝑦̇  =
𝜕𝑈*

𝜕𝑥 +
𝑇
𝑚𝑢' 

 𝑦̈ + 2𝑥̇ =
∂𝑈∗

∂𝑦 +
𝑇
𝑚𝑢( 

𝑧̈ =
𝜕𝑈*

𝜕𝑧 +
𝑇
𝑚𝑢) 

 𝑚̇ = − %*∗

+"#,$
 

where 𝜇 = 1.215058439470971 × 10-.  is the mass 
ratio of the Earth-Moon system; 𝑢' , 𝑢(, 𝑢)  are the 
components of the thrust vector in the axes of the Earth-
Moon rotating frame; 𝑟/ = H(𝑥 + 𝜇). + 𝑦. + 𝑧. and       
𝑟. = H(𝑥 − 1 + 𝜇). + 𝑦. + 𝑧. ; and 𝑔0  is the 
gravitational acceleration on the surface of Earth. The 
final equation produces a quantity in kg per 
nondimensional time units. In the natural CR3BP, the 
Jacobi constant is defined as 

𝐶1 = 𝑥. + 𝑦. +
2(1 − 𝜇)

𝑟/
+
2𝜇
𝑟.
− 𝑥̇. − 𝑦̇. − 𝑧̇. 

and supplies a constant of motion. 
 
2.2 Thrust Vector Definition 

When the spacecraft propulsion system is activated, 
the thrust vector direction must be specified. In this 
paper, the velocity-normal-conormal (VNC) axes are 
used and defined in the inertial frame relative to the 
Moon. Consider the nondimensional position and 
velocity vectors of the spacecraft relative to the Moon in 

the inertial frame, defined as 𝑅N2,!4  and 𝑉N2,!4 . The VNC 
axes relative to the Moon are calculated as 

𝑉P =
𝑉N2,!/4
𝑉2,!/4

, 	 𝑁Q =
𝑅N2,!/4 × 𝑉N2,!/4
R𝑅N2,!/4 × 𝑉N2,!/4R

,	 𝐶S = 𝑉P × 𝑁Q 

In the two-body problem, these axes supply an intuitive 
representation of the thrust vector based on strategically 
changing the energy or the orbit plane relative to the 
Moon. However, geometric intuition is limited in the 
CR3BP where multiple celestial bodies gravitationally 
interact with the spacecraft. An additional limitation is 
that a singularity exists when the position and velocity 
vectors of the spacecraft, relative to the Moon and in the 
inertial frame, are parallel. The thrust vector is defined in 
these axes as 𝑢6 = 𝑢6𝑉P + 𝑢7𝑁Q + 𝑢4𝐶S . Then, the thrust 
vector is transformed into the rotating frame at each 
epoch during numerical integration.  
 
2.3 Curvature 

Concepts from differential geometry are useful for 
describing and sampling curved paths in three-
dimensional space [13,14]. Consider a path generated 
over a time interval 𝑡 ∈ U𝑡0, 𝑡8V with position, velocity, 
and acceleration vectors denoted as 𝑟̅ = [𝑥, 𝑦, 𝑧]% , 𝑣̅ =
[𝑥̇, 𝑦̇, 𝑧̇]% , and 𝑎N = [𝑥̈, 𝑦̈, 𝑧̈]% . The path traverses a 
distance equal to the arclength, calculated as [13] 

𝑠 = [ 𝑑𝑠
*%

*$
= [ H(𝑥̇. + 𝑦̇. + 𝑧̇.)

*%

*$
𝑑𝑡 

At any state along the curved path at time t, the scalar, 
unsigned curvature captures the deviation from a straight 
line. This quantity is calculated as [14] 

𝜅(𝑡) =
‖𝑣̅ × 𝑎N‖
‖𝑣̅9‖  

with a singularity when the speed is equal to zero. 
Maxima in this curvature occur when 𝜅̇(𝑡) = 0 , 
indicating that the shape is changing most rapidly [14].  
 
