
Data-Driven Spacecraft Trajectory Design For Planetary

System Exploration

by

Giuliana Elena Miceli
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The exploration of multi-body planetary systems is a crucial task for the enhancement of

science and the establishment of a human presence in space. However, trajectory design in these

multi-body systems remains a challenging endeavor due to the complex and often chaotic nature

of the underlying dynamics. Traditional approaches are usually insufficient as they might require

a priori knowledge of the system’s dynamics, or heavily rely on a human-in-the-loop. In designing

trajectories for a planetary mission, another challenge arises from the selection of long-term target

orbits about a planetary moon with limited station-keeping requirements.

This dissertation presents a data-driven approach to designing trajectories in a multi-body

system and identifying low-altitude, long-term stable orbits around a moon. First, clustering is

used to summarize natural dynamical structures in the Circular Restricted Three-Body Problem

(CR3BP) and isolate trajectories with a similar perilune sequence in a high-fidelity model. In

the first case, representatives of the clusters become motion primitives: building blocks of motion

inspired by robotic path planning. Motion primitives are used to create a graph that describes the

primitives’ composability. The graph is searched to obtain the best diverse primitive sequences,

which are then refined to obtain trajectory initial guesses. Finally, these paths are corrected and

optimized in an ephemeris model to provide a variety of solutions to move across different regions

of a planetary system. This approach is demonstrated by computing a diverse set of transfers in

the Neptune-Triton system. In the second case, representatives of trajectories are identified as the

most bounded members of the group. The representatives are further clustered by geometry to

identify families of candidate frozen and quasi-frozen orbits near the Moon, existing across a wide

combination of orbital elements.
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Chapter 1

Introduction

1.1 Motivation

Missions to explore Neptune offer a unique opportunity to deepen our understanding of the

outer Solar System. They promise to reveal critical insights into the planet’s formation, internal

structure, atmospheric composition, and magnetic environment, as well as to uncover new informa-

tion about its complex and diverse moon system [81]. A critical task for developing these missions

is designing trajectories for a spacecraft to support scientific observations. However, this task might

become quite challenging when considering the conditions characterizing a mission to an ice giant.

Among these, the high-energy state that follows the interplanetary transfer from Earth imposes

the main constraint on the trajectory design because a spacecraft approaching Neptune from deep

space might be traveling at a very high v∞. The large maneuver required for gravitational capture

significantly limits the spacecraft’s maneuvering capability during the mission’s scientific phases.

Secondly, the high heliocentric distance of Neptune constrains the maneuvering locations to spe-

cific states along the trajectory due to the limited visibility from Earth. Maneuvers are indeed

very sensitive locations during a trajectory, primarily when they are performed in the proximity

of a planet; therefore, they must be tracked from Earth to assess the possible errors and compute

corrections in a timely manner. Such a constraint limits the trajectory design trade space and con-

sequently the science return of the mission. Finally, the chaos of a multi-body gravitational system

composed of Neptune and its moons, along with the constraints derived from hardware parameters

or operational requirements, adds further complexity to the trajectory design objective.
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One common approach to designing science trajectories in a planetary system involves using

patched conics. The patched conics technique approximates the gravitational environment of a

multi-body system as a sequence of two-body problems [106] to design trajectories around different

objects. This approach has been employed in mission concept studies presented by Marley et al.

[66] and Masters [67], where multiple Triton flybys are utilized to investigate the Neptunian moon.

Designing multi-body system trajectories using a patched conics approach may limit the exploration

of the solution space and result in suboptimal combinations of propellant mass usage and flight.

To better capture the influence of multiple gravitational bodies, more advanced techniques rely on

simplified multi-body models such as the circular restricted three-body problem (CR3BP), which

considers the gravitational interaction between a planet, a moon, and a massless spacecraft. For

instance, Melman et al. computed a transfer for a spacecraft from a Neptune-centered orbit to a

circular near-polar orbit around Triton in the CR3BP [71].

When considering trajectory design for planetary exploration, another challenge that arises

is the selection of meaningful, long-term, stable orbits about a celestial body. Such orbits should

enable scientific measurements while minimizing the need for orbit maintenance over an extended

period. For this purpose, frozen orbits–or even quasi-frozen orbits with a bounded variation in

the orbital elements–have been of significant interest for designing mission orbits that require lit-

tle maintenance over long time intervals. These trajectories can support scientific missions, the

placement of critical infrastructure, and extended imaging of the celestial body’s surface. Around

the Moon, previous missions have already leveraged frozen and quasi-frozen lunar orbits identified

in high-fidelity gravity models to limit station-keeping maneuver requirements, including Lunar

Prospector (1997-1999) and the Lunar Reconnaissance Orbiter (2009 - present)[36, 5]. Researchers

have identified lunar frozen orbits using analytical approximations in truncated dynamical models

or numerically in high-fidelity dynamical models. The first approach provides an exact mathemat-

ical formulation of the initial conditions but can consider only a simplified model of the Moon’s

gravity field. On the other hand, a numerical approach in a high-fidelity model increases accuracy

but limits the generalization of the initial conditions of such orbits to the analyzed dataset, poten-
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tially increasing computational time. More generally, identifying frozen orbits is not a trivial task,

especially for bodies with complex gravity fields.

