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LONG-TERM SPACECRAFT TRAJECTORY PREDICTION USING
BEHAVIORAL MOTION PRIMITIVES

Austin Bodin; Natasha Bosanac] and Cole Gillespie*

This paper presents a new approach to spacecraft trajectory prediction that uses
behavioral motion primitives. A behavioral motion primitive summarizes a group
of trajectories with a similar geometry and is labeled by their behaviors (e.g., ma-
neuvering objective and intent) and spacecraft parameters. Each group of trajec-
tories spans a primitive’s region of existence, which is approximated using voxels.
Uncertain state estimates are projected onto these regions of existence for short-
term predictions. Sequences of composable primitives are then used to generate
digestible long-term trajectory predictions. This procedure is demonstrated in the
Earth-Moon circular restricted three-body problem.

INTRODUCTION

An increased number of future missions are expected to support scientific exploration, long-term
infrastructure, and defense applications in cislunar space. The associated spacecraft may possess
diverse behaviors, i.e., intents and control profiles, as well as properties such as propulsion system
and mass. The range of possible behaviors and properties produces a diverse array of motions that a
spacecraft could follow within the chaotic dynamical environment of cislunar space. Furthermore,
similar trajectory geometries can be generated through distinct combinations of spacecraft behaviors
and properties. As a result, with limited or no information about the behaviors and capabilities of
an observed spacecraft, trajectory prediction from uncertain state estimates becomes a challenging
task that can produce an overwhelming amount of information for an operator or analyst.

Initial orbit determination (IOD) is a critical task for space operations. Foundational methods
such as Laplace’s method, Gauss’ method, Double r-iteration, and Gooding’s method!>? construct
orbit fits that often rely on mathematical relationships from the two-body problem, which can lead
to poor approximations in a multi-body system. To refine the state estimate and provide state un-
certainty, large numbers of these measurements are often used in a batch estimation method such
as weighted nonlinear least squares.’ The IOD estimate is then used to predict possible trajectories
of the spacecraft. An existing technique is Monte Carlo analysis, which relies on repeated random
sampling to numerically generate trajectories,* potentially imposing a high computational burden
when there is limited information on the behavior and properties of the spacecraft as well as pro-
ducing a large amount of information. These heritage methods have proven valuable for IOD in

*Graduate Research Assistant, Ann & H.J. Smead Department of Aerospace Engineering Sciences, Colorado Center for
Astrodynamics Research, University of Colorado Boulder, Boulder, CO, 80303.

T Associate Professor, Ann & H.J. Smead Department of Aerospace Engineering Sciences, Colorado Center for Astrody-
namics Research, University of Colorado Boulder, Boulder, CO, 80303.

*Graduate Research Assistant, Ann & H.J. Smead Department of Aerospace Engineering Sciences, Colorado Center for
Astrodynamics Research, University of Colorado Boulder, Boulder, CO, 80303.



dynamical environments where the gravity field of a single celestial body is dominant, but they have
limited applicability in cislunar space.

Complex path and movement prediction problems have been encountered across a diverse array
of disciplines. In robotics, the concept of motion primitives has been used to represent fundamental
building blocks of motion.> These motion primitives can be extracted from groups of similar motion
within a set of observational or simulated data.5® A library of motion primitives then supplies a
discrete and digestible summary of the solution space. By sequencing composable motion primi-
tives, analogous to assembling building blocks with compatible connections, more complex paths
can be rapidly generated.” Due to their capability to summarize distinct types of paths or move-
ments, motion primitives have been useful for supplying rapid and digestible path and behavioral
predictions. For example, Habibi, Jaipuria, and How have used motion primitives to predict future
pedestrian motions.'? Edelhoff et al. also used motion primitives to extract behavioral models from
animal movement observations and identify behavioral changes.!!

Motion primitives have been used for spacecraft trajectory design in multi-body gravitational
systems by Smith and Bosanac to summarize a set of arcs with a similar geometry in the circular
restricted three-body problem (CR3BP).'? These groups of geometrically similar arcs have been
extracted using clustering to separate motions with distinct geometries, with substantial improve-
ments recently developed by Bosanac!® as well as Gillespie, Miceli, and Bosanac.'* Smith and
Bosanac also defined a graph-based procedure to identify sequences of motion primitives that pro-
duce geometrically distinct initial guesses for spacecraft trajectory design.'> Miceli and Bosanac
have extended this work to improve the graph construction process, incorporate constraints, and
improve the graph search algorithm to produce a more diverse array of primitive sequences.'>
Leveraging this foundation, Gillespie, Miceli, and Bosanac introduced behavioral motion primi-
tives to encode the array of intents, control profiles, and spacecraft parameters that produce each
group of geometrically similar arcs for natural and thrust-enabled motions in cislunar space.'

This paper focuses on using behavioral motion primitives for long-term spacecraft trajectory pre-
diction in the Earth-Moon CR3BP. First, this paper leverages the diverse library of behavioral mo-
tion primitives generated by Gillespie, Miceli, and Bosanac.'* Then, the region of the phase space
encompassed by arcs that geometrically resemble each primitive, labeled its region of existence, is
approximated using voxels. Initial state estimates are projected onto the library of behavioral motion
primitives. Any primitives with regions of existence that overlap with an uncertainty hyperellipsoid
centered on the state estimate supply short-term motion predictions. Next, recent work by Miceli
and Bosanac'” is extended to construct a graph of behavioral motion primitives. This graph captures
the connections between primitives that are sequentially composable in the configuration space, es-
timated via intersections of the voxel approximation of their regions of existence. Searching this
graph produces primitive sequences that are used to rapidly generate a digestible summary of long-
term possible trajectory predictions. This new approach to trajectory prediction is demonstrated by
exploring possible long-term future motions of a spacecraft from an uncertain state estimate in the
lunar vicinity and in the planar Earth-Moon CR3BP, assuming only impulsive maneuvers.

