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With the incorporation of cislunar space into operational territory, agile spacecraft will play

a key role in successful cislunar operations by maneuvering and replanning trajectories in response

to hazardous situations. Heritage methods for this task in geocentric operations are insufficient

in chaotic regimes, such as cislunar space, due to the increased complexity and sensitivity of the

environment. Furthermore, humans-in-the-loop typically design, and redesign if necessary, collision-

free spacecraft paths for hazard avoidance and space domain regulation. Hence, the development

of new approaches to safe spacecraft trajectory design is critical to future robust and agile cislunar

operations while reducing the burden on humans-in-the-loop.

This research addresses these challenges by formulating collision-free trajectory design for

cislunar spacecraft operations as a path planning problem with dynamic obstacles. First, clustering

is used to generate geometrically-distinct obstacle corridors from trajectories emanating from local

initial state sets in the Circular Restricted Three-Body Problem (CR3BP). Then, traditional path

planning techniques from robotics are leveraged to create a hierarchical tree-based initial guess

construction framework for rapidly generating geometrically-distinct spacecraft trajectories in the

CR3BP. A feasible set of trajectories is recovered for each initial guess using a nested continuation

procedure with multiple-shooting for differential corrections. Finally, the spacecraft trajectories

are analyzed for collisions with dynamic obstacle corridors using a two-level, cell-based collision

checking process. These methods are demonstrated by constructing an array of geometrically-

distinct, collision-free transfers between periodic orbits in the Earth-Moon CR3BP. This research

enables the construction of digestible summaries of potential future spacecraft motions as well as

automatic and rapid generation of collision-free spacecraft trajectories.
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Chapter 1

Introduction

To support an expanded presence in cislunar space, agile spacecraft will need to maneuver

and replan their paths in response to potential hazards. However, rapidly designing a complex

trajectory between two boundary conditions in a chaotic multi-body gravitational environment

can be a challenging, computationally intensive problem. Typically, initial guesses for the path

and maneuvers are constructed and then corrected to potentially produce a continuous and fea-

sible trajectory. This process not only requires repetition to produce a set of options, but also

relies on a trajectory designer for both low-level analysis and high-level decision making. Further-

more, the need to avoid collisions with other moving objects increases the complexity of the design

problem. The research presented in this dissertation addresses the challenges of path design and

collision avoidance in chaotic dynamical systems through the development of a new approach to

rapid, collision-free spacecraft trajectory design via adaptations of techniques from data mining

and motion planning.

1.1 Motivation

In recent years, cislunar exploration has reignited with the promise of new and exciting op-

portunities for space operations. For example, NASA’s recent Artemis campaign aims to explore

the Moon for scientific discovery, technological advancement, and insight into living and working

on bodies other than Earth [80]. Four Artemis missions are currently scheduled to support this

endeavor. Artemis I launched in 2022 as an uncrewed flight test around the Moon [80]. Artemis
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II and III are forecasted to launch in 2026 and 2027, respectively, with Artemis IV ensuing. The

currently planned Artemis IV mission includes a lunar space station, known as Gateway, that will

support human missions to Mars. To reduce the risks associated with the Gateway mission, NASA

collaborated with Advanced Space, the Terran Orbital Corporation, Stellar Exploration Inc., and

Rocket Lab to develop, operate, build, and launch the Cislunar Autonomous Positioning System

Technology Operations and Navigation Experiment (CAPSTONE) spacecraft [81]. Launched in

2022, CAPSTONE verified the characteristics of a near rectilinear halo orbit and validated inno-

vative cislunar autonomous navigation software [81].

As cislunar space becomes increasingly populated, its safety and sustainability must be con-

sidered. This will not only protect the future of the cislunar environment, but also space assets as

they travel within or through the region to their destinations. Enabling safe travel in this regime

will rely on developing a new approach to rapid trajectory design in cislunar space.

1.2 Previous Work

1.2.1 Spacecraft Trajectory Design in Multi-Body Systems

Spacecraft motion in the restricted problem has been studied for many years. In celestial

mechanics, the connection of physical causes with observable reality began with Isaac Newton’s

theory of gravitation, which was published in 1687 [43]. Leonhard Euler built on Newton’s work

by using a rotating coordinate system to formulate the restricted problem in 1772 and recover its

collinear equilibrium points [43]. In the same year, Joseph-Louis Lagrange proved the existence

of the triangular equilibrium points and reduced the formulation of the problem from order 18 to

order 7 [43]. The Jacobi constant, named after Carl Gustav Jacob Jacobi, was discovered in 1836

and led to the introduction of zero velocity surfaces and allowable regions of motion in 1838 by

George Hill [43, 117]. Many researchers followed Hill, including Henri Poincaré who published a

memoir on the three-body problem in 1890 [43]. Poincaré’s work focused on the qualitative aspects

of celestial mechanics, leading to the development of dynamical systems and chaos theory [43].
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His first paper, published in 1884, further contributed to the field by providing periodic solutions

to the three-body problem [43]. Study of this dynamical system did not end with Poincaré, but

was followed with additional investigation by other researchers including George David Birkoff who

advanced the qualitative dynamical methods applied to the restricted problem [43].

More recent studies of the restricted problem provided further foundation for the expansion

of its solution space. For example, Victor Szebehely published a comprehensive book in 1967 on

the study of motion in the circular restricted three-body problem (CR3BP), including investiga-

tions of its numerical solutions such as periodic orbits [117]. These fundamental solutions govern

natural motion in the CR3BP and provide important insight into the existence of natural and

low-cost transfers between periodic orbits within a multi-body system. Computation and analysis

of periodic orbits for trajectory design in the restricted problem has been studied by a vast number

of researchers. A few examples include Howell’s [51] computation of libration point orbit families

in the Sun-Earth and Earth-Moon systems; Grebow’s [22] application of orbits for studying the

lunar south pole; Vaquero [110] and Gupta’s [60] studies of resonant orbits for trajectory design

and cislunar accessibility in complex environments; Folta et al.’s [18] creation of an orbital catalog;

Koh et al.’s [23] use of cell mapping to analyze orbits near Europa and Enceladus; Anderson et al.’s

[90] exploration of search methods for locating unstable resonant orbits; and Lara and Russell’s

[61] investigation of the influence of the mass ratio in the restricted problem on periodic orbits.

Natural and low-cost transfer design between three-body orbits has also been studied by

numerous researchers. For example, Lo and Ross studied the natural InterPlanetary Superhighway,

a network of passageways that provide low-energy transport throughout the Solar System [62, 63].

Additionally, Davis et al. [52] leveraged invariant manifolds to design optimal transfers between

unstable periodic orbits at different energy levels. Furthermore, Haapala and Howell [6] studied

and cataloged heteroclinic, homoclinic, and low-cost transfers between lunar libration point orbits

in the Earth-Moon CR3BP; Koon et al. [121] analyzed heteroclinic connections between periodic

orbits and resonance transitions; and Parker et al. [49] investigated the use of invariant manifolds

for designing low-energy trajectories and orbital chains. While this is not a comprehensive list of
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the innovative trajectory design techniques used to construct natural and low-cost transfers, these

techniques often involve a human-in-the-loop.

Typically, manual analysis is performed in a lower-fidelity model before transitioning to an

ephemeris model to support trajectory design in multi-body systems [70]. The CR3BP is commonly

used to approximate a spacecraft’s motion near two larger bodies. General arcs and fundamental

solutions in the CR3BP, such as periodic orbits and invariant manifolds, are manually examined

and assembled with maneuver profiles to construct an initial guess. These initial guesses are

transitioned into higher fidelity models and corrected [70]. Since a human-in-the-loop is typically

involved in this process, trajectory design becomes time-consuming and complex in some scenarios,

raising operational costs and complexity. The current state-of-the-art, combined with current and

future goals of cislunar space exploration, demonstrate the need for rapid and automatic design of

collision-free trajectories in multi-body systems that limit reliance on operators.

1.2.2 Motion Planning in Robotics

Motion planning, or path planning, techniques may be leveraged to generate collision-free

paths for an object traveling through a cluttered environment. This concept has widely been used in

the field of robotics, but has also been applied to a variety of other path planning problems including

interactive virtual environments and game design [64], camera movement [24], and uncrewed aerial

vehicles [96, 97]. A common collision-free path planning process consists of two steps: (1) creating

an environment map including current and predicted states of the vehicle and hazards; and (2)

searching the map for collision-free paths between initial and target locations [97].

1.2.3 Motion Planning Applied to Spacecraft Trajectory Design

Within the last few decades, the application of motion planning techniques for spacecraft

trajectory design has become increasingly prominent. Rapid spacecraft trajectory design, in par-

ticular, has been one area of interest within the astrodynamics community where these techniques

have been applied. For example, Bruchko and Bosanac used probabilistic roadmap and graph
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search techniques for rapid trajectory design in multi-body systems [53]. Smith and Bosanac [112]

as well as Miceli and Bosanac [32] employed motion primitives and graphs to summarize the so-

lution space and rapidly design geometrically-distinct trajectories. Das-Stuart et al. combined

graph search and reinforcement learning techniques to autonomously construct initial guesses from

natural arcs within regions accessible to the spacecraft [5]. Additionally, the A∗ search algorithm

was employed by Parrish to find near-optimal paths for continuous-thrust trajectory optimization

[77].

Recently, tree-based planners have been applied to spacecraft motion planning. For example,

Danielson and Kloeppel used a tree-based search algorithm combined with an invariant-set motion

planner for safe, rapid planning of spacecraft attitudes [12]. Tree based-planners have also been

used in safe, relative spacecraft motion planning by Starek et al. [40] and Deka and McMahon

[107]. Together, these works have demonstrated the value of tree-based planners in spacecraft

motion planning.

1.2.4 Clustering Applied to Spacecraft Trajectories

Clustering algorithms, which group similar data and separate dissimilar data from within a

dataset, have previously been used to group solutions for a variety of astrodynamics applications

[45]. Early examples include Hadjighasem et al. using spectral clustering for detecting Lagrangian

vortices within nonlinear dynamical systems [8]; Nakhjiri and Villac using k-means clustering for

locating bounded motions near a distant retrograde orbit on a Poincaré map [79]; and Foslien et

al. using data mining to identify anomalous conditions on the International Space Station’s gimbal

system [54]. More recently, Bosanac as well as Bonasera and Bosanac have developed a distributed

clustering framework to summarize the geometries of a wide array of trajectories in a multi-body

system [71, 73, 99]. Smith and Bosanac also used clustering to summarize arcs along families of

periodic orbits and hyperbolic invariant manifolds that supply building blocks for trajectory design

in a multi-body system [111]. Finally, Miceli et al. used clustering to extract low lunar frozen

orbits from trajectories generated in a high-fidelity lunar gravity model [34]. These examples have
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demonstrated the value of clustering for automatically extracting information from datasets in

astrodynamics.

1.3 Dissertation Overview

To address the challenges of spacecraft trajectory design and collision avoidance in chaotic

dynamical systems, the goal of this research is to develop a novel approach for rapidly and automat-

ically constructing collision-free spacecraft trajectories within a multi-body system by combining

trajectory design techniques from astrodynamics with path planning and data mining methods.

To support this proof of concept, the potential paths of a hazardous object are generated from a

local initial state set and summarized. The resulting motion types serve as dynamic obstacles for

collision avoidance. Then, a hierarchical tree-based planning method is used to construct initial

guesses for spacecraft trajectories between two boundary conditions. Finally, the initial guesses

are corrected and analyzed for potential collisions to recover collision-free, continuous spacecraft

trajectories in the Earth-Moon CR3BP.

1.3.1 Organization

This dissertation is divided into the following chapters:

• Chapter 2: The dynamical model for the circular restricted three-body problem is described

with its equations of motion derived. Fundamental concepts are also included in this

chapter, including a description and derivation of the Jacobi constant, explanation of the

Lagrange points, and definition of zero velocity surfaces. A brief discussion of periodic

orbits closes the chapter.

• Chapter 3: The numerical methods used to compute periodic orbits as well as correct

initial guesses are discussed in this chapter. These methods include multiple-shooting for

corrections and natural parameter continuation.

• Chapter 4: This chapter presents a high-level overview of clustering as well as a description
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of Hierarchical Density-Based Spatial Clustering of Applications with Noise, which is used

in this dissertation.

• Chapter 5: Existing collision-free path planning techniques are described in this chapter.

This includes a discussion of tree-based path planners, graph-search techniques, environ-

ment maps, and collision checking techniques found in robotics motion planning.

• Chapter 6: This chapter focuses on the technical approach used to generate and summarize

spacecraft trajectories generated from a local initial state set. The steps of the clustering

approach are detailed in this chapter and demonstrated for a local initial state set along a

planar L1 Lyapunov orbit in the Earth-Moon CR3BP. The resulting summary supplies a

description of possible future motions of a potentially hazardous object via a set of dynamic

obstacle corridors.

• Chapter 7: The hierarchical tree-based approach to rapid initial guess construction for

spacecraft trajectories is discussed in this chapter. Then, initial guesses are corrected to

recover continuous spacecraft trajectories. This process is demonstrated by designing a

planar spacecraft trajectory connecting boundary conditions along L1 and L2 Lyapunov

orbits in the Earth-Moon CR3BP.

• Chapter 8: The two-level, cell-based collision checking process is discussed in this chapter.

This approach is demonstrated by analyzing the planar spacecraft trajectories generated

in Chapter 7 for collisions with dynamic obstacle corridors of other observed spacecraft.

• Chapter 9: The tree-based initial guess construction process enables rapid generation of

spacecraft trajectories in multi-body systems. This process is demonstrated for planar and

spatial transfers at a single energy level, as well as planar transfers spanning multiple energy

levels. To demonstrate the utility of the initial guesses, a subset are selected to recover

continuous, collision-free paths.

• Chapter 10: The work completed in this dissertation is summarized in this chapter. Fur-
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thermore, recommendations are presented for future investigations and applications of this

new, tree-based framework for constructing collision-free spacecraft trajectories in a multi-

body gravitational system.

1.3.2 Contributions

This research focuses on developing a proof of concept for collision-free spacecraft trajectory

design in multi-body systems using tree-based path planning methods. The contributions of this

research include:

(1) An automated method for summarizing predictions of object motion, as a function of

geometry and time, resulting from local initial state sets along periodic orbits.

(2) A hierarchical tree-based approach for automatic and rapid design of an array of geometrically-

diverse initial guesses for spacecraft trajectories.

(3) A two-level, cell-based approach to collision detection for identifying collision-free spacecraft

trajectories in a multi-body system.

These contributions support collision-free spacecraft trajectory design in chaotic dynamical systems

and may eventually enable the development of a safe and sustainable cislunar environment.

The automated method for summarizing object motion offers an original contribution to char-

acterizing trajectories that emanate from a local region of phase space but exhibit diverse paths

through a chaotic system. This challenge has been encountered in propagating uncertainty along

spacecraft trajectories. Many uncertainty propagation analyses focus on trajectories that closely

resemble a single nominal path. However, recent approaches have addressed calculating probabil-

ity distributions that describe non-Gaussian variations around a reference path or approximating

distinct modes governing the evolution of a diverse set of trajectories using Gaussian mixture mod-

els [118], radial basis functions [85], and the probabilistic admissible region [58]. In contrast, the

method presented in this dissertation focuses on using clustering to group a diverse set of paths

that emanate from a local region of phase space by their geometry. This approach can discover
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geometrically distinct groups without assuming a function approximation form or incorporating

trajectory characteristics while, at the same time, avoiding the propagation of additional param-

eters along the trajectories. Furthermore, unlike previous applications of clustering to spacecraft

trajectories [34, 73, 99], the local proximity of the initial conditions of trajectories generated in

this dissertation reduces both the geometric diversity across the dataset and separation between

geometrically different trajectories. These characteristics present an interesting new application for

using clustering to discover distinct motion types. In contrast to these works, this dissertation also

uses a slightly different trajectory summarization and description approach as well as an additional

resampling step. Supplying a digestible summary of object motion types may be useful for manual

analysis or decision making, autonomous path planning, analyzing the impact of state uncertainty

on spacecraft motion, and collision detection.

The second major contribution of this dissertation is a proof of concept for a novel tree-

based approach to automatic initial guess construction for spacecraft trajectories in a complex,

multi-body gravitational system. A challenge in automatic spacecraft trajectory design is defining

a single objective function that promotes recovery of a wide array of geometrically-distinct paths.

For instance, encoding an objective function may include reducing the distance traversed between

the boundary conditions, specifying the number of revolutions about a primary body, and limit-

ing discontinuity in velocity space while satisfying the dynamics of a specified dynamical model.

In the field of robotics, sampling-based planning algorithms, such as probabilistic roadmaps and

rapidly-exploring random trees (RRTs), have been adapted to solve motion queries in kinodynamic

environments where kinematic and dynamic constraints must be considered [28, 89, 103]. Addition-

ally, Bruchko and Bosanac [53] successfully applied sampling-based kinodynamic planning to initial

guess construction of spacecraft trajectories via probabilistic roadmaps. This dissertation explores

the use of another probabilistic planner, rapidly-exploring random trees, to efficiently extract a

wide array of geometrically-distinct initial guesses without requiring solutions to boundary value

problems. Rather, RRTs step forward or backward in time with randomized samples to rapidly

explore a high-dimensional solution space. Furthermore, a forest of trees is leveraged in this work
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for a hierarchical approach to automatic initial guess construction that overcomes the challenge

of encoding an objective function, which is encountered when using only one or two goal-biased

RRTs. Rapidly and autonomously constructing initial guesses for spacecraft trajectories with dis-

tinct itineraries may eventually be useful for reducing the burden on an operator or supporting

onboard redesign of spacecraft trajectories.

The final contribution of this dissertation is a two-level approach to collision detection for

identifying collision-free spacecraft trajectories in a multi-body system. This two-level approach

reduces the computation time of collision checking while retaining sufficient accuracy to identify

collisions without requiring parameterization of the dynamic obstacle corridors. Furthermore, the

collision checking process supports rapid assessment of the generated trajectory options for collisions

with other observed spacecraft. This collision-checking method is useful for understanding the

effects of transfer departure times, potential future spacecraft motions, and transfer geometries on

available spacecraft paths.



Chapter 2

Dynamical Model

The circular restricted three-body problem supplies an approximate dynamical model of a

multi-body system. The CR3BP governs the motion of a body (P3) of negligible mass under

the gravitational influence of two massive bodies, also referred to as primaries [120]. The larger

primary body is denoted as P1 while the smaller primary body is denoted as P2; both primaries

are modeled as point masses with constant mass. Because the third body is assumed to possess

a negligible mass compared to the masses of P1 and P2, it does not influence the orbits of the

two primaries; therefore, the primaries are assumed to travel on conics about their barycenter

[117]. One additional assumption is introduced to remove time-dependency: the two primaries are

assumed to follow circular orbits. As a consequence of these assumptions, this dynamical model is a

simplification of the more general three-body problem. Nonetheless, it is a useful tool that provides

insight into the motion of a third body in a multi-body gravitational environment. This chapter

was originally published in Spear’s masters thesis [91]. Furthermore, the derivations presented in

Sections 2.1 and 2.3 follow the derivations presented by Bosanac [72].

2.1 Equations of Motion

One approach to deriving the equations of motion begins with the definition and analysis of

the potential function for the third body. First, each body Pi is located in an inertial coordinate

frame, with axes X̂Ŷ Ẑ, and an inertially-fixed origin, O. Note that ( ˜ ) denotes a dimensional

quantity. In this frame, the state vectors of the three bodies are written as
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˜̄X1 =
[
X̃1, Ỹ1, Z̃1, X̃

′
1, Ỹ

′
1 , Z̃

′
1

]
(2.1)

˜̄X2 =
[
X̃2, Ỹ2, Z̃2, X̃

′
2, Ỹ

′
2 , Z̃

′
2

]
(2.2)

˜̄X3 =
[
X̃, Ỹ , Z̃, X̃

′
, Ỹ

′
, Z̃

′
]

(2.3)

noting that ()′ indicates a time derivative with respect to an observer in the inertial frame. Using

these definitions, the scalar potential of the third body due to the gravity of the other two point

masses within this system is written as

Ũ3 =
G̃M̃1

R̃13

+
G̃M̃2

R̃23

(2.4)

where G̃ is the dimensional, universal gravitational constant, R̃13 is the distance between the third

body and larger primary, and R̃23 is the distance between the third body and smaller primary [117].

These distances are conceptually depicted in Figure 2.1 and equal to

R̃13 =

√(
X̃ − X̃1

)2
+
(
Ỹ − Ỹ1

)2
+
(
Z̃ − Z̃1

)2
(2.5)

R̃23 =

√(
X̃ − X̃2

)2
+
(
Ỹ − Ỹ2

)2
+
(
Z̃ − Z̃2

)2
(2.6)

Given the scalar potential function for the third body in Equation 2.4, the equations of motion

are derived relative to an inertial observer by using the vector derivative of this scalar potential

Figure 2.1: Conceptual depiction of the inertial frame X̂Ŷ Ẑ.
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function. Its partial derivatives are used to calculate the acceleration components of the potential

function acting on the body via

F̄i = ∇̄iŨi =
˜̄R′′
i (2.7)

where the ∇ operator indicates, generally, the following for a three-dimensional vector:

∇̄3() =
∂

∂X3
()X̂ +

∂

∂Y3
()Ŷ +

∂

∂Z3
()Ẑ (2.8)

The vector derivative of the scalar potential function is then written as

∇̄Ũ3 =
˜̄R

′′
3 = X̃

′′
X̂ + Ỹ

′′
Ŷ + Z̃

′′
Ẑ =

∂Ũ3

∂X̃
X̂ +

∂Ũ3

∂Ỹ
Ŷ +

∂Ũ3

∂Z̃
Ẑ (2.9)

As an example, the partial derivative of the scalar potential with respect to the dimensional X-

coordinate is expanded to equal

∂Ũ3

∂X̃
=

∂

∂X̃

(
G̃M̃1

R̃13

+
G̃M̃2

R̃23

)
= −

G̃M̃1

(
X̃ − X̃1

)
R̃3

13

−
G̃M̃2

(
X̃ − X̃2

)
R̃3

23

(2.10)

Similarly, the remaining partial derivatives are written as

∂Ũ3

∂Ỹ
= −

G̃M̃1

(
Ỹ − Ỹ1

)
R̃3

13

−
G̃M̃2

(
Ỹ − Ỹ2

)
R̃3

23

(2.11)

∂Ũ3

∂Z̃
= −

G̃M̃1

(
Z̃ − Z̃1

)
R̃3

13

−
G̃M̃2

(
Z̃ − Z̃2

)
R̃3

23

(2.12)

When Equations 2.10 - 2.12 are substituted into Equation 2.7, the dimensional equations of motion

in an inertial frame for the third body are equal to

X̃ ′′ = −
G̃M̃1

(
X̃ − X̃1

)
R̃3

13

−
G̃M̃2

(
X̃ − X̃2

)
R̃3

23

(2.13)

Ỹ ′′ = −
G̃M̃1

(
Ỹ − Ỹ1

)
R̃3

13

−
G̃M̃2

(
Ỹ − Ỹ2

)
R̃3

23

(2.14)

Z̃ ′′ = −
G̃M̃1

(
Z̃ − Z̃1

)
R̃3

13

−
G̃M̃2

(
Z̃ − Z̃2

)
R̃3

23

(2.15)

These three second-order, scalar differential equations for a general three body problem may be

converted into six first-order, scalar differential equations and used for numerical integration. How-

ever, the positions of the primaries are required for every time step within integration. If similar
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equations of motions are written for both primary bodies, there are 18 scalar, first-order differen-

tial equations (six for each of the three bodies). Because there are only 10 constants of motion for

a three body system, this problem does not admit an analytical solution [35]. Furthermore, the

dynamics are time dependent. Therefore, the assumptions introduced earlier in this chapter are

used to simplify the model.

A normalization scheme is commonly used to nondimensionalize length, time, and mass quan-

tities within the CR3BP. Dimensional and nondimensional quantities are related by characteristic

quantities associated with length, mass, and time. Normalization is used because these parameters

may have distinct orders of magnitude. Furthermore, normalization supports comparison between

systems of similar relative masses. To normalize length quantities, the characteristic quantity l∗ is

defined using the assumed constant distance between the two primaries. Mathematically,

l∗ = D̃1 + D̃2 (2.16)

where D̃i is the dimensional distance of body Pi from the origin O, assumed to be located at the

barycenter of the primary system. The characteristic quantity for mass, m∗, is used to normalize

mass and is set equal to the combined mass of the system’s primaries as

m∗ = M̃1 + M̃2 (2.17)

where M̃i is the dimensional mass of body Pi. This characteristic quantity is also used to define

the mass ratio of the system, µ, as

µ =M2 =
M̃2

m∗ (2.18)

where M2 is the nondimensional mass of the smaller primary. In the Earth-Moon system, µ ≈

1.215058×10−2. The nondimensional mass of the first primary is also written in terms of the mass

ratio or mass characteristic quantity as

M1 = 1− µ =
M̃1

m∗ (2.19)

where M1 is the nondimensional mass of the first primary. Finally, the characteristic time quantity
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is set equal to

t∗ =

√
(l∗)3

G̃m∗
(2.20)

The gravitational constant, G̃, may also be converted to the following nondimensional parameter

using the three characteristic quantities defined in Equations 2.16, 2.17, and 2.20:

G∗ =
G̃m∗ (t∗)2

(l∗)3
= 1 (2.21)

In the Earth-Moon CR3BP, l∗ = 384,400 km, m∗ = 6.047683 × 1024 kg, and t∗ = 375,126.4166

seconds [16, 117].