2.3 Density-Based Clustering 

To discover groupings of geometrically similar arcs, 
density-based clustering is employed. This unsupervised 
method identifies groups of data points that exist in 
sufficiently dense regions within a feature vector space 
[15]. This paper uses two clustering methods: Density-
Based Clustering of Spatial Applications with Noise 
(DBSCAN) [16] and Hierarchical Density-Based 
Clustering of Spatial Applications with Noise 
(HDBSCAN) [17]. 

DBSCAN constructs clusters from data points that 
possess at least a specified number of members within a 
fixed radius. First, for each member of a dataset, its 𝑚"*!-
neighborhood is defined to possess a radius equal to the 
distance to its 𝑚"*! neighbor in the feature vector space. 
Then, three types of points are defined [16]: 
1. A core point possesses an 𝑚"*!-neighborhood with a 

radius that is less than or equal to 𝜖. 
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2. A border point lies within a distance of 𝜖 of a core 
point but does not possess at least 𝑚"*! neighbors in 
its own 𝜖-sized neighborhood.  

3. A noise point does not lie within a distance of 𝜖 of 
any core points. 

Then, each cluster is formed by core points that lie within 
a distance of 𝜖 from other core points, along with their 
border points [16]. Noise points are not assigned to any 
clusters. A modification of this algorithm, spatio-
temporal DBSCAN (ST-DBSCAN) [18], updates the 
condition of a core point to possess at least  𝑚"*! 
neighbors within a radius of 𝜖/  in one feature vector 
space and 𝜖. in a second feature vector space. DBSCAN 
is implemented in this paper using the built-in dbscan 
function in MATLAB [19]. 

HDBSCAN selects clusters from a hierarchy [17], 
eliminating the dependence on a single, constant value of 
𝜖. To achieve this goal, the distance between two points 
is transformed to a mutual reachability distance to 
capture density information [17]. First, the core distance 
of the ith member of a dataset, 𝑑4:;<`𝑓=̅b, is the distance 
to its 𝑚"*!th nearest neighbor. The mutual reachability 
distance is then defined between members i and j as  

𝑑>;?`𝑓=̅ , 𝑓@̅b = 𝑚𝑎𝑥(𝑑4:;<`𝑓=̅b, 𝑑4:;<`𝑓@̅b, 𝑑`𝑓=̅ , 𝑓@̅b)  
where d`𝑓=̅ , 𝑓@̅b is the Euclidean distance between the two 
points in the specified feature vector space. A cluster 
hierarchy is then constructed to summarize all possible 
groupings as the threshold on this mutual reachability 
distance is varied, analogous to varying 𝜖 in DBSCAN. 
The selected clusters are most persistent across the 
hierarchy with at least 𝑚>=74AB!*  members [17]. A 
threshold 𝜖><;,< can also be defined to limit the distance 
between members in distinct clusters [20]. Through this 
clustering approach, members are either assigned to a 
unique cluster or designated as noise. HDBSCAN is 
accessed using the Python-based hdbscan library [21]. 
 
3. Technical Approach 

This section supplies a brief overview of the motion 
primitive approach to designing continuous-thrust 
transfers. The motion primitive library is constructed by 
following an approach recently presented by Gillespie, 
Miceli, and Bosanac [5]. Then, the remaining steps of this 
framework follow the general procedure developed by 
Miceli and Bosanac [4]. Recent modifications to reduce 
computational complexity in the graph construction step 
were outlined by Bosanac [22].  

 
3.1 Step 1: Generate Motion Primitive Library 

The motion primitive library is constructed to 
summarize the prominent geometries exhibited across 
planar trajectories that approach or depart specified 
families of periodic orbits. In this paper, the selected 
periodic orbits are 31 L1 Lyapunov orbits and 12 
members of the L2 Lyapunov orbit families with a Jacobi 