1.2 Previous Contributions

1.2.1 Planetary Exploration in Multi-Body Systems

Mission concepts to visit the ice giants have been explored since 1992, [102], but the interest

in these bodies has been recently renewed by the planetary science community [77, 33]. Due to

this interest and the challenge that such a mission poses, many authors have been investigating

various new concepts for Neptune missions. In 2014, Masters et al. [67] published a high-level

scientific mission analysis to explore Neptune and Triton. In 2021, Rymer et al. [97] detailed

the concept for the Neptune Odyssey mission: a Flagship-class orbiter and atmospheric probe to

the Neptune–Triton system. Finally, Turrini et al. [104] proposed the ODINUS mission concept,

which involves sending two twin spacecraft to be placed around each of the ice giants to conduct a

simultaneous comparative study of the planets. Across these studies, the trajectory design problem

in the Neptunian system has been addressed through the use of patched conics, such as in mission

concept studies presented by Marley et al. [66], where petal orbits are used to obtain subsequent

flybys of Triton. This technique has often been employed in the exploration of planetary systems

with multiple sizable moons, particularly in the design of moon tours. For example, the Galileo

mission [24] employed a set of petal orbits to perform flybys of the Jovian moons.

Other authors employed multi-body trajectory design for a planetary exploration purpose,

proving that a higher fidelity representation of the dynamics of n-body planetary systems provides

trajectories that exploit the natural dynamics. An example is provided by Campagnola et al. [16],

who demonstrated that the use of multi-body dynamics improves the maneuver cost of a moon

tour in the Jovian system when compared to previous designs for a Europa mission that employed

patched conics and full-ephemeris models. In addition to studies, past and present missions have

proven the feasibility of flying trajectories designed in multi-body dynamics. This is the case of
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the James Webb Space Telescope, which reached a halo orbit around the Sun-Earth L2 point, and

CAPSTONE, which arrived at a near rectilinear halo orbit in the Earth-Moon system [43, 19].

1.2.2 State of the Art in Trajectory Design

Trajectory design in multi-body systems is often a complex task due to its chaotic and

nonlinear dynamics. While dynamical models exist to simplify this process, such as the circular

restricted three-body problem, the interpretation of the solution space can still be nontrivial [45]. In

these instances, selecting trajectories that meet the mission requirements often involves techniques

that simplify the solution space without modifying its properties. One of such techniques is Poincaré

mapping, which is an efficient tool from dynamical systems theory, often employed in trajectory

design.

A Poincaré map represents the states where a dynamical flow intersects a surface of section

defined to be transverse to the flow. In the application of the Poincaré map to astrodynamics,

the surface of section is often represented as a hyperplane at a fixed value of the position space;

meanwhile, the flow is defined by the nonlinear equations of motion describing the n-body dynamics

in space [4]. The map realized by plotting the crossings represents a lower-dimensional visualization

of the dynamics. The reduced dimensions of the new solution space do not modify the dynamical

properties of the flow, but rather reveal patterns in the motion and aid in identifying segments for

initial trajectory guesses. The mapping facilitates the identification of transfer arcs that leverage

the system’s natural dynamical structures to generate trajectory initial guesses.

This technique has been proven helpful in a variety of applications in the CR3BP, particularly

in the planar problem at a specific energy level, due to the map’s ability to reduce the initial guess

search to a two-dimensional problem [45]. However, as the trajectory design problem becomes more

complex, for example, in cases involving spatial trajectories and multiple energy levels, the use of a

Poincaré map becomes challenging and requires the introduction of specific visualization techniques

[45]. Moreover, constructing a surface of section for the map is a manual process that requires

particular expertise and insight into the design problem and does not allow the visualization of the
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initial guess geometry. For this reason, traditional techniques for trajectory design in multi-body

dynamics are limiting in the exploration of the solution space and usually require a human-in-the-

loop.

Once the initial guesses are obtained, they are corrected to achieve a continuous trajectory

and optimized to minimize the total maneuver cost or the time of flight. Correction methods such

as multiple shooting and collocations have been widely used to correct trajectories in multi-body

dynamics [23]. However, the success of these methods depends on the quality of the initial guess and

the characteristics of the numerical scheme used, which makes robust and efficient design strategies

essential for supporting complex mission architectures and real-time operations. In trajectory

optimization, a variety of tools have been used to explore multi-body trajectory design trade spaces.

This is the case of the DESTINY+ mission, where multiobjective evolutionary computation is used

to efficiently obtain the approximate Pareto front [110]. Similarly, the Johnson Space Center’s (JSC)

Copernicus spacecraft trajectory optimization tool was employed in constructing the trade space

for the Orion Exploration Mission 1 [25]. However, such tools can be computationally expensive,

especially for a large trade space, relying on parallelization and approximation techniques [25, 110].