These characteristic quantities are used to write nondimensional equations of motion for the

CR3BP in the inertial frame. As an example, the position components and distances between

primaries are nondimensionalized as

X =
X̃

l∗
Y =

Ỹ

l∗
Z =

Z̃

l∗
(2.22)

R13 =
R̃13

l∗
R23 =

R̃23

l∗
(2.23)

The nondimensionalized distances between the third body and each of the primaries are then

described mathematically via the following expressions:

R13 =

√
(X −X1)

2 + (Y − Y1)
2 + (Z − Z1)

2 (2.24)

R23 =

√
(X −X2)

2 + (Y − Y2)
2 + (Z − Z2)

2 (2.25)

where the nondimensionalized state vectors are defined as

X̄1 = [X1, Y1, Z1, X
′
1, Y

′
1 , Z

′
1] (2.26)

X̄2 = [X2, Y2, Z2, X
′
2, Y

′
2 , Z

′
2] (2.27)

X̄3 = [X,Y, Z,X ′, Y ′, Z ′] (2.28)

With these definitions, the nondimensional equations of motion can be derived.
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As an example of deriving the nondimensional equations of motion, the X-component of ac-

celeration is derived starting from Equation 2.13. First, the aforementioned characteristic quantities

are substituted into Equation 2.13 such that

l∗

(t∗)2
X ′′ = −G̃ (1− µ)m∗l∗ (X −X1)

(l∗)3R3
13

− G̃µm∗l∗ (X −X2)

(l∗)3R3
23

(2.29)

and simplifies to

X ′′ =
G̃ (t∗)2m∗

(l∗)3

[
−(1− µ) (X −X1)

R3
13

− µ (X −X2)

R3
23

]
(2.30)

Rearranging and substituting the nondimensional gravitational constant, G∗, in Equation 2.21 for

the dimensional gravitational constant, G̃, gives

X ′′ =

(l∗)3

m∗(t∗)2
(t∗)2m∗

(l∗)3

[
−(1− µ) (X −X1)

R3
13

− µ (X −X2)

R3
23

]
(2.31)

This expression may be further simplified to its final nondimensional form, provided in Equation

2.32. Substituting the nondimensional state components into the second-order, scalar differential

equations that govern the motion of the CR3BP in the inertial frame allows for the expression of

all three equations of motion in nondimensional form as

X ′′ = −(1− µ) (X −X1)

R3
13

− µ (X −X2)

R3
23

(2.32)

Y ′′ = −(1− µ) (Y − Y1)

R3
13

− µ (Y − Y2)

R3
23

(2.33)

Z ′′ = −(1− µ) (Z − Z1)

R3
13

− µ (Z − Z2)

R3
23

(2.34)

However, these equations are still time-dependent with respect to the locations of the primaries.

The assumption that the primaries travel on circular orbits about their mutual barycenter is

used to eliminate the time-dependency of the equations of motion. To incorporate this assumption,

the X- and Y -components of their positions are equal to

X1 = −µ cos(t) Y1 = −µ sin(t) (2.35)

X2 = (1− µ) cos(t) Y2 = (1− µ) sin(t) (2.36)
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where t is time. Since the primaries lie in the xy-plane and rotate at a constant rate of one in

the normalized system, the Z-coordinates have a one-to-one mapping: Z = z [69]. Substituting

these coordinates for the primaries written in the inertial frame and relative to the barycenter, the

equations of motion become

X ′′ = −(1− µ) (X + µ cos(t))

R3
13

− µ (X − (1− µ) cos(t))

R3
23

(2.37)

Y ′′ = −(1− µ) (Y + µ sin(t))

R3
13

− µ (Y − (1− µ) sin(t))

R3
23

(2.38)

Z ′′ = −(1− µ) (Z)

R3
13

− µ (Z)

R3
23

(2.39)

While the location of the primaries, P1 and P2, are no longer required for all time, time dependency

complicates the analysis of the solution space [117].

To eliminate a dependency on time, the equations of motion are formulated in a frame that

rotates with the primaries. Figure 2.2 conceptually displays the configuration of the CR3BP in the

rotating frame. In this frame, P1 and P2 are always fixed along the x̂ axis, the ẑ axis is aligned

with the orbital angular momentum vector of the primary system, and ŷ lies in the orbital plane of

the two primaries, completing the right-handed triad [117]. Here, B denotes the barycenter while

x̂ŷẑ denotes the axes of the rotating frame. The angle between the vector from the barycenter to

P2 and X̂ axis is defined by η.

Figure 2.2: Conceptual depiction of the rotating frame x̂ŷẑ relative to the inertial frame X̂Ŷ Ẑ.
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Given this definition of the rotating frame, a direction cosine matrix is formulated for trans-

formations from the inertial to rotating frames. The relationship between the position coordinates

in these two frames is expressed in matrix form as
x

y

z

 =


cos (η) sin (η) 0

− sin (η) cos (η) 0

0 0 1




X

Y

Z

 (2.40)

The angle, η, between the vector from the barycenter to P2 and X̂-axis may be expressed in terms

of time since η = nt. However, the mean motion, n, is unity and η = t. This transformation is

used to rewrite the equations of motion in the rotating frame in combination with the relationship

and locations of the primaries in the rotating frame. The state vector of P3 with respect to the

barycenter is written as

x̄ = [x, y, z, ẋ, ẏ, ż]T (2.41)

Applying the rotation in Equation 2.40 with η = t, P1 is located at (−µ, 0, 0) while P2 is located at

(1− µ, 0, 0) in the rotating frame. Therefore, the position vectors of the third body with respect

to the primaries are expressed mathematically as

r̄1 = (x+ µ) x̂+ yŷ + zẑ (2.42)

r̄2 = (x− 1 + µ) x̂+ yŷ + zẑ (2.43)

With this information, Equations 2.32 - 2.34 can be transformed into the rotating frame.

To rewrite the equations of motion in the rotating frame, the acceleration of the third body

must be rewritten in the inertial frame using an observer that is also located in that frame. To

begin this derivation, note that the acceleration may be written as

r̄′′ = I dv̄

dt
= I d

dt

(
dr̄

dt

)
(2.44)

where ( )′′ indicates an observer fixed in the inertial frame. First,

I dr̄

dt
= R dr̄

dt
+ I ω̄R × r̄ = ˙̄r + (ẑ)× (xx̂+ yŷ + zẑ) (2.45)
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where (̇) is a derivative with respect to an observer in the rotating frame and ω̄ is the angular

velocity vector. This expression simplifies using transport theorem [38] to

I dr̄

dt
= (ẋ− y) x̂+ (ẏ + x) ŷ + żẑ (2.46)

Taking the derivative of this expression gives

I d

dt

(
dr̄

dt

)
= (ẋ− y) x̂+ (ẏ + x) ŷ + żẑ + ẑ × [(ẋ− y) x̂+ (ẏ + x) ŷ + żẑ] (2.47)

which results in

r̄′′ = I d

dt

(
dr̄

dt

)
= (ẍ− 2ẏ − x) x̂+ (ÿ + 2ẋ− y) ŷ + z̈ẑ (2.48)

This expression represents the acceleration of the third body in the rotating frame.

The acceleration of the third body with respect to an observer in the rotating frame and an

expression for the locations of the bodies are used to formulate the nondimensional equations of

motion in the rotating frame. These equations of motion are equal to

ẍ = 2ẏ + x− (1− µ) (x+ µ)

r31
− µ (x− 1 + µ)

r32
(2.49)

ÿ = −2ẋ+ y − (1− µ) y

r31
− µy

r32
(2.50)

z̈ = −(1− µ) z

r31
− µz

r32
(2.51)

where the nondimensional distances of the third body, P3, with respect to each of the primaries,

P1 and P2, are equal to

r1 =

√
(x+ µ)2 + y2 + z2 (2.52)

r2 =

√
(x− 1 + µ)2 + y2 + z2 (2.53)

Solutions to the CR3BP may be generated via numerical integration given an initial state and after

these three second-order differential equations have been converted into six first-order differential

equations.
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2.2 Jacobi Constant

An integral of motion, known as the Jacobi constant, exists with this formulation of the

CR3BP in the rotating frame. This constant is inversely related to a spacecraft’s energy: a decrease

in the Jacobi constant indicates there is an increase in energy [35, 120]. As a result, this integral

is often used to determine regions of motion for the third body [16]. One approach to calculating

this quantity leverages the pseudo-potential function [117], which is defined as

U∗ =
1

2

(
x2 + y2

)
+

1− µ

r1
+
µ

r2
(2.54)

where the first term is an additional term as a result of the pseudo-potential written in the ro-

tating frame (compared to the inertial definition in Equation 2.4); the second term represents

the gravitational interaction between the third body and larger primary, P1; and the third term

represents the gravitational interaction between the third body and smaller primary, P2. This

pseudo-potential function is selected to ensure that the equations of motion may be written using

the partial derivatives of the pseudo-potential function. Mathematically,

ẍ = 2ẏ +
∂U∗

∂x
ÿ = −2ẋ+

∂U∗

∂y
z̈ =

∂U∗

∂z
(2.55)

This relationship, along with the acceleration and velocity vectors in the rotating frame, is used to

derive the integral of motion that will define the Jacobi constant. Taking the dot product of the

acceleration and velocity vectors and substituting the equations of motion produces the following

expression:

ẍẋ+ ÿẏ + z̈ż =

(
2ẏ +

∂U∗

∂x

)
ẋ+

(
−2ẋ+

∂U∗

∂y

)
ẏ +

(
∂U∗

∂z

)
ż =

∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.56)

In the CR3BP, the pseudo-potential function does not explicitly depend on time; therefore, its

partial derivative with respect to time is zero. Then, the total time derivative of the pseudo-

potential function is written as

dU∗

dt
=
∂U∗

∂x

dx

dt
+
∂U∗

∂y

dy

dt
+
∂U∗

∂z

dz

dt
(2.57)
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where t is time. Substituting this expression into Equation 2.56 produces the following:

dU∗

dt
= ẍẋ+ ÿẏ + z̈ż =

1

2

d

dt

(
ẋ2 + ẏ2 + ż2

)
(2.58)

Recall that ẋ2 + ẏ2 + ż2 = v2 where v is the velocity magnitude. Taking the integral of this

expression is mathematically written as∫
1

2

d

dt

(
v2
)
dt =

∫
dU∗

dt
dt (2.59)

which produces the following expression:

v2 = 2U∗ + CJ (2.60)

where CJ is the Jacobi constant. Rearranging this expression, the Jacobi constant is defined as

CJ = 2U∗ − v2 =
(
x2 + y2

)
+

2 (1− µ)

r1
+

2µ

r2
− ẋ2 − ẏ2 − ż2 (2.61)

This quantity remains constant along any natural solution in the CR3BP and may be used to

identify regions of motion within a system at a given energy level [116].

2.3 Equilibrium Points

Equilibrium points, also referred to as Lagrange or libration points, are stationary solutions to

the CR3BP in the rotating frame. At these points, both velocity and acceleration are zero; therefore,

the third body could be placed at one of these points and remain at that location indefinitely when

its motion is modeled with the dynamics of the CR3BP [35]. There are five equilibrium points in

this dynamical model which lie in the plane of the primaries: L1, L2, L3, L4, and L5.

The locations of the equilibrium points are determined by examining their relationship with

the equations of motion. Since velocity and acceleration are equal to zero, the following is true:

∂U∗

∂x
= x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
= 0 (2.62)

∂U∗

∂y
= y − (1− µ)y

r31
− µy

r32
= 0 (2.63)
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∂U∗

∂z
=

−(1− µ)z

r31
− µz

r32
= 0 (2.64)

With all equilibrium points in the plane of the primaries, z = 0 which satisfies Equation 2.64.

Equation 2.63 has two possible solutions.

First, the collinear equilibrium points correspond to locations where y = 0. Then, Equation

2.62 has three conditions under which it can be satisfied:

(x+ µ) > 0 (x− 1 + µ) > 0 (2.65)

(x+ µ) < 0 (x− 1 + µ) < 0 (2.66)

(x+ µ) > 0 (x− 1 + µ) < 0 (2.67)

Numerical root finding, such as with Newton’s method, can be used with an initial guess to locate

the x-coordinate of the collinear equilibrium points, which lie at y = 0. Three regions are defined

to select these initial guesses:

(1) To the left of P1: x < −µ

(2) Between P1 and P2: −µ < x < 1− µ

(3) To the right of P2: x > 1− µ

As depicted in Figure 2.3, the location of L3 lies in region (1), L2 in region (3), and L1 in region

(2).

The second possible solution to Equation 2.63 is when y ̸= 0, which gives the locations of

the triangular equilibrium points. These solutions lie at the vertices of two equilateral triangles

formed with the two primaries, P1 and P2. Three significant locations that aid in the recovery of

the locations of these equilibrium points are the following:

(i) r1 = 1, r2 = 0 when (x, y, z) = (1− µ, 0, 0)

(ii) r1 = 0, r2 = 1 when (x, y, z) = (−µ, 0, 0)

(iii) r1 = µ, r2 = 1− µ when (x, y, z) = (0, 0, 0)
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Figure 2.3: Equilibrium point locations in the Earth-Moon CR3BP with respect to the two pri-
maries: Earth (E) and Moon (M).

Furthermore, the distance of P3 from the origin can be written as a function of r1 and r2 as

l2 = ar21 + br22 + q (2.68)

Solving for a, b, and q in Equation 2.68 allows the pseudo-potential function to be rewritten in terms

of r1 and r2 and used recover the locations of the triangular equilibrium points. Using locations (i)

and (ii) along with Equation 2.68, q may be expressed via the following two equations:

q = µ2 − b q = (1− µ2)− a (2.69)

These equations are combined to provide an expression for a, written as

a = 1− 2µ+ b (2.70)

Then, these expressions, location (iii), and Equation 2.68 are leveraged to find b = µ. Substituting

the expressions for a, b, and q into Equation 2.68 gives the following:

x2 + y2 = (1− µ)r21 + µr22 + µ(µ− 1) (2.71)

The pseudo-potential function from Equation 2.54 may then be rewritten as

U∗ =
1

2
((1− µ)r21 + µr22 + µ(µ− 1)) +

1− µ

r1
− µ

r2
(2.72)
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Recall that the problem of locating equilibrium points in U∗ can be posed as

∂U∗

∂x
=
∂U∗

∂y
= 0 (2.73)

which is equivalent to

∂U∗

∂r1
=
∂U∗

∂r2
= 0 (2.74)

The partials of Equation 2.72 with respect to r1 and r2 are satisfied when r1 = r2 = 1. Given these

values for the distances of the third body with respect to each of these primaries, Equation 2.52 -

2.53 are solved to find the x− and y−coordinates of the triangular equilibrium points: xL4,5 = 1
2−µ,

yL4,5 = ±
√
3
2 . The locations of the five equilibrium points in the Earth-Moon CR3BP are provided

in Table 2.1. The set of equilibrium points is one of four fundamental solutions to the CR3BP.

Analyzing motion near them can lead to the recovery of other solutions [117].

2.4 Zero Velocity Surfaces

Zero velocity surfaces (ZVS) separate regions of allowable and forbidden motion for the third

body at a specific value of the Jacobi constant. A ZVS is composed of infinite states that possess

a zero velocity. These surfaces are calculated by solving Equation 2.75 given a specific value of the

Jacobi constant with zero velocity. Mathematically, this is expressed as

CJ =
(
x2 + y2

)
+

2 (1− µ)

r1
+

2µ

r2
(2.75)

where the components of the state vectors (x, y, z, 0, 0, 0) are solutions to this expression that define

the three-dimensional surface.

Table 2.1: Locations of equilibrium points in the Earth-Moon CR3BP with µ ≈ 1.215058×10−2.

Equilibrium Point Location: [x, y, z]

L1 [0.836915132366261, 0, 0]

L2 [1.15568216029081, 0, 0]

L3 [-1.00506264525194, 0, 0]

L4 [0.487849415730458, 0.866025403784439, 0]

L5 [0.487849415730458, -0.866025403784439, 0]
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When the three-dimensional surface intersects with the plane of the primaries, the intersection

forms a two-dimensional curve known as a zero velocity curve (ZVC). These curves, also known as

Hill Curves, were first introduced by George Hill and provide insight into the allowable motion of

a third body between regions around the two primaries in the CR3BP [117]. In Figure 2.4, four

sets of ZVCs are generated in the Earth-Moon CR3BP to demonstrate flow between regions at

different energy levels. The black lines denote the ZVCs while the dark-gray and white sections

show regions of forbidden and allowable motion, respectively. The value of CJ in Figure 2.4a) is

greater than the Jacobi constant of L1, meaning motion can only remain in the vicinity of one of

the primaries; a third body cannot travel between regions. The value of CJ is decreased to below

the Jacobi constant at L1 and above the Jacobi constant at L2 in Figure 2.4b), permitting travel

around the Moon, through the L1 gateway, and in the vicinity of the Earth. In Figure 2.4c), the

value of CJ is below that of L2 to allow motion through the L2 gateway to the exterior region of the

system. Finally, an example of a ZVC at a Jacobi constant that permits third body travel around

the Moon, Earth, and through the L1, L2, and L3 gateways is displayed in Figure 2.4d).

2.5 Periodic Orbits

Periodic orbits are a fundamental solution to the CR3BP that are periodic after a specific

time interval in the rotating frame. There are an infinite number of these trajectories existing

in continuous families throughout the CR3BP at a specific value of µ [109]. A periodic orbit is

defined by its orbital period and a non-unique fixed state, x̄PO; across these continuous families the

initial conditions and orbit periods vary. Well-known periodic orbit families in the CR3BP include

libration point and primary-centered orbits [21, 66].
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Figure 2.4: Zero velocity curves for Jacobi constants equal to a) 3.31, b) 3.18, c) 3.13, and d) 3.01
in the Earth-Moon CR3BP.



Chapter 3

Correcting Trajectories

Numerical methods are essential to generating solutions in the CR3BP. Corrections schemes

may be used to correct initial guesses to recover continuous paths. Then, continuation methods can

be applied to these solutions to recover additional members of a set of trajectories. This chapter

provides an overview of the numerical methods used to generate periodic orbits, correct initial

guesses for maneuver-enabled paths connecting boundary conditions located along periodic orbits

in the Earth-Moon CR3BP, and recover a feasible set of trajectories with desired characteristics.

The information presented in Section 3.1.1 was originally published in Spear’s master’s thesis [91].

3.1 Corrections via Multiple-Shooting

A differential corrections method known as multiple-shooting is used to recover continuous

trajectories such as periodic orbits and transfers. Multiple-shooting schemes discretize a trajectory

into multiple segments, or arcs, then adjust each segment until the path is continuous to within

a user-defined tolerance and satisfies any additional constraints [19]. These schemes are typically

formulated using free-variable and constraint vectors that are iteratively adjusted to achieve con-

tinuity. In this work, the free-variable vector contains descriptions of each arc via its initial state

and the corresponding integration time. The initial state along each arc is numerically integrated

in the CR3BP using a Runge-Kutta 8th/9th order method in C++ via the GNU Scientific Library

[1] with relative and absolute tolerances of 10−13 and 10−14, respectively. The constraint vector is

constructed according to the desired application. In each iteration, the error in the constraints is
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calculated and driven to zero simultaneously to within a user-defined tolerance by adjusting the

free variables.

Figure 3.1 provides an example of using four discontinuous arcs to recover a periodic orbit.

The initial and final states of each arc are denoted with white and black circles, respectively. These

arcs are then corrected to recover a nearby solution, i.e. the periodic orbit plotted in blue. Generally,

the free-variable vector is comprised of parameters that may be updated to meet the constraints of

the problem [120]. For the maneuver-enabled paths constructed in this dissertation, the constraint

vector enforces position continuity between neighboring arcs while full state continuity is enforced

for periodic orbit corrections. The free-variable and constraint vector formulations differ for each

of these scenarios and are discussed in detail in the following subsections.

3.1.1 Periodic Orbits

A periodic orbit is computed in this dissertation using multiple-shooting. This multiple-

shooting formulation is the same as that described by Bosanac [70] for recovering continuous peri-

odic orbits and assumes that the arcs possess equivalent integration times. The free-variable vector,

Figure 3.1: Conceptualization of the multiple-shooting corrections method using four arcs to dis-
cretize a periodic orbit.
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V̄ , is a (6narc + 1) × 1 dimensional vector constructed as follows:

V̄ =



x̄1,0

x̄2,0

x̄3,0

...

x̄narc,0

∆t


(3.1)

where x̄i,0 is the initial state of arc i and ∆t is the common integration time along each of the

narc arcs. The constraint vector, F̄ (V̄ ), provided in Equation 3.2 then reflects state continuity

constraints between neighboring arcs. The final constraint, which is between the end of arc narc

and the start of arc 1, only provides continuity in five of the six state elements as the full state

constraint is not required for periodicity when the remainder of the trajectory is continuous [70].

This (6narc × 1) constraint vector is written as

F̄
(
V̄
)
=



x̄1,f − x̄2,0

x̄2,f − x̄3,0

...

x̄n−1,f − x̄narc,0

xnarc,f − x1,0

ynarc,f − y1,0

znarc,f − z1,0

ẋnarc,f − ẋ1,0

żnarc,f − ż1,0

y1,0



(3.2)

where x̄i,f is the state vector at the end of arc i. The final row in the constraint vector constrains

the y-position component of the state vector at the beginning of the first arc to lie at y = 0. This

constraint vector may also be augmented with a Jacobi constant constraint to calculate an orbit of
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a similar Jacobi constant given a nearby orbit. This constraint may take the form of the absolute

value of the difference between a desired Jacobi constant and an orbit’s current Jacobi constant.

The Jacobian matrix is used to update the free-variable vector at every iteration of the

corrections method. The derivative of the constraint vector in Equation 3.2 with respect to the

free-variable vector in Equation 3.1 is used to determine the Jacobian, DF̄ (V̄ ), as

DF̄
(
V̄
)
=
∂F̄
(
V̄
)

∂V̄
=



Φ1 −I6×6 06×6 . . . 06×6 ˙̄x1,f

06×6 Φ2 −I6×6 . . . 06×6 ˙̄x2,f

...
...

−H5×6 05×6 05×6 . . . ϕnarc
˙̄Xnarc,f

[0 1 0 0 0 0] 01,6 01,6 . . . 01,6 0


(3.3)

where Φi is the state transition matrix (STM) of arc i, I6×6 is a 6×6 identity matrix, ˙̄xi,f is the

derivative of the state vector at the end of arc i, 0i×j is the i× j zero matrix, H5×6 is the identity

matrix with the fifth row removed, ϕnarc is the state transition matrix of arc i with the fifth row

removed, and ˙̄Xnarc,f is the derivative of the final state vector of arc narc with the fifth row removed.

The STM linearly maps the variation in a trajectory relative to a reference trajectory from an initial

time, t0, to a final time, tf [120]. Mathematically,

Φ (tf , t0) =
∂x̄ (tf )

∂x̄ (t0)
=



∂xf

∂x0

∂xf

∂y0

∂xf

∂z0

∂xf

∂ẋ0

∂xf

∂ẏ0

∂xf

∂ż0

∂yf
∂x0

∂yf
∂y0

∂yf
∂z0

∂yf
∂ẋ0

∂yf
∂ẏ0

∂yf
∂ż0

∂zf
∂x0

∂zf
∂y0

∂zf
∂z0

∂zf
∂ẋ0

∂zf
∂ẏ0

∂zf
∂ż0

∂ẋf

∂x0

∂ẋf

∂y0

∂ẋf

∂z0

∂ẋf

∂ẋ0

∂ẋf

∂ẏ0

∂ẋf

∂ż0

∂ẏf
∂x0

∂ẏf
∂y0

∂ẏf
∂z0

∂ẏf
∂ẋ0

∂ẏf
∂ẏ0

∂ẏf
∂ż0

∂żf
∂x0

∂żf
∂y0

∂żf
∂z0

∂żf
∂ẋ0

∂żf
∂ẏ0

∂żf
∂ż0


(3.4)

where the subscript f indicates a variable calculated at time tf and a subscripted 0 indicates a

variable evaluated at time t0.

An iterative method is then used to compute a periodic orbit that has been discretized into

narc arcs from an initial guess for the free variable vector, V̄0. Using the free-variable vector at
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iteration i, i.e., V̄i, the free-variable vector at the next iteration, V̄i+1, is calculated using Newton’s

method. For a rectangular Jacobian matrix, the update equation is the following:

V̄i+1 = V̄i −DF̄
(
V̄i

)T [
DF̄

(
V̄i

)
DF̄

(
V̄i

)T ]−1
F̄
(
V̄i
)

(3.5)

whereDF̄
(
V̄i

)
is the Jacobian evaluated at the current iteration and F̄

(
V̄i
)
is the constraint vector

evaluated at the current iteration. This vector is updated until the magnitude of the constraint

vector is equal to zero within a tolerance of 10−13. Note that Newton’s method is an iterative

scheme to approximate a root of a function by taking its first derivative; therefore, the initial guess

must be close to the function’s true root for this method to converge quadratically [27].