constant greater than 3.0 and less than 3.2. Trajectories 
that approach or depart these periodic orbits are 
generated in the Earth-Moon CR3BP for a duration equal 
to the perturbation doubling time [23] plus three months 
[5]. However, propagation is terminated early if 1) the 
trajectories impact the Earth or Moon; 2) the trajectories 
exceed a distance of 1 from the Moon [5]; or 3) the 
position and velocity vectors relative to the Moon are 
within 0.1 degrees of being parallel or anti-parallel, 
corresponding to a singularity in the definition of the 
VNC axes. Trajectories that approach or depart any 
periodic orbit with continuous thrust are generated by 
assuming 1) a constant thrust vector in the VNC axes 
defined relative to the Moon and 2) a specific initial mass 
at the arrival or departure location along the periodic 
orbit [5]. The thrust vector is varied in 45 degree 
increments within the VC-plane and the initial mass is 
varied in 1 kg increments between 180 kg and 170 kg.   

The trajectories that approach or depart the selected 
periodic orbits are sampled to produce smaller arcs, 
following the approach presented by Gillespie, Miceli, 
and Bosanac [5]. These arcs are defined using curvature-
based windows to ensure consistency as the trajectories 
visit various regions of the system. Each window that 
defines an arc begins at either a curvature maximum or 
the initial state along a trajectory. The window is then 
defined to encompass three more curvature maxima and 
either a fourth curvature maximum or an early 
termination state. If termination occurs before three more 
curvature maxima, the window is shortened to produce a 
smaller arc. When sampled from a long trajectory, one 
arc begins where the previous arc ends. 

Each continuous arc is then sampled using a discrete 
sequence of states that are distributed geometrically [5]. 
First, the initial and final states along with the 
intermediate curvature maxima are retained. Then, two 
additional samples are added between subsequent 
samples and distributed equally in the arclength [5]. 
Accordingly, each arc is sampled using up to 13 states. 

The state vectors at the discretely sampled states 
along an arc are used to construct two finite-dimensional 
feature vectors that captures its geometry [5,24]. A 
position-based feature vector is defined using the 
position vectors in the Earth-Moon rotating frame at 
these samples as [5,24] 

𝑓"d = e𝑟̅/, 𝑟̅., … , 𝑟̅C%-/, 𝑟̅C%g 
In addition, a shape-based feature vector is defined using 
the velocity unit vectors in the Earth-Moon rotating 
frame at these samples as [5,24] 

𝑓!̅ = e𝑣6/, 𝑣6., … , 𝑣6C%-/, 𝑣6C%g 
Each feature vector is 3N-dimensional for an arc sampled 
using 𝑁 ≤ 13 states. 

Clustering is used to construct a coarse, initial 
grouping of these arcs by their shape [24]. At this stage, 
the arcs sampled from trajectories that either approach or 
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depart a single periodic orbit with any thrust vector and 
any initial mass are identified [5]. This set is further 
subdivided to produce groups of arcs that are sampled by 
the same number of states. Partitions of up to 10,000 arcs 
are constructed from each group. Then, the shape-based 
feature vectors are input to HDBSCAN for initial, coarse 
clustering. In this paper, the governing parameters of this 
algorithm are selected to prioritize discovering localized 
geometric variations between arcs: 𝑚"*! = 19 , 
𝑚>=74AB!*= 20, and 𝜖><;,< = 2sin(10°). In addition, the 
Euclidean distance is used to compare two feature vectors 
for computational efficiency. This step produces a set of 
coarse groups, labeled 𝒞=, for the ith set of arcs and noise 
points, labeled 𝒩=. However, because this step uses only 
the shape of the entire trajectories and the Euclidean 
distance between two sequences of vectors does not 
capture the time at which any differences occur, these 
coarse groups are further refined. 