BACKGROUND
Dynamical Model

The CR3BP is used to approximate the dynamical environment governing the motion of a space-
craft. This model assumes that the mass of the spacecraft is negligible compared to the two primary



bodies, the Earth and the Moon, which follow circular orbits.!” The primary bodies are also modeled
with the same gravity fields as point masses with a constant mass.!”

State vectors are specified in nondimensional units using a rotating frame. The rotating frame
is defined with an origin at the center of mass of the Earth-Moon system. The axes {&, ¢, 2} are
defined with & directed from the Earth to the Moon, 2 aligned with the orbital angular momentum
vector of the primaries, and § completing the right-handed, orthogonal triad.!” Quantities are also
nondimensionalized using characteristic parameters for length (I*), mass (m*), and time (¢*): [* =
384, 400 km is the distance between the Earth and Moon, m* = 6.046 x 10?4 kg is the total system
mass, and t* = 3.752 x 10° s produces a nondimensional period of the primaries equal to 27.!8

The equations of motion for the spacecraft are typically expressed in the Earth-Moon rotating
frame. The nondimensional state of the spacecraft is first defined as @ = [z, y, z, &, 7, z']T. Then,
the equations of motion are written as'’
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where U* = 0.5(z% + y?) + (1 — p)/r1 + p/r2, and 11 = /(2 +p)2 +y2 +22 and 7o =
V/(z =1+ p)% + y2 + 22 are the distances to the primaries. In the Earth-Moon system, the mass
ratio of the primaries is 1 = 0.01215058439470971.'8 The Jacobi constant is an integral of motion
equal to Cy = 2U* — &2 — 5j> — #2.17 This energy-like quantity supplies insight into allowable re-
gions of motion.!” In this dynamical model, the five libration points, L1-Ls, are stationary solutions
in the rotating frame.!” Periodic orbits are solutions that repeat after a finite time in the rotating
frame. Finally, hyperbolic invariant manifolds asymptotically depart or approach a libration point,
periodic orbit, or quasi-periodic orbit.!”

Differential Geometry

Differential geometry supports the analysis of nonlinear trajectories. At an instant of time ¢,
the position, velocity, and acceleration vectors are equal to (t) = [z(t), y(t), z(1)]T, v(t) =
[£(t), y(t), 2(t)]T, and a(t) = [@(t), §i(t), 2(t)]T, respectively. Over the time interval ¢ € [to, tf],
a trajectory propagated from an initial state traverses a distance equal to the arclength sp.19 In
addition, the velocity hodograph traces out a curve of arclength s,, labeled “velocity arclength,”
equal to the cumulative change in velocity over the trajectory. These quantities are calculated as
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At any location along the trajectory, the curvature captures the deviation of the path from a straight
line. The unsigned curvature is calculated as follows,?® with a singularity when the speed is zero:
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At maxima in curvature, the shape of the trajectory changes most rapidly. In the CR3BP, these
maxima often occur close to apses relative to meaningful reference points.”!



Density-Based Clustering

Clustering algorithms automatically discover groups of similar data while separating dissimilar
data.?? In this paper, density-based techniques are used to identify regions in a finite-dimensional
feature space where data points exhibit sufficient local concentration.?” Specifically, two algorithms
are employed: Density-Based Spatial Clustering of Applications with Noise (DBSCAN)?? and Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN).2*

DBSCAN was introduced by Ester, Kriegel, Sander, and Xu to detect arbitrarily shaped clusters
by linking points with overlapping, sufficiently dense neighborhoods.?®> A core point possesses at
least mys neighbors within a radius of ¢, labeled its e-neighborhood. Those points that lie within
the e-neighborhood of a core point but do not themselves satisfy the core point criterion are labeled
border points. The remaining points are labeled as noise. Clusters in DBSCAN consist of all core
points that are density-connected, i.e., reachable through a chain of overlapping core neighborhoods,
and their associated border points. This algorithm is useful when the governing parameters 12,5
and e can be selected heuristically. In this paper, MATLAB’s dbscan function is employed.?’

HDBSCAN, developed by Campello, Moulavi, and Sander, extends DBSCAN by building a clus-
ter hierarchy over varying density thresholds.”* HDBSCAN begins by defining the mutual reacha-
bility distance between two points as the maximum of their pairwise distance and each point’s core
distance, i.e., the distance to its m,,sth nearest neighbor. The mutual reachability distance between
all points is used to construct a minimum spanning tree, which captures the data’s intrinsic density
structure. This tree is then condensed into a cluster hierarchy where each node represents a can-
didate cluster containing at least 1, cjust POints. A stability criterion based on excess of mass
is used to extract the most persistent clusters from this hierarchy, whereas points that fail to meet
density requirements remain classified as noise.>* HDBSCAN does not depend on a fixed neighbor-
hood radius and can accommodate clusters of differing densities and sizes. HDBSCAN is primarily
governed by two parameters: M5 and My cust->+ An explicit reachability threshold €erge may
also be applied to constrain cluster formation.?® In this paper, HDBSCAN is implemented via the
Python hdbscan library.?’

Numerically Correcting Trajectories

Multiple shooting is used to recover a continuous trajectory from a discontinuous initial guess.?®

In this paper, a free variable vector V is defined as
T

where x; o and At; are the initial state and time of flight along the ith arc, respectively. A con-
straint vector Fy(V') that enforces continuity in the configuration space while allowing impulsive
maneuvers between subsequent arcs is defined as
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where 7; ( is the initial position vector along the ¢th arc and 7; ; is the final position along the sth
arc. Full state continuity can be used if a maneuver is not allowed. Additional boundary and path
constraints can also be included as needed. Inequality constraints can be included by converting
them to equality constraints and appending slack variables (; to the free variable vector. These
additional constraints are appended to Fy to form the full constraint vector F'. Then, an initial guess



for the free variable vector is iteratively updated via Newton’s method. These updates continue until
|F(V)| < 7, where T is a specified tolerance. At each iteration, the derivatives of the constraints
with respect to the free variables are calculated analytically.