1.2.3 State of the Art in Frozen Orbit Analysis

Since the early 1960s, astrodynamicists have studied frozen orbits: trajectories that exhibit

small variations in the orbital elements relative to a selected celestial body over long time intervals

[57]. Due to their properties, frozen orbits have been studied for several bodies, including planets

like the Earth and Mars, planetary satellites like the Moon, and small bodies such as asteroids

[22, 99, 64, 37]. In particular, around the Moon, several authors have investigated analytical

methods to identify such orbits. As an example, Ely examined the evolution of the orbital elements

in a point mass lunar gravity model with a third-body perturbation from the Earth to identify

elliptical and inclined lunar frozen orbits [30]. Folta and Quinn employed a similar approach to

identify lunar frozen orbits, which are then numerically simulated in a higher-fidelity ephemeris

model and leveraged for maneuver design [37]. Additionally, Elipe and Lara used corrections
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and continuation algorithms to compute frozen orbits in a lunar gravity model that captures the

first seven zonal harmonic terms, identifying three distinct families of lunar frozen orbits across

various eccentricities and inclinations [29]. Lara, Ferrer, and De Saedeleer then used an averaged

Hamiltonian formulation of a lunar gravity model with the first 50 zonal harmonics and the point

mass gravity of the Earth to examine the long-term behavior of low lunar polar orbits [61]. A wide

variety of researchers have used similar approaches to identify frozen orbits in low-order spherical

harmonic gravity models of the Moon that are augmented by the gravitational influence of the

Earth [98, 1, 105].

Researchers have also demonstrated that numerical methods can be used to determine the

initial conditions for frozen orbits, as they provide a more accurate representation of the Moon’s

dynamical field. For example, Russell and Lara identified families of multi-revolution periodic orbits

near the Moon via numerical integration and differential corrections in an Earth-Moon restricted

three-body problem, which is augmented with a 50 × 50 lunar gravity model [96]. In general,

this approach requires a large number of trajectories to be integrated over some period of time to

analyze the effect of the Moon’s irregular gravitational field on the orbital elements. However, the

analysis of a large dataset of numerical data is often not trivial without a priori knowledge of the

data corresponding to frozen and quasi-frozen orbits.

1.3 Dissertation Overview

The necessity for a dedicated mission to an ice giant like Neptune requires the ability to

quickly and efficiently explore the trajectory design solution space in a multi-body dynamics en-

vironment. A mission to planetary systems would also benefit from an extended scientific phase

targeting a moon, which would require the selection of a long-term bounded orbit with low ma-

neuver requirements. This dissertation focuses on data-driven approaches to designing

constrained spacecraft trajectories within multi-body planetary systems and identify-

ing long-term stable orbits around a moon.

First, clustering is used to group a set of high-fidelity trajectories via the evolution of their
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perilunes. The clusters are used to identify potential lunar frozen orbits at different inclinations

around the Moon. In the second part of this dissertation, clustering is also leveraged to identify

a summary of the fundamental solutions of the Neptune-Triton CR3BP. This summary is used to

extract fundamental blocks of motion, or motion primitives, consisting of geometrically distinct arcs

that govern the motion in the system. The motion primitives are leveraged in a multi-body trajec-

tory design approach, presenting an updated version of the work originally developed by Smith and

Bosanac [101]. In this work, selected motion primitives are used to inform the creation of a graph,

representing the connectivity between states along the primitives. The graph is searched through

a custom search algorithm to identify unique sequences of primitives that minimize the overall

discontinuity in velocity direction among the primitives. These sequences are used to generate a

second graph that reflects the connectivity of the selected primitive arcs in position space. Then, a

trajectory initial guess is obtained by searching the path that minimizes the position discontinuity

between the primitives. Finally, the initial guesses are corrected and optimized in the restricted

problem and in an ephemeris model.

1.3.1 Organization

This dissertation is composed of eight chapters, organized as follows:

Chapter 2: This chapter presents the dynamical models employed in this work. The dy-

namics of a spacecraft subject to the influence of a planet and its main moon is modeled using the

circular restricted three-body problem, and then corrected using a point-mass ephemeris model.

The first sections of this chapter are dedicated to an in-depth discussion about the CR3BP, its for-

mulation, and its fundamental solutions. The last section provides an overview of the formulation

of the ephemeris model and the transformation between the different reference frames used in the

different dynamical models.

Chapter 3: The data-driven approach described in this work leverages the use of clustering

to create summaries of the type of motion governing the system. This chapter presents an overview

of the clustering algorithms, namely the Hierarchical Density-Based Spatial Clustering of Applica-
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tions with Noise (HDBSCAN) and the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN). The first algorithm is employed in identifying the candidate lunar frozen orbits, while

a combination of both algorithms is used to compute the motion primitives.

Chapter 4: This chapter presents a data-driven approach to autonomously identify long-

term stable orbits from a set of periapsis trajectories. First, a wide array of high-fidelity lunar orbits

is propagated for six months or until impact. The perilune evolution of each orbit is analyzed as the

variation of e and ω in time. Then, the perilune evolutions in time are sampled and described with a

feature vector capturing their shape and phasing in time. Clustering is applied to the feature vectors

to identify perilunes with similar spatio-temporal characteristics. The most bounded members of

each cluster are identified as the cluster representatives and then grouped by shape. From these

groups, perilune with long-term bounded evolutions are isolated. The most bounded elements

within the selected clusters become candidates for frozen and quasi-frozen orbits.