The cluster refinement process is used to generate 
clusters of trajectories that consistently follow a similar 
path in each other’s neighborhoods for their entire 
duration. This procedure, developed by Bosanac [24], is 
modelled after convoy detection schemes from trajectory 
clustering and uses both feature vector spaces, similar to 
ST-DBSCAN [18]. Specifically, consider the coarse 
shape-based group	𝒞@=. The kth state sampled along all q 
trajectories in this group is described by two three-
dimensional feature vectors: 𝑓"d  and 𝑓!d . Then, DBSCAN 
is used to cluster the q 𝑓"d  vectors to produce a single 
clustering result in the position-based feature vector 
space as well as record the feature vectors that lie in each 
other’s neighborhoods. This step is repeated in 𝑓!d  to 
produce a second clustering result for state k. This 
process is also repeated across all N states along the arc 
to produce 2N clustering results. If any two trajectories 
are consistently clustered together and lie in each other’s 
neighborhoods in all 2N clustering results, the trajectories 
are assigned to a candidate cluster. Then, if at least 
𝑚>=74AB!* trajectories are grouped together, the candidate 
cluster is retained as a refined cluster [24]. This process 
produces a set of refined clusters ℛ=  for the ith set of 
arcs and updated noise points 𝒩= . Noise points are 
discarded at this step.  

When using DBSCAN in the cluster refinement 
process, the governing parameters must be selected. First, 
𝑚"*! = 19  to ensure consistency with the coarse 
clustering step when defining the neighborhood 
membership that governs the assessment of density. In 
addition, the neighborhood radius 𝜀 is selected 
heuristically based on the data in the coarse cluster [24]. 
This value is challenging to select with traditional 
methods, e.g., the elbow method, to balance avoiding 
excessive differentiation with excessive overgrouping. In 
this paper, the heuristic is defined as follows: ε  =

𝑚𝑎𝑥`𝑚𝑖𝑛`𝑒/𝑚"*!, 𝑒>"*!b , ε*E;<!E:A?b. In the first term, 
𝑒/  and 𝑒>"*! are the 𝑚>=74AB!* -largest value of the 
distance to the first and 𝑚"*! th nearest neighbor, 
respectively. Accordingly, the first term estimates a 
suitable radius for the 𝑚"*!-neighborhood based on the 
actual data while avoiding biasing from outliers [24]. 
Then, 𝜀*E;<!E:A?  is defined as 2 sin(5°) and 1 × 10-. in 
the shape- and position-based feature vector spaces to 
encode a minimum tolerance on the separation between 
two trajectories.  

Each refined cluster is used to generate a motion 
primitive and its region of existence [2,4].  The motion 
primitive is a single trajectory that summarizes the 
geometry of the cluster’s members. This trajectory is 
selected as the cluster medoid calculated using 𝑓"d  
evaluated over the entire trajectory [4]. The region of 
existence summarizes the region of the phase space 
spanned by arcs with a similar geometry. This region of 
existence is approximated by up to 20 trajectories 
sampled from the cluster and roughly evenly distributed 
in the position-based feature vector space [4].  

To produce a condensed summary, the clusters from 
each set of arcs is then aggregated across an entire 
dataset. Aggregation is performed across arcs 
approaching or departing neighboring periodic orbits 
along the same family with various thrust vectors and 
initial masses. This procedure is performed using the 
approach developed by Bosanac [24]. First, the motion 
primitives of clusters from distinct sets are compared 
coarsely using their position and shape-based feature 
vectors. The nearest neighboring clusters to the ith cluster 
in each feature vector space from sets of arcs approaching 
the same or neighboring periodic orbits are then 
considered as two candidates for aggregation. All 
members of each neighbor candidate and the original 
cluster are then input to the cluster refinement process. If 
any trajectories from two distinct clusters are grouped 
together, the clusters are merged. These pairwise 
merging decisions are then used to identify groups of 
local clusters that are connected to form a single global 
cluster. This global cluster consists of arcs that are 
geometrically similar but may approach or depart the 
same or neighboring orbits, may be generated with 
different control histories, or may use a distinct initial wet 
mass. The motion primitive and region of existence of 
each global cluster is recomputed.  

This approach is used to summarize continuous-
thrust, planar arcs that depart an L1 Lyapunov orbit or 
approach an L2 Lyapunov orbit. Each of the members of 
the  L1 Lyapunov and L2 Lyapunov orbit families are 
discretized with at least 200  states or to produce a 
separation of no more than 10-.  in the configuration 
space. At each of these initial or final states, the 
spacecraft mass is varied within the range [170, 180] kg 
in increments of 1 kg. The thrust direction is also varied 
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in increments of 45 degrees. Once the thrust direction, 
mass, and initial state are specified, the trajectories are 
propagated forward or backward in time, discretized, and 
the arcs clustered.  