This multiple-shooting method is demonstrated on a northern L1 halo orbit at CJ = 3.1567

in the Earth-Moon CR3BP. Figure 3.2 displays the initial guess for the periodic orbit with a

black, dashed line while the corrected orbit is shown with a solid blue line. The directions of

motion are denoted with arrows, L1 is displayed using a red diamond, and the Moon is de-

picted as a gray sphere scaled to possess a radius of 1,738.0 km [16]. The initial guess is con-

structed by perturbing a periodic orbit near the bifurcation with the L1 Lyapunov orbit fam-

ily. Then, the initial guess is discretized into four arcs and a solution is recovered after five

Figure 3.2: Correcting a northern L1 halo orbit in the Earth-Moon CR3BP using multiple-shooting.
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iterations of the shooting scheme. The corrected orbit is described by a fixed state x̄PO =

[0.823725874812321, 0, 0.0464081352286445, 0, 0.155839702089999, 0]T nondimensional units and a

period equal to 11.97 days. The periodicity of the corrected orbit is confirmed by calculating the

difference between the initial and final states: x̄1,0 − x̄4,f . If the error in each state component is

less than 10−13, it is considered periodic, which is true for this L1 orbit.

3.1.2 Impulsive Maneuver-Enabled Trajectories

Multiple-shooting is also used to correct impulsive maneuver-enabled transfers within the

Earth-Moon CR3BP. The initial guess for the transfer is discretized into a total of narc arcs and

corrected. This leads to the following definition of the (7narc × 1) free-variable vector:

V̄ =



x̄1,0

∆t1

x̄2,0

∆t2

...

x̄narc,0

∆tnarc



(3.6)

where x̄i,0 is the initial state of arc i and ∆ti is the corresponding integration time for arc i.

The constraint vector is formulated to enforce state continuity between arcs as well as any

additional constraints. In this work, nman impulsive maneuvers are allowed between the end of

specified arcs and the start of the neighboring arcs, requiring that only position continuity is

enforced between these neighboring arcs. Additionally, full state continuity is required at the

boundary conditions: x̄des1 at t0 at the start of the transfer and x̄des2 at tf at the end of the
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transfer. Thus, the (6(narc − nman) + 3nman)× 1) constraint vector is defined as

F̄
(
V̄
)
=



x̄1,0 − x̄des1

x̄1,f − x̄2,0

...

r̄i−1,f − r̄i,0

...

x̄narc−1,f − x̄narc,0

x̄narc,f − x̄des2



(3.7)

where r̄i,0 is the initial position of arc i and r̄i,f is the final position of arc i. This constraint vector

may also be augmented with additional constraints as needed.

A Jacobian is required to update the free-variable vector. In this formulation, the Jacobian

is a ((6(narc − nman) + 3nman)× 7narc) matrix equal to

DF̄
(
V̄
)
=



I6×6 06×1 . . . . . . . . . . . . . . . 06×6 06×1

Φ1 ˙̄x1,f −I6×6 . . . . . . . . . . . . 06×6 06×1

06×6 06×1 Φ2 ˙̄x2,f −I6×6 . . . . . . 06×6 06×1

...
...

...

03×6 03×1 . . . Φi,r ˙̄ri,f −I3×6 . . . 03×6 03×1

...
...

...

06×6 06×1 . . . . . . . . . Φnarc−1 ˙̄xnarc−1,f −I6×6 06×1

06×6 06×1 . . . . . . . . . . . . . . . Φnarc
˙̄xnarc,f



(3.8)

where Φi,r is a 3×6 matrix from the portion of the STM covering only the partials of x̄f with

respect to position components and ˙̄rf is the derivative of the position vector at the end of the

arc. The update equation for this formulation of multiple-shooting is the same as Equation 3.5.

With this formulation of multiple-shooting, an initial guess for a maneuver-enabled path connecting

boundary conditions along periodic orbits is corrected to produce a nearby continuous path, if one

exists.
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3.2 Natural Parameter Continuation for Maneuver Reduction

Natural parameter continuation enables computation of additional members of a set of tra-

jectories, such as periodic orbits or transfers, once a single member has been recovered [27]. Nearby

members can be located by stepping along a specified natural parameter such as the orbital period,

an initial state component, or the Jacobi constant. In this dissertation, natural parameter contin-

uation is used to reduce the maneuver requirements of a transfer connecting periodic orbits while

retaining the geometry of the initial guess.

A procedure to reduce the maneuvers along each generated transfer is modeled after the

optimization-based approach developed by Smith and Bosanac to recover a trajectory that preserves

the geometry of an initial guess while reducing the maneuver requirements [112]. Smith and Bosanac

[112] presented a multi-objective cost function that is defined using two terms: 1) the difference

between the position vector at specified states along the current guess for a path and a reference

path and 2) the sum of squares of the magnitude of impulsive maneuvers. Although the second

term does not minimize the total ∆v, it supports better convergence towards a “minimum energy”

solution [78]. This multi-objective cost function is defined as [112]

J = wgeo((r̄curr − r̄ref )
T (r̄curr − r̄ref )) + wman

 q∑
j=1

∆v2j

 (3.9)

where wgeo is the weight of the term that prioritizes reducing the geometric difference between the

current guess and the reference trajectory, wman is the weight of the term that prioritizes reducing

the maneuver requirements, r̄curr is a 3ns × 1 vector containing the selected ns states along the

trajectory at the current iteration, r̄ref is a 3ns× 1 vector containing the selected ns states along a

reference path, and ∆vj is the jth maneuver along the transfer. At a single combination of wman

and wgeo, Smith and Bosanac computed a solution using local, constrained optimization [112].

Then, continuation was used to gradually adjust the weights of this multi-objective cost function

from [wgeo, wman] = [0.95, 0.05] to [wgeo, wman] = [0.05, 0.95] and solve the constrained optimization

problem at each step.

In this dissertation, natural parameter continuation is used to reduce the maneuver require-
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ments of a spacecraft transfer between two periodic orbits while retaining the geometry of the

initial guess [27]. This continuation scheme is formulated using multiple-shooting augmented with

a multi-objective constraint. Accordingly, the free-variable vector is defined using Equation 3.6.

Then, the constraint vector from Equation 3.7 is augmented with the multi-objective cost function

from Equation 3.9, formulated as a constraint, to produce the following vector:

F̄aug

(
V̄
)
=

 F̄
(
V̄
)

J − Jdes

 (3.10)

where Jdes is the desired value of J , given a specified combination of wgeo and wman. When

evaluating J , the reference trajectory is defined as the first trajectory corrected from the initial

guess. The Jacobian in Equation 3.8 is augmented with an additional row reflecting the partial

derivative of the augmented row of the constraint vector. This row in the Jacobian is written as[
Ā1 B̄2 ... ... ... ... ... B̄narc−1 Ānarc

]
(3.11)

where

Ā1 = Ānarc = 2wgeo (r̄curr − r̄ref ) (3.12)

Then, for all j ∈ [2, narc − 1],

B̄j = 2wman



(∆vẋ,j+1) Φ4,1 + (∆vẏ,j+1) Φ5,1 + (∆vż,j+1) Φ6,1

(∆vẋ,j+1) Φ4,2 + (∆vẏ,j+1) Φ5,2 + (∆vż,j+1) Φ6,2

(∆vẋ,j+1) Φ4,3 + (∆vẏ,j+1) Φ5,3 + (∆vż,j+1) Φ6,3

−∆vẋ,j−1 + (∆vẋ,j+1) Φ4,4 + (∆vẏ,j+1) Φ5,4 + (∆vż,j+1) Φ6,4

−∆vẏ,j−1 + (∆vẋ,j+1) Φ4,5 + (∆vẏ,j+1) Φ5,5 + (∆vż,j+1) Φ6,5

−∆vż,j−1 + (∆vẋ,j+1) Φ4,6 + (∆vẏ,j+1) Φ5,6 + (∆vż,j+1) Φ6,6

∆vẋ,j+1(ẋ) + ∆vẏ,j+1(ẏ) + ∆vż,j+1(ż)



T

+



Āj

0

0

0

0



T

(3.13)

where, when a maneuver is present,

∆vẋ,j+1 = ẋj,f − ẋj+1,0 ∆vẋ,j−1 = ẋj−1,f − ẋj,0 (3.14)

∆vẏ,j+1 = ẏj,f − ẏj+1,0 ∆vẏ,j−1 = ẏj−1,f − ẏj,0 (3.15)
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∆vż,j+1 = żj,f − żj+1,0 ∆vż,j−1 = żj−1,f − żj,0 (3.16)

The update equation remains the same as Equation 3.5.

The continuation procedure is formulated in two, nested layers. The inner layer gradually

lowers the value of Jdes for a specified combination of wgeo and wman, solving the augmented

multiple-shooting problem at each step. This inner continuation layer focuses on lowering the value

of the multi-objective cost function defined in Equation 3.9; this step could be replaced by a suitable

local, constrained optimization procedure in future work. The value of Jdes is gradually reduced at

each continuation step by using an adaptive step size, ∆Jdes. Initially, this step size is equal to

∆Jdes = 10(⌊log10(Jdes,est)⌋−1) (3.17)

where J0 is the initial value of J for a specified combination of wgeo and wman. If the multiple

shooting scheme returns a solution, Jdes is decreased by ∆Jdes; otherwise, Jdes is increased by

∆Jdes and the step size is reduced by half. Continuation proceeds until the step size is two orders

of magnitude lower than its initial value, i.e., until ∆Jdes ≤ 10(⌊log10(J0)⌋−2). Then, the outer layer

gradually adjusts the weights in the multi-objective cost function defined in Equation 3.9 from

[wgeo, wman] = [0.95, 0.05] to [wgeo, wman] = [0, 1] by increments of 0.05. Through this approach,

the multi-objective cost function is gradually adjusted from prioritizing geometric resemblance to

the initial guess to prioritizing reducing the sum of squares of the maneuver magnitudes.

Two trajectories in the feasible set of solutions generated during continuation are used for

analysis in this dissertation. The first solution is labeled as geometry-focused, prioritizing its

geometric resemblance to the initial guess, and is equal to the trajectory with the lowest value of J

for [wgeo, wman] = [0.95, 0.05]. The second trajectory is labeled as an energy-focused solution and is

equal to the trajectory with the lowest value of J for [wgeo, wman] = [0, 1] and prioritizes reducing

the sum of squares of the maneuver magnitudes. The use of the word “focused”, as opposed to

“optimal”, in each label is consistent with the use of continuation, rather than optimization.
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Clustering Techniques

Sets of nonlinear trajectories may be challenging to manually categorize in the absence of an

analytical solution or require automated analysis when reducing the dependency on a human-in-the-

loop. In these cases, data mining techniques may be useful for automatically extracting patterns

and other information [45]. One technique, clustering, enables extraction of a set of clusters that

group similar data and separate dissimilar data [45]. These clusters can supply an automated and

digestible summary of a larger dataset that aids subsequent analysis. This chapter presents an

overview of the clustering techniques used in this dissertation. Note: This chapter expands on the

information presented in an article by Spear and Bosanac in the Journal of Guidance, Control, and

Dynamics by AIAA [92].

4.1 Overview of Clustering Algorithms

Clustering is a data mining technique used to group similar members of a dataset and separate

dissimilar members [11]. Consider Q members of a dataset to be clustered. Each member is

described by an S-dimensional feature vector, f̄i for i ∈ [1, Q], that is tailored to the desired

application. Then, each pair of members are compared by calculating the distance between their

feature vectors using a selected distance measure [45]. These distances are used by a clustering

algorithm, along with any governing parameters, to construct groups of sufficiently similar members

of the dataset. These clusters can be valuable for manual analysis or decision-making as they offer

a digestible summary of the dataset.
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Various clustering algorithms exist, with the most common approaches classified as parti-

tioning, model-based, hierarchical, or density-based methods [45]. Partitioning algorithms directly

divide the data points into k groups where k is a user-defined parameter [45]. Alternatively, model-

based clustering schemes cluster the data to match a model that is typically a statistical distribution

[11, 45]. Hierarchical methods use a dendrogram representation of possible clusters before grouping

[45]. Density-based methods identify clusters as dense regions separated by sparse regions within

the dataset [45]. Selection of a suitable algorithm is influenced by the characteristics of the data

and the application; this decision, along with the values of any governing parameters, may also

influence the recovered clusters.

Trajectory clustering, specifically, focuses on discovering patterns or groups of possible mo-

tions for a moving object [11]. There are various approaches to summarizing the trajectories to

be clustered, including 1) using a time series representation, which may offer a high-fidelity repre-

sentation of a trajectory but suffer from the curse of dimensionality; or 2) constructing a model of

the trajectory, which may reduce the dimension of the description but suffer from inaccuracy when

applied to a wide variety of paths [11, 114]. These finite-dimensional trajectory descriptions are

then input to a selected clustering algorithm to extract groups of sufficiently similar paths.

4.2 Hierarchical Density-Based Spatial Clustering of Applications with Noise

This dissertation uses Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN), a clustering algorithm developed by Campello et al. as a hierarchical exten-

sion of the well-known Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

algorithm [88]. By combining density-based and hierarchical clustering concepts, HDBSCAN sup-

ports the identification of clusters as dense groupings of data in the selected S-dimensional feature

space while also allowing clusters to possess distinct shapes and densities [87, 88]. Furthermore,

this approach does not require a priori knowledge of the number of clusters [87, 88]. Due to these

properties, this algorithm has previously been used to group spacecraft trajectories by their ge-

ometry in the work performed by Bosanac [71, 73], Bonasera and Bosanac [99], and Miceli et al.
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[34].

HDBSCAN first assesses the similarity between the Q members of a dataset using density

information. First, a core distance, dcore, is calculated for each member as the distance to its

NminCore-nearest neighbor; thus, dcore reflects the density of the dataset near the member. The

core distances of members a and b are used to calculate their mutual reachability distance as

dmreach(a, b) = max{dcore(a), dcore(b), d(a, b)} where d(a, b) indicates a selected distance measure

[88]. In this work, the Euclidean distance metric is used. This transformation to a mutual reach-

ability distance space further separates members within high-density regions from those in sparse

regions. Furthermore, NminCore serves as a governing parameter that defines the size of the neigh-

borhood used to capture density information. Figure 4.1 presents a conceptualization of the core

distances, reproduced from McInnes et al. [56], for points a and b and NminCore = 7.

With the mutual reachability distance metric, HDBSCAN builds a minimum spanning tree to

locate dense regions within the dataset. The minimum spanning tree summarizes a weighted graph

representation of the mutual reachability distances between the members of the dataset [88]. In

this graph, each node represents a member of the dataset while edges between nodes are weighted

using the mutual reachability distance of those points. The minimum spanning tree of this graph is

built by locating the lowest-cost edge in the graph that connects the tree to a node that is not yet in

Figure 4.1: Conceptualization of core distances between points a and b.
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the tree. Then, this edge and node is added to the minimum spanning tree. Building the minimum

spanning tree reduces the computational complexity of understanding the hierarchical relationship

of the dataset, which is an integral part of HDBSCAN. Then, an agglomerative approach is applied

to this minimum spanning tree to create a hierarchy of possible clusters as a function of the mutual

reachability distance via a dendrogram.

HDBSCAN leverages this dendrogram to locate the final clusters that meet size and stability

requirements. First, the dendrogram is condensed into a smaller cluster tree that preserves parent

clusters or allows the parents to be further divided into child clusters. The criteria for this split is

determined by NminClust, which specifies the minimum number of members in a single cluster [88].

At each division of the clusters in the dendrogram, the sizes of the clusters at the split are assessed.

If the cluster size is smaller than NminClust, the parent cluster is retained and the other members

are regarded as leaving the cluster. If the cluster size is greater than or equal to NminClust, then

the child clusters are retained in the dendrogram.

The stability of each cluster is assessed to extract the final groups from the condensed dendro-

gram. Stability is assessed by analyzing the value of the mutual reachability distance at a cluster’s

birth λbirth, or where it begins in the tree, and death λdeath, or where it reached the minimum

mutual reachability of the tree or split into child clusters [56]. An additional parameter, λl, is

defined as the value at which a point left a cluster, which happens between its birth and death.

The stability, Λ, can then be computed as [56]

Λ =
∑

l∈cluster
(λl − λbirth) (4.1)

All leaf nodes are selected as clusters. Then, using a bottom-up approach, the stability of the child

clusters is summed. If this summation is larger than the parent cluster, the cluster stability is set

to be the sum of the child stabilities. If the cluster’s stability is larger, that cluster is selected for

output and its descendants are ignored.

Once the root of the tree is reached, the selected clusters are returned from HDBSCAN as

a summary of the dataset. Malzer and Baum present a modification of the HDBSCAN algorithm
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that merges clusters separated by a distance below a threshold ϵ [13]; this modification mitigates

the possibility of recovering an excessive number of small clusters that correspond to locally dense

regions within a large group of sufficiently similar members. Any members not grouped are classified

as noise points and may represent outliers in the data or insufficiently sampled regions. Figure 4.2

depicts a conceptualization, reproduced from McInnes et al. [56], of grouping a small dataset

with HDBSCAN. Three clusters (blue, pink, and orange) along with three noise points (gray) are

recovered after applying HDBSCAN to the black dataset on the left. HDBSCAN is accessed in

Python using the hdbscan [56] package which requires a computational effort of O(N log(N)) and

is predominantly governed by three parameters: NminCore, NminClust, and ϵ [57].

Border point association is one refinement technique that is used after a set of clusters is

generated to label noise points that lie in the local neighborhood of a cluster member. This post-

processing step is suggested by Campello et al. in an early paper on HDBSCAN [87]. Specifically,

any noise points that lie within the NminCore-neighborhood of a labeled member in the mutual

reachability distance space are considered border points of their closest cluster [87]. Because these

members of the dataset lie at the border of a cluster, they are sufficiently similar to the labeled

cluster members but were originally designated as noise points because their local neighborhoods

in the feature vector space are sparser. Figure 4.3 presents a conceptual example, following the

clustering conceptualization in Figure 4.2, of a noise point (gray) grouped into the orange cluster as

a result of border point association. The NminCore-neighborhood is displayed with a dashed orange

circle for NminCore = 8.

Figure 4.2: Conceptualization of clustering a small dataset with HDBSCAN.
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Figure 4.3: Conceptualization of a noise point (gray) grouped into a cluster (orange) via border
point association.



Chapter 5

Collision-Free Path Planning

A variety of approaches have been developed to solve path planning problems. These in-

clude navigation planners such as potential functions, exact and approximate representations of

the environment with cell decomposition, and sampling-based algorithms [36]. Many of these ap-

proaches were originally developed for path planning in linear dynamical systems. However, recent

improvements have supported path planning in more complex environments and with uncertainty

or dynamic and geometric constraints [36, 103].

Sampling-based planners employ sampling schemes to explore an environment, then connect

those samples to obtain solutions to a motion query [36]. Two traditional categories of approaches

are single-query and multi-query methods. Single-query methods construct solutions to new path

queries with no knowledge of previous solutions whereas multi-query methods leverage information

from previous path queries to construct new solutions [115]. Well-known single-query sampling-

based planners include tree-based algorithms such as rapidly-exploring random trees whereas prob-

abilistic roadmaps are a popular option for multi-query planners. These methods are also examples

of probabilistically complete planners: the probability that the planner will fail to find a path, if

one exists, approaches zero as additional samples are drawn [36, 101].

Environment maps represent the collision-free space where an object can safely travel. These

obstacle maps may be constructed using representation techniques such as cell decomposition or

Voronoi diagrams, and used for collision detection during or after the path construction process

[36, 97, 105]. In these maps, dynamic obstacles are often modeled using repulsive forces, convex
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shapes, or point masses [36]. Shape primitive skeletons use geometric primitives to represent an

environment’s topology and are a popular option for modeling static obstacles [59].

This dissertation research leverages path planning methods and environment maps to iden-

tify collision-free spacecraft trajectories. This chapter presents an overview of the techniques used

in this work to automatically and rapidly construct initial guesses and identify collisions. These

methods include tree-based path planners, graph search algorithms, cell decomposition, and colli-

sion checking techniques.

5.1 Tree-Based Path Planners

In the field of motion planning, tree-based planners are a popular sampling-based approach

for automatically and rapidly constructing a path within an environment. This approach consists

of growing a tree, represented by a set of nodes and edges, from a desired initial state to a target

state via random sampling of the configuration space. A path is recovered once the tree reaches

the target, to within a specified tolerance.

RRTs are randomized data structures that were originally developed to overcome challenges

with other path planning techniques in high-dimensional environments for nonholonomic systems

[101]. For example, potential fields rely on selecting a good heuristic potential function and proba-

bilistic roadmaps require connecting pairs of nearby configurations, or states, for graph construction.

These tasks can be challenging or computationally intensive when the environment is high dimen-

sional or highly constrained. RRTs possess low computational complexity in high-dimensional or

complex environments because they do not require point-to-point connections, solving many bound-

ary value problems, or picking a heuristic function [101]. Instead, RRTs iteratively expand toward

randomly-selected points [101].

Path recovery using an RRT consists of growing a tree from a desired initial state via random

sampling of the configuration space. A conceptual example of using an RRT to construct a path

between two desired configurations is shown in Figure 5.1 where the initial and target configurations

are denoted with red and blue circles, respectively, and obstacles are represented with dark gray
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Figure 5.1: Conceptual RRT generation in a linear environment: a) randomly sample (gold) the
environment and extend the tree rooted at the initial state (red) towards the random sample; b)
repeatedly sample the environment and extend the tree from the nearest node until c) a path is
recovered.

shapes. First, a random sample is drawn within the configuration space, denoted by the gold circle

in Figure 5.1a). To extend the tree, the nearest node in the tree to the random sample is selected.

This node represents a state in the environment. Then, the direction of the velocity vector is

aligned with the direction to the random sample, and the state is propagated. This step adds a

new branch and node to the tree, shown by a red line and purple circle in Figure 5.1a). The nearest

node is often identified in the configuration space, but could also be found in the velocity or full

phase space. The process is repeated to explore the environment, as portrayed in Figure 5.1b),

until a termination condition, such as reaching a goal. By traversing the tree, a path is recovered,

as displayed in Figure 5.1c) in purple.

Variations on the RRT algorithm have also supported path planning in complex motion

planning problems. Bidirectional RRTs grow trees from each of the boundary conditions [36, 37,

104]; expansive-spaces trees rely on probabilistic sampling to ensure sufficient coverage in regions

of low density [36]; and stable-sparse RRTs reduce computational time by retaining only a sparse

set of nodes and edges [122]. Multipartite [67] and time-based RRTs [10] have been used for robot

path planning in dynamic systems: multipartite RRTs leverage tree branches from previous motion

queries and bias in the sampling distribution whereas time-based RRTs track the time and state

at each node. Furthermore, multi-RRT algorithms employ a forest, composed of multiple trees, to

recover paths and have been used in robotics to visit target locations while minimizing travel cost
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[46], exploit local structure for exploring narrow passageways [108], and balance exploration and

exploitation to rapidly find a feasible path [124]. Multi-RRT algorithms have also been used in

uncrewed aerial vehicle path planning for application to indoor rescue scenarios [42].

5.2 Graph Search Techniques

Motion planning strategies often rely on the use of directed graphs. A directed graph is

a collections of vertices, representing objects, and directed edges, representing the relationships

between objects in a specific order [36, 93]; edge weights can be used to define the cost of traversing

each edge. Traditionally, the root of a graph is a special vertex that possesses no parent vertices.

A parent has vertices accessible to it called children, and a leaf is a vertex that has no children

[36]. The number of edges that are incident into a vertex from its parents defines its in-degree

whereas the number of edges that are incident from a vertex to its children defines its out-degree

[93]. Characterizing vertices by in- and out-degrees supplies insight into the traversability of the

directed graph.

Graph search algorithms may be applied to a graph to recover a sequence of vertices connected

by edges; in path planning, this sequence may produce a path through the environment [36]. In a

specified application, selection of a search algorithm depends on the desired search metrics, available

computational effort, and types of solutions sought. Classical breadth-first searches guarantee that

the first solution uses the smallest number of vertices and edges within the graph whereas depth-

first searches find longer paths earlier in the search [102]. It may be desirable to optimize path

length or other search metrics, including safety, time, number of vertices to explore, diversity, or

computational efficiency. Heuristic-informed graph search algorithms, such as A∗ and Yen’s, may

return optimal paths with respect to the search metric. However, selection of a suitable heuristic

can be a challenging task in some applications and a poorly-defined heuristic may result in longer

search times and suboptimal paths [36].