Voxel Representations

A voxel is a three-dimensional analog of a pixel often
used for computer graphics and medical or scientific vi-
sual analysis.?® Voxels are typically cubes with uniform | %0 _
size that are used to discretize more complex shapes. SRR
This volume representation supports efficient rendering, T Tl T I
Si

simple intersection or overlap calculations, and variable
resolution. Their positions can be defined through a spa-
tial data structure (e.g., an octree or k-d tree), or each  Figure 1: A group of voxels, each with a
voxel can carry its own absolute coordinates.”’ Voxels gjde length s; and center positions ¢;.
can also be encoded with information such as color or a

selected parameter value.?” In this paper, voxels are used to represent volumes of the configuration
space with uniform side lengths s; and specified center positions c;, as depicted in Figure 1. Note
that a similar concept has been used by Howell et al.>* to define cells that approximate the tube-like
surfaces formed by stable and unstable manifolds in the CR3BP.

Graph Search Algorithms

Two fundamental search algorithms are Dijkstra’s’! and A*,3? both of which are used in this
work. These algorithms are used within weighted graphs with nonnegative edge weights to identify
the shortest path from one node, the start node, to another node in the graph, the end node.?!:3? The
term “shortest path” is the path with the minimum sum of edge weights, and the edge weights in a
graph are nonnegative values that describe the ease of moving from one node to another.?!

The A* search algorithm identifies the shortest path between two nodes in fewer steps than Di-
jkstra’s algorithm due to the use of a heuristic.>> The A* algorithm evaluates each candidate node
based on the sum of the cost from the start to that node, g(n), and the heuristic cost from that node
to the goal, h(n), selecting the node with the lowest total f(n) = g(n) + h(n) for expansion.*?
The heuristic guides the search algorithm at each node by providing approximate knowledge of the
true cost to the end node.??> The heuristic must be “admissible,” i.e., h(n) < h*(n), where h*(n) is
the true cost from node n to the end node.’> As h(n) approaches 0, A* explores more of the graph
and effectively behaves like Dijkstra’s algorithm.’?> As h(n) approaches h*(n), A* explores fewer
nodes, traversing only those necessary to reach the goal.

Yen’s algorithm identifies the K -shortest loop-less paths between a start node and an end node
in a weighted graph with nonnegative edge weights.3® This algorithm begins by computing the first
shortest path using, for example, Dijkstra’s algorithm.>* Additional candidate paths k = 2,3,..., K
are generated using each node i in the (k— 1)th path. First, the segment from the start node to node
i is defined as a root path. Edges that would recreate any of the previous (k— 1) root paths up to i are
temporarily removed from the graph to produce a subgraph.’® Next, a spur path is computed from
node 7 to the goal by searching the subgraph using, for example, Dijkstra’s algorithm.> Finally, the
spur path is concatenated with the root path to form a full candidate path.>> These candidate paths
are stored and the lowest-cost candidate is selected as the next shortest path.>® This spur-and-root
procedure repeats until the top K loop-less paths have been identified.*



TECHNICAL APPROACH
Step 1: Constructing a Behavioral Motion Primitive Library

A library of behavioral motion primitives is generated to discretely summarize a segment of
the continuous solution space. This step closely follows the procedure previously developed by
Gillespie, Miceli, and Bosanac.!* In this paper, the behavioral motion primitives are generated to
summarize natural arcs along the stable and unstable manifolds of Lyapunov orbits near the Moon.

The stable and unstable manifolds of Lyapunov orbits are numerically approximated. First, se-
lected orbits are discretized into 500 states that are equally distributed in arclength. These states are
perturbed to produce initial states in the stable or unstable eigenspaces and then propagated for a
duration of Aty = Atpertdous+ 3 months in the CR3BP. Aty,e,1q0up is the perturbation doubling
time, calculated from the unstable eigenvalue of the monodromy matrix.>* Propagation terminates
early upon impacting a primary body or exceeding a distance of one nondimensional unit from the
Moon. During propagation, the curvature maxima along the trajectories are recorded.

Arcs are then sampled as “building-block” sized segments of each set of approach or departure
trajectories.'* Each arc is defined to start at 1) the initial state of a trajectory for departure arcs, 2)
a maximum in curvature, or 3) a termination condition for approach arcs. The arcs then encompass
as many as four subsequent maxima in curvature before terminating. The final state along each arc
is either 1) a maxima in curvature, 2) the initial state used to generate a stable manifold trajectory
in backward time, or 3) a state that satisfies a termination condition along an unstable manifold.

Each arc is then sampled geometrically.'* First, the arc is
sampled at its initial state, any maxima in the curvature, and its
final state. In between these initial samples, two additional sam-
ples are spaced evenly in arclength. Figure 2 depicts a trajec-
tory sampled in this manner where the red diamonds mark the
initial samples and the black diamonds locate the intermediate
samples. This sampling methodology ensures that samples are
placed in geometrically meaningful regions. The region in be-
tween each sample is designated a “section.” For the example in ~ Figure 2: Trajectory discretized
Figure 2, the arc is divided into twelve sections, each numbered into twelve sections, encompass-
in the figure, between thirteen sampled states. ing five maxima in the curvature.
14,35 A

These sampled states are used to create two feature vectors that describe a continuous arc.
shape-based feature vector f5 and position-based feature vector f,, are defined as

fo=[o 08, o8]0 £ =[rT el et (6)

where n is the number of sampled states, and v; is the velocity unit vector. Each feature vector
possesses a dimension of 3n x 1 to summarize the geometry of the arc in the rotating frame.

Arcs sampled from the same fundamental solution are clustered by their geometry. First, the arcs
are coarsely clustered in the shape-based feature vector space using HDBSCAN.?*2?7 The governing
parameters are selected as mpis = 4, Muin,clust = 9, and €perge = 28in(5°/ 2).3% Each coarse
group is then refined using a process developed by Bosanac that is modeled after convoy detection
to define each cluster as a set of arcs with a consistently similar shape and path.>>3¢ First, the
1th sampled state along each arc in the coarse group is described by fs and f,, producing two
three-dimensional feature vectors. These sampled states are clustered in each feature vector space



independently using DBSCAN.?* The governing parameters are selected as Mmpyts = 4 and € =
(mpts + 1) max(emagk, €thresh ) Where €qzk 1S the myyincisi-largest distance from each member
to its nearest neighbor and e4p,;..s;, is a specified threshold, equal to 2sin(5°/2) in fy and 1073 in
fp.35 This procedure is repeated for all n states along the arc to produce 2n clustering results. Any
arcs that are consistently grouped together in all clustering results produce a refined cluster. This
step produces a set of clusters £, localized to each half-manifold of each periodic orbit.