This approach produces a library of 2,335 primitives 
summarizing motion departing an L1 Lyapunov orbit and 
1,539 primitives summarizing motion approaching an L2 
Lyapunov orbit. Examples of these primitives are 
displayed in Figure 1 for the arcs departing an L1 
Lyapunov orbit and Figure 2 for the arcs approaching an 
L2 Lyapunov orbit. Analysis of Figures 1 and 2 reveals 
that, even in the presence of continuous thrust, the motion 
primitives successfully summarize arcs of similar 
geometry while separating arcs of distinct geometry. 
Sometimes this separation occurs with obvious 
differences in the shape or region of the configuration 
space that is traversed. In other cases, distinct clusters can 
be formed by similarly shaped and nearby groups of 
trajectories because they form localized dense regions 
with a sufficient separation between them. This 
separation is due to the small values selected for the 
governing parameters as well as the static sampling of a 
periodic orbit to define initial states and other parameters. 
Interestingly, the majority of individual clusters tend to 
include trajectories with a wide range of initial masses. 
This observation is consistent with the expectation that a 
SmallSat, applying a small continuous-thrust 
acceleration, may follow geometrically similar paths 
with only small differences in the initial mass.  
 
3.2 Step 2: Identify Sequentially Composable Primitives 

To support constructing complex paths from 
sequences of motion primitives, the sequential 
composability of two primitives must be defined. 
Consistent with prior work by Miceli and Bosanac [4], 
two primitives are considered sequentially composable if 
the primitives pass sufficiently close in the configuration 
space with a similar direction of motion. The sequential 
composability is then quantified using a cost function that 
reflects the change in velocity at each overlapping region. 

Each region of existence is discretized into multiple 
segments to support identifying multiple overlapping 
locations [4,25]. These segments are defined via the 
geometrically distributed samples generated in Step 1 
[4,25]. The ith segment along a single arc is defined 
between the ith and (i+1)th sampled state. For an arc that 
completes three additional curvature maxima between 
the initial and final state and is, therefore, sampled with 
13 states, 12 segments are formed. As a spacecraft 
traverses the trajectory forward in time, the segment 
number increases from 1 to 12. Repeating this approach 
for all representative trajectories that span the region of 
existence of a primitive, the associated volume of the 
phase space is discretized into 12 segments. 

Each segment along a region of existence is coarsely 
approximated using a collection of states and circular 

neighborhoods in the configuration space [4]. 
Specifically, the ith segments of all arcs in a region of 
existence are sampled using an additional four states that 
are equally distributed in arclength. Then, similar to the 
approach presented by Miceli and Bosanac [4], circular 
neighborhoods are defined in the configuration space 
around each sampled state with radii equal to the 
maximum of 1) the distance to their 2nd nearest neighbor, 
and 2) a threshold of 5 × 10-9 [22].  

The coarse approximation of each region of existence 
is used to determine whether two primitives are 
sequentially composable. This definition is slightly 
adapted from the approach used by Miceli and Bosanac 
[4] to support thrust-enabled arcs. For continuous thrust 
trajectories, it is important to substantially limit any 
velocity changes between arcs along composable 
primitives. In this paper, primitives 1 and 2 are 
sequentially composable at their ith and jth segments if 
they satisfy the following conditions: 

1) Any circular neighborhoods of the two 
segments overlap in the configuration space.  

2) The velocity vectors of two overlapping 
neighborhoods possess an angular separation of 
less than 45 degrees, and a difference with a 
magnitude less than a specified tolerance. 

3) The change in the Jacobi constant is below a 
specified threshold. 

Note the difference in the spacecraft mass is not 
considered due to the limited sensitivity of most 
geometries to the initial spacecraft mass. Nevertheless, 
two primitives may be sequentially composable at 
multiple unique combinations of segments. 