A∗ is a best-first graph search algorithm that identifies the path that minimizes the sum of

the edge weights between a selected pair of start and goal vertices [83]. This search algorithm uses
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a queue to store and rank incomplete paths that are constructed by adding neighboring vertices to

the current sequence of vertices. At each iteration, A∗ identifies the path to expand from the queue

as the path with the lowest cost. The current vertex is then the most recently added vertex of the

selected path. Next, the algorithm searches for all neighbors of the current vertex and computes

a cost for each neighbor in the graph. The cost of the neighboring vertex (i + 1) is defined as

ci,i+1 = gi,i+1 + hi+1,targ, where gi,i+1 is the cost to traverse the graph from the current vertex i to

the neighbor vertex and hi+1,targ is the heuristic or estimated cost to traverse the graph from the

neighbor vertex to the target vertex. Although problem-dependent, the heuristic must be defined

such that hj,targ ≤ h∗j,targ, where h
∗ is the exact value of the heuristic or true cost from vertex j

to the target vertex, to ensure that the algorithm returns the overall lowest cost solution [83]. The

incomplete paths obtained by adding each neighbor to the current path are stored in the queue

with their cost. This process is repeated until the path with the lowest cost in the queue reaches the

target vertex [83]. When the heuristic is selected as zero, A∗ reduces to the well-known Dijkstra’s

algorithm [102].

Yen’s algorithm identifies k diverse paths with the lowest cost between a pair of start and

goal vertices, originally using Dijkstra’s as the single-best path algorithm [29]. First, Dijkstra’s

algorithm is employed to find the optimal path through the graph. This solution is placed in a list

that stores the k diverse solutions to the motion query, labeled as list A. Then, the graph and the

best path are iteratively modified by removing edges between the vertices comprising the path. At

each iteration, the root path is defined as the vertex sequence from the first vertex to the vertex

associated with the removed edge. If the best path is composed of N vertices, Yen’s algorithm will

create N − 1 root paths and subgraphs, i.e., graphs where one edge between vertices i and (i+ 1)

of the path has been removed. Then, the selected search algorithm is used to recover the best path

from the last vertex of the root path to the target vertex in each subgraph. The best paths from

each of these subgraphs are saved in a temporary list, labeled as list B, and sorted by their cost.

The path with the lowest cost from list B is moved to list A, and the process is repeated with the

lowest cost path moved to list A until k paths exist in list A [50]. Although Yen’s algorithm is not



48

necessarily computationally efficient, it supports the proof of concept used within this work.

5.3 Cell Decomposition

Previous researchers have used cell decomposition, which relies on partitioning the config-

uration space into cells, to find a preliminary collision-free path that guides RRT construction

across different disciplines [3, 4, 31, 44, 82, 97, 106]. Although a variety of decomposition strategies

exist, they can generally be categorized into exact or approximate methods. Exact cell decomposi-

tion decomposes the obstacle-free configuration space into a set of non-overlapping regions whose

union exactly describes the obstacle-free region [41]. Additionally, the geometry of the obstacle-

free configuration space may guide selection of the cell shape to ensure the environment is accu-

rately represented [41]. Conversely, approximate cell decomposition conservatively approximates

the obstacle-free space using cells with simple pre-specified shapes, such as squares or rectangles

[41]. These shapes are standardized to reduce sensitivity to numerically-approximate computations

and decompose the space by iteratively applying the same computation [41]. Approximate methods

allow the user to control the minimum cell resolution and are typically easier to implement than

exact methods [41].

5.4 Collision Checking Techniques

Dynamic obstacle maps have been used with collision detection algorithms to identify poten-

tial collisions. A challenge with dynamic obstacles is accurately tracking their motion as a function

of time, which increases the complexity of collision detection compared to static environments. A

variety of approaches to collision detection exist throughout the literature including conservative ad-

vancement techniques [47], shape primitive skeletons [59], continuous collision detection [105, 119],

lazy collision detection [9, 36, 86], or cell-based collision detection [102, 123].

This work uses cell-based and lazy collision checking techniques to identify potential colli-

sions between spacecraft transfers and dynamic obstacle corridors. Specifically, dynamic obstacle

maps conservatively represent the obstacle corridors that are associated with a local initial state
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set where cells containing an obstacle corridor are designated as potential collision cells. Then,

lazy collision detection is employed to analyze a spacecraft trajectory for collisions with obstacle

corridors after the trajectory is generated. A benefit to this approach, as opposed to incorporating

obstacle information into the path planning process, is a reduction in the computational complex-

ity of collision checking by performing checks only when necessary [36]. However, not all solutions

recovered during path planning may be feasible.



Chapter 6

Construct a Digestible Motion Type Summary

A challenge that is emerging in space situational awareness and space traffic management is

analyzing the possible future motions of an object in the presence of uncertainty within cislunar

space. In a chaotic system, uncertainty in the initial state may result in a variety of possible paths

over sufficiently long time intervals. The level of uncertainty associated with a state estimate may

also increase when off-nominal conditions are present, the objects are difficult to observe and track

over time, and when characterizing an unknown object [2]. As the initial state estimate, level

of uncertainty, and model parameters all vary, the array of possible future motions can evolve in

geometry and itinerary as the paths pass through distinct regions of the Earth-Moon system. In

these motivating examples, it may be valuable to extract a clear, digestible summary of the distinct

motion types that originate from a local region of the phase space.

This chapter presents a clustering-based approach for automatically categorizing a diverse

array of trajectories generated from a local point cloud of initial states that begin near a reference

state. Each of the generated clusters supplies a ‘motion type’ that captures a set of trajectories

with similar geometric and temporal variations. As a result, the collection of clusters supplies a

digestible summary of the set of trajectories. The data-driven categorization process consists of five

steps that are depicted in the flowchart in Figure 6.1 and described in detail in each section of this

chapter. Furthermore, each step of the technical approach is demonstrated for planar trajectories

generated from a set of initial states in the vicinity of a reference state along an L1 Lyapunov

orbit in the Earth-Moon CR3BP. The computational times for each step are determined using a
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Figure 6.1: High-level overview of the data-driven categorization process.

computer with an AMD Ryzen 5 5600G with Radeon Graphics 4.20 GHz processor. Note: This

work has been published in an article by Spear and Bosanac in the Journal of Guidance, Control,

and Dynamics by AIAA [92].

6.1 Generating Input Data

The data-driven categorization process takes an input of a set of initial states that lie in

the local neighborhood of a reference state. Throughout this chapter, this set is labeled as a local

point cloud of initial states, encompassing a hyperellipsoid in six-dimensional space that is centered

on the selected reference state. This local point cloud could physically represent a snapshot of

the state space where an object is reasonably expected to exist at a selected epoch within, for

example, 1) a 3σ uncertainty region around a state estimate or 2) a pre-specified corridor for

targeting a reference state. These motivating examples often involve associating probabilities to

each initial state. However, this work relies on sampling initial conditions within the boundary of

the local point cloud to identify the dominant geometries of the associated trajectories regardless

of their likelihood of occurrence. Future work that applies this data-driven categorization process

to trajectory prediction problems could incorporate probabilities during sampling, categorization,

or after generating a digestible summary of possible motions.

Deterministic, geometric, or hybrid sampling schemes may be employed to sufficiently sam-

ple the state space within the local neighborhood of a reference state [20, 25]. For a uniform,
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dense distribution of samples, suitable approaches may include Halton point, spiral, or grid-based

methods. Halton points are a low-discrepancy point set generated by a quasi-random number se-

quence known as the Halton sequence [55]. This set is guaranteed to be well distributed over all

dimensions and maintain low-discrepancy as samples are added to the sequence [65]. Spiral sam-

pling with the Golden ratio ensures a near-uniform, space-filling pattern with a faster computation

time than low-discrepancy point sets based on the van der Corput sequence, such as Halton points

[7, 14]. Geometric grid-based sampling methods fill the desired space by sampling at fixed intervals

uniformly distributed in every dimension [20]. Square, uniform grid-based sampling is one of the

simplest methods that may be used to sufficiently sample a region [20].

Each of these methods possesses a challenge with respect to its application in this work. While

Halton points fill the state space with low non-uniformity, they may leave areas under-sampled,

particularly in higher dimensions as the samples can exhibit regular patterns [55]. Additionally,

variations on Halton point sampling may be less uniform than other sampling schemes [20]. Spiral

sampling has been successfully applied in two- and three-dimensional scenarios [7, 14, 84, 94, 95];

however, in the spatial case, samples are taken from the surface of three-dimensional objects. The

challenge for the application of spiral sampling in this research is to uniformly distribute the samples

within a multi-dimensional object. Meanwhile, grid-based approaches can guarantee densely-packed

sampling in two- and three-dimensions, but suffer from sparse region coverage in higher-dimensions

[20].

The scheme selected to sample initial states within the local point cloud in this work balances

supplying a sufficiently dense set of samples with reducing the total number of samples for com-

putational feasibility. Although uniformly sampling each of the six dimensions of the phase space

within a specified region around a reference state is conceptually straightforward, this approach

was observed to suffer from sparse coverage when generating a reasonable number of samples [20].

To reduce the number of samples while sufficiently covering the local region of the phase space,

position and velocity vectors are first independently sampled using a grid-based approach that sup-

plies dense and uniform sampling only in their associated three-dimensional subspaces. Samples are
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defined using a square, uniformly-spaced grid and only those nIC position vectors or nIC velocity

vectors that lie within the specified boundaries of the local point cloud are retained. Then, the

pseudorandom number generator in MATLAB’s randperm function is used to identify two distinct

sequences of unique integers between 1 and nIC [68]. The i-th integer in each list identifies the

specific position and velocity vectors that are combined to form the i-th of nIC six-dimensional

state vectors.

To demonstrate the sampling approach used in this chapter, consider a local point cloud of

initial states that exist near a single reference state along an L1 Lyapunov orbit with a period of

12.27 days and CJ = 3.1542 in the Earth-Moon CR3BP. This nondimensional reference state is

specified in the rotating frame as x̄PO = [0.816988444235, 0, 0, 0, 0.195756600373, 0]T , occurring at

the leftmost crossing of the x-axis. Planar states that lie within 10.5 km in position components

and 10.5 m/s in velocity components of the reference state are sampled using the method described

in the previous paragraph. This local point cloud size corresponds to the 3σ uncertainties estimated

by Bradley et al. [75] for cislunar navigation using optical (angles only) measurements. Although

Fedeler et al. [100] note that uncertainty levels may vary for different types of motions, the proof

of concept in this dissertation uses the same local point cloud size for each of the selected scenarios.

In this L1 Lyapunov scenario, 1,006 states are sampled, which typically requires on the order of

10−2 seconds on the specified computer. Across this set of initial states, the Jacobi constant varies

on the order of 10−3 nondimensional units.

6.2 Step 1: Propagate Continuous Trajectories

Each of the input initial states is propagated in a selected dynamical model for a specified

duration. In this research, all initial conditions are propagated forward in time for at least 17.3

days in the Earth-Moon CR3BP; this duration exceeds the periods of the selected orbits and allows

distinct geometries to emerge, if they exist. However, propagation is terminated early upon impact

with a spherical approximation of either of the primaries, defined using their equatorial radii of

1,738.0 km and 6,378.1363 km for the Moon and Earth, respectively [16]. Following this procedure,
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Figure 6.2 displays a 200-member subset of the continuous trajectories generated from the 1,006

initial conditions used in this scenario with the L1 Lyapunov orbit shown in blue. Generating the

full set of continuous trajectories, T , typically requires on the order of 0.1 seconds in C++ on the

specified computer. These initial conditions occur near the red circle with the Moon and Earth

appearing as gray circles scaled to possess the radius of the respective body, and red diamonds

locating L1 and L2. Figure 6.2 demonstrates that paths either impact the Moon, remain in the

vicinity of the Moon, or depart through one of the L1 or L2 gateways, producing a variety of distinct

geometries.

6.3 Step 2: Summarize Trajectories

To enable categorization via clustering, each continuous trajectory is discretized into a se-

quence of p states at equal intervals in arclength. When numerically integrating a state from t1

to t2, the arclength, sarcL, is defined as the distance traversed along the trajectory [113]. In this

work, this quantity is calculated along a trajectory in the rotating frame as

sarcL =

∫ t2

t1

|v̄| dt (6.1)

where v̄ = [ẋ, ẏ, ż]T is the nondimensional velocity vector. Then, p states, including the final

state but excluding the initial state, are sampled at intervals of sarcL/p along the arclength of the

trajectory. The initial state is excluded because all initial states lie within a local neighborhood and,

Figure 6.2: A 200-member subset of planar trajectories propagated for 17.3 days from the sampled
initial conditions in the Earth-Moon CR3BP.
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therefore, do not meaningfully contribute to identifying geometric differences between trajectories.

Although there are various possible approaches for discretizing a continuous path, this work employs

an equal arclength distribution to 1) limit the influence of variations in the speed along a trajectory,

and 2) ensure sample locations smoothly vary as the geometry gradually evolves. However, a

limitation of this approach is that the samples may not be placed in geometrically meaningful

locations, such as apses, or sufficiently capture smaller revolutions along a trajectory that traverses

a large distance when p is too small.

To help mitigate this limitation, the number of states, p, used to discretize each trajectory

is selected heuristically using a curve-based approach. The curvature, κ(x̄), reflects the deviation

from a straight line at a state x̄ along a trajectory. At a single state, this quantity is defined as

[113]

κ(x̄) =

√
(z̈ẏ − ÿż)2 + (ẍż − z̈ẋ)2 + (ÿẋ− ẍẏ)2

(ẋ2 + ẏ2 + ż2)3/2
(6.2)

Local maxima in the curvature supply geometrically meaningful locations along a trajectory and

typically occur near periapses and apoapses measured relative to primaries or equilibrium points.

However, unlike apses, maxima in the curvature do not require specification of a reference point as

one or more trajectories exhibit turning points in distinct regions of the Earth-Moon system. To

identify the number of local maxima in the curvature along a single trajectory, ptraj , the curvature

is calculated at each state along the trajectory in the rotating frame via Equation 6.2 and then

the local peaks in the time history of κ(x̄) are identified. The largest number of local maxima in

the curvature along each trajectory in the dataset defines the value of pmax. Then, each trajectory

in the dataset is sampled using p = 2(pmax + 1) states that are equally-distributed in arclength.

This value of p is selected to ensure there are at least twice as many samples as the number of

significant geometric locations, including the final state, along the trajectory. As a result, this value

of p has been observed to sufficiently summarize all trajectories in the datasets examined in this

work. Furthermore, each trajectory in the dataset is summarized by the same number of samples,

reducing the complexity of clustering.
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To demonstrate the trajectory discretization process, consider a single, planar trajectory

generated in Step 1. Figure 6.3a) displays this trajectory along with blue stars at the locations

of maximum curvature and a black star at the final state. Repeating this calculation for each of

the 1,006 trajectories generated for 17.3 days in Step 1 produces pmax = 7, consistent with the

number of curvature maxima that occur along the trajectory in Figure 6.3a). This trajectory is

then discretized into p = 16 states that are spaced equally in arclength. Figure 6.3b) shows the

resulting discretization with the sampled states, indicated by black stars, sufficiently capturing the

shape of the path within the configuration space.

The p sampled states are used to form two finite-dimensional feature vectors that, together,

capture the spatiotemporal evolution of a trajectory. Although position-based feature vectors are

a viable option for encoding the spatial evolution of a trajectory, different regions of a multi-body

system possess distinct sensitivities to the same distance between two sampled position vectors.

This challenge can result in lower quality clusters generated from sequences of position vectors,

including excessive grouping, incorrect grouping, or excessive differentiation. Furthermore, it is dif-

ficult to intuitively and automatically select suitable tolerances for two trajectories to be considered

sufficiently similar. To address this challenge, Bosanac has demonstrated using velocity unit vectors

to cluster spacecraft trajectories by their shape [74]. Applying this concept to this work, all trajec-

tories begin from a single local neighborhood in the phase space. Therefore, two trajectories with

Figure 6.3: a) Locations of local maximum curvature along a trajectory. b) The locations of p
states spaced equally in arclength along the trajectory.
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a similar shape and time evolution are expected to follow similar paths through the configuration

space. Accordingly, the following two separate feature vectors are used in this dissertation: 1) f̄v̂

captures the shape of the path via the velocity direction at sampled states and 2) f̄∆τ captures the

temporal evolution via the elapsed time between subsequent states. Mathematically, these feature

vectors are calculated as

f̄v̂ =
[
ˆ̇x1, ˆ̇y1, ˆ̇z1, · · · , ˆ̇xp, ˆ̇yp, ˆ̇zp

]
f̄∆τ = [∆τ1, · · · ,∆τp] (6.3)

where ˆ̇xi, ˆ̇yi, ˆ̇zi are the components of the velocity unit vector at sampled state i in the rotating

frame. In addition, ∆τi is the nondimensional time elapsed from the previous state, x̄i−1, for i > 1

or the initial time, τ0 = 0, when i = 1, to the current state, x̄i. Through these definitions, f̄v̂

is a 3p-dimensional vector for spatial motion whereas f̄∆τ is a p-dimensional vector. For planar

trajectories, the z-component of the velocity unit vector at each state is removed from f̄v̂ to avoid

including redundant information. In the selected scenario, summarizing the full set of trajectories

typically requires around four seconds on the specified computer with O(N) complexity for each

step. The process for summarizing trajectories is outlined in the flowchart provided in Figure 6.4.

6.4 Step 3: Construct Initial Summary of Motion Types

With a selected set of input parameters, HDBSCAN is used to automatically group trajec-

tories by their spatiotemporal variations, producing an initial summary of motion types. This

clustering process is summarized in the flowchart provided in Figure 6.5. First, trajectories are

Figure 6.4: Overview of the trajectory summarization process in Step 2.
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Figure 6.5: Overview of the process for generating an initial motion type summary in Step 3.

clustered using their velocity direction feature vectors, f̄v̂, to discover groups of geometrically sim-

ilar trajectories. Although the trajectories are generated from a set of initial states that lie within

a local region of the phase space, their geometric variations over sufficiently long time horizons

are expected to result in dense groupings of the data within the higher-dimensional feature space

associated with f̄v̂. Each dense grouping corresponds to a cluster that should be identified by

HDBSCAN. Then, each cluster is refined by clustering only its members via their time-based fea-

ture vectors f̄∆τ . This cluster refinement step supports outlier removal and allows groups to be

further separated, as needed, based on additional temporal variations. After this initial two-step

clustering process, each trajectory is either assigned to a group or labeled as noise. Then, border

point association, as outlined in Chapter 4, is performed to label noise points that lie in the local

neighborhood of a cluster member.

Although f̄v̂ and f̄∆τ could be weighted and combined to construct a single 4p-dimensional

feature vector, simultaneously clustering a dataset with distinct features can result in a higher

likelihood of inaccurate groupings. Specifically, the same difference between two weighted but

distinct feature types could result in two trajectories being assigned to the same cluster despite

substantial differences in their geometric and/or temporal variations. However, independently using

the two feature vectors has been observed in this work to improve the cluster accuracy while also

eliminating the need to strategically weight the distinct features.

The parameters governing HDBSCAN are manually defined to be consistent across all sce-
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narios in this dissertation. However, automated and adaptive parameter selection is a valuable

avenue of future work. Manual selection of the minimum cluster size and neighborhood size begins

with setting NminCore − 1 = NminClust to measure density across the same-sized neighborhood as

the minimum acceptable cluster size. Then, a small value of NminClust is selected to prioritize local

density estimates and variations between nearby members of the data. In addition, the Euclidean

distance is selected to assess the difference between two feature vectors to support fast clustering.

Finally, the minimum threshold for cluster differentiation in the velocity-based feature space is

heuristically selected as ϵv̂ = 2
√
p sin

(
α
2

)
. This heuristic, as presented by Bosanac, reflects the

Euclidean distance between a set of p unit vectors separated by an angle equal to α [74]. For clus-

ter refinement in the time-based feature space, ϵ∆τ = NminCoremax(dmc, ϵthresh) where dmc is the

maximum core distance from each trajectory to its nearest neighbor and ϵthresh is a user-selected

small minimum threshold. Similar to the heuristic presented by Bosanac, this quantity estimates

a reasonable NminCore-neighborhood radius that adapts to the trajectories within the cluster to be

refined and is not biased by significant outliers [74].

Applying this clustering process to the trajectories generated from the local point cloud

of initial states near the selected reference state along a 12.27-day L1 Lyapunov orbit results in

successful separation of spatiotemporally distinct trajectories. The 1,006 trajectories are grouped

into 13 clusters using NminCore = 4 and NminClust = 5 for clustering in both f̄v̂ and f̄∆τ , ϵv̂ is

calculated using α = 5◦, and ϵ∆τ is calculated using ϵthresh = 10−3√p. On the specified computer,

this step requires on the order of one second to complete. The initial summary is presented in Figure

6.6 with each subfigure displaying one cluster of trajectories in the Earth-Moon rotating frame. The

L1 Lyapunov orbit is depicted with a black dashed line in cluster 11. The horizontal and vertical

axes represent the x- and y-position coordinates, respectively, in the Earth-Moon rotating frame

in nondimensional units. In addition, the final state of each trajectory is denoted with a blue dot

whereas color indicates the elapsed time along each trajectory. Black arrows denote the direction

of motion. Twelve trajectories are categorized by HDBSCAN as noise points and are not depicted

in this summary. This noise rate, approximately 1.2%, is considered acceptable because these
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Figure 6.6: Initial summary of trajectories generated from a local point cloud of initial states along
the selected L1 Lyapunov orbit in the Earth-Moon CR3BP.

noise points either 1) resemble existing clusters but do not lie within the NminCore-neighborhood

of cluster members, or 2) do not exist near enough trajectories with similar variations in shape and

time to create a separate cluster of at least NminClust members.

Figure 6.6 reveals that each cluster contains trajectories that are geometrically similar. For

instance, clusters 1-4 capture trajectories that briefly resemble three-quarters of an L1 Lyapunov

orbit before departing for the vicinity of the Earth. Clusters 7-8, however, contain trajectories that

resemble half an L1 Lyapunov orbit before revolving around the Moon once with a low perilune.

These trajectories are separated into two clusters because there is a distinct split in the velocity

direction along the trajectories.

6.5 Step 4: Update Summary with Additional Samples

Clustering algorithms aim to separate a dataset into groups based on the selected features. In

some cases, the dataset may be insufficiently dense in the feature vector space between clusters or

along their boundaries. In these scenarios, cluster refinement may increase the accuracy of cluster

boundaries and member assignment by identifying sufficiently similar members or increasing the
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density of the dataset in sparse regions.

To increase sampling near cluster boundaries or in sparse regions between clusters, additional

initial states are sampled from within the local point cloud and used to update the summary

produced in the previous step. To contextualize the formulation of this process, spatiotemporal

variations between the trajectories in distinct clusters from Step 3 are observed to be correlated to

variations in the velocity components of the initial state. To demonstrate this observation, Figure

6.7a) displays the velocity components of each initial condition colored by the assigned cluster

with white diamonds locating points designated as noise by HDBSCAN. Examining the connection

between the clustering results and the structure of the local neighborhood of the reference trajectory

is an interesting avenue of future work. Nevertheless, in this example, the majority of noise points

lie between cluster boundaries. Therefore, expanding the trajectory set with additional samples

between these boundaries may aid in grouping noise points along with increasing the accuracy of

cluster boundaries.

The inter-cluster sampling scheme is inspired by a Voronoi diagram which divides an E-

dimensional space into cells such that each cell consists of one point and cell boundaries lie at the

midpoint between two points [30]. In this work, every velocity vector from the original initial state

Figure 6.7: Velocity components of initial conditions a) after initial clustering and b) with 536 new
samples (black circles) after inter-cluster sampling.
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set is treated as if it lies in its own cell in velocity space. Then, the cluster labels for adjacent

cells are compared to determine if a sample is needed between them. This approach enables the

sampling of additional initial states without relying on explicit boundary construction.

Adjacent samples are located based on Euclidean distances between initial conditions. In

general, for one- to three-dimensional points, the distance, dpts, between any velocity vector, v̄pt,j ,

and its adjacent neighbors, v̄pt,i, in a square unit grid is dpts = ||v̄pt,j − v̄pt,i|| < 2ugrid where ugrid is

the grid size. Therefore, the neighbors adjacent to each velocity sample are identified by calculating

the distance between each j-th velocity sample and all other samples. If dpts < 2ugrid, the point is

an adjacent neighbor. Figure 6.8 conceptually depicts a set of 16 planar initial conditions sampled

in a uniform grid with spacing ugrid in position and velocity space. The cells for each of the sampled

points are denoted with dashed, light gray lines. The initial conditions are color-coded by cluster

assignment with noise points shown in gray. Structure is present in velocity space, but less apparent

in position space.

Cluster labels are compared for the trajectories generated from the velocity vectors of two

initial states that lie in adjacent cells. If the cluster labels are different, a new velocity vector is

sampled at the midpoint between the original two velocity vectors. To complete the construction of

a six-dimensional state vector, the position vector of this new initial state is recovered by placing a

sample at the midpoint between the position components corresponding to the two original velocity

samples. Note that new samples are also placed between noise points since the initial conditions

Figure 6.8: Conceptual depiction of a set of planar initial conditions uniformly sampled in a square
grid and colored according to cluster assignment.
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corresponding to noise point trajectories are not members of a group. A conceptual example of

this sampling scheme, including samples between adjacent noise points, is presented in Figure 6.9.