Similar motion types that exist across different half-manifolds are aggregated using pairwise
merging decisions. First, the nearest neighboring representatives are identified in each of f; and
fp. The arcs in each pair of candidate clusters are input to the cluster refinement process. If any
members are grouped together, the two clusters are merged.'#33 This aggregation process produces
a set of global clusters G; summarizing arcs that approach or depart periodic orbits along one family.

Periodic orbits are discretely sampled along continuous families and their curvature profiles
are analyzed to extract motion primitives. This procedure was previously presented by Gillespie,
Miceli, and Bosanac.'* Groups of geometrically similar orbits within each family are generated
from neighboring, discretely sampled members possessing the same number of curvature maxima.

To support trajectory prediction, each cluster is sum- 12
marized by its motion primitive and region of existence.'* 1(1)
First, the motion primitive is selected as the medoid of 9
the cluster evaluated in the position-based feature vec- é; E
tor space. Next, the associated region of existence, i.e., 0.85 , fj é
the volume that the cluster encompasses within the phase . 0,05 Z 3
space, is approximated through a discrete hypervoxel rep- 3
resentation. To support the discretization, the continuous " Los 005 %

Y

arcs are further sampled in even increments of 5 x 10~4
non-dimensional units in the arclength and velocity ar- Figure 3: The region of existence for a
clength. An example is depicted in Figure 3, where the motion primitive departing an L; Lya-
states sampled along a cluster of geometrically similar Punov orbit.

arcs that depart an L; Lyapunov orbit are plotted in blue and the primitive arc is overlaid in black.
Additionally, the red diamond locates L1, and the gray sphere represents the Moon, drawn to scale.

The region of existence associated with a motion primitive is approximated via a collection of
position and velocity voxels to reduce data storage and complexity. First, a three-dimensional po-
sition voxel is defined as a cube-shaped region in the configuration space that contains at least one
state along any arcs within the cluster associated with the primitive. The velocity vectors of the
states that lie within each position voxel are then summarized by a set of three-dimensional velocity
voxels that each encompass a cube-shaped region in (&, 9, 2). These two sets of voxels are stored
hierarchically: each velocity voxel is stored in a nested set associated with a specific position voxel.
Each velocity voxel is also encoded with the arc and section index for each sample. To define
these position and velocity voxels, their centers ¢, and ¢, are located at integer multiples of 0.01
nondimensional units in each state component. The position and velocity voxels are axis-aligned
and possess side lengths of s = 0.01 nondimensional units. Figure 3 displays a motion primitive’s
region of existence, approximated by 185 position voxels that are projected onto the configuration
space and colored by their highest section index.

This paper uses a library of 6,861 motion primitives. This library includes arcs that 1) follow,
approach, or depart selected L1 and Ly Lyapunov orbits; and 2) the Moon-centered distant prograde



orbits, distant retrograde orbits, and low prograde orbits. Ongoing work includes incorporating
spatial and thrusting primitives, as presented by Gillespie, Miceli, and Bosanac.!4

Step 2: Estimation Mapping

An uncertain state estimate is projected onto the motion primitives in the library to identify pos-
sible short-term motion types and supply a digestible summary of short-term trajectory predictions.
First, a 30 uncertainty hyperellipsoid centered at an estimate mean & with covariance X is defined
analytically in the phase space. Here, a 30 uncertainty hyperellipsoid refers to the collection of
points with a squared Mahalanobis distance equal to’’

(@)= (x—2)" = (z—7) <9 )

and corresponding to a 82.64% confidence region in the six-dimensional phase space.

To support comparison to a six-dimensional state, the hierarchical collection of position and
velocity voxels that summarize a region of existence are used to form a set of six-dimensional
hypervoxels. Specifically, each three-dimensional velocity voxel nested within one of the three-
dimensional position voxels associated with a primitive’s region of existence are combined. The
ith six-dimensional hypervoxel possesses a center located at h; = [cg’i, chT’Z-]T with a side length of
s = 0.01 nondimensional units in all six state components. The hypervoxel also inherits the section
and arc indices of the velocity voxel.

Identification of hypervoxels that intersect the uncertainty hyperellipsoid is performed in two
steps. First, the squared Mahalanobis distance at each hypervoxel center, d?w(hi), is evaluated. If
d%z[(hi) < 9, the hypervoxel intersects the uncertainty hyperellipsoid. Otherwise, a constrained
root-finding procedure is used to search for a state « within the hypervoxel that lies on the hyper-
ellipsoid surface. The procedure solves for an = such that d%\/[ (x) = 9, subject to constraints that
a remains within the hypervoxel bounds. If a solution exists, then the corresponding hypervoxel is
marked as intersecting. Intersecting hypervoxels are stored along with the section and arc indices.
The process is repeated using the voxel representation of the region of existence associated with
each primitive in the library to identify the subset that intersect the uncertainty hyperellipsoid.

In this paper, an example observation is generated through the
random sampling of trajectories. A state along a trajectory that de-
parts an L Lyapunov orbit is propagated 1000 times for a duration
of one day from t( to ¢; with a standard deviation of 20 m in po-
sition and 10 m/s in velocity. After propagating, a mean state esti-
mate £ = [0.9523, —0.0648, 0.0000, 0.2942, 0.0945, O.OOOO]T
is extracted from the terminal states along with a covariance
matrix ¥ € RS that produces the standard deviations o, = . -0.06
[0.89, 0.82, 0.63, 5.48, 4.85, 1.37] x 10~2. The first three ele- T 0.96 007
ments correspond to position components, and the last three to ve-
locity components. These trajectories are visualized in Figure 4 in
black with & as a blue star and the final time labeled ¢;. The re-
sulting three-sigma uncertainty hyperellipsoid is projected onto the
configuration space and plotted as a transparent red ellipsoid.