The cost of sequentially composing two primitives is 
quantified using the minimum difference in the velocity 
vectors at any composable states within the overlapping 
segments [22]. This cost to transition from segment i 
along primitive 1 to segment j along primitive 2 is 
defined as 𝑤/,=,.,@ and calculated as 

𝑤/,=,.,@ = min vwx𝑣̅/,A,= − 𝑣̅.,>,@xwy 
In this expression, the notation 𝑣̅/,A,=  indicates the 
velocity vector at the lth sample within segment i along 
primitive 1.  
 
3.3 Step 3: Construct Motion Primitive Graph 

A hierarchical motion primitive graph is constructed 
to summarize the sequential composability of each 
motion primitive and, therefore, construct traversable 
sequences of primitives. Due to the large number of 
motion primitives in the library, two graphs are created 
to support computational feasibility. First, a high-level 
graph is constructed to summarize the composability of 
primitives. This graph is modeled after the first 
implementation by Smith and Bosanac [3]. Then, a low-
level graph is constructed to summarize the traversability 
of a primitive sequence. This graph is modeled after the  
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Figure 1: Selected motion primitives summarizing arcs that depart an L1 Lyapunov orbit with the associated initial 
masses at the periodic orbit departure state and thrust directions listed to the right. 
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Figure 2: Selected motion primitives summarizing arcs that approach an L2 Lyapunov orbit with the associated initial 
masses at the periodic orbit arrival state and thrust directions listed to the right. 
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more recent implementation by Miceli and Bosanac [4]. 
These two graph formulations were combined in a two-
step process by Bosanac [22]. 

The high-level graph is used to generate candidate 
primitive sequences that are composable, without 
information about whether they are traversable, i.e., can 
a spacecraft travel forward in time along part of primitive 
1, then part of primitive 2, followed by part of primitive 
3 [4]. Accordingly, each node of this high-level graph 
represents a single primitive and its region of existence 
[3]. Bidirectional edges connect the nodes of primitives 
that are sequentially composable. The weight of an edge 
that connects two primitives is the minimum value of 𝑤 
along any combination of overlapping segments. 
Searching this high-level graph produces a candidate 
primitive sequence that requires further analysis [22]. 

The low-level graph is constructed to assess the 
traversability of a candidate sequence of primitives. 
Specifically, each node represents a segment of a 
primitive that appears in a candidate sequence. As 
formulated by Miceli and Bosanac [4], unidirectional, 
zero weight edges are added from the ith segment to the 
(i+1)th segment along the same primitive. Then, an edge 
is added from a node correspond to a segment along the 
jth primitive to a node of a segment along the (j+1)th 
primitive if those two segments are sequentially 
composable. In that case, the edge weight is defined as 
the value of w for the associated primitives and segments. 
If a solution exists, the result is a sequence of segments 
of primitives [4,22]. If a solution does not exist, that 
means that the candidate primitive sequence cannot be 
traversed in forward time.  
 
3.4 Step 4: Search Motion Primitive Graph 

To generate traversable primitive sequences, the 
hierarchical motion primitive graph is searched [22]. 
First, the high-level graph is searched using Dijkstra’s 
algorithm to produce a candidate primitive sequence that 
minimizes the cumulative edge weight [22,25]. Then, 
additional candidate primitive sequences that produce 
suboptimal cumulative edge weights are generated using 
Yen’s algorithm, a k-best paths search algorithm, similar 
to the approach presented by Miceli and Bosanac and 
used by Bruchko and Bosanac [4,22,25,26]. Each 
candidate primitive sequence is used to construct a low-
level primitive graph. The low-level graph is searched 
using Dijkstra’s algorithm to generate a single path that 
minimizes the cumulative edge weight [22]. The result is 
multiple sequences of segments of motion primitives that 
are traversable. Because the motion primitives are 
generated to be geometrically distinct, these sequences 
can produce geometrically distinct initial guesses. 