The 19 new planar samples are shown with black circles, where one is colored red for clarity as an

example of a paired set of vectors in position and velocity space that compose a new six-dimensional

state vector. The full set of initial conditions now contains 35 state vectors (16 from the original

sampling and 19 from this refinement step). This inter-cluster sampling scheme is applied to the

L1 Lyapunov orbit scenario used throughout this chapter. This produces an additional 536 planar

initial conditions which fall between cluster boundaries, shown in black in Figure 6.7b). The inter-

cluster sampling process is summarized in this section in the flowchart provided in Figure 6.10.

The trajectories associated with the expanded set of initial conditions are clustered with

HDBSCAN to construct a new summary. First, the new trajectories are summarized with the

method presented in Step 2. Then, all trajectories are clustered using the same method and

governing parameters presented in Step 3 followed by border point association. The result is an

updated set of clusters and noise points.

This step sometimes results in some of the clusters from the initial summary being joined as

two or more separated groups gain sufficient new samples between them to identify a continuous

variation between members of the two groups. As an example, consider the expanded dataset

generated from initial states near the leftmost x-axis crossing of the 12.27-day L1 Lyapunov orbit

in the Earth-Moon CR3BP. In this case, clusters 9-13 of Figure 6.6 are joined to produce a single

Figure 6.9: Conceptual depiction of inter-cluster sampling between cluster boundaries where black
circles denote new samples.
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Figure 6.10: Overview of the inter-cluster sampling process in Step 4.

group of trajectories that briefly resemble the L1 Lyapunov orbit for approximately one quarter

of a revolution before impacting the Moon, performing a close approach to the Moon with a low

perilune, or departing through the L2 gateway. Although the trajectories terminate in different

regions, their shape continuously varies within the cluster and over this time horizon. Alternative

sampling schemes and feature vector definitions may enable HDBSCAN to separate this large

cluster of trajectories as their distribution in the higher-dimensional feature vector space evolves,

thereby producing a more detailed summary with a higher number of smaller clusters. For this

scenario, this step requires around eight seconds on the specified computer with a computational

complexity of O(N2).

6.6 Step 5: Append Summary with Finer Clusters

The final step of the data-driven categorization process involves grouping the remaining noise

points to capture finer clusters that may consist of fewer members. Specifically, there may be some

trajectories that are designated as noise, but are similar to fewer than (NminClust − 1) members.

Accordingly, this final step leverages the clustering method presented in Step 3 to identify smaller

groups of noise points that correspond to insufficiently sampled or low-density regions in the larger

dataset. In this case, the HDBSCAN input parameters are manually selected with smaller values

of NminCore and NminClust to construct locally-dense groups with ϵ∆τ = ϵv̂ = 0 due to the small

number of trajectories in this dataset. Then, these new, smaller clusters are appended to the

summary of the expanded dataset produced in Step 4. After this step, some trajectories may still
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be designated as noise.

Applying this final step to the remaining unlabeled trajectories after Step 4 in the 12.27-day

L1 Lyapunov orbit scenario in the Earth-Moon CR3BP allows the discovery of finer groupings from

amongst the unlabeled trajectories. Selecting NminCore = 1 and NminClust = 2 results in eight

small clusters that are appended to the cluster summary generated in Step 4, producing a total

of 21 clusters; selecting NminCore = 1 removes the notion of density when calculating the mutual

reachability distance. This step produces a larger number of more detailed clusters from the reduced

dataset. Using the same representation as Figure 6.6, Figure 6.11 displays the 21 motion types

that capture the array of geometries exhibited by 1,542 trajectories as well as the remaining six

trajectories that are designated noise. This final step in the data-driven process typically requires

on the order of 10−2 seconds on the specified computer. The total runtime for the example used

throughout this chapter is 25.25 seconds.

Analyzing Figure 6.11 reveals that each cluster successfully captures trajectories with a sim-

ilar geometry whereas distinct clusters separate trajectories with distinct geometries. For instance,

clusters 20-21 produced in Step 5 are noticeably different from the trajectories in the larger clus-

Figure 6.11: Final summary of trajectories generated for up to 17.3 days from a local point cloud
of initial states along the selected L1 Lyapunov orbit.
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ters. Other small clusters added in this step resemble existing larger clusters but either possess a

sufficiently different shape or temporal evolution, or exist in a more localized region of high density.

The remaining six trajectories that are designated as noise resemble the members of clusters 5,

8, 14, and 21 in the summary but do not lie in sufficiently dense regions to be joined with those

groups. Accordingly, the presented data-driven process automatically summarizes the generated

set of trajectories via detailed groups from localized regions of high density. This summary can

extract key motion types, reduce the complexity of manually analyzing a set of trajectories, or

potentially enable automation in support of path planning or orbit prediction tasks.

6.7 Summary of Governing Parameters and Decisions

A set of parameters and decisions are required to govern the data-driven categorization of a

set of trajectories that begin from a local region of the phase space. Table 6.1 summarizes these

parameters and decisions and lists their influence on the resulting summary. Alternative parameters

or decisions can be made throughout the trajectory summarization and clustering process to better

fit a desired application or increase the level of differentiation between trajectories.

Although the CR3BP is used to demonstrate the proof of concept in this research, it is

expected that the clustering-based method presented in this chapter would be useful for categorizing

trajectories generated in higher-fidelity models of a three-body system with little modification. For

this proof of concept, the CR3BP offers a sufficiently diverse and complex solution space while

supporting fast trajectory generation without reliance on additional parameters, such as an initial

epoch or spacecraft properties, required by higher fidelity models. Furthermore, the presented

approach does not include assumptions based on the selected system or dynamical model fidelity.
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Table 6.1: Parameters and decisions governing the data-driven categorization process.

Parameter/Decision Step(s) Influence on Categorization Process

Step size between initial con-
ditions

0 Influences the number of initial condition samples.

Cloud boundaries 0 Determines the size of the region of initial states
centered on the reference state.

Integration time 1 Allows distinct geometries to emerge, if they exist.
Can increase the required number of samples for
sufficient representation of solution geometry.

Discrete sample selection 2 Defines placement of discrete samples along con-
tinuous trajectories. Influences fidelity and char-
acteristics of the solution geometry that are cap-
tured by the selected states.

Number of discrete states, p 2 Influences fidelity of discrete representation of tra-
jectories and dimension of feature vector.

Feature selection 2 Influences similarity assessment across all trajec-
tories within the set and characteristics that will
be reflected in the resulting clusters.

Clustering algorithm 3, 5 Influences the recovered clusters.

NminCore 3, 5 Governs core distance calculation that is used to
estimate density across the dataset.

NminClust 3, 5 Specifies minimum number of members in a single
cluster.

ϵ 3, 5 Defines minimum desired resolution for separat-
ing two types of trajectories.



Chapter 7

Tree-Based Initial Guess Construction

With the incorporation of cislunar space into operational territory, agile spacecraft will play

a key role in successful cislunar operations by maneuvering and replanning trajectories in response

to hazardous situations. However, rapidly designing a complex trajectory in a multi-body gravi-

tational system often relies on an operator for low-level analysis and high-level decision making.

Typically, the trajectory designer must construct initial guesses for the path and maneuvers and

then correct the initial guesses to produce continuous, feasible trajectories. Furthermore, the chaotic

dynamics of a multi-body gravitational system can make rapid trajectory design a challenging and

computationally intensive problem.

To address the challenge of rapid and automatic initial guess construction in multi-body

gravitational environments, this chapter details the hierarchical tree-based planning approach for

automatically constructing initial guesses for spacecraft trajectories between two boundary con-

ditions. The design process consists of two phases: 1) growing a forest of trees that each locally

explore the phase space and 2) using the forest to generate initial guesses. To demonstrate the

utility of the tree-based framework, initial guesses are corrected to recover continuous trajectories.

Each step of the approach is demonstrated in this chapter for a planar transfer between L1 and L2

Lyapunov orbits at a Jacobi constant equal to 3.1556 in the Earth-Moon CR3BP. A wider variety

of results appears in Chapter 9. Additionally, computational times are provided for each step using

a computer with an AMD Ryzen 5 5600G with Radeon Graphics 4.20 GHz processor.
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7.1 Phase 1: Grow a Forest of Trees

Inspired by the use of multi-tree planning algorithms in robotics [46, 67, 108, 124], the first

phase of the tree-based planning approach to initial guess construction involves building a forest

of trees to discretely summarize a segment of the continuous solution space. Individually, each

tree is constructed as a directed graph that summarizes motion within a local region of the phase

space. A forest, composed of multiple trees, collectively explores a broader region of the phase

space. Because sequences of trees are used in this work to generate complex and geometrically

diverse global paths, the use of a forest of trees, as opposed to one or two RRTs, mitigates the risk

of recovering short but maneuver-inefficient paths between two boundary conditions. Furthermore,

this approach supports constructing complex paths that reach a target state without the use of

predefined waypoints or complex objective functions. Building the forest of trees consists of two

steps: i) sampling the tree roots and ii) growing the trees with branches that satisfy the dynamics

in the CR3BP.

7.1.1 Sampling Tree Roots

The tree roots are located at position vectors that are sampled from a uniform grid in the

configuration space. Inspired by the Kinodynamic Motion Planning by Interior-Exterior Cell Ex-

ploration [39] planner, the environment is represented by a square-cell grid with a specified cell

height uroot. Then, the position vectors of samples are located at unique cell vertices to uniformly

distribute samples within the configuration space of the environment, excluding its boundary and

the regions within the zero velocity curves. Starting from each boundary condition, samples are

also placed along each i-th periodic orbit at intervals of equal arclength, snat,i, calculated as

snat,i =
sarcL,i

⌊sarcL,i/sbranch⌋
(7.1)

where sarcL,i is the total arclength of the i-th periodic orbit and sbranch is the arclength of tree

branches that is defined in the next step of Phase 1, as described in Section 7.1.2. This root

placement strategy supports generating transfers that flow away from or towards the periodic
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orbits that define the boundary conditions [53].

For each of the sampled position vectors that do not lie along a periodic orbit, m velocity

unit vectors are selected. In a planar environment, m unit vectors are uniformly distributed in the

xy-plane in the range [0◦, 360◦) to possess an equal angular separation. In the spatial environment,

the near-uniform distribution of unit velocity vectors is achieved by first leveraging spiral sampling

with the Golden ratio to place points on the surface of a unit sphere [14]. Then, a unit velocity

vector originates at the center of the sphere and terminates at a point on the sphere’s surface.

Each unit vector is multiplied by the speed associated with a specific value of the Jacobi

constant. For transfers connecting periodic orbits at different energy levels, the Jacobi constant

is randomly selected from the interval [CJ1, CJ2] where CJ1 and CJ2 are defined as the Jacobi

constants of the initial and final periodic orbits, respectively. Each value of the Jacobi constant

is selected using MATLAB’s rand function that draws random scalar values from the uniform

distribution in the interval (0, 1) [68]. For transfers spanning a single energy level, the Jacobi

constant is equal to the desired Jacobi constant of the selected scenario.

Each unique combination of position and velocity vectors defines the tree root. For roots that

do not lie along a periodic orbit, m tree roots are located at the same position but with distinct

velocity vectors. However, if the root lies along a periodic orbit, the sampled velocity vector is

pointed in the direction of natural motion to avoid abrupt departures or arrivals. This process for

sampling the set of tree roots, R, is summarized by the flowchart in Figure 7.1. Each tree root

defines the first node in the tree.

Figure 7.1: Overview of the process for sampling tree roots in Phase 1.
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To demonstrate this sampling approach, consider the construction of an initial guess for a

planar transfer between a 12.24-day L1 Lyapunov orbit and a 14.79-day L2 Lyapunov orbit at a

Jacobi constant equal to 3.1556 in the Earth-Moon CR3BP. Figure 7.2 depicts a planar environment

where the Moon appears as a gray circle scaled to possess a radius of 1,738.0 km [16], red diamonds

locate L1 and L2, and the dark gray regions denote the forbidden regions at CJ = 3.1556. The

depicted region of the system is decomposed into cells with uroot = 0.025 nondimensional units.

Then, m = 8 velocity vectors are defined at each position vector such that each root possesses an

equal angular separation of 45◦. In addition, seven roots, including the boundary conditions, are

evenly distributed in arclength along each periodic orbit. These values of the governing parameters

produce a total of 1,030 roots distributed throughout the environment. In Figure 7.2, the position of

each root on the grid is shown with a gray circle. For clarity, the roots along each periodic orbit are

shown with red except for those located at the boundary conditions, which are displayed in purple.

Blue arrows correspond to velocity vector directions associated with positions sampled on the grid

Figure 7.2: Tree roots for building a forest to support construction of a planar path between L1

and L2 Lyapunov orbits at CJ = 3.1556: filled circles denote the positions of the roots whereas
arrows denote the direction of the velocity vectors at each root.
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whereas red or purple arrows show the velocity vector directions for positions sampled along the

periodic orbits. In this scenario, the initial state is located along the L1 Lyapunov orbit at x̄init =

[0.866634949946303, 0, 0, 0,−0.210056789639986, 0]T nondimensional units and the target state is

located along the L2 Lyapunov orbit at x̄targ = [1.12398465047742, 0, 0, 0, 0.158922217869289, 0]T

nondimensional units. Sampling these roots takes on the order of 10−1 seconds on the specified

computer.

7.1.2 Growing Trees

Grown from a root x̄root, each tree randomly explores a local region of the environment while

governed by the dynamics in the CR3BP using a variation of the traditional RRT algorithm. In

this work, a tree is iteratively extended by randomly selecting a growth node from the existing

nodes in the tree. The velocity vector at the selected node is randomly modified multiple times

to produce a set of new states with the same position vector as the growth nodes. These new

states are propagated to generate small arcs in the dynamical environment, producing edges, or

branches, in the tree that connect the growth node to a set of new nodes at the final states of the

arcs. At each step, the pseudorandom number generator in MATLAB’s randi [68] function is used

to randomly select the value of governing parameters. The process for growing the i-th tree, τi, in

the forest, F , is summarized in the flowchart in Figure 7.3 and described in detail throughout the

next few paragraphs.

The number of branches to extend from each growth node is randomly sampled. On the first

iteration of growing the tree, the tree root is the growth node and the number of branches, nbranch,

is sampled in (0,K] where K is a user-defined constant less than or equal to the desired number

of nodes in a tree, nτ . At least one branch must grow to initiate tree growth; therefore, zero is

omitted on the first iteration. For all successive iterations, nbranch is resampled in [0,K] to mimic

the traditional RRT algorithm built to promote efficient exploration of the environment.

The initial states of the nbranch branches emanating from a selected growth node possess the

same position vector but unique velocity vectors. First, angles are randomly selected from within a
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Figure 7.3: Overview of the process for growing the i-th tree in a forest in Phase 1.

specified range. Then, rotation matrices are used to calculate the new velocity unit vector that lies

within a specified maximum angle from the velocity vector of the growth node. This unit vector

is multiplied by the speed that would produce the same value of the Jacobi constant as all other

nodes in the current tree. Combining the position vector of the selected growth node with the new

velocity vector constructs an initial state for each of the nbranch branches. This approach to forest

construction enables each tree to explore its local environment by balancing random exploration

with limiting abrupt changes in velocity direction. These characteristics promote efficient tree

growth and have been observed to support identifying high-quality initial guesses for maneuver-

efficient paths using the forest.

In a planar transfer scenario, nbranch angles are sampled. These angles, θ̄ = [θ1, ..., θnbranch
],

are randomly sampled within the range [−γ, γ] where γ = 360◦

2m . Then, the velocity unit vector of

each of the nbranch branches emanating from the growth node is calculated via a rotation by each
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angle in θ̄ within the xy-plane. Mathematically, the i-th velocity vector, v̄rand,i, is calculated as

v̄rand,i =


cos(θi) − sin(θi) 0

sin(θi) cos(θi) 0

0 0 1

 v̄grow (7.2)

where v̄grow is the growth node’s 3× 1 velocity vector.

For a spatial scenario, two sets of rotation angles are sampled and defined using a set of axes

îĵk̂ local to each velocity vector. The k̂-axis lies along the cone’s axis of symmetry and the îĵ-plane

coincides with the base of the cone of a constant radius. Then, θ̄ is sampled as defined in the planar

case and a second set of angles, ψ̄ = [ψ1, ..., , ψnbranch
] ∈ [0◦, 360◦], is also randomly sampled. Using

these angles and a unit velocity vector aligned with the k̂-axis, v̂local, the i-th randomly sampled

velocity vector is calculated as

v̄rand,i = vCJRẑ(ξ)Rŷ(90− β)Rk̂(ψi)Rĵ(θi)v̂local (7.3)

If v̄0,g = [vx0,g, vy0,g, vz0,g]
T is the velocity vector at the growth node in the tree, a matrix R rotates

a three-dimensional point about a specified axis, ξ = tan−1 (vy0,g/vx0,g), β = tan−1 (vz0,g/vx0,g),

and vCJ is the speed that produces the same value of the Jacobi constant as all other nodes in the

current tree.

A spatial environment requires packing cones into a sphere to span the velocity space; there-

fore, the definition of γ provided for the planar scenario is not used. Rather, spherical coding, or

the packing of points on a sphere, must be employed [15, 76]. This work uses the putative optimal

spherical code by Kottwitz [15] for a three-dimensional sphere to determine that m = 21 such that

γ ≈ 22.5◦ for consistency with the planar scenario.

Each new initial state is used to generate an arc that produces a new child node that is

connected to the growth node via a branch. Each initial state is propagated forward in time in the

CR3BP for a specified constant arclength sbranch using a Runge-Kutta 8th/9th order method in

C++ via the GNU Scientific Library [1] with relative and absolute tolerances of 10−13 and 10−14,

respectively. However, propagation terminates early if the branch impacts a primary or crosses a



75

predefined boundary. As noted by Bruchko and Bosanac [53] when applying kinodynamic sampling

to initial guess construction, using the arclength as opposed to the integration time for branch

definition reduces the influence of dynamical sensitivity on the number and length of branches

throughout the phase space. The branch length is selected to be sufficiently long to capture natural

dynamics yet short enough to reasonably allow connections between branches. For each root that

lies along a periodic orbit, one natural arc is also generated for an arclength of snat,i to promote

connectivity between trees along the i-th periodic orbit, enabling up to one full revolution about

the orbits at the beginning and end of the transfer. The state at the end of each branch is a new

child node.

Directional branches are initially added via forward propagation until a tree obtains a pre-

defined number of nodes, nτ . To promote dynamical flow and exploration, additional branches are

then added by propagating nodes backward in time that possess at least one out-degree. If the

parent node of the new branch lies within a neighborhood, ζneigh, in configuration space of the

existing parents of the back-propagated node, the branch is considered redundant and not added to

the tree. Trees rooted along the final periodic orbit are grown using the opposite process: branches

are added via backward then forward propagation to promote flow onto the final periodic orbit.

Trees rooted at the initial and target states do not have additional branches added via backward

and forward propagation, respectively.

Roots with position vectors that are sufficiently close to the Moon and a velocity vector in

the direction of the Moon are removed if they do not produce valid branches within a specified

number of growth iterations. During tree growth, if a branch impacts the Moon, the branch is

discarded. After nτ failed propagation attempts, the root and its associated tree are removed from

the forest.

To demonstrate the tree generation process, consider the L1 to L2 Lyapunov orbit transfer

scenario used throughout this chapter. Figure 7.4 displays five trees in blue, magenta, black, red,

and purple constructed with nτ = 50 nodes, sbranch = 2uroot nondimensional units, γ = 22.5◦,

K = 5 nodes, and ζneigh = 5 × 10−3 nondimensional units. The roots of each tree are located
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Figure 7.4: A subset of five trees, each depicted with a different color, from the forest grown to
support planar path construction between L1 and L2 Lyapunov orbits at CJ = 3.1556 and satisfy
the dynamics in the CR3BP.

at the centers of the bold circles and arrows denote the direction of motion. Additionally, the

initial and target orbits are displayed with solid and dashed thick black lines, respectively, while

the orange circle and star locate the initial and target states. In the selected scenario, four tree

roots are removed due to nτ propagation attempts through the Moon; therefore, the final forest

consists of 1,026 trees grown from all but four of the roots in Figure 7.2. On the specified computer,

constructing the forest for this scenario typically requires about thirty seconds when computed in

parallel with four cores. The trees depicted in Figure 7.4 smoothly capture the flow in the CR3BP

while exploring local regions of the phase space. In the full forest, seven additional trees are located

at the position vectors associated with each of the depicted roots to span the velocity space at these

locations. This approach to tree growth enables generation of a diverse set of trees that explore

the phase space yet limit abrupt changes in velocity direction within each tree. Moreover, the trees

rooted on the grid may be reused when reversing or changing boundary conditions.
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7.2 Phase 2: Forest-Guided Initial Guess Construction

In the second phase of the hierarchical tree-based planning approach to trajectory generation,

a path between the boundary conditions is constructed using the forest. A path is constructed as

a sequence of nodes and branches, sampled from one or more trees. This phase exploits the

exploration conducted in the first phase to construct an initial guess by following three steps: i)

locating connections between trees in the forest; ii) identifying connected tree sequences; and iii)

using the tree sequences to generate initial guesses that connect a set of boundary conditions.

This approach is implemented using two hierarchical graph structures to reduce the computational

burden of discovering paths of various geometries and eliminate the need to encode an objective

function that guides path generation between boundary conditions.

7.2.1 Locating Connections Between Trees

To support searching the forest for a path, connections between trees are identified. In this

work, pairs of nodes that belong to distinct trees are connected if all three of the following conditions

are satisfied:

(1) Their position vectors lie within a specified distance ζtol. The discontinuity, ζtol, is selected

to support identifying nodes that are sufficiently close in the configuration space to promote

a successful corrections process while supporting recovery of a path in the forest that

connects the boundary conditions.

(2) The angle between their velocity vectors is less than or equal to a specified threshold,

selected as 2γ, i.e., the diameter of the velocity cone used to grow the trees in Phase 1.

This criterion avoids abrupt changes in velocity direction in the resulting initial guesses

without over-constraining the connections.

(3) The second node in the pair possesses at least one out-degree, indicating that the associated

branch extends forward in time to support traversing the forest.
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At this step, each tree may be connected to multiple trees at one or more locations. To improve

the computational efficiency of this step, a pair of trees is analyzed to identify connections if they

1) overlap in the configuration space or 2) are within a distance of ζtol at their closest point. This

entire process is summarized in the flowchart in Figure 7.5. Locating the connections in the forest

for the example used throughout this section typically requires about 3.5 minutes on the specified

computer when computed in parallel with four cores.

To demonstrate the identification of tree connections, consider a pair of trees that exist in

the forest generated in Phase 1 for the selected planar example. Figure 7.6a) presents an example

of two trees with five connections, denoted with red nodes, where ζtol = 5 × 10−3 nondimensional

units. In the zoomed-in view in Figure 7.6b), the connected nodes are indicated by dashed red

arrows that capture directionality of the connections, i.e., from branches along the blue tree to

branches along the black tree.

7.2.2 Identifying Connected Tree Sequences

To reduce the computational burden of searching for paths through a graph of the connected

trees, a hierarchical approach is employed. First, a tree sequence graph is constructed to generate

a set of tree sequences. Then, the tree sequences are used to construct a subgraph that is searched

to generate one or more paths.

Figure 7.5: Overview of the process for identifying connections between trees in Phase 2.
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Figure 7.6: a) Two trees connected by five sets of nodes, shown in red. b) The five connections
between the blue and black trees.

A tree sequence graph is constructed as a weighted, directed graph. Specifically, each vertex

of the graph represents an entire tree and the edges represent connections between trees. Figure

7.7 conceptually depicts a tree sequence graph where τs and τf are the trees rooted at the initial

and target states, respectively, and seven trees are rooted along the periodic orbits. The trees along

the initial and final orbits are always connected, as shown with solid arrows, in a direction that is

consistent with the flow along the orbit. These trees may also connect to other trees in the forest

in any direction, indicated by dashed, bidirectional arrows.

Each edge weight is equal to the minimum value of the relative velocity between all pairs of

Figure 7.7: Conceptual depiction of a tree sequence graph.
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connected nodes within the associated two trees. This edge weight, wj,l,seq, between nodes j and l

is calculated as

wj,l,seq = min

(
∥v̄i,out − v̄i,in∥

∥v̄i,out∥

)
∀i (7.4)

where v̄i,out and v̄i,in are the velocities of the i-th connected pair of outgoing and incoming nodes,

respectively, from trees j and l. Consistent with the approach used by Bruchko and Bosanac when

applying kinodynamic sampling to initial guess construction [53], using this weight encourages the

recovery of smooth paths while avoiding biasing a search algorithm toward recovering solutions

that maintain a lower speed, e.g., by avoiding close passes to the Moon.

The high-level tree sequence graph is searched to produce a sequence of connected trees from

the initial state to the target state. The first tree sequence is identified to minimize the cumulative

edge weight, i.e., an estimate of the total smoothness at the connections between trees. Additional

tree sequences that produce the next k − 1 lowest cumulative edge weights are also identified to

support the recovery of a variety of geometrically-distinct initial guesses. Although a variety of

graph search algorithms exist, this research leverages A∗ [83] and Yen’s algorithm [50].