Y
Figure 4: Trajectories prop-
agated to generate an uncer-
tainty hyperellipsoid and .

Comparing the state estimate depicted in Figure 4 to the library of 6,861 motion primitives pro-
duces a set of 18 intersecting motion primitives in approximately three minutes. In this paper, all



>

0.85 RYRRRE
N <

<
g g

> K

1 7 -0.05
Yy

(a) Approaching or departing an (b) Approaching or departing an (c) Departing an L; Lyapunov or-
L, Lyapunov orbit L, Lyapunov orbit bit

Figure 5: Three regions of existence that intersect with the uncertainty hyperellipsoid in Figure 4.

computations are performed using a 6-core AMD Ryzen 5 7600X CPU. The intersecting motion
primitives all approach or depart an L Lyapunov orbit naturally. Three of these primitives and their
regions of existence are plotted in Figure 5, where intersecting position voxels are highlighted in
blue and the uncertainty hyperellipsoid projected onto the configuration space is displayed in trans-
parent red. The regions of existence all possess similar shapes near the initial state estimate, but
the subsequent geometries and itineraries vary drastically: Figure 5(a) displays a self-intersecting
geometry that gradually moves towards L, Figure 5(b) depicts motion that remains within the
vicinity of the Moon, and Figure 5(c) shows a third possible geometry that departs through the 14
gateway. Thus, the state estimate and uncertainty level could lead to a spacecraft following a variety
of itineraries.

Step 3: Motion Primitive Graph Construction

The sequential composability of all pairs of behavioral motion primitives from the library is cal-
culated to support long-term trajectory prediction. Specifically, two motion primitives are labeled
as sequentially composable if the position voxels representing their two regions of existence overlap
in the configuration space. To demonstrate this definition, consider the regions of existence of two
primitives plotted in Figure 6(a): region of existence 1 (red) summarizes trajectories departing an
L1 Lyapunov orbit whereas region of existence 2 (blue) summarizes trajectories approaching an Lo
Lyapunov orbit. The position voxels are colored in darker shades as the section index increases,
supplying insight into the direction of motion along the associated trajectories. Their intersecting
position voxels are colored purple. A motion primitive graph is generated to summarize the sequen-
tial composability of all pairs of primitives from the library. This step builds upon prior work by
Miceli and Bosanac!> but increases the accuracy by directly using the voxel representations.

The motion primitive graph is first populated with nodes. Each node represents a single section
along the region of existence of one motion primitive. Thus, a region of existence discretized into
12 sections contributes 12 nodes to the graph.

Zero-weight, directed edges connect sequential sections associated with the same motion primi-
tive. Accordingly, these “flow” edges reflect that a spacecraft can naturally traverse the continuous
sections of trajectories with a similar geometry in forward time. The final section node for periodic
orbits is connected with a similar, zero-weight edge to the first node to encode periodicity.
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(a) Regions of existence of two motion primitives. (b) Edge weights between intersecting sections.

Figure 6: Identifying intersections between the regions of existence of two behavioral motion prim-
itives to estimate their potential for sequential composability.

Directed edges are added between selected nodes associated with intersecting motion primitives
that are considered sequentially composable. To identify intersections between each pair of motion
primitives in the library, the center of every position voxel from one primitive’s region of existence
is compared to the centers of the position voxels from the other primitive’s region of existence. If
two voxel centers overlap, those voxels and the corresponding sections in each region are marked
as intersecting. For each unique combination of section indices along the regions of existence,
bidirectional edges are added between the associated nodes in the graph to reflect that initial guesses
could be constructed using these two sections sequentially composed in either order.

To calculate the weight of the edge connecting section a of one primitive and section b of the
other primitive, the pairs of intersecting position voxels between sections a and b are identified and
a set of n,, velocity pairs is extracted from the associated sets of velocity voxels. Then, the edge
weight between the two sections w, j, is defined using the minimum relative velocity discontinuity
over all velocity pairs as

Wep = min o =2, (8)

0 1<k [of (] + [lof ]

where v; is a velocity from a position voxel in section a and v; is a velocity from a position voxel in
section b that intersects the voxel from section a. Scaling the edge weight by the speeds focuses on
analyzing relative changes in the velocity, which is useful when generating sequences of primitives
that may pass close to the Moon with higher speeds.! Figure 6(b) summarizes the calculated edge
weight of each combination of composable sections from the two primitives plotted in Figure 6(a).
Two groups of intersecting sections are visible in the grid: a smaller, higher edge weight group and
a larger, lower edge weight group. These groupings are consistent with Figure 6(a) where there is a
large purple voxel intersection region with well-aligned velocity vectors and a smaller purple voxel
intersection region with larger differences in the velocity directions. For inter-primitive edges with
a calculated edge weight of zero (v; = v;), the actual edge weight is set to 10~ to facilitate later

graph searches prioritizing flow edges over inter-primitive edges where appropriate.

As previously demonstrated by Miceli and Bosanac,'3 additional path or maneuver constraints
can be applied when calculating edge weights. In this paper, a maximum velocity angle difference
of 30° is applied'® except for velocity pairs where both velocity norms are below 10 m/s. This
constraint avoids populating the graph with edges that would require large direction changes and
unnecessarily high impulsive maneuver costs.
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Step 4: Generating Motion Primitive Sequences

The motion primitive graph is searched to identify motion primitive sequences that support gen-
erating long-term trajectory predictions from an uncertain state estimate. The estimation mapping
process provides a list of start nodes, corresponding to sections along primitives that overlap with
the uncertainty hyperellipsoid. Sequences of motion primitives that begin from these nodes support
generating a summary of reachable orbits, regions, or vantage points. In this proof of concept, a
set of candidate destinations are selected as libration point and Moon-centered periodic orbits, the
Moon’s surface, and the L; and Ly gateways. A primitive sequence that connects the initial un-
certainty hyperellipsoid to any of these destinations is used to generate a continuous trajectory in
the next step and, therefore, supply a single long-term trajectory prediction. Furthermore, the col-
lection of primitive sequences supplies geometrically distinct pathways to reachable destinations,
potentially supplying a digestible set of long-term trajectory predictions.