Dijkstra’s algorithm was developed by Edsger 
Dijkstra and produces a single sequence of nodes and 
edges through the graph that connects a start node to an 
end node [27]. First, a priority queue is initialized using 

the start node with a zero cost. The lowest edge weight 
path in the priority queue is accessed and removed from 
the queue, with the last node in this incomplete path 
supplying the current node 𝑛= 	to explore. The neighbors 
of 𝑛= that have not yet been visited are identified using 
the edges of the graph. The cost of transitioning from 𝑛= 
to a new node 𝑛=F/ is defined as 𝑔(𝑛= , 𝑛=F/)	where g is 
simply calculated from the edge weight. The cost to reach 
this new node from the start node, by following the path 
selected from the priority queue, is calculated as 
𝑔(𝑛!, 𝑛=F/) 	= 𝑔(𝑛!, 𝑛=) 	+ 𝑔(𝑛= , 𝑛=F/) . This new path 
and its cost are then added to the priority queue. This 
process is repeated until either the end node is reached, 
to produce a solution, or the priority queue is empty, 
producing no solution.  

Yen’s algorithm was developed by Jin Yen to 
generate the next k-1 best paths through a graph [28]. 
After the first path has been generated using Dijkstra’s 
algorithm, the edge between subsequent nodes 𝑛=  and 
𝑛=F/  in the path are removed from the full graph. Node 
𝑛= is labelled the spur node whereas the segment of the 
path from the start node to node 𝑛=  is labeled the root 
path. This subgraph is searched using Dijkstra’s 
algorithm to generate an optimal path from the spur node 
to the end node, labelled the spur path. This spur path is 
concatenated to the root path to produce a new path 
connecting the start and end nodes, with its cost 
calculated using the cumulative edge weights. Repeating 
this process for all 𝛼 edges in the original path of length 
𝛼 + 1 produces 𝛼 subgraphs and up to 𝛼 new solutions. 
The solution with the lowest cost is then added to a list as 
the next best path. This process is repeated until either k-
1 best paths are generated, or no additional solutions are 
identified. However, after the first iteration, the subgraph 
is modified to remove all edges from node 𝑛=  that appear 
in any of the prior best paths with a shared root path.  

 
3.5 Step 5: Generate Initial Guess 

A traversable primitive sequence is used to generate 
an initial guess for a trajectory, if one exists. This 
procedure, developed by Miceli and Bosanac [4], is 
constructed as a localized graph using the representative 
arcs from the region of existence of each primitive in the 
sequence. If a solution is generated by searching this 
localized graph with Dijkstra’s algorithm, an initial guess 
is formed as the sequence of segments along the 
representative arcs that globally minimize a function of 
the state discontinuity [4]. 

The localized graph is constructed to capture the 
sequential composability of the representative arcs from 
each region of existence in a sequence of traversable 
primitive segments [4]. Each node corresponds to one 
segment of one arc sampled across the region of 
existence of a primitive. Unidirectional, zero weight 
edges are added between nodes that lie along the same 
arc. No edges are added between distinct arcs sampled 
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from the same region of existence, to ensure that the 
associated portion of the initial guess retains the 
geometry of the primitive. Unidirectional, weighted 
edges are added between composable segments of arcs 
from two sequential primitives. These edges are weighted 
by the velocity discontinuity between states along 
composable segments. 

 
365 Step 6: Correct Initial Guess 

A multiple-shooting scheme is implemented using a 
free variable and constraint vector formulation to correct 
each initial guess to produce a continuous trajectory. In 
this paper, the continuous-thrust trajectory is discretized 
into n arcs. Each arc is then described by the initial state, 
initial mass, constant thrust, and integration time. The 
arcs are constrained to enforce state and mass continuity 
as well as nonzero integration times along arcs generated 
with the specified thrust magnitude. Natural arcs are also 
added to perform up to two revolutions near L1 and L2, 
resembling Lyapunov orbits. However, the boundary 
conditions are not constrained. The variables describing 
the trajectory are updated via Newton’s method until they 

produce a constraint vector with a norm that is less than 
10-10. The result is a continuous trajectory. 
 