Chapter 5: This chapter applies the approach presented in Chapter 4 to identify candidates

for lunar frozen orbits, starting from sets of high-fidelity lunar trajectories. Moreover, an analysis

of the short-, medium-, and long-term stable orbits is presented, based on the evolution of their

perilune trajectories in time and their initial conditions.

Chapter 6: Motion primitives have been used in robotics to solve a variety of path planning

problems. This chapter presents a motion primitives approach to trajectory design in multi-body

systems. First, motion primitives are extracted from the fundamental solutions of the Neptune-

Triton CR3BP. These are summarized into a graph that describes their sequential composability in

phase space. The graph is searched through a primitive-based search algorithm to obtain primitive

sequences, which are refined to compose trajectory initial guesses. Continuous, impulsive trajecto-

ries are finally obtained from the refined primitive sequences via a collocation-based optimization

algorithm. A trajectory design example is provided to support the description of the technical

approach.

Chapter 7: The technical approach presented in Chapter 6 is applied to a mission for the

scientific exploration of the Neptunian system. In this chapter, three trajectory design cases are
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presented and analyzed. First, a high-energy trajectory is designed from a Neptune orbit insertion

condition to a science orbit. Then, a medium-energy transfer is designed between two distinct

resonant orbits with low periapsis passages at Triton. Finally, a low-energy trajectory is designed

to reach a low prograde orbit about Triton from a Neptune-centered orbit.

Chapter 8: This chapter presents a summary of the work and draws conclusions on the

obtained results. Finally, a concluding section discusses the potential future development and

applications of the proposed research.

1.4 Contributions

To support trajectory design for planetary system exploration, this dissertation presents a

data-driven approach to constructing transfers and identifying target orbits in a multi-body system.

The completion of this research resulted in the following contributions:

(1) Updates on the motion-primitive trajectory design approach by Smith and Bosanac [101]

through:

(a) Curvature-based sampling to extract geometrically different primitives via 1) clus-

tering for hyperbolic invariant manifolds and 2) an analytical approach for periodic

orbits

(b) Definition of motion primitive-informed graph using samples along motion primitives

as nodes

(c) Development of a graph search algorithm to rapidly identify diverse sequences of

motion primitives

(d) Development of graph-based refinement processes to rapidly produce geometrically

diverse and smoother initial guesses from motion primitive sequences

(e) Inclusion of constraints on distance from primaries and maneuver magnitude on the

motion primitive graph
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(f) Correction and optimization of trajectories in an ephemeris model with maneuvers

and position constraints

(2) Application of the motion primitive approach to design constrained trajectories supporting

scientific goals in the Neptunian system

(3) Using clustering to summarize low-altitude orbits around celestial bodies with irregular

gravity fields by:

(a) Development of a clustering approach to summarize the solution space around a ce-

lestial body in a high-fidelity model

(b) Identification and characterization of long-term stable bounded orbits with different

geometries

(c) Characterization of initial conditions leading to short-term stable and unbounded

orbits



Chapter 2

Dynamical Models

2.1 Circular Restricted Three-Body Problem

The circular restricted three-body problem is used to approximate the dynamics governing a

spacecraft in the Neptune-Triton system, referred to as the NT-CR3BP throughout this dissertation.

In the NT-CR3BP, Neptune is the first primary body B1, Triton is the second primary body B2,

and the spacecraft is the third body B3. B1 and B2 are modeled as point masses, moving in circular

orbits about their barycenter, and the spacecraft is assumed to possess a negligible mass with respect

to the two primaries. Given the eccentricity of Triton’s orbit around Neptune, eT = 0.000016, and

its mass, which is two orders of magnitude bigger than the other moons in the system [83], these

assumptions are reasonable.

2.1.1 Equations of Motion

Newtonian mechanics is used to derive the equations of motion of the system described in

Figure 2.1. In this conceptual representation, Neptune, Triton, and the spacecraft are represented

in a configuration space with respect to two reference frames: an inertial reference frame I with

axes X̂, Ŷ , Ẑ and a rotating reference frame R with axes x̂, ŷ, ẑ, both centered on the system

barycenter. In the inertial frame, the positions of the primaries B1, B2 and the spacecraft B3 with
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respect to the origin are, respectively

R̃1 = X̃1X̂ + Ỹ1Ŷ + Z̃1Ẑ

R̃2 = X̃2X̂ + Ỹ2Ŷ + Z̃2Ẑ

R̃3 = X̃3X̂ + Ỹ3Ŷ + Z̃3Ẑ

(2.1)

where the tilde indicates dimensional quantities. The position of the spacecraft with respect to any

primary in the inertial frame is computed as

R̃i,3 = (X̃3 − X̃i)X̂ + (Ỹ3 − Ỹi)Ŷ + (Z̃3 − Z̃i)Ẑ (2.2)

where the subscript i indicates a primary, thus i = [1, 2] [103].