To recover tree sequences that produce paths connecting the boundary conditions in this

work, information regarding the traversability of the trees comprising a sequence is incorporated

into the graph search. The information contained in the tree sequence graph does not provide

insight into whether a path exists between connected trees, only if trees are connected. Applying

a graph search algorithm to the high-level tree sequence graph may lead to tree sequences that,

when searched, do not produce paths connecting the boundary conditions. For example, consider

if a current tree τi is connected to a previous tree τi−1 through its j-th branch, bj,τi , and to the

next tree τi+1 via its a-th branch, ba,τi . A path connecting τi−1 − τi − τi+1 exists only if ba,τi is

reachable from bj,τi . However, the trees grown in Phase 1 are not fully traversable, meaning that

not all branches can be reached from any other branch within the same tree. Therefore, a path

might not exist within the tree sequence τi−1 − τi − τi+1.

The tree sequence graph is searched via a modification of Yen’s algorithm that is labeled in
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this dissertation as a k-smoothest search algorithm. The goal of this search algorithm is to generate

the k smoothest, yet diverse, sequences of traversable trees from which an array of geometrically

diverse paths can be extracted. This k-smoothest search algorithm, inspired by the search algorithm

presented by Miceli and Bosanac [33], uses both A∗ and Yen’s algorithms [50, 83].

7.2.2.1 k-Smoothest Search Algorithm

The k-smoothest search algorithm presented in this section, implemented by Giuliana E.

Miceli, addresses the challenge of directly applying the A∗ and Yen’s search algorithms to the

computation of tree sequences. The new algorithm produces a variety of traversable tree sequences

from which an array of geometrically-diverse paths can be extracted. The algorithm first searches

for one sequence that connects the trees rooted at the boundary conditions, and then searches for

multiple diverse sequences connecting these trees. This process produces k diverse sequences of

trees that can be searched to obtain initial guesses for spacecraft paths connecting the boundary

conditions.

First, the k-smoothest algorithm employs a variation of A∗ to recover the smoothest, traversable

tree sequence from a graph. The pseudocode for this approach is presented in Algorithm 1. Note

that the queue size and tree sequence length may be limited to improve the memory require-

ments of the search algorithm and reduce computational time. The cost associated with every

neighboring vertex representing a tree is computed as c(τi, τi+1) = g(τi, τi+1) + h(τi+1, τf ), where

g(τi, τi+1) is the cost to traverse the graph from the current tree τi to neighboring tree τi+1 and

the heuristic, h(τi+1, τf ), is defined as the true cost to traverse the graph from the neighboring tree

to the tree rooted at the target state, τf . For each incomplete path, the cost associated with it is

c(τs) = g(τs) + h(τi+1, τf ), where g(τs) is the sum of the edge weights from the start vertex, τs, to

the current vertex τi. At each search iteration, reachable neighboring trees are identified to ensure

the sequence is traversable from the current tree to the neighboring tree in line 7 of Algorithm 1.

This path is identified by analyzing nodes within each tree. The indices saved in the queue are used

to identify the node of the current tree, τi, in the set of nodes, NIN , that connect to the previous



82
Algorithm 1 Modified A* Search Algorithm for Tree Sequence Graph

1: Initialize a queue at the start tree. Each queue entry contains:

• A sequence of trees (an incomplete sequence),

• The current tree (last tree in the sequence),

• c(τs) and g(τs),

• Indices of the incoming tree nodes, NIN , for the current tree.

2: while current tree ̸= target tree do
3: Sort the queue in increasing order of c(τs).
4: Select the sequence with the lowest c(τs).
5: Identify all neighboring, connected trees to the current tree.
6: Remove neighboring trees used in the incomplete sequence to avoid cycles.
7: Identify the reachable neighboring trees.
8: Calculate c(τs) for each reachable tree.
9: Rank the reachable trees by increasing cost, c(τs).

10: for nneigh reachable trees do
11: Create a new sequence by appending the reachable tree to the current sequence and

computing g(τs) as the sum of the current sequence cost with the cost to the reachable
tree.

12: Add the new sequence to the queue with its associated values of g(τs), c(τs), and NIN

for the current tree.
13: end for
14: end while

tree, τi−1. Then, the nodes of the current tree that connect to the next tree, τi+1, are defined as

NOUT . Within the current tree, these node sets are evaluated to determine if NOUT are reachable

from NIN . If at least one node in NOUT is reachable, then the index of the reachable node in NOUT

is saved in the queue and the neighboring tree is retained for the next evaluation. Otherwise, the

tree is discarded as a neighbor.

After the smoothest tree sequence has been identified, the graph is searched for additional

k − 1 tree sequences. This process is implemented using Yen’s algorithm [50] with A* [83]. A

modification is included in this version of Yen’s algorithm, which removes the use of a root path

from the search over the subgraphs, promoting the recovery of more diverse tree sequences. The

search of k-smoothest paths terminates once the number of complete sequences between list A and

list B is greater than or equal to k. Leveraging the sequences obtained from list A and list B allows

for faster recovery of k sequences while retaining diversity in the solution set, albeit at the expense

of recovering suboptimal solutions.
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To demonstrate the process of generating tree sequences, consider the planar L1 to L2 Lya-

punov orbit transfer scenario presented within this chapter. Applying this graph search algorithm

to the high-level tree sequence graph in this example, composed of 81,608 edges and 1,026 vertices,

produces k = 100 smooth, diverse tree sequences in 48.5 minutes using the specified computer and

parallel computing with four cores. As an example, consider the 68th best tree sequence, composed

of seven trees, shown in Figure 7.8 with each tree plotted in its entirety.

7.2.3 Searching the Tree Sequences for Initial Guesses

The final step of Phase 2 focuses on recovering an initial guess for a trajectory from a tree

sequence. For each tree sequence, a localized path graph is constructed. The vertices are defined

as the nodes of every tree in the sequence. Edges are added between vertices associated with 1)

nodes within a single tree that are connected by a branch and 2) nodes that are connected across

distinct trees, as described in Section 7.2.1. This graph consists of weighted and directed edges

Figure 7.8: An example of a seven-tree sequence returned from the k-smoothest paths search
algorithm that connects the trees rooted at the boundary conditions.
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where the edge weight, wj,l,path, between vertices j and l is defined similar to Equation 7.4 as

wj,l,path =
∥v̄j − v̄l∥
∥v̄j∥

(7.5)

These subgraphs are less complex than the high-level tree sequence graph. Therefore, Dijkstra’s

algorithm [29], or A∗ with no heuristic, is used to identify the shortest path in the graph. This

path is composed of a sequence of vertices and edges that is converted to a sequence of nodes and

branches to supply an initial guess for a trajectory. Constructing and searching one subgraph on

the specified computer requires, on average, 0.3 seconds.

To demonstrate the process of generating an initial guess from a tree sequence, consider the

example of connecting boundary conditions along L1 and L2 Lyapunov orbits in the Earth-Moon

CR3BP. The tree sequence depicted in Figure 7.8 is used to construct a localized path graph that

is composed of 493 vertices and 504 edges. This graph is searched to produce a coarse initial guess

as displayed in Figure 7.9; in this new figure, the original tree sequence appears in the background

with transparency. The last tree in the sequence does not leverage any branches; only a single state

connects to the target state. Furthermore, this initial guess resembles the geometry of a known

heteroclinic connection, shown in gray, at a nearby value of the Jacobi constant, CJ = 3.1520 [26].

This path is characterized by a cumulative velocity discontinuity equal to 687.90 m/s and a time of

flight (TOF) equal to 26.12 days. Note, however, that because this initial guess is coarsely generated

and discontinuous, the cumulative velocity discontinuity is not necessarily reflective of the sum of

any impulsive maneuvers. Nevertheless, the recovery of this initial guess demonstrates that the

tree-based initial guess construction method works as intended: to enable automatic generation

of an initial guess that connects boundary conditions along periodic orbits while following the

dynamics of the CR3BP.

7.2.4 Summary of Governing Parameters and Decisions

The hierarchical tree-based procedure for automatically generating initial guesses for space-

craft trajectories is governed by a set of parameters and decisions. Table 7.1 summarizes these
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Figure 7.9: A coarse, zero-revolution initial guess connecting boundary conditions on L1 and L2

Lyapunov orbits at CJ = 3.1556 with a cumulative velocity discontinuity equal to 687.90 m/s and
estimated time of flight equal to 26.12 days. A heteroclinic connection at CJ = 3.1520 is provided
in gray for comparison.

governing parameters and decisions. Alternative selections for these parameters or decisions may

be used across different applications to increase the flexibility of path recovery or alter the compu-

tational requirements.

7.3 Assessing Geometric Similarity

In this work, multiple geometrically-distinct initial guesses are generated from distinct tree

sequences. To numerically assess the geometric similarity across initial guesses, a path similarity

assessment is performed. First, the initial guesses are categorized by their total absolute curva-

ture. Then, initial guesses within each curvature group are assessed for geometric similarity. This

numerical assessment supports the observation, via visual inspection, that distinct tree sequences

produce geometrically-distinct initial guesses.

Initial guesses generated from distinct tree sequences are categorized by their total absolute
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Table 7.1: Parameters and decisions governing the hierarchical tree-based planning process.

Governing Parame-
ter or Decision

Influence on Computation and/or Results Selected
Value

Grid size, uroot Influences the number of trees in the forest. 0.025

Number of velocity vec-
tors, m

Determines the size of the velocity cone, γ, and in-
fluences the number of trees in the forest. Smaller
velocity cones produce smoother initial guesses.

Planar: 8,
Spatial: 21

Maximum value for tree
branch growth, K

Defines the maximum number of tree branches
that can be added in a single growth iteration.
Influences the span of the environment explored
per tree.

5

Branch arclength,
sbranch

Influences the span of the environment explored
per tree, potential connectivity between trees,
graph size, and number of arcs in each initial
guess.

2uroot

Number of nodes in a
tree, nτ

Defines tree size, influences the span of the en-
vironment explored per tree, and localized path
graph size.

50

Neighborhood for redun-
dant branches, ζneigh

Defines tolerance for removing redundant tree
branches, influences time required to search the
local path graph.

5× 10−3

Position connection tol-
erance, ζtol

Defines tolerance in the configuration space for
identifying connections between tree branches, in-
fluences the discontinuity in initial guesses and
flexibility of path recovery.

5× 10−3

Velocity connection tol-
erance

Defines tolerance in the velocity space for identify-
ing connections between tree branches, influences
the discontinuity in initial guesses and flexibility
of path recovery.

2γ

Number of smoothest
paths, k

Defines the number of diverse tree sequences to
extract from the graph.

Planar: 100,
Spatial: 50

Number of neighbors for
exploration, nneigh

Determines the number of neighboring, reachable
trees explored at each iteration of the k-smoothest
graph search before arriving to the target vertex
and influences the required computational time.

20

Graph edge weights Influences the paths generated from each graph. Equations 7.4,
7.5

Maximum path length Sets the maximum length of a tree sequence re-
turned from the graph search, influences compu-
tational time.

Planar: 20,
Spatial: 100

Maximum queue size in
A∗

Influences memory requirements of search algo-
rithm.

500
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curvature, κtot, to simplify the analysis of the solution space. The total absolute curvature is defined

as [113]

κtot = (t0, tf ) =

∫ tf

t0

κ dsarcL =

∫ tf

t0

κ
√
ẋ2 + ẏ2 + ż2 dt (7.6)

to capture the number of revolutions that the trajectory completes around an evolving center

of curvature where κ is defined in Equation 6.2. To calculate the total absolute curvature of a

discontinuous initial guess, κtot is calculated along each branch and then summed. Then, paths are

sorted into approximate groups by intervals of 2π in κtot, approximating the number of revolutions

along the path without the need for visual inspection.

The initial guesses within each curvature group are then compared to determine if the initial

guesses possess sufficiently different geometries. A path similarity assessment is applied to a set of

paths within the same curvature group and governed by the maximum angular difference between

a pair of velocity unit vectors along two paths. Dynamic time warping (DTW) is used to compare

time series data, particularly in the field of data mining [98, 114]. DTW may be used to align two

time series of unequal length by warping the data to align features on a common time axis [68, 114].

Therefore, DTW is used to create paths of equal length by warping the position coordinates at each

node using MATLAB’s dtw function [68]. Then, the angle between the i-th pair of velocity unit

vectors along a pair of warped initial guesses is calculated as Ωi = cos−1(v̂i,1 · v̂i,2). If the maximum

angle between one pair of initial guesses, Ωmax, is greater than 4γ, the coarse paths are considered

geometrically diverse. When this path similarity assessment is applied to the 100 initial guesses

generated for the L1 to L2 Lyapunov orbit transfer design scenario used throughout this chapter,

all initial guesses pass the similarity assessment.

Four additional coarse initial guesses are selected to demonstrate the geometric diversity

across a set of initial guesses for spacecraft trajectories. Figure 7.10 presents the initial guesses

with the fifth (dark blue), eighth (red), 18th (maroon), and 34th (light blue) smallest cumulative

relative velocity discontinuities while performing a single revolution about the Moon between the

selected L1 and L2 Lyapunov orbits. Despite occasionally sharing arcs, these initial guesses possess
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Figure 7.10: Four geometrically-distinct initial guesses connecting boundary conditions along L1

and L2 Lyapunov orbits at CJ = 3.1556.

distinct geometries in the lunar region and/or along the departure and arrival segments.

7.4 Recovering a Continuous Path

Continuous spacecraft trajectories are recovered from initial guesses using multiple-shooting

for differential correction. First, impulsive maneuvers are manually placed at 1) the connections to

the initial and final periodic orbits and 2) discontinuities between branches that exist near maxima

in the curvature κ that tend to correspond to locations near apses relative to primary bodies

or libration points. Because maneuver placement is often influenced by the application, mission

constraints, or needs of a user, the selected strategy supports the proof of concept in this research;

however, exploring alternative strategies or optimal maneuver placement is an interesting avenue

for future work. To support successful recovery of a continuous transfer, one revolution about each

i-th periodic orbit, consisting of natural arcs of arclength snat,i, is then appended to the beginning

and end of the initial guess. Next, the initial guess is corrected to preserve its geometry while

recovering a continuous trajectory; during corrections, the maneuvers shift.
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Continuation is used to gradually prioritize reducing the total maneuver requirements over

maintaining geometric resemblance to the initial guess, often substantially lowering the cumulative

velocity discontinuities at locations where maneuvers occur. As opposed to optimization, continu-

ation is used for maneuver reduction in this proof of concept due to its computational speed and

generation of solutions that remain close to the last known solution after each continuation step.

This approach produces a solution that may be close to, but not guaranteed to be, optimal; the

use of local, constrained optimization is an interesting avenue for future work.

The initial guess in Figure 7.9 produces one solution that prioritizes geometric resemblance

to the initial guess and one solution that prioritizes reducing the maneuver requirements. These

transfers are presented in Figure 7.11: the initial guess is plotted in gray, the geometry-focused

solution is displayed in purple with a total ∆v = 36.88 m/s and a flight time of 28.03 days, and

the energy-focused solution is depicted in blue with a total ∆v = 29.78 m/s and a flight time equal

Figure 7.11: The evolution of a zero-revolution transfer connecting boundary conditions on L1 and
L2 Lyapunov orbits at CJ = 3.1556: initial guess (gray), geometry-focused solution (purple) with
∆v equal to 36.88 m/s and TOF equal to 28.03 days, and energy-focused solution (blue) with ∆v
equal to 29.78 m/s and TOF equal to 28.20 days.
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to 28.20 days. The three impulsive maneuver locations are depicted by filled circles, colored to

match their associated trajectory. For the corrected solutions, the time of flight of a trajectory is

calculated as the time elapsed between the first and final maneuver locations, signifying departure

from or arrival to the boundary conditions.

The solutions depicted in Figure 7.11 demonstrate the successful recovery of smooth, con-

tinuous spacecraft trajectories using continuation and possess geometries resembling heteroclinic

connections at nearby energy levels. This example also demonstrates the value of the coarsely-

designed initial guesses to rapidly generate meaningful, continuous transfers with substantially

lower velocity discontinuity while retaining the geometry of the initial guess. An in-depth presenta-

tion and discussion of the continuous transfers recovered for the L1 to L1 Lyapunov orbit transfer

scenario used throughout this chapter is presented in Chapter 9.



Chapter 8

Generate Collision-Free Trajectories

This chapter details a two-level, cell-based approach to collision identification to address the

challenge of ensuring spacecraft trajectories are collision-free. In this work, a dynamic obstacle is

defined as a corridor composed of continuous, geometrically-similar trajectories. These corridors

are generated from a set of trajectories that begin within a local initial state set surrounding the

estimated state of an object at its observation epoch. Note, however, that this initial state set

does not currently encode probability information. Then, the data-driven categorization method

presented in Chapter 6 is employed to categorize the trajectories associated with the initial state set

by their spatiotemporal variations. The result is a set of obstacle corridors that satisfy the following

characteristics: within each corridor, trajectories possess a similar geometry whereas trajectories in

distinct corridors possess distinct geometries. A collision is defined to exist when a spacecraft path

overlaps with at least one dynamic obstacle corridor in position and time. The goal of collision-

checking in this research is to identify the spacecraft paths that avoid these corridors. The collision-

checking approach is demonstrated for a planar transfer between L1 and L2 Lyapunov orbits at a

Jacobi constant equal to 3.1556 in the Earth-Moon CR3BP. A wider variety of results appears in

Chapter 9. Additionally, computational times are provided for each step using a computer with an

AMD Ryzen 5 5600G with Radeon Graphics 4.20 GHz processor.
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8.1 Dynamic Obstacle Maps

This work employs approximate cell decomposition to create dynamic obstacle maps for

corridor avoidance. Each trajectory in a corridor is represented by a finite set of discrete states.

Then, the environment is decomposed into a set of cells where the smallest cells conservatively

cover the obstacle corridors.

The key components to creating a dynamic obstacle map include cell size and shape. In

this work, the cells are defined as squares or cubes that, at the smallest resolution, possess a

constant height of umin where a collision margin of umin
2 is guaranteed for any state along an

object path that lies in the center of a cell. In this work, umin = 21 km is selected such that

the collision margin is equal 10.5 km; to support a proof of concept, this value is informed by a

spacecraft’s 3σ position uncertainty in cislunar space [17]. This design decision was informed by

the Multimission Automated Deepspace Conjunction Assessment Process (MADCAP) developed

by NASA’s Jet Propulsion Laboratory for predicting and avoiding close approaches of space objects

and conducting conjunction risk assessments [17]. According to MADCAP, spacecraft are predicted

to be too close if they are within the trajectory’s 3σ uncertainty estimates [17]. However, a constant

cell size that is informed by a spacecraft’s uncertainty does not reflect the growth of the uncertainty

over time or variation based on location in cislunar space. A valuable avenue of future work includes

constructing maps with a variable cell size to reflect this growth.

To guarantee a collision tolerance of umin
2 , buffer cells are added to the decomposition. These

buffer cells are the same size and shape as the cells that approximate the dynamic obstacles and

offer an additional layer around the cells covering the obstacles. This buffer is useful when two

subsequent discrete states along a trajectory contained within an obstacle corridor lie just outside

a cell but the continuous path connecting them passes through the cell. This cell is designated as

a buffer cell, and is no longer mislabeled as collision-free.

To adequately represent each potential collision path, reduce the number of mislabeled cells,

and decompose the environment without leaving any path segment in the obstacle corridor uncov-
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ered by cells, the potential collision paths must be sufficiently summarized with states. A challenge

with discretely representing the continuous obstacle corridors is selecting the number of discrete

states to be small enough such that the corridors are sufficiently mapped with cells during de-

composition while large enough to maintain computational efficiency [48]. In this work, geometric

insight is used to determine that discretizing a potential collision path into states spaced equally

in arclengths of smin will sufficiently represent each path when smin is calculated as

smin = umin − δmin (8.1)

where umin is the cell height and δmin > (
√
2−1)umin. This arclength discretization also guarantees

that any mislabeled cells, or cells containing segments of paths without discrete states, will contain

path segments of lengths less than smin. A limitation of this method is that the desired cell height

is not guaranteed to be the exact size of the cells at the true minimum resolution; this resolution

is dictated by the size of the environment. As long as the actual smallest cell size is greater than

the desired minimum cell size, the guarantees described above remain true.

To reduce computational complexity and simplify the collision checking process, the dynamic

obstacle corridors are decomposed piecewise in time for user-defined intervals. In this work, each

map spans approximately two days. Additionally, the maps overlap in time to increase the accuracy

of trajectory representation in each time interval since the continuous trajectories are coarsely

represented with discrete states. Furthermore, this multi-map approach eliminates the need to

associate multiple times with a single cell when a trajectory overlaps with itself and is represented

for all time via a single map.

8.2 Corridor Avoidance

Corridor avoidance is performed in this work using a two-level collision detection algorithm in

conjunction with dynamic obstacle maps. First, inspired by cell-based collision detection methods,

a set of coarse dynamic obstacle maps is generated for specified time intervals. Then, lazy collision

checking is used to identify a coarse collision region. If an overlap exists in position between the
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obstacle corridor and the spacecraft trajectory, a fine collision detection step is employed. This two-

level approach reduces the computation time of collision checking while retaining sufficient accuracy

to identify collisions without requiring parameterization of the dynamic obstacle corridors. The

two-level collision checking process for a single dynamic obstacle map is summarized in the flowchart

in Figure 8.1 and described in more detail in the following paragraphs.

Coarse collision detection identifies a coarse region of the environment where the spacecraft

path and obstacle corridor overlap in position space. The coarse obstacle maps are created with cells

that are 100 times larger than the desired cell size, ucoarse = 100umin. Accordingly, the trajectories

in the obstacle corridor are represented with discrete states spaced equally in arclengths of scoarse.

Mathematically,

scoarse = ucoarse − δcoarse (8.2)

This coarse approximation reduces the computational requirements of the collision checking process,

Figure 8.1: Overview of the two-level, cell-based corridor avoidance process for a single dynamic
obstacle map.
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particularly when no overlap is present between the spacecraft’s trajectory and the obstacle corridor

for a given time interval. The spacecraft path is represented using the same discretization method

for the trajectories in the obstacle corridor to ensure sufficient representation of the continuous

path when used in conjunction with a dynamic obstacle map.

To provide an example of constructing coarse collision maps piecewise in time, consider the

energy-focused spacecraft trajectory recovered in Chapter 7 that connects the L1 and L2 Lya-

punov orbits. Then, assume the state of an observed object at an epoch tobj is located within a

local neighborhood centered on x̄obj(tobj) = [1.02454653948, 0.0541769443650, 0,−0.380916147888,

−0.110095105627, 0]T nondimensional units along a distant prograde orbit (DPO) at CJ = 3.1700

in the Earth-Moon CR3BP. The local neighborhood possesses a radius of 10.5 km in position and

10.5 m/s in velocity. The potential future motions of this object have been grouped by their spa-

tiotemporal variations using the data-driven categorization process presented in Chapter 6. The

summary of the object’s motion is presented in Figure 9.3 and supplies 18 unique dynamic obstacles.

Consider a scenario where the spacecraft is expected to begin its transfer 12.11 days before

the object’s observation epoch, tobj . In this scenario, the 16th obstacle corridor is used to demon-

strate the collision checking process. An overview of the selected scenario is provided in Figure

8.2 where the color gradients denote the elapsed time along each path, filled black circles locate

maneuvers, arrows provide the directions of motion, a filled pink triangle denotes the location along

the continuous spacecraft path at tobj , and a filled pink square locates the location of the dynamic

obstacle along its corridor at tobj . Figures 8.3 - 8.4 display the 27 coarse obstacle maps constructed

for this scenario where each subfigure presents a coarse collision map for the specified time interval,

red circles denote the discrete states representing the obstacle corridor over the associated time

interval, and square cells compose the obstacle map.

To determine if a potential collision exists, the discrete states representing a spacecraft path

are added to a dynamic obstacle map. If at least one cell in the map contains one or more discrete

states representing the spacecraft trajectory for the map’s specified time interval, the path is marked

as a potential collision trajectory. Then, the potential collision cells are coarsely bounded to identify
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Figure 8.2: A continuous spacecraft path (blue) that connects L1 and L2 Lyapunov orbits is
analyzed for collisions with a dynamic obstacle corridor (copper) that originates near the vicinity
of a distant prograde orbit.

a potential collision region. Coarse collision checking is repeated for all segments corresponding to

the predefined time ranges until either a collision is identified during fine collision checking or all

segments have been analyzed for collisions.

Following the example outlined in this chapter, overlaying the spacecraft trajectory on the

second coarse map in Figure 8.3 reveals an overlap in position and time. This overlap is depicted

in Figure 8.5a) where arrows denote the directions of motion, the spacecraft trajectory is plotted

in blue, and the trajectories within the obstacle corridor are colored with a dark brown to copper

gradient to reflect the elapsed time. Figure 8.5b) magnifies the region bounded in teal in Figure

8.5a) and the black rectangle highlights the coarsely bounded collision region.