4. Results  

The presented technical approach is applied to a 
continuous-thrust trajectory design problem in the Earth-
Moon CR3BP: generating initial guesses for planar 
trajectories that depart an L1 Lyapunov orbit and 
approach an L2 Lyapunov orbit at distinct values of the 
Jacobi constant. To generate these initial guesses, the 
motion primitive graph is searched using selected 
primitives in the library as the boundary conditions. Due 
to the limited influence of the spacecraft mass for a 
SmallSat on the trajectory geometry, the mass constraint 
is not applied to the sequential composability assessment. 
Accordingly, the spacecraft mass for the initial guess is 
assumed to vary linearly in time with no discontinuities 
between arcs from distinct primitives.  

Figure 3 displays an initial guess between selected 
primitives, via its a) discontinuous path in the Earth-
Moon rotating frame, along with b) the corrected 
trajectory and c) the associated control history via the 

a)

c)

Natural

 Thrusting

b)

Natural

 Thrusting

uV

  uC

Figure 3: Trajectory departing an L1 Lyapunov orbit and approaching a higher-energy L2 Lyapunov orbit with 
continuous thrust: a) initial guess, b) corrected trajectory, c) thrust vector direction for corrected trajectory. 
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component of the thrust unit vector in the velocity and 
conormal directions, relative to the Moon. In Figures 3 a) 
and b), natural arcs are plotted in blue whereas thrust-
enabled arcs are colored red. In this example, the 
corrected trajectory geometrically resembles the initial 
guess; note, however, that the size of the revolution 
around L1 changed through corrections, consistent with 
the absence of required boundary conditions. In Figure 3 
c), the velocity component of the thrust vector is plotted 
in gray whereas the conormal component is plotted in 
blue. Initially, the thrust vector is directed along the anti-
velocity direction to decrease the spacecraft energy 
relative to the Moon. Then, the thrust vector is directed 
in the velocity direction, to increase the spacecraft energy 
relative to the Moon. This trajectory requires 1.56 kg of 
propellant, for an initial wet mass of nearly 180 kg, and a 
transfer time of 18.97 days.  

Figure 4 displays two additional corrected transfers 
between selected primitives with distinct geometries. In 
Figure 4a), the transfer completes one revolution around 

the Moon but with a distinct geometry compared with 
Figure 3. This trajectory requires 1.39 kg of propellant 
over a transfer time of 16.83 days. In Figure 4 b), the path 
completes six revolutions around the Moon, gradually 
varying the orientation of the line of apsides as well as 
the perilune and apolune distances. This trajectory 
requires 4.36 kg of propellant with a transfer time of 52.9 
days. Across these examples, the transfers possess 
geometrically distinct paths, consistent with their 
construction from distinct motion primitive sequences.   
 
6. Conclusions  

This paper used a motion primitive approach to 
generate initial guesses for planar, continuous-thrust 
trajectories. First, motion primitives were generated 
using density-based clustering to summarize 
geometrically similar arcs that approach or depart 
libration point orbits with various thrust directions and 
initial masses. The sequential composability of a pair of 
primitives is then calculated by assessing their proximity 

Figure 4: Selected initial guesses departing an L1 Lyapunov orbit and approaching a higher-energy L2 Lyapunov orbit 
with continuous thrust. 

a) b)

Natural

 Thrusting

c) d)

uV

  uC
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in the phase space. A hierarchical motion primitive graph 
is then constructed to discretely summarize the 
continuous trajectory design problem. Searching each of 
the two levels of this hierarchical motion primitive graph 
can produce a sequence of segments along motion 
primitives that connect an initial and target orbit. These 
primitive sequences are used to generate initial guesses 
for both the trajectory and their control history. Multiple-
shooting is then used to correct each initial guess to 
produce a continuous path This approach is used to 
design multiple, geometrically distinct and continuous-
thrust transfers from natural motion near an L1 Lyapunov 
orbit to natural motion around an L2 Lyapunov orbit in 
the Earth-Moon CR3BP.  
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