In this system, the spacecraft moves under the influence of the gravitational force exerted by

the primaries. From these forces, the scalar potential function acting on B3 is computed as

Ũ3 =
G̃M̃1

R̃1,3

+
G̃M̃2

R̃2,3

(2.3)

where G̃ is the gravitational constant, M̃1 and M̃2 are the mass of the two primaries and R̃i,3

denotes the distance between the spacecraft and a primary. The gravitational potential is used to

Figure 2.1: Configuration of B1, B2 and B3 with respect to an inertial reference frame I with axis
X̂, Ŷ , Ẑ and a rotating reference frame R with axis x̂, ŷ, ẑ
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derive the acceleration that the gravitational force of the two primaries exerts on the spacecraft

using Newton’s second law of motion. In particular, a conservative force F such as gravity is

derived from its potential function as the derivative of the potential with respect to an inertial

observer [103]. Therefore, the acceleration on B3 due to the gravitational pull of the two primaries

is derived as

M3
¨̃R3 = F3 = ∇Ũ3 (2.4)

where the notation (̈.) indicates the second-time derivative with respect to an inertial observer.

Here, the mass of the spacecraft is negligible with respect to the mass of the primaries, and it is

simplified. Therefore, the acceleration on the spacecraft is equal to

¨̃R3 = ∇Ũ3 =
−G̃M̃1

R̃3
1,3

R̃1,3 −
G̃M̃2

R̃3
2,3

R̃2,3 (2.5)

The equation 2.5 can be rewritten as three scalar second-order ordinary differential equations

(ODEs), which describe the motion of B3 under the gravitational influence of B1 and B2. However,

to solve the system of equations, it would be necessary to include the three scalar ODEs describing

the motion of the first primary and the three scalar ODEs describing the motion of the second

primary, creating a system of 9 second-order ODEs or 18 first-order ODEs. A solution to this

system of equations would require 18 constants, but only 10 constants are obtained from the

conservation of linear momentum, the angular momentum, and the energy in a closed system [103].

Due to the lack of a general solution for the three-body problem, the dynamics is reformulated

with the assumptions described before as the CR3BP. Even though this dynamical model does not

possess analytical solutions, it provides a simpler approximation of the dynamics of a three-body

system, which is acceptable for applications, such as the Sun-Earth system or the Neptune-Triton

system, as in this case [103].

Trajectories in this model are generated and analyzed using nondimensional coordinates in

the Neptune-Triton rotating frame. Quantities are nondimensionalized using three characteristic

quantities l∗, m∗, and t∗ [103]. The characteristic quantities are computed from the properties of

the system: l∗ is the constant distance between B1 and B2, m
∗ is equal to the sum of the primaries’
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masses, and t∗ = 1/ñ, where ñ is the mean motion of the primary system, defined as

ñ =
(G̃m∗

l∗3

)1/2
(2.6)

The characteristic quantities for the NT-CR3BP are derived from the system’s physical parameters

[82, 83] and are equal to m∗ ≈ 1.024569 × 1026 kg, l∗ = 354, 760 km, and t∗ ≈ 8.081353 × 104 s.

From m∗, the mass ratio of the system is defined as

µ =
M̃2

m∗ (2.7)

where the mass ratio of the Neptune-Triton system is µ ≈ 0.00020895.

The rotating frame R is defined with the origin at the Neptune-Triton barycenter and axes

x̂, ŷ, ẑ: x̂ is directed from B1 to B2, ẑ is in the direction of the orbital angular momentum vector

of the primary system, and ŷ completes the right-handed triad [103]. A planar representation of R

is shown in Figure 2.2. With respect to a general inertial frame where ẑ = Ẑ, the angle between

the x̂ and the X̂ axis is defined at a nondimensional time t as θ = nt+ θ0, where n = ñt∗ and θ0

is the initial value of the rotation between the two frames, as shown in Figure 2.1. In this frame,

the nondimensional state of the spacecraft is defined as x = [x, y, z, ẋ, ẏ, ż]T .

Figure 2.2: Configuration of B1, B2 and B3 with respect to the rotating reference frame R with
axes x̂, ŷ, ẑ

The characteristic quantities are used to nondimensionalize the equations describing the
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spacecraft acceleration in the inertial frame. Thus, Equation 2.5 is rewritten as

R̈3 =
−(1− µ)

R3
1,3

R3
1,3 −

µ

R3
2,3

R3
2,3 (2.8)

With the use of the transport theorem, the acceleration of B3 with respect to an observer in the

rotating frame R and expressed independent of a coordinate frame is

R̈3 = −2(ωR,I × Ṙ3)− (ωR,I × (ωR,I × Ṙ3))−
−(1− µ)

R3
1,3

R3
1,3 −

µ

R3
2,3

R3
2,3 (2.9)

where ωR,I is the angular velocity of R with respect to I.