If a coarse collision region is identified, fine collision checking is employed. First, the trajecto-

ries in the obstacle corridor are discretized into arcs that each possess an arclength of smin. Then, a

detailed map is constructed by decomposing cells in the coarse collision region in parallel until the

desired cell height, umin, is met. All trajectories in the obstacle corridor that pass through a coarse

cell are propagated forward in time while capturing locations where the trajectories pass through

cells of height umin. This propagation procedure is repeated for the segment of the spacecraft



97

Figure 8.3: Coarse collision maps 1 - 15 constructed for a dynamic obstacle corridor observed at
tobs = 12.11 days near a distant prograde orbit at CJ = 3.1700 in the Earth-Moon CR3BP.
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Figure 8.4: Coarse collision maps 16 - 27 constructed for a dynamic obstacle corridor observed at
tobs = 12.11 days near a distant prograde orbit at CJ = 3.1700 in the Earth-Moon CR3BP.
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Figure 8.5: Overlap in position and time between a dynamic obstacle corridor and spacecraft
trajectory is identified for t ∈ [12.11, 14.11] days.

trajectory that corresponds to the map’s time interval. This representation of the obstacle corridor

and spacecraft path supports accurate comparisons of position and time without the computational

effort of checking all cells in the coarse obstacle map.

Collisions occur if the spacecraft path overlaps with the obstacle corridor in position and

time in at least one cell in a detailed obstacle map. First, the positions are analyzed to determine

if overlap is present. Then, the time ranges for each object are compared. The time ranges are

composed of the object’s entrance and exit times, from propagation, of the potential collision cell.

Collision detection terminates in this step upon first occurrence of a collision. If no collision is

identified, fine collision detection is repeated for all cells in the coarse bounding region until either

a collision is identified or all cells have been checked. In the scenario used throughout this chapter,

a collision is identified at a collision time, tcoll, equal to 13.29 days and is visualized in Figure 8.6

where the filled yellow circles locate the discrete states representing the spacecraft path.

8.3 Summary of Governing Parameters and Decisions

To govern the automatic generation of a collision-free spacecraft path, a set of parameters

and decisions is required. Table 8.1 presents the governing parameters and decisions for the two-

level, cell-based collision checking method. Alternative selections for parameters or decisions may

be used to alter the computational requirements and representation of objects in the environment.
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Figure 8.6: An example of a fine collision checking map with a collision occurring at tcoll = 13.29
days.

Table 8.1: Parameters and decisions governing the collision checking process.

Governing Parame-
ter/Decision

Influence on Computation and Re-
sults

Selected Value

Cell height, ucoarse and umin Influences the computational effort for
corridor avoidance, accuracy of recover-
ing collisions.

umin = 21 km,
ucoarse = 100umin

Cell shape Influences sensitivity to numerically-
approximate computations, complexity
of cell decomposition, ability to control
the minimum cell resolution.

Square or cube of
constant height

Discrete trajectory represen-
tation, scoarse and smin

Equally spaced in intervals of arclength
as a function of the cell height to min-
imize insufficient representation of con-
tinuous paths.

Equations 8.1 - 8.2

Obstacle map time interval Reduces collision checking complexity. 2 days



Chapter 9

Application: Collision-Free Spacecraft Transfers in the Earth-Moon CR3BP

This chapter demonstrates the data-driven categorization, tree-based planning, and corridor

avoidance methods presented in Chapters 6-8 for selected scenarios in the Earth-Moon CR3BP.

First, trajectories that emanate from a local region of the phase space are categorized by their spa-

tiotemporal variations and summarized using a digestible motion summary. The motion summaries

consist of dynamic obstacle corridors where every trajectory in a corridor possesses similar geome-

tries and trajectories across corridors possess distinct geometries. Then, an array of geometrically-

distinct initial guesses are generated using a hierarchical tree-based planning approach. A selected

set of initial guesses are corrected to demonstrate the utility of the tree-based framework. Finally,

one set of continuous spacecraft trajectories are analyzed for collisions with dynamic obstacles.

While these approaches are applied in the Earth-Moon CR3BP in this dissertation, it is expected

that they may be used with higher-fidelity models of other three-body systems with minimal re-

quired modifications.

9.1 Spacecraft Motion Summaries from Local Initial State Sets

The data-driven categorization process described Chapter 6 is used to summarize sets of

trajectories generated from local point clouds of initial conditions near three reference states, in

addition to the example provided in Chapter 6, in the Earth-Moon CR3BP. These reference states

are selected to produce sets of trajectories with different characteristics or itineraries to support

exploring both the generalizability and limitations of the presented data-driven categorization pro-
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cess. For all scenarios, the same HDBSCAN input parameters used for the L1 Lyapunov orbit

scenario in Chapter 6 are used: NminCore = 4, NminClust = 5, α = 5◦, and ϵthresh = 10−3√p in Step

4; and NminCore = 1, NminClust = 2, ϵ = 0 in Step 5. Table 9.1 summarizes the reference states in

each scenario.

Table 9.1: Reference states for each selected scenario demonstrating the data-driven categorization
process.

Reference Orbit CJ x̄PO = [r̄PO, v̄PO]T [nd]

11.99-day L1

northern halo
3.1486

r̄PO = [0.824125682194, 0, 0.0566946270474]
v̄PO = [0, 0.167128773665, 0]

7.962-day L1

NRHO
2.9947

r̄PO = [0.988454510548, -0.00114952066778, 0.00705658766736]
v̄PO = [-0.0150237631700, -1.82248741510, -0.148294929894]

10.92-day DPO 3.1700
r̄PO = [1.02454653948, 0.0541769443650, 0]
v̄PO = [-0.380916147888, -0.110095105627, 0]

9.1.1 Summarized Motions Near L1 Halo Orbits

9.1.1.1 L1 Northern Halo Orbit

For this case, a reference state is selected at the leftmost crossing of the xz-plane along the

L1 northern halo orbit depicted with a dashed black curve in cluster 7 of Figure 9.1. The local

point cloud of initial states are centered on this reference state. The associated trajectories are

generated for 17.3 days and described by p = 12 states. The data-driven categorization process

identifies 15 clusters composed of 1,677 trajectories as displayed in Figure 9.1. This figure uses a

similar configuration as Figure 6.11: the horizontal and vertical axes represent the x- and y-position

coordinates, respectively, in the Earth-Moon rotating frame in nondimensional units; the final state

of each trajectory is denoted with a blue dot whereas color indicates the elapsed time along each

trajectory; and black arrows denote the direction of motion. However, in this spatial scenario,

each subfigure shows an individual cluster projected onto the xy−, xz−, and yz−planes for clarity.

There are seven noise points that do not appear in the summary.

Figure 9.1 reveals that solutions either impact the Moon, remain near the reference orbit,

revolve around the Moon with different geometries, or depart to the Earth vicinity. These key
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Figure 9.1: Fifteen types of 17.3-day trajectories that begin near the selected reference state along
a L1 northern halo orbit at CJ = 3.1486 in the Earth-Moon CR3BP.

motion types are separated across distinct clusters. In some cases, such as cluster 3, a single

motion type captures a continuous evolution of a large set of trajectories over the selected time

interval. However, propagating these trajectories for a longer time may result in additional geo-

metric differentiation and, potentially, multiple clusters. Alternatively, the trajectories in clusters
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4-7 perform one revolution about the Moon. However, due to the selected small values of NminCore

and NminClust and slight variations in shape, time, and region of termination, these trajectories are

separated into distinct clusters.

9.1.1.2 L1 Near Rectilinear Halo Orbit

For the selected L1 near rectilinear halo orbit (NRHO) in the Earth-Moon CR3BP, the

reference state is placed near perilune. Then, trajectories are generated from the local point cloud

of initial states near this reference state, propagated for 17.3 days and sampled using p = 10 states

spaced equally in arclength. Applying the data-driven categorization process to the resulting 3,498

trajectories produces a summary with three distinct motion types and zero ungrouped trajectories.

These clusters, along with the selected NRHO, are plotted in Figure 9.2 using the same configuration

and spatial representation as Figure 9.1. In this figure, the second and third clusters separate

motions that impact the Moon from those that quickly depart the vicinity of the NRHO with

substantially different geometries. The first cluster in Figure 9.2 captures trajectories that remain

close to the NRHO for the majority of the 17.3 days before finally departing. On either side of the

cluster, the trajectories end in different regions of the solution space: either in the Moon vicinity or

the Earth vicinity. However, across the cluster, the trajectories continuously evolve between these

two behaviors, consistent with the use of a velocity-based feature vector and governing parameters

Figure 9.2: Three types of 17.3-day trajectories that begin near perilune along the selected L1 near
rectilinear halo orbit at CJ = 2.9947 in the Earth-Moon CR3BP.
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that focus on local assessments of similarity.

9.1.2 Summarized Motions Near a Distant Prograde Orbit

Trajectories are propagated from a local point cloud of initial states near a reference state that

lies between perilune and apolune along a DPO at a Jacobi constant of 3.1700 in the Earth-Moon

CR3BP. In this example, 1,506 trajectories are generated for 26.05 days to allow distinct geometries

to emerge and described by p = 24 states. All but nine of the trajectories are summarized in the 18

clusters depicted in Figure 9.3, with the same representation as Figure 6.11. Across the 18 clusters

in Figure 9.3, trajectories in each cluster possess a similar geometry and distinct geometries appear

in different clusters. For instance, clusters 1-2 capture trajectories that resemble the reference

DPO. Clusters 4-9, however, summarize trajectories that depart through the L2 gateway. These

trajectories are likely separated into different clusters due to the evolution of the sampled states as

they reach distinct locations in the exterior region. Cluster 3 then captures a transition between

these two itineraries. Next, clusters 10-11 capture trajectories that perform a few revolutions

around the Moon with two different geometries. Finally, clusters 12-18 contain trajectories with

Figure 9.3: Distinct types of 26.05-day trajectories beginning near a reference state between perilune
and apolune along a DPO at CJ = 3.1700 in the Earth-Moon CR3BP.
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a similar geometry that are distributed across multiple clusters due to localized variations in the

1) path near the first apolune, 2) second perilune passage, and 3) location of the final state. This

additional geometric differentiation supplies a more detailed summary of the key motion types.

9.2 Planar Transfers Between L1 and L2 Lyapunov Orbits

To demonstrate the use of the hierarchical tree-based approach for automatic and rapid

collision-free trajectory design described in Chapter 7, two planar design scenarios in the Earth-

Moon CR3BP are explored in this section. Table 9.2 summarizes the orbital parameters and

boundary conditions used in each scenario. These scenarios are selected to demonstrate that 1)

geometrically distinct initial guesses for spacecraft trajectories can be automatically generated and

2) collisions with dynamic obstacles can be identified, when they exist. The values of the governing

parameters used in these scenarios are listed in Table 7.1. Furthermore, to demonstrate the utility

of tree-based initial guess construction, four initial guesses are selected in each case for correction.

Finally, the continuous trajectories recovered in the second scenario are assessed for collisions.

Table 9.2: Orbit parameters and boundary conditions for each planar transfer design scenario.

Case Ref. Orbits CJ Boundary Conditions [nd]

1

12.24-day L1

Lyapunov
3.1556 x̄init = [0.866634949946303, 0, 0, 0,−0.210056789639986, 0]T

14.79-day L2

Lyapunov
3.1556 x̄targ = [1.12398465047742, 0, 0, 0, 0.158922217869289, 0]T

2

12.24-day L1

Lyapunov
3.1556 x̄init = [0.866634949946303, 0, 0, 0,−0.210056789639986, 0]T

14.90-day L2

Lyapunov
3.1459 x̄targ = [1.11440879949729, 0, 0, 0, 0.204364798565404, 0]T

9.2.1 Single-Energy-Level Transfers

This example continues the transfer design scenario between L1 and L2 Lyapunov orbits at

CJ = 3.1556 as presented in Chapter 7. Specifically, the same forest as in Section 7.1.2 is searched

to produce 100 initial guesses. Figures 9.4 - 9.8 showcase the wide array of geometries present across



107

Figure 9.4: Initial guesses 1-20 with distinct geometries for spacecraft trajectories connecting
boundary conditions along L1 and L2 Lyapunov orbits at CJ = 3.1556 in the Earth-Moon CR3BP.
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Figure 9.5: Initial guesses 21-40 with distinct geometries for spacecraft trajectories connecting
boundary conditions along L1 and L2 Lyapunov orbits at CJ = 3.1556 in the Earth-Moon CR3BP.
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Figure 9.6: Initial guesses 41-60 with distinct geometries for spacecraft trajectories connecting
boundary conditions along L1 and L2 Lyapunov orbits at CJ = 3.1556 in the Earth-Moon CR3BP.
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Figure 9.7: Initial guesses 61-80 with distinct geometries for spacecraft trajectories connecting
boundary conditions along L1 and L2 Lyapunov orbits at CJ = 3.1556 in the Earth-Moon CR3BP.
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Figure 9.8: Initial guesses 81-100 with distinct geometries for spacecraft trajectories connecting
boundary conditions along L1 and L2 Lyapunov orbits at CJ = 3.1556 in the Earth-Moon CR3BP.
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this set of initial guesses. In each subfigure, the horizontal and vertical axes are the x- and y-axes

of the Earth-Moon rotating frame as labeled in the bottom left subfigure using nondimensional

units; all subfigures possess the same axis limits in x and y. In addition, the Moon is depicted

as a gray circle scaled to possess its radius; red diamonds denote L1 and L2; the gray curves

denote the ZVCs at CJ = 3.1556; the orange circle and star locate the initial and target states,

respectively; the initial and final orbits are shown with solid and dashed black lines, respectively;

and the initial guesses are colored to alternate between light and dark blue to differentiate between

branches leveraged from different trees. Each initial guess is recovered from a unique tree sequence

composed of four to 15 trees and uniquely numbered from lowest to highest values of the cumulative

relative velocity discontinuity.

A wide array of geometries are present across these 100 initial guesses. Each initial guess

possesses start and end segments that do not abruptly depart from or arrive onto the Lyapunov

orbits. Furthermore, initial guesses may complete almost one revolution about one or both periodic

orbits as demonstrated by initial guesses 1, 32, 56, 64, and 93; directly depart from or arrive onto

the initial and final orbits, as seen in initial guesses 19, 50, and 82; or perform a high-curvature

turn near the ZVCs, exhibited by initial guesses 16, 31, 47, and 84. Additional geometric variety

is present in the vicinity of the Moon as initial guesses possess up to three revolutions about the

Moon or partial revolutions in the vicinity of the periodic orbits before returning to the Moon’s

vicinity. This geometric diversity in the initial guesses may be useful for supplying a variety of

trajectory options to a designer, ground support, or onboard decision-making algorithm.

Four coarse initial guesses are corrected to study their geometric evolution. Each initial

guess is associated with two continuous solutions: an energy-focused trajectory that prioritizes

reducing the maneuver requirements and a geometry-focused trajectory that prioritizes geometric

resemblance to the initial guess. The characteristics of the continuous trajectories associated with

the selected initial guesses are summarized in Table 9.3. Since these transfers span a single energy

level, the Jacobi constant could be constrained during correction. However, this constraint may

not allow recovery of continuous transfers that geometrically resemble the initial guess.
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Table 9.3: Summary of transfer characteristics connecting planar L1 and L2 Lyapunov orbits at
CJ = 3.1556.

Case Fig. #
Initial Guess

ID # - Priority
Corrected Path

∆v [m/s] TOF [days] ∆v [m/s] TOF [days]

1

9.9 1,528.54 13.88
80 - Geometry 386.32 25.66
80 - Energy 5.85 26.85

9.10 1,349.93 28.52
85 - Geometry 443.55 42.86
85 - Energy 6.77 38.21

9.11 1,171.75 22.60
87 - Geometry 542.50 34.12
87 - Energy 19.14 30.34

9.12 1,602.38 21.15
65 - Geometry 308.37 28.50
65 - Energy 125.94 26.88

Two of the selected initial guesses perform geometrically-distinct, low-curvature revolutions

about the Moon but correct to similar energy-focused trajectories. The coarse initial guesses with

the 80th and 85th lowest values of the relative velocity discontinuity are depicted in Figures 9.9

- 9.10 along with their corresponding transfers. The configuration of Figures 9.9 - 9.10 is the

Figure 9.9: The evolution of a single-revolution transfer connecting boundary conditions on L1 and
L2 Lyapunov orbits at CJ = 3.1556: initial guess (gray), geometry-focused solution (purple) with
∆v equal to 386.32 m/s and TOF equal to 25.66 days, and energy-focused solution (blue) with ∆v
equal to 5.85 m/s and TOF equal to 26.85 days.



114

Figure 9.10: The evolution of a geometrically-distinct single-revolution transfer connecting bound-
ary conditions on L1 and L2 Lyapunov orbits at CJ = 3.1556: initial guess (gray), geometry-focused
solution (purple) with ∆v equal to 443.55 m/s and TOF equal to 42.86 days, and energy-focused
solution (blue) with ∆v equal to 6.77 m/s and TOF equal to 38.21 days.

same as the configuration of Figure 7.11: the initial guess is plotted in gray, the geometry-focused

solution is plotted in purple, and the energy-focused solution is displayed in blue. Additionally,

the ZVCs are plotted at CJ = 3.1556. Eight and 10 maneuvers are manually placed along these

initial guesses, respectively. The corrections process produces a family of smooth transfers that

resemble the initial guesses. The lunar revolution exhibited by the geometry-focused solution in

Figure 9.10 resembles orbits found in the distant prograde orbit family. As energy is prioritized

during corrections, the total maneuver magnitude is significantly reduced in both scenarios, as

listed in Table 9.3. The geometry-focused solution in Figure 9.9 possesses a ∆v = 386.32 m/s and

is reduced to 5.85 m/s. Similarly, the ∆v of the solutions in Figure 9.10 is reduced from 443.55

m/s to 6.77 m/s. Both single-revolution initial guesses converge to an energy-focused solution that

exhibits the geometry of a known a heteroclinic connection at a nearby Jacobi constant equal to

3.1564 [26].
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The next set of initial guesses selected for correction exhibit high-curvature revolutions about

the Moon. The initial guesses and their continuous solutions are displayed in Figures 9.11 - 9.12

and possess the 87th and 65th lowest values of relative velocity discontinuity. Nine maneuvers are

placed along both initial guesses. The geometry of the initial guess in Figure 9.11 significantly

evolves as the total maneuver magnitude reduces from 542.50 m/s to 19.14 m/s, as listed in Table

9.3. This significant reduction in maneuver requirements may be a result of the existence of a

known single-revolution heteroclinic connection at a nearby value of the Jacobi constant [26]. The

solutions in Figure 9.12 exhibit less geometric variance as the maneuver magnitude is prioritized

during correction, despite a decrease of 182.43 m/s in the ∆v.

The variation in Jacobi constant is analyzed across each of the eight continuous trajectories

that connect boundary conditions between L1 and L2 Lyapunov orbits at CJ = 3.1556. At the

start of each arc along each transfer, the Jacobi constant is calculated and plotted in Figure 9.13.

Figure 9.11: The evolution of a geometrically-distinct transfer connecting boundary conditions on
L1 and L2 Lyapunov orbits at CJ = 3.1556: initial guess (gray), geometry-focused solution (purple)
with ∆v equal to 542.50 m/s and TOF equal to 34.12 days, and energy-focused solution (blue) with
∆v equal to 19.14 m/s and TOF equal to 30.34 days.
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Figure 9.12: The evolution of a single-revolution transfer with high curvature that connects bound-
ary conditions on L1 and L2 Lyapunov orbits at CJ = 3.1556: initial guess (gray), geometry-focused
solution (purple) with ∆v equal to 308.37 m/s and TOF equal to 28.50 days, and energy-focused
solution (blue) with ∆v equal to 125.94 m/s and TOF equal to 26.88 days.

The discrete values of the Jacobi constant are located with black circles while the desired value of

the Jacobi constant, CJ = 3.1556, is marked by a red dashed line. Additionally, each subfigure

is labeled with the trajectory identification number and priority type: geometry-focused (G) and

energy-focused (E). As expected, the energy-focused transfers not only possess less overall variation

in CJ , but also, generally, exhibit less drastic changes in CJ between arcs along the transfers than

the geometry-focused trajectories. Visualizing the change in the Jacobi constant is particularly

interesting for the transfers corresponding to initial guesses 65 and 85 as one or both of their

corrected solutions pass through the ZVCs due to changes in CJ , as seen in Figures 9.10 and 9.12 .

9.2.2 Multi-Energy-Level Transfers

Consider a transfer design scenario between L1 and L2 Lyapunov orbits at different CJ .

A forest is generated using the governing parameters listed in Table 7.1 where the tree roots
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Figure 9.13: Evolution of the Jacobi constant along the geometry- (G) and energy-focused (E)
solutions for transfers connecting L1 and L2 Lyapunov orbits at CJ = 3.1556, marked with a
dashed red line, in the Earth-Moon CR3BP.

span the desired range of CJ . Figure 9.14 displays the value of the Jacobi constant at each tree

root using a blue asterisk; tree roots are labeled with unique tree identification numbers (Tree

ID). The minimum, mean, and maximum values of the Jacobi constant are also indicated by red

horizontal lines. This figure demonstrates that the states at the tree roots span the desired range,

CJ = [3.1459, 3.1556], between the Jacobi constant values of the initial and final orbits. Note that

tree roots with the same position vector but distinct velocity vectors correspond to states at unique

values of CJ . In this scenario, the forest is composed of 1,190 trees.

Figure 9.14: The state vectors of the tree roots span the desired range of Jacobi constant values,
CJ = [3.1459, 3.1556].
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One hundred discontinuous initial guesses are recovered for this scenario. The set of geomet-

rically-distinct initial guesses are displayed in Figures 9.15 - 9.19 with the same representation as

Figures 9.4 - 9.8 except branches that compose the initial guesses are colored to reflect the asso-

ciated value of the Jacobi constant. These initial guesses exhibit similar geometries to the initial

guesses spanning a single value of CJ ; this may suggest a continuous geometric evolution within this

solution space across different energy levels. The characteristics for the corrected transfer scenarios

in this section are summarized in Table 9.4.

The initial guesses with the lowest and third-lowest values of the relative velocity discontinuity

are corrected to study their geometric evolution. Figures 9.20 - 9.21 depict these initial guesses

and their corresponding transfers with the same configuration as Figure 9.9. In each figure, the

ZVCs are plotted at CJ = 3.1459 even though the Jacobi constant evolves along the transfer. Seven

impulsive maneuvers are manually placed along initial guess 1 while 10 maneuvers are placed along

initial guess 3. When corrected, geometry- and energy-focused paths are recovered from families

of smooth transfers that resemble the initial guesses and are plotted in Figures 9.20 - 9.21. While

heteroclinic connections do not exist for transfers connecting periodic orbits at different energy

levels, the geometry of the energy-focused solution in Figure 9.20 resembles the geometry of a

known zero-revolution heteroclinic connection [26]. Similar geometry is exhibited by the continuous

transfers in Figure 7.11. Furthermore, the solutions provided in Figure 9.21 possess resemblance to

Table 9.4: Summary of transfer characteristics connecting a planar L1 Lyapunov orbit at CJ =
3.1556 and a planar L2 Lyapunov orbit at CJ = 3.1459.

Case Fig. #
Initial Guess

ID # - Priority
Corrected Path

∆v [m/s] TOF [days] ∆v [m/s] TOF [days]

2

9.20 1,165.01 20.66
1 - Geometry 252.60 23.08
1 - Energy 14.04 26.49

9.21 923.18 25.94
3 - Geometry 312.98 26.92
3 - Energy 21.78 28.02

9.22 883.45 15.90
62 - Geometry 315.31 26.81
62 - Energy 24.66 26.07

9.23 1,540.14 26.47
72 - Geometry 313.01 33.12
72 - Energy 150.62 34.43



119

Figure 9.15: Initial guesses 1-20 with distinct geometries for spacecraft trajectories connecting
boundary conditions along an L1 Lyapunov orbit at CJ = 3.1556 and L2 Lyapunov orbit at CJ =
3.1459 in the Earth-Moon CR3BP.
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Figure 9.16: Initial guesses 21-40 with distinct geometries for spacecraft trajectories connecting
boundary conditions along an L1 Lyapunov orbit at CJ = 3.1556 and L2 Lyapunov orbit at CJ =
3.1459 in the Earth-Moon CR3BP.
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Figure 9.17: Initial guesses 41-60 with distinct geometries for spacecraft trajectories connecting
boundary conditions along an L1 Lyapunov orbit at CJ = 3.1556 and L2 Lyapunov orbit at CJ =
3.1459 in the Earth-Moon CR3BP.
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Figure 9.18: Initial guesses 61-80 with distinct geometries for spacecraft trajectories connecting
boundary conditions along an L1 Lyapunov orbit at CJ = 3.1556 and L2 Lyapunov orbit at CJ =
3.1459 in the Earth-Moon CR3BP.
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Figure 9.19: Initial guesses 81-100 with distinct geometries for spacecraft trajectories connecting
boundary conditions along an L1 Lyapunov orbit at CJ = 3.1556 and L2 Lyapunov orbit at CJ =
3.1459 in the Earth-Moon CR3BP.
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Figure 9.20: The evolution of a zero-revolution transfer that connects boundary conditions on L1

and L2 Lyapunov orbits at different CJ : initial guess (gray), geometry-focused solution (purple)
with ∆v equal to 252.60 m/s and TOF equal to 23.08 days, and energy-focused solution (blue)
with ∆v equal to 14.04 m/s and TOF equal to 26.49 days.

the energy-efficient solution in Figure 9.11. Identifying similar geometries in continuous trajectories

at different energy levels further suggests that geometries in this solution space exist and evolve

across multiple energy levels.