The end node is specified before each graph search. If the destination is a periodic orbit group,
its associated region of existence is located. Then, one node corresponding to a section along the
primitive is selected. The nodes of the periodic orbit group in the graph can be freely traversed in a
loop, so the search algorithm will naturally select the optimal node for insertion onto the orbit. If,
however, the destination is the Moon’s surface, then a ring of position voxels each with a side length
of 1 km is placed at the Moon’s surface to target a close approach to the Moon with an altitude below
approximately 500 m. This ring of position voxels is represented as a single node in the graph and
marked as the end node. Finally, if the destination is the L or Lo gateway, then a line of position
voxels is placed in the (&, §) plane and parallel to the § axis at z = 0.75 or x = 1.23, respectively.
These lines of position voxels span y = [—0.125, 0.125] to target a variety of escape geometries and
are each assigned a single node in the graph. The corresponding node is selected as the end node.

This paper uses Yen’s algorithm to generate multiple paths through the graph between selected
start and end nodes. These paths correspond to sequences of nodes and edges that are transformed to
primitive sequences. Within Yen’s algorithm, Dijkstra’s algorithm is used to compute each candidate
path with MATLAB’s shortestpath.

For each of the 18 initial primitives that intersect the uncertain state estimate in Figure 4, up to
50 paths are generated to each of the 22 destinations by searching the motion primitive graph. This
search process results in 10,212 paths that require approximately two hours to compute. Two of
these primitive subsequences are plotted in Figure 7. In each subfigure, the series of sections from
each region of existence selected by the graph search are plotted and uniquely colored for each
primitive; darker shades indicate increasing section indices. Sections along the first primitive in
the sequence, which intersect the observation uncertainty hyperellipsoid centered at the blue star,
are colored purple. In Figure 7(a), the primitive subsequence reaches an L; Lyapunov orbit. In
Figure 7(b), however, the primitive subsequence escapes through the Lo gateway. Both motion
primitive subsequences connect relatively smoothly, increasing the likelihood of producing a good
initial guess for a trajectory with impulsive maneuvers.

Step 5: Generating an Initial Guess from a Primitive Sequence

To generate initial guesses, the sequences of primitive sections are processed. This refinement
process is implemented in a manner similar to Miceli and Bosanac,' through the construction of
a low-level graph that uses states along an array of arcs from each region of existence for nodes.
A representative subset of the arcs that lie within the region of existence of each primitive in a
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sequence is identified by clustering in the position-based feature vector space using the k-medoids
algorithm, accessed in MATLAB.? This clustering step samples the set of arcs associated with each
primitive to reduce the low-level graph size and computational costs. Then, the sampled states along
each selected arc define the nodes in the low-level graph. States that lie within 10 km of the Moon’s
surface are not incorporated in the graph to support the computation of feasible initial guesses.

Edges are added between nodes associated with states along the same arc and between com-
posable states from sequential primitives. Zero-weight, directed edges are added between nodes
defined using sequential states sampled from the same arc, ensuring that arcs can be traversed with-
out penalty. Similar zero-weight edges are added from the last node to the first node along arcs
following periodic orbits to encode periodicity. Directed, weighted edges are then added between
nodes on distinct primitives that are sequentially composable. These edge weights W between the
nodes are calculated by weighting position and velocity discontinuities as

W = w, |Ar| 4+ wy(1 — cos ), )

where Ar is the position difference between two corresponding states and € is the angle between
their velocity vectors. Scalar coefficients w,, = 10 and w,, = 1 balance the relative importance of
connections with close proximity or well-aligned velocity directions, respectively. Edges are added
between trajectories of each primitive set according to the computed path through the high-level
motion primitive graph. As a result, at each node of the graph the only choices are to continue along
the current arc or move to a state along an arc associated with the next primitive in the sequence.

The modified A* search algorithm, developed by Miceli and Bosanac, is used to search this

graph for a sequence of nodes and edges that minimizes the cumulative edge weight when traversing
from a state nearby the observation to a selected primitive in the destination set. One modification
requires that the path consist of at least two nodes along any arc, i.e., every arc must be traversed for
a nonzero duration. A list of potential start nodes are selected from the arcs of the primitive set that
intersect the uncertainty hyperellipsoid. From this set, one potential start node per arc is selected as
the state closest to the mean estimate. The list of multiple start nodes is incorporated by adding them
all to the priority queue when initializing the modified A* algorithm. A list of potential end nodes
is composed of the final nodes along each representative arc corresponding to the selected primitive

(b)

Figure 7: Two primitive subsequences from the observation to (a) an L; Lyapunov orbit primitive
and (b) Lo gateway escape.
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Figure 8: Two discontinuous initial guesses in dashed curves and the corrected trajectories in solid
curves: (a) from the observation to an L; Lyapunov orbit and (b) from the observation to an escape
through the Lo gateway.

from the destination set. Accordingly, an additional modification to A* is the allowance of multiple
end nodes by 1) allowing termination upon reaching any end node and 2) setting an A* heuristic
h(n) that considers all possible end nodes. The selected A* heuristic is the minimum shortest path
distance from the current node n to any end node. This cost is calculated without considering the
two node sub-path constraint and will always be less than or equal to the true cost when accounting
for the constraint to satisfy the admissible heuristic criteria for A*.

Of the 10,212 high-level paths generated, 9,100 of them are successfully refined to produce initial
guesses in under two hours. A failure to refine indicates that the A* algorithm failed to find a
viable path through the low-level graph with at least two states per primitive that satisfies the 10
km minimum Moon altitude constraint. Two refined initial guesses computed from the primitive
subsequences in Figure 7 are plotted in Figure 8 with dashed curves. Each unique color in the initial
guess corresponds to a different segment of a primitive. These initial guesses exhibit a wide variety
of geometries with small position discontinuities and velocity direction changes.