Since the motion of a spacecraft in the CR3BP is most commonly evaluated in the rotating

frame, the Equation 2.9 should be evaluated in R. In this reference frame, the position of the

spacecraft is defined as r3 = xx̂ + yŷ + zẑ, where the subscript in the position component is

dropped for simplicity. Then, the positions of the primaries from the inertial frame are obtained

by applying the rotation matrix

[CR,I ] =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 0

 (2.10)

where the subscript indicates the target reference frame, followed by the original frame from left

to right. The positions of the primaries in the rotating frame are then computed as

r1 = [CR,I ]R1 = −µx̂+ 0ŷ + 0ẑ

r2 = [CR,I ]R2 = (1− µ)x̂+ 0ŷ + 0ẑ

(2.11)

where both B1 and B2 positions are fixed in R. Finally, the position of the spacecraft with respect

to the primaries is rewritten as

r1,3 = (x+ µ)x̂+ yŷ + zẑ

r2,3 = (x− 1 + µ)x̂+ yŷ + zẑ

(2.12)

With the definitions above, Equation 2.9 can be rewritten in the rotating frame considering that

the angular acceleration of R with respect to I expressed in R is ωR,I = 1ẑ while the derivative
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of the position vector of the spacecraft in R is defined as v3 = ṙ3 = ẋx̂+ ẏŷ + żẑ. Therefore, the

nondimensional equations of motion for the spacecraft in the Neptune-Triton rotating frame are

written as 

ẍ = 2ẏ + x− (1−µ)(x+µ)
r31,3

− µ(x−1+µ)
r32,3

ÿ = −2ẋ+ y − (1−µ)y
r31,3

− µy
r32,3

z̈ = − (1−µ)z
r31,3

− µz
r32,3

(2.13)

From these equations, the pseudo-potential function U∗ is defined as

U∗ =
1

2
(x2 + y2) +

(1− µ)

r1,3
+

µ

r2,3
(2.14)

Therefore, the equations of motion are simplified to

ẍ = 2ẏ + ∂U∗

∂x

ÿ = −2ẋ+ ∂U∗

∂y

z̈ = ∂U∗

∂z

(2.15)

These equations do not have a generalized analytical solution; however, trajectories are computed

from Equations 2.15 using numerical methods.

2.1.2 Jacobi Constant

An integral of motion exists in this autonomous dynamical system, labeled the Jacobi con-

stant. This energy-like quantity exists because the CR3BP is an autonomous dynamical model

[56]. The Jacobi constant is derived by calculating the derivative of the kinetic energy at B3 in the

rotating frame. Defining v3 as the value of the velocity of B3 in the rotating frame, the derivative

of the kinetic energy is

d

dt

(v23
2

)
=

d

dt

(1
2
(ẋ2 + ẏ2 + ż2)

)
= ẋẍ+ ẏÿ + żz̈ (2.16)

Then, by substituting the expressions of the accelerations from Equation 2.15 in 2.16 and simpli-

fying, the equation becomes

d

dt

(v23
2

)
= ẋ

∂U∗

∂x
+ ẏ

∂U∗

∂y
+ ż

∂U∗

∂z
=

d

dt
(U∗) (2.17)
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Since both sides of Equation 2.17 are derivatives in time, by integrating the equation and rearrang-

ing the terms, the Jacobi constant is obtained as [103]

CJ = 2U∗ − v3 = 2U∗ − ẋ2 − ẏ2 − ż2 (2.18)

The expression of the Jacobi constant suggests that it is inversely proportional to the total energy

at B3. For this reason, low values of the Jacobi constant correspond to high values of total energy

and vice versa.

2.2 Fundamental Solutions

Although the CR3BP does not possess analytical solutions, fundamental solutions exist [103].

These fundamental solutions include equilibrium points, families of periodic and quasi-periodic or-

bits, and their hyperbolic invariant manifolds. Aside from providing a deeper understanding of

the underlying dynamics, fundamental solutions can be leveraged in trajectory design to construct

complex trajectories that exploit the natural transport mechanisms of the system [56]. These solu-

tions are often computed numerically from local linear approximations of the dynamics. Due to the

linearization, some solutions, such as periodic orbits, require correction in the nonlinear dynamics

using correction schemes, such as shooting methods [103]. This section provides an overview of

the definitions and computational approaches of the fundamental solutions of the Neptune-Triton

CR3BP, which are leveraged in the motion-primitive informed trajectory design approach.

2.2.1 Equilibrium Points

The CR3BP admits five stationary points, where the time derivatives of the position are equal

to zero in the rotating frame. Consequently, if not perturbed, an object placed in such points will

maintain that position indefinitely [103, 56]. These points are commonly referred to as equilibrium

or Lagrange points and are defined in the rotating frame. Specifically, there are five equilibrium

points, usually labeled L1, L2, L3, L4, and L5. The first three, L1, L2, and L3, are identified as the

collinear points as they lie along the x̂ direction of the rotating frame. While L4 and L5 are known
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as triangular points because they are located at the vertices of equilateral triangles that have the

two primary bodies as the other two vertices [103, 56].

The values of these equilibrium points are computed starting from the Equations 2.15, by

considering the definition of a stationary point req = [xeq, yeq, zeq], i.e.
d
dt(req) = 0 and d2

dt2
(req) = 0.