Additionally, the initial guesses with the 62nd and 72nd lowest values of the relative velocity

discontinuity are corrected for analysis. The coarse initial guesses and corresponding transfers are

depicted in Figures 9.22 - 9.23. For both examples, 11 maneuvers are manually placed along the

initial guess. In Figure 9.22, there is little difference in the path followed by the geometry- to

energy-focused transfers, even as the total maneuver magnitude reduces from 315.31 m/s to 24.66

m/s, as listed in Table 9.4. This characteristic may be a result of the geometric similarity of the

initial guess to a known single-revolution heteroclinic connection at a nearby, single value of the

Jacobi constant [26]. In Figure 9.23, the geometry-focused transfer closely resembles the initial

guess. However, the energy-focused trajectory noticeably differs from the initial guess near apolune
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Figure 9.21: The evolution of a single-revolution transfer with a high apolune that connects bound-
ary conditions on L1 and L2 Lyapunov orbits at different CJ : initial guess (gray), geometry-focused
solution (purple) with ∆v equal to 312.98 m/s and TOF equal to 26.92 days, and energy-focused
solution (blue) with ∆v equal to 21.78 m/s and TOF equal to 28.02 days.

as the total maneuver magnitude reduces by over half, as listed in Table 9.4. However, the high-level

geometry of this transfer is retained through corrections and continuation.

Overall, transfers spanning multiple energy levels retain the geometry of the initial guess

throughout the corrections and continuation process more often than transfers spanning one energy

level. Unlike environments at a single value of the Jacobi constant, speed changes are captured

in the transfers presented in these multi-energy scenarios, which may aid in preserving geometry.

Furthermore, the continuous span of the desired range of the Jacobi constant in the forest promotes

smaller changes in speed across trees compared to constructing multiple layers of the forest at

selected intervals of the Jacobi constant.

The variation in Jacobi constant is analyzed across each of the continuous transfers that

connect boundary conditions between the selected L1 and L2 Lyapunov orbits spanning multiple

energy levels. The variation in Jacobi constant across each trajectory is shown in Figure 9.24 with
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Figure 9.22: The evolution of a low-curvature, single-revolution transfer that connects boundary
conditions on L1 and L2 Lyapunov orbits at different CJ : initial guess (gray), geometry-focused
solution (purple) with ∆v equal to 315.31 m/s and TOF equal to 26.81 days, and energy-focused
solution (blue) with ∆v equal to 24.66 m/s and TOF equal to 26.07 days.

the same configuration as Figure 9.13. However, in this figure CJ = 3.1556 is marked with a red

dashed line while CJ = 3.1459 is denoted with a blue dashed line. Similar to the single-energy

scenario presented in Section 9.2.1, the energy-focused transfers possess less variation in the Jacobi

constant than the geometry-focused transfers. In particular, the energy-focused transfers recovered

from initial guesses 1, 3, and 62 remain between or near the Jacobi constants of the selected L1

and L2 Lyapunov orbits. The energy-focused transfer recovered from initial guess 72, on the other

hand, departs this range. This departure occurs near arc 30, which corresponds to the region of

the trajectory that crosses the ZVCs plotted at CJ = 3.1459 in Figure 9.23.

9.2.2.1 Identification of Collision Trajectories

Consistent with the example in Chapter 8, the same 18 dynamic obstacles that are plotted

in Figure 9.3 of Section 9.1 are compared to the continuous transfers in Figures 9.20 - 9.23. In
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Figure 9.23: The evolution of a geometrically-distinct transfer that connects boundary conditions
on L1 and L2 Lyapunov orbits at different CJ : initial guess (gray), geometry-focused solution
(purple) with ∆v equal to 313.01 m/s and TOF equal to 33.12 days, and energy-focused solution
(blue) with ∆v equal to 150.62 m/s and TOF equal to 34.43 days.

this example, the energy-focused transfer in Figure 9.22 collides with two obstacle corridors if a

spacecraft leverages these transfers 9.57 hours or 13.82 hours, respectively, before tobj , the epoch

associated with the possible initial states of the observed object near the DPO. These collision

paths are depicted in Figures 9.25 - 9.26 where the color gradients denote the elapsed time along

each path, filled black circles locate maneuvers, arrows provide the directions of motion, a filled

pink triangle denotes the location along the continuous spacecraft path at tobj , and a filled pink

square locates the location of the dynamic obstacle along its corridor at tobj . In this example, only

the energy-focused trajectory collides with the dynamic obstacles at the red cross marker; therefore,

the spacecraft may be able to avoid these collisions while still following a specific type of transfer by

using the geometry-focused solution. However, if the total ∆v along this geometry-focused transfer

is too large, a transfer generated from another initial guess, such as those presented in Figures 9.15

- 9.19, could be analyzed to assess whether it offers an alternative, collision-free option.
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Figure 9.24: Evolution of the Jacobi constant along the geometry- (G) and energy-focused (E)
solutions for transfers connecting an L1 Lyapunov orbit at CJ = 3.1556, marked with a dashed red
line, and an L2 Lyapunov orbit at CJ = 3.1459, marked with a dashed blue line, in the Earth-Moon
CR3BP.

Figure 9.25: The geometry-focused spacecraft transfer recovered from initial guess 1 collides with
an obstacle corridor at approximately tcoll = 9.60 days.
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Figure 9.26: The geometry-focused spacecraft transfer recovered from initial guess 1 collides with
an obstacle corridor at approximately tcoll = 18.11 days.

Consider a second scenario where the spacecraft is scheduled to start its transfer 10.98 hours

after tobj . The geometry-focused trajectory in Figure 9.23 is identified as a collision trajectory if

the observed object follows the motion corridor shown in Figure 9.27 where the collision is denoted

with a red cross marker at tcoll = 12.01 days. By adjusting its departure time, this spacecraft could

follow this transfer while avoiding this collision. Otherwise, the energy-focused solution could be

leveraged to follow a similar path yet avoid the collision, with a substantially lower total ∆v.

A second obstacle is observed in the vicinity of the same DPO 2.29 days later. Therefore,

collision checking is again employed to determine the safety of a spacecraft traveling between

Lyapunov orbits at different energy levels in the Earth-Moon CR3BP. A spacecraft following the

energy-focused trajectory presented in Figure 9.20 would collide with the obstacle 11.51 days later

if the obstacle is within the obstacle corridor presented in Figure 9.28. To avoid the collision,

alternative itineraries could be considered.

In a final scenario, a spacecraft is scheduled to leverage the geometry-focused transfer in

Figure 9.21 8.28 hours before the observation of a spacecraft in the vicinity of L1. The esti-
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Figure 9.27: The geometry-focused spacecraft transfer recovered from initial guess 72 collides with
an obstacle corridor at approximately tcoll = 12.01 days.

Figure 9.28: The geometry-focused spacecraft transfer recovered from initial guess 1 collides with
an obstacle corridor at approximately tcoll = 14.26 days.
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mate of the object’s state at its observation epoch, tobj , is x̄obj(tobj) = [0.816988444235, 0, 0, 0,

0.195756600373, 0]T nondimensional units. The dynamic obstacle corridors associated with this

observed spacecraft are provided in Figure 6.11. Upon analysis for collisions with the desired trans-

fer, a collision is detected at tcoll = 14.01 days past the start of the transfer. Figure 9.29 displays

the collision scenario. The collision can be avoided by adjusting the departure time of the space-

craft along this itinerary or evaluating an alternative trajectory to determine if it would provide a

collision-free path.

9.3 Spatial Transfers Between L1 and L2 Northern Halo Orbits

Spatial transfers connecting periodic orbits in the Earth-Moon CR3BP are designed using the

hierarchical tree-based approach. Consider designing a transfer between an 11.99-day L1 northern

halo orbit and a 14.80-day L2 northern halo orbit at CJ = 3.1486 with boundary conditions located

at x̄init = [0.86270116846605,−0.0636380951699078,−0.0225545843958819,−0.0352699550755518,

−0.101522330019963, 0.103361518534065]T nondimensional units and x̄targ = [1.11739052000141,

Figure 9.29: The geometry-focused spacecraft transfer recovered from initial guess 3 collides with
an obstacle corridor at approximately tcoll = 14.01 days.
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0.00636863101120599,−0.0201820985356166, 0.000516716132122006, 0.184154882350836, 0.0042384

4301013162]T nondimensional units. In this scenario, the forest consists of 19,041 trees. Fifty initial

guesses are recovered from unique tree sequences, composed of six to 32 trees from the forest. The

initial guesses provided in Figures 9.30 - 9.38 are recovered from sequences consisting of six to eight

trees while Figures 9.39 - 9.42 contain discontinuous paths found in longer tree sequences. The left

column in each figure provides a spatial view of the initial guesses while the right column presents a

projection of the initial guesses onto the xz-plane to aid visualization. In each subfigure, the initial

and target states are represented by an orange circle and star, respectively, and the branches from

distinct trees alternate between light and dark blue colors in sequential order. These discontinuous

paths smoothly depart from and arrive onto the halo orbits, which is a result of the velocity cone

constraint used to build and connect trees. Furthermore, each path exhibits a different geometry.

The revolutions vary by shape, such as possessing high apolunes in initial guess 4 or exhibiting

lower curvature revolutions in initial guess 36; high versus low inclination as seen in the xz-plane

for initial guesses 3, 16, and 22; and rotation or twisting, such as the difference between initial

guesses 14, 31, and 33. Initial guesses 2, 11, 16, 18, and 34 are used to generate continuous trans-

fers. The characteristics of these initial guesses and their associated transfers are summarized in

Table 9.5.

Table 9.5: Summary of transfer characteristics connecting L1 and L2 northern halo orbits at CJ =
3.1468.

Fig. #
Initial Guess

ID # - Priority
Corrected Path

∆v [m/s] TOF [days] ∆v [m/s] TOF [days]

9.43 1,730.57 19.92
2 - Geometry 692.91 22.46
2 - Energy 184.29 24.67

9.44 2,536.01 22.49
34 - Geometry 569.18 28.76
34 - Energy 241.53 30.42

9.45 2,718.44 15.41
16 - Geometry 782.31 17.64
16 - Energy 382.33 24.82

9.46 2,716.95 23.25
18 - Geometry 891.93 24.31
18 - Energy 188.31 25.31

9.47 1,875.17 20.51
11 - Geometry 585.16 19.46
11 - Energy 93.24 27.11
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Figure 9.30: Initial guesses 1-4 for geometrically-distinct spacecraft trajectories connecting bound-
ary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon CR3BP.
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Figure 9.31: Initial guesses 5-8 for geometrically-distinct spacecraft trajectories connecting bound-
ary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon CR3BP.
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Figure 9.32: Initial guesses 9-12 for geometrically-distinct spacecraft trajectories connecting bound-
ary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon CR3BP.
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Figure 9.33: Initial guesses 13-16 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.34: Initial guesses 17-20 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.35: Initial guesses 21-24 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.36: Initial guesses 25-28 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.37: Initial guesses 29-32 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.38: Initial guesses 33-36 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.39: Initial guesses 37-40 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.40: Initial guesses 41-44 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.41: Initial guesses 45-48 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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Figure 9.42: Initial guesses 49-50 for geometrically-distinct spacecraft trajectories connecting
boundary conditions along L1 and L2 northern halo orbits at CJ = 3.1486 in the Earth-Moon
CR3BP.
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The orientation of initial guess 2 with respect to the Moon evolves during corrections. The

corresponding transfers, with 10 impulsive maneuvers, are provided in the rightmost subfigures of

Figure 9.43 while the initial guess is plotted in the leftmost subfigures. Both a spatial view and

projection onto the xz-plane are presented in Figure 9.43 to aid visualization. The geometry-focused

trajectory possesses a similar rotation and inclination to the initial guess; however, the inclination

is lowered as the total maneuver magnitude is prioritized. Overall, the high-level geometry of the

initial guess is preserved.

The transfers generated from initial guess 34 leverage nine impulsive maneuvers and exhibit

little variance in their geometry. In fact, Figure 9.44 shows that only minor differences appear in

the departure segment from the L1 northern halo orbit and the inclination of the revolutions with

respect to the Moon. As reducing control energy is prioritized, a greater portion of the transfer

Figure 9.43: a) Spatial representation of initial guess 2. b) Spatial representations of the geometry-
focused (purple) and energy-focused (blue) transfers. c) Initial guess 2 projected onto the xz-plane.
d) Geometry- and energy-focused transfers projected onto the xz-plane. The geometry-focused
transfer possesses a ∆v equal to 692.91 m/s with a TOF equal to 22.46 days while the energy-
focused solution has a ∆v equal to 184.29 m/s and TOF equal to 24.67 days.
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Figure 9.44: a) Spatial representation of initial guess 34. b) Spatial representations of the geometry-
focused (purple) and energy-focused (blue) transfers. c) Initial guess 34 projected onto the xz-plane.
d) Geometry- and energy-focused transfers projected onto the xz-plane. The geometry-focused path
is associated with a ∆v equal to 569.18 m/s and TOF equal to 28.76 days. The energy-focused
transfer requires a total maneuver magnitude of 241.53 m/s and a flight time of 30.42 days.

remains in the vicinity of the L1 northern halo orbit during departure and the inclination of the

revolutions lowers with respect to the Moon.

Initial guess 16 exhibits a twisted, high-curvature revolution about the Moon. Figure 9.45

displays the initial guess and corrected paths, which leverage eight impulsive maneuvers. The

geometry-focused trajectory possesses minimal variance with respect to the initial guess. However,

the reduction in total maneuver magnitude between the geometry- and energy-focused trajectories

results in a significant variation in size and orientation of the revolution about the Moon. This

reduction is equal to 399.98 m/s, which is calculated using the ∆v listed in Table 9.5.

The transfers associated with initial guess 18 possess significant geometric evolution from the

initial guess. At a high level, the geometry of the initial guess is retained in both transfers shown

in Figure 9.46. However, the geometry of the energy-focused solution varies significantly from that
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Figure 9.45: a) Spatial representation of initial guess 16. b) Spatial representations of the geometry-
focused (purple) and energy-focused (blue) transfers. c) Initial guess 16 projected onto the xz-plane.
d) Geometry- and energy-focused transfers projected onto the xz-plane. The solution in purple has
a total maneuver magnitude equal to 782.31 m/s with a TOF equal to 17.64 days while the path
in blue possesses a total ∆v equal to 382.33 m/s with a TOF equal to 24.82 days.

of the initial guess: the revolutions about the Moon are more gradual and oriented at a different

inclination with respect to the Moon. Nine maneuvers are manually placed along both solutions.

Significant geometric evolution also occurs between initial guess 11 and its corrected trajec-

tories. Compared to the initial guess, the geometry-focused trajectory is rotated and twisted about

the Moon and possesses a higher apolune as seen in Figure 9.47. The geometry of the trajectory

continues to evolve as ∆v is reduced to recover an energy-focused transfer, which possesses a lower

inclination and lower curvature revolution about the Moon than the geometry-focused trajectory.

The variation in Jacobi constant is analyzed across each of the ten continuous trajectories

that connect boundary conditions between L1 and L2 northern halo orbits at CJ = 3.1486 in the

Earth-Moon CR3BP. The variation in Jacobi constant across each trajectory is provided in Figure

9.48 with the same configuration as Figure 9.13 where CJ = 3.1486 is denoted with a red dashed

line. Unlike previous scenarios, not all energy-focused spatial transfers exhibit less variation in
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Figure 9.46: a) Spatial representation of initial guess 18. b) Spatial representations of the geometry-
focused (purple) and energy-focused (blue) transfers. c) Initial guess 18 projected onto the xz-
plane. d) Geometry- and energy-focused transfers projected onto the xz-plane. The geometry-
focused spacecraft trajectory in purple possesses a higher ∆v, equal to 891.93 m/s, than the energy-
focused path whose ∆v is equal to 188.31 m/s. The times of flight are 24.31 days and 25.31 days,
respectively.

the Jacobi constant than the associated geometry-focused transfers. The energy-focused transfer

recovered from initial guess 16, for instance, possesses an overall lower ∆v than the corresponding

geometry-focused transfer but spans a wider range of Jacobi constants. The geometry-focused

transfer spans the range CJ = [3.0580, 3.1515] while the energy-focused transfer spans the range

CJ = [3.0210, 3.1623]. This is accompanied by a significant change in geometry, as seen in Figure

9.45 to reduce the total maneuver magnitude.
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Figure 9.47: a) Spatial representation of initial guess 11. b) Spatial representations of the geometry-
focused (purple) and energy-focused (blue) transfers. c) Initial guess 11 projected onto the xz-plane.
d) Geometry- and energy-focused transfers projected onto the xz-plane. The geometry-focused
spacecraft trajectory possesses a ∆v equal to 585.16 m/s while the energy-focused has a ∆v equal
to 93.24 m/s. The flight times are 19.46 days and 27.11 days, respectively.

Figure 9.48: Evolution of the Jacobi constant along the geometry- (G) and energy-focused (E)
solutions for transfers connecting L1 and L2 northern halo orbits at CJ = 3.1486, marked with a
dashed red line, in the Earth-Moon CR3BP.



Chapter 10

Concluding Remarks

This dissertation presents a proof of concept for a new approach to collision-free spacecraft

trajectory design in multi-body systems that leverages a combination of techniques from astrody-

namics, data mining, and robotics. To summarize potential future spacecraft motions, dynamic

obstacle corridors are constructed from local point clouds of initial states along periodic orbits.

Then, a hierarchical tree-based planning approach is used to rapidly and autonomously construct

arrays of geometrically-distinct initial guesses for spacecraft trajectories. To demonstrate the utility

of the tree-based framework, correction and continuation schemes are employed to recover continu-

ous trajectories. Then, corrected trajectories are analyzed for collisions with the dynamic obstacle

corridors. This proof of concept is demonstrated for collision-free spacecraft trajectory design in

the Earth-Moon CR3BP.

A clustering-based framework was developed to summarize the types of possible motions

generated from a local point cloud of initial conditions by their geometric and temporal variations.

In this proof of concept, initial states are propagated forward in time in the Earth-Moon CR3BP

to generate the associated continuous trajectories. Each trajectory is then discretized into a set of

states that are evenly distributed as a function of arclength. Finite-dimensional feature vectors are

constructed to summarize each continuous trajectory using the velocity direction at each sample

and elapsed time between samples. Then, HDBSCAN is used to cluster these feature vectors.

Finally, these clusters are updated with additional information to increase their accuracy and

ensure less prevalent geometries are captured, if they exist. The result is a set of clusters that
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supply a digestible summary of the array of possible motion corridors emanating from a local point

cloud of initial states. Through application to four scenarios in the Earth-Moon CR3BP, this data-

driven categorization approach was demonstrated to automatically generate groups of trajectories

with distinct spatiotemporal evolutions, when these differences exist. In each case, these clusters

summarized over 1,000 trajectories via several key motion types. The automatic generation of these

summaries may eventually reduce the burden on an analyst or support automation when identifying

potential spacecraft motions for space situational awareness or collision-free path planning.

To address the challenges of rapid and automatic spacecraft trajectory design in chaotic dy-

namical environments, a new, tree-based framework was presented for constructing collision-free

spacecraft trajectories in a multi-body gravitational system. First, initial guesses construction

consists of two phases: 1) growing a forest of trees that captures dynamical flow throughout the

environment and 2) using the forest to guide generation of an initial guess for a path connecting two

boundary conditions. Leveraging a forest of trees enables rapid generation of initial guesses by not

requiring solutions to boundary value problems and employing a hierarchical structure. Through

application to two scenarios, this approach is demonstrated to automatically recover geometrically-

distinct initial guesses between sets of boundary conditions along periodic orbits in the Earth-Moon

CR3BP. The initial guesses exhibit distinct geometries and produce continuous transfers that re-

tain their individual geometries. Then, a lazy, cell-based collision detection method is developed

to address challenges with efficiently and robustly recovering collision-free trajectories when using

discrete representations of continuous paths. Collision detection is performed for spacecraft tra-

jectories when in the proximity of dynamic obstacle corridors that could, for example, represent

possible motions of another spacecraft. If a transfer collides with one of these corridors, its depar-

ture time may be altered or a different initial guess may be leveraged to avoid the collision. This

automated method for initial guess construction and collision identification may reduce reliance

on a human operator during trajectory design, eventually support onboard redesign of spacecraft

trajectories, and enable a safe and sustainable cislunar environment.
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10.1 Recommendations for Future Work

The proof of concept for the collision-free spacecraft trajectory design method presented in

this dissertation would benefit from further improvement and application to additional trajectory

design scenarios. The list of future work that warrants investigation includes the following:

• Incorporating probabilities associated with trajectories sampled from a local initial state

set would expand the applicability of this work to trajectory prediction problems. These

probabilities could be incorporated during generation of the input data, categorization,

or after the motion summary has been created. Furthermore, associating a likelihood of

occurrence with each motion type in a motion summary may reduce the computational

time required for collision checking to limit the analysis to the most probable motion types.

• The current data-driven categorization method relies on manual selection of the governing

parameters for HDBSCAN. Creating an automated and adaptive method for parameter

selection would reduce the reliance on a human analyst who must possess, or develop, an

intuition for selecting these parameters.

• Examining the relationship, if one exists, between the motion corridors recovered using

the data-driven categorization process and the structure of the local neighborhood of the

reference trajectory could supply insight useful for motion prediction.

• The clustering-based framework for summarizing trajectory motion successfully categorized

trajectory sets by their spatiotemporal variations. However, some limitations emerged,

such as one large cluster including trajectories that continuously evolve across the set to

exhibit multiple geometries or one motion type being split into multiple smaller clusters due

to variations in the final state impacting sample placement. Alternative feature vectors,

sampling schemes, and clustering algorithms may address these limitations in future work.

• Future application of the data-driven categorization process to a wider variety of dynamical

models, celestial systems, and initial state sets may support characterizing the quality of
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the generated summaries and assessing the generalizability of a clustering-based framework.

• The hierarchical tree-based planning approach leveraged a constant branch length during

forest construction in this dissertation. An interesting future investigation may be to grow

trees in the forest with variable branch lengths. Investigating this parameter further may

lead to the discovery of a relationship between branch length, the connectivity of the forest,

and tree exploration of the local phase space.

• Investigating alternative maneuver placement strategies or optimal maneuver placement is

recommended. The number of maneuvers used, along with their location, dictate the suc-

cess of the correction and continuation processes and affect the total ∆v of each converged

solution. Furthermore, an automatic maneuver placement strategy would further reduce

the reliance an operator when correcting initial guesses.

• Continuation is leveraged in this work to recover continuous spacecraft trajectories that

either prioritize resembling the geometry of the initial guess or reducing the maneuver

requirements. A valuable avenue of future work is to implement an optimization scheme to

recover optimal trajectories with respect to propellant usage while retaining the geometry

of the initial guess. Furthermore, incorporating obstacles into the optimization process

may aid in the recovery of collision-free spacecraft trajectories.

• Dynamic obstacle maps used for corridor avoidance are constructed using approximate cell

decomposition. These maps are constructed to negate issues with discrete representations

of the obstacle and spacecraft trajectories. Three valuable avenues of future work include

1) representing the obstacle corridor with an exact decomposition of the environment,

2) constructing maps with a variable cell size to reflect variation in the uncertainty as a

function of time or location, or 3) parameterizing obstacle corridors in lieu of using dynamic

obstacle maps.

• This research may also be useful for non-collision avoidance problems. For example, regions
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or states that are not scientifically interesting for a particular mission may be modeled as

“hazards” and avoided using the methodology presented in this dissertation. Therefore, a

valuable future investigation is to apply this research to a variety of avoidance scenarios.

• An interesting avenue of future work is to apply the tree-based initial guess construction

and collision checking methods to increasingly complex transfer design scenarios and higher-

fidelity models. Although these methods are demonstrated in the CR3BP for this proof of

concept, it is expected that they can be applied to other higher-fidelity dynamical models

of three-body systems with minimal modification. This investigation would determine

the generalizability of these approaches and provide insight into whether the methods are

capable of designing trajectories in systems where the solution space is less understood.

Furthermore, building upon these methods to support trajectory replanning, for example,

would be a valuable extension of this work.
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[39] I. A. Şucan and L. E. Kavraki. A Sampling-Based Tree Planner for Systems
With Complex Dynamics. IEEE Transactions on Robotics, 28(1):116–131, 2011. DOI:
https://doi.org/10.1109/TRO.2011.2160466.



159

[40] J. A. Starek, E. Schmerling, G. D. Maher, B. W. Barbee, and M. Pavone. Fast,
Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy–Wiltshire–Hill
Dynamics. Journal of Guidance, Control and Dynamics, 40(2):418–438, 2017. DOI:
https://doi.org/10.2514/1.G001913.

[41] J.-C. Latombe. Robot Motion Planning. Springer, 1991.

[42] J. Chen, H. Li, and Q. Zhou. RRT-Forest: An Efficient Multi-
UAV Cooperative Path Planning Method for Indoor Rescue. In
2023 8th International Conference on Advanced Robotics and Mechatronics, Sanya, China,
2023.
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