Step 5: Correcting Initial Guesses Using Multiple Shooting

Each discontinuous initial guess is corrected via multiple-shooting to produce a continuous tra-
jectory with impulsive maneuvers. Initial guesses for impulsive maneuvers are placed at maxima
in the curvature and at the boundaries of arcs from distinct primitives.!> At these locations, only
position constraints are enforced. Two samples are evenly distributed in the arclength between sub-
sequent impulsive maneuvers, and full state continuity is enforced between these smaller arcs. In
addition, the initial position is constrained to equal the observation mean, &, and the final position
is constrained to match the final position of the initial guess, 7 ;. Further constraints are added
to ensure that periapses maintain an altitude of 10 km above the Moon’s surface. The vector of
additional path constraints, formed by adding two constraints and one slack variable /3, for the jth
of m identified periapsis events, is

F,;= [(Tp,j — Tmoon) = V, H'rp,j - TmoonH — T"moon,rad — ng (10)
This implementation assumes that for a close initial guess, a periapsis event will not become an
apoapsis event during corrections and, therefore, the sign of the time derivative of the first constraint

is not incorporated into Fj, ;. Additional constraints enforce a non-negative duration of each arc
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using slack variables [3;, for arcs 7 = 1,2,...,n. The additional constraint vectors applied to the
entire initial guess are defined as

T T Fp71 ATl - 67521
1,0 — . .
FBCs:|: :|7 Fp: : ) and E: : . (11)
Fym AT, - &,
: : T T T T T
Together, all the constraints are used to define the full constraint vector as F' = [FBC s Fo Fy F, ] .
Each initial guess, derived from a primitive sequence, is corrected. During the corrections pro-
cess, the constraint vector must reach a norm of less than or equal to 7 = 10~!% within 100 itera-
tions. Of the 9,100 initial guesses generated, 7,755 of them are successfully corrected to produce
continuous trajectories in about twenty minutes. Two corrected trajectories are plotted with solid
curves in Figure 8, overlaid with their corresponding initial guesses and marked with circles to in-

dicate impulsive maneuver locations. The corrected trajectories retain the geometry of their initial
guesses, but are now continuous at each arc intersection in the configuration space.

Step 6: Generating a Digestible Trajectory Prediction Summary

Generating a digestible summary of possible trajectories from an observation requires a reduction
in the total number of trajectories. To achieve this goal, their similarity is assessed using dynamic
time warping (DTW).3:3% DTW is a distance measure that is typically used in time series analysis
for comparing signals of varying speed, pairing similar samples from two sets to minimize the sum
of Euclidean distances between the pairs.’® A sample from one set may be paired with multiple,
sequential samples from the other set if necessary to produce the minimum sum of distances.

First, the corrected trajectories are grouped by destination and sorted by their total maneuver
magnitude. The trajectory with the minimum total maneuver magnitude from each group initializes
a list of sufficiently unique summarizing trajectories. Each additional trajectory is compared to
the trajectories in the list through two separate applications of dynamic time warping, in position
and velocity, to determine if it is sufficiently different to be added to the final list. If the position
and velocity similarity metrics, calculated via DTW, are both above a manually selected similarity
threshold, the trajectory is considered sufficiently unique and added to the list for its respective
group. The similarity thresholds are tuned for the individual destinations and range from 1-2 and
2-10 nondimensional units for position and velocity, respectively.

Step 7: Natural Parameter Continuation for Maneuver Requirement Reduction

Natural parameter continuation is used to reduce maneuver requirements of each summarizing
trajectory and produce families of feasible paths; this step is modeled after the process used by Spear
and Bosanac.* To retain geometric similarity to the initial guess and enforce necessary constraints,
the multiple shooting algorithm is modified to incorporate a multi-objective cost function'?

Nman

J(V) = wgeo(%os - ‘/ref,pos)T(‘/pos - Wef,pos) + Wman Z A’UiQa (12)
i=1

where wge, weights geometric similarity to the initial guess, wy,q, weights the sum of squared
maneuver magnitudes, 1,4y, is the number of maneuvers, V,,,; contains the position elements of the
current free variable vector V', and V/..y contains the position elements of the free variable vector for
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Figure 9: Two sets of corrected and continued trajectories: (a) from the observation to an L
Lyapunov orbit and (b) from the observation to an escape through the Lo gateway.

the original corrected trajectory, which is labeled as the reference trajectory. The added constraint
takes the form F; = J(V') — Jges, Where Jyes is a desired value of J. Additionally, F]’BCS is
defined as follows to enforce that &1 o can lie anywhere within the uncertainty hyperellipsoid using
the Mahalanobis distance and a slack variable f,:

FIISCS = [ (:BL() — E)Tzfl(wljo — 173) —o? + 53, (’I"mf - Tfng)T ]T (13)
The full constraint vector during continuation is defined as Fpp: = [FJ’B%S FOT FpT FtT FJT] T.

A two-step continuation method is used, as presented by Spear and Bosanac.*’ In an outer loop,
the weights are varied from [Wgeo, Wiman] = [0.95,0.05] to [0,1]. This continuation guides the
corrections algorithm to converge towards a “minimum energy” solution. In an inner loop, the
value of Jy., is adaptively lowered by AJg, for the current combination of wge, and wyq, and the
trajectory is corrected. If a solution is not generated within 30 iterations, corrections are terminated.
Then, Jg. is reset to its previous value, and the step size of J. is halved. The inner loop terminates
once the step size drops below lioth of the initial step size AJges 0 = 10(Hog10(Jo)] 1) where Jo is
the initial value of .J for a specified wge, and wynan. This process reduces maneuver requirements
by a similar order of magnitude as optimization via MATLAB’s fimincon for these trajectories, while
offering quicker computation times.