By imposing these conditions on the equations of motion in the CR3BP, the following equations

are obtained

ẍeq =
∂U∗

∂x
= xeq −

(1− µ)(xeq + µ)

r31
− µ(xeq − 1 + µ)

r32
= 0

ÿeq =
∂U∗

∂y
= yeq −

(1− µ)yeq
r31

− µyeq
r32

= 0

z̈eq =
∂U∗

∂z
=

(1− µ)zeq
r31

− µzeq
r32

= 0

(2.19)

This system of equations has a trivial solution, zeq = 0, for every value of x and y, indicating that

all the equilibrium points lie in the x − y plane of the rotating frame. Then, the remaining two

equations are rewritten as

xeq −
(1− µ)(xeq + µ)

r31
− µ(xeq − 1 + µ)

r32
= 0

yeq

(
1− (1− µ)

r31
− µ

r32

)
= 0

(2.20)

As a consequence of the second Equation in 2.20, y can assume the value of yeq = 0 or yeq ̸= 0.

Considering the case at yeq = 0, the first equation in 2.20 is used to compute the values of

the x-coordinate of the collinear points L1, L2 and L3 by finding the roots of the function

f(x) = xeq −
(1− µ)(xeq + µ)

(
√

(xeq + µ)2)3
− µ(xeq − 1 + µ)

(
√
(xeq + µ− 1)2)3

(2.21)

Since Equation 2.21 is nonlinear, numerical approaches such as Newton’s method can be used to

find its roots. These approaches require an initial condition xs0, which is updated iteratively until

the difference between the values at subsequent iterations is less than a predefined tolerance. By

imposing Equation 2.21 equal to zero, three regions of the solution space are identified to provide
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a reasonable initial guess for the root-finding algorithm

(xeq + µ) > 0 ∧ (xeq + µ− 1) > 0

(xeq + µ) > 0 ∧ (xeq + µ− 1) < 0

(xeq + µ) < 0 ∧ (xeq + µ− 1) < 0

(2.22)

Consequently, the value of xs0 is computed from each interval as

xeq > 1− µ

−µ < xeq < 1− µ

xeq < −µ

(2.23)

Once one value for each interval is selected, the three solutions for the x-coordinate of the collinear

points are computed as the roots of Equation 2.21.

The positions of the triangular points L4 and L5 are computed considering the conditions

yeq ̸= 0. In this case, the Equations 2.21 is rewritten as

f(x) = xeq

(
1− (1− µ)

r31
− µ

r32

)
− µ(1− µ)

r31
+

µ(1− µ)

r32
= 0

f(y) = yeq

(
1− (1− µ)

r31
− µ

r32

)
= 0

(2.24)

which are satisfied when r1 = r2 = 1, i.e., when the distance between a state and the two primaries

is equal. From this condition, it is possible to derive the solutions to Equations 2.24 from the

position of B1 and B2 in the rotating frame. Therefore√
(xeq − (−µ))2 + y2eq = 1 ∧

√
(xeq − (1− µ))2 + y2eq = 1

→ xeq = 0.5− µ ∧ yeq = ±−
√
3/2

(2.25)

Commonly, L4 is assigned to the point with positive ŷ component and L5 to the point with negative

ŷ component.

The truncated position vector at the equilibrium points is listed in Table 2.1. The positions

of the equilibrium points in the rotating frame in the NT-CR3BP are also represented in Figure

2.3. In this plot, the equilibrium points are identified with red diamonds, while the primaries are

labeled N and T and are represented as blue and black dots, respectively.
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Figure 2.3: Location of the equilibrium points in the rotating frame in the NT-CR3BP

Table 2.1: Location of the equilibrium points in the Neptune-Triton CR3BP

Libration Point x y

L1 0.959217 0

L2 1.041493 0

L3 -1.000087 0

L4 0.499791 0.866025

L5 0.499791 -0.866025

2.2.2 Periodic Orbits

Periodic orbits are fundamental solutions of the CR3BP that repeat their path after a specific

time, known as the period. This condition is true for every state x(t) along the trajectory and can

be described as

x(t1) = x(t1 + T ) (2.26)

where T is the period of the orbit. Periodic orbits are typically employed as target conditions for

trajectory design [56] and are also utilized in this work to extract motion primitives that describe

the dynamics governing the system.
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2.2.2.1 Libration Point Orbits

A variety of periodic orbit families are generally found from a linear stability analysis of the

nearby equilibrium point [103] using the variational equations. These orbits are typically classified

according to the libration point from which they are generated. The variational equations describing

the linearized perturbed motion around the equilibrium points L1, L2, L3, L4, and L5 are presented.