Examples of trajectories with reduced maneuver requirements are shown in Figure 9. In this
figure, the corrected trajectories from Figure 8 are showed in dashed gray, the continued trajectories
with wge, = 0 and wy,qn = 1, are shown in blue, and red arrows indicate the maneuver directions
and relative magnitudes. The blue trajectory in Figure 9(a) requires a total Av of 99.0 m/s and a
time of flight of 28.8 days, whereas the blue trajectory in Figure 9(b) requires a total Av of 151.8
m/s and a time of flight of 18.6 days. Although these solutions are not truly optimal in an energy or
Av sense, they are sufficient for the generation of preliminary trajectory predictions.

RESULTS AND DISCUSSION

Trajectory predictions from the uncertain state estimate in Figure 4 to a variety of destinations
in the lunar vicinity are generated using the process detailed in this paper. Table 1 summarizes the
ranges of total maneuver costs, time of flight (TOF), and final Jacobi constants C'; s for the pre-
dicted possible trajectories to each destination, i.e., a segment of a periodic orbit family or specific
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termination condition; in this section, each destination is uniquely labeled using a lowercase letter.
The range of destination orbit periods P are also included, where applicable. Across the diverse set
of generated trajectories, total maneuver magnitudes vary from approximately 2.1 m/s to 504.4 m/s,
flight durations span from about 0.7 days to 80.7 days, and final Jacobi constants range between
2.29 and 3.22. For reference, the Jacobi constant of the observation estimate mean & is 3.19.

Table 1: Ranges of Av (m/s), time of flight (days), final Jacobi constant, and period of destination
periodic orbit, where applicable, for each destination (dest.) in Figures 10 and 11.

L1 Lyapunov Distant Retrograde
a b c d e f

Av  [2.1,206.0] [95.7,468.8] [257.2,359.3] [258.6,504.4] [161.9,468.7] [253.1, 592.9]
TOF [15.7,58.8] [17.9,39.8] [34.5,40.5] [36.5,453] [14.1,37.2] [38.5,61.0]
Cyr [3.16,3.19] [2.96,3.15] [2.91,295] [2.72,291] [2.97,3.40] [2.29,2.70]
P [11.7,12.1] [12.3,23.6] [24.1,28.2] [28.3,32.4] [0.9,9.2] [26.0, 27.2]

Dest.

Lo Lyapunov Distant Prograde
g h i j k 1
Av  [24.4,317.9] [114.6,169.2] [93.9, 186.9] [98.1, 342.0] [93.6, 142.2] [107.5, 196.7]
TOF [27.7,62.0] [35.2,57.5] [25.0,43.4] [4.8,229] [12.8,32.6] [20.6,61.5]
Cypr [3.15,3.17] [3.03,3.14] [2.90,2.96] [3.16,3.18] [3.10,3.15] [3.09,3.10]
P [14.7,14.8] [14.9,17.8] [24.4,32.8] [5.9,7.9] [8.7,13.7]  [14.0,15.1]

Dest.

Distant Prograde Low Prograde

n 0 p q r
Av  [77.3,113.6] [58.0,136.4] [62.0,211.0] [154.7,329.9] [4.6,49.0] [4.9,73.2]
TOF [18.2,53.2] [29.2,79.3] [36.3,80.7] [2.8,13.9] [6.9,29.6] [10.7,30.6]
Cyr 1[3.00,3.08] [2.99,3.00] [2.94,2.99] [3.19,3.45] [3.18,3.19] [3.18,3.18]
P [16.5,26.7] [27.5,28.6] [28.9,40.9] [1.1,5.1] [6.0, 10.0] [10.9, 11.0]

Dest.

Low Prograde L, Gateway Lo Gateway Moon Impact
S t u v

Av [11.5,81.1] [3.3,118.2] [18.5,354.1] [120.6, 324.5]
TOF [10.8,32.9] [5.2,129] [16.3,31.1] [0.7,17.3]
Cyr [3.18,3.18] [3.16,3.19] [3.04,3.16] [3.17,3.22]
P [11.8,11.9]

Dest.

The predicted trajectories are plotted in Figures 10 and 11, respectively. Each trajectory is plotted
in a distinct color, final periodic orbits are drawn with black dashed lines, circle markers indicate
impulsive maneuver locations, and the libration points are depicted with red diamonds. For partic-
ularly extensive paths, adjacent zoomed figures provide additional detail.

The generated summary includes long-term trajectory predictions with a wide variety of geome-
tries, including multiple lunar revolutions, direct gateway escapes, and Moon impacts. For compar-
ison, traditional methods such as Poincaré mapping*' and Monte Carlo* sampling, while effective
for many situations, can be time-consuming and produce an overwhelming volume of data, ren-
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Figure 10: Trajectory predictions for destinations a through 1
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a

Figure 11: Trajectory predictions for destinations m through v

dering them impractical for rapid decision-making. Poincaré maps require extensive computation
and manipulation to identify reachable sets, whereas Monte Carlo approaches lack a natural mech-
anism to incorporate intentional maneuvers or destination constraints. In contrast, the behavioral
motion primitive framework delivers concise, destination-focused summaries by deliberately gener-
ating geometrically distinct transfers. The trajectory predictions that reach periodic orbits delineate
accessible vantage points suitable for long-duration missions. However, the L; and Lo gateway
escape prediction sets highlight available departure options or warn of inadvertent exits from the
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lunar region. Similarly, the lunar impact trajectory set could inform risk assessments or planned
impact strategies, depending on mission objectives. Due to the current absence of a maximum ma-
neuver constraint in the high-level graph search, some high maneuver cost trajectories are returned.
These paths may not be feasible for every spacecraft, but still contribute important information to
the prediction summary.

CONCLUSION

This paper presents a new approach to long-term spacecraft trajectory prediction in cislunar space
by leveraging a library of motion primitives. Each primitive’s region of existence is approximated
via discrete voxels with encoded velocity information, enabling rapid mapping of uncertain state
estimates onto a set of short-term motion predictions. By constructing and searching a motion
primitive graph, sequences of composable primitives are generated from the initial state estimate to
various vantage points. Diverse trajectory prediction sets are generated in the CR3BP for destina-
tions including 19 periodic orbit primitives, L1 and Lo gateway escapes, and lunar impacts. Future
work will extend this framework to spatial and continuous thrust primitives.
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