The dynamics linearized about the equilibrium points are described by the following equations:

ξ̈ − 2η̇ = U∗
xx|x⃗eqξ + U∗

xy|x⃗eqη

η̈ + 2ξ̇ = U∗
yx|x⃗eqξ + U∗

yy|x⃗eqη

ζ̈ = U∗
zz|x⃗eqζ

(2.27)

where ξ, η, ζ are the variations relative to the equation points in the x̂, ŷ and ˆ̂z axes of the rotating

frame in Equation 2.15, and U∗
xx|x⃗eq , U

∗
yy|x⃗eq , U

∗
xy|x⃗eq are the second order partial derivatives of the

pseudo-potential function evaluated at the equilibrium points [103]. From the matrix form of the

variational equations describing the linear motion along the x̂- and ŷ-axes, it is possible to compute

the characteristic equation:

0 = λ4 + λ2(4− U∗
xx|x⃗eq − U∗

yy|x⃗eq) + (U∗
xx|x⃗eqU

∗
yy|x⃗eq − U∗

xy|2x⃗eq
) (2.28)

The four in-plane eigenvalues are calculated by setting and applying the quadratic equation:

Λ =
−4 + U∗

xx|x⃗eq + U∗
yy|x⃗eq

2
±

√
(4− U∗

xx|x⃗eq − U∗
yy|x⃗eq)

2 − 4(U∗
xx|x⃗eqU

∗
yy|x⃗eq − U∗

xy|2x⃗eq
)

2
(2.29)

The four solutions are λ1 = +
√

(Λ1), λ2 = −
√
(Λ1), λ3 = +

√
(Λ2) and λ4 = −

√
(Λ2). The out-

of-plane modes are found by solving the second-order differential equation linked to the variation

ẑ. The solution to this equation gives the two following eigenvalues λ5 = +i
√
|U∗

zz|x⃗eq | and λ6 =

−i
√
|U∗

zz|x⃗eq |, which are both linked to oscillatory modes for all equation points in the CR3BP

[103].

Given the µ value for the system under investigation, the values of the in-plane and out-of-

plane eigenvalues are computed at each equilibrium point. From the Lyapunov center theorem,
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the presence of oscillatory modes at an equilibrium point indicates the presence of periodic orbits

emanating from that point [56]. Initial conditions for a periodic orbit are found by solving the

Equations 2.27. In particular, a planar periodic orbit is computed by exciting the oscillatory

modes of the first two equations in 2.27.

The solutions of the planar component of the variational equations in 2.27 are

ξ0 =
4∑

j=1

Aje
λjt0 , ξ̇0 =

4∑
j=1

λjAje
λjt0

η0 =

4∑
j=1

Bje
λjt0 , η̇0 =

4∑
j=1

λjBje
λjt0

(2.30)

The coefficients Aj and Bj are coupled, and their relationship is found by substituting the solutions

into the first variational equation 2.27 as

4∑
j=1

(λ2
jAje

λjt0 − 2λjBje
λjt0) =

4∑
j=1

(U∗
xx|x⃗eqAje

λjt0 + U∗
xy|x⃗eqBje

λjt0) (2.31)

Dividing by eλjt0 and rearranging

4∑
j=1

Aj(λ
2
j − U∗

xx|x⃗eq) =

4∑
j=1

Bj(U
∗
xy|x⃗eq − 2λj) (2.32)

Then, following the same procedure for the second equation in 2.27

4∑
j=1

Bj(λ
2
j − U∗

yy|x⃗eq) =

4∑
j=1

Aj(U
∗
yx|x⃗eq − 2λj) (2.33)

The equations in 2.32 and 2.33 are equivalent, and from the first one, it is possible to derive the

relation

Bj =
Aj(λ

2
j − U∗

xx|x⃗eq)

2λj + U∗
xy|x⃗eq

= αjAj (2.34)
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Where U∗
xy|x⃗eq = 0 at the collinear points. Then substituting 2.34 in 2.30, the solutions become:

ξ0 =

4∑
j=1

Aje
λjt0 = A1e

λ1t0 +A2e
λ2t0 +A3e

λ3t0 +A4e
λ4t0

ξ̇0 =
4∑

j=1

λjAje
λjt0 = λ1A1e

λ1t0 + λ2A2e
λ2t0 + λ3A3e

λ3t0 + λ4A4e
λ4t0

η0 =

4∑
j=1

αjAje
λjt0 = α1A1e

λ1t0 + α2A2e
λ2t0 + α3A3e

λ3t0 + α4A4e
λ4t0

η̇0 =
4∑

j=1

λjαjAje
λjt0 = λ1α1Aje

λ1t0 + λ2α2Aje
λ2t0 + λ3α3Aje

λ3t0 + λ4α4Aje
λ4t0

(2.35)

By solving the system of equations, it is possible to find A1, A2, A3, and A4 given a set of initial

conditions, or to choose initial conditions that excite specific modes. The oscillatory modes are

excited when A1 = A2 = 0, if λ1 and λ2 correspond to the real eigenvalues. In this scenario, the

initial values for ξ̇0 and η̇0 are obtained as

ξ̇0 =
η0λ3

α3
, η̇0 = ξ0α3λ3 (2.36)

Considering the values of the pseudo-potential and the eigenvalues at the collinear points, it is

possible to find the initial conditions for a planar periodic orbit by considering a small perturbation

ξ or η about the position of the equilibrium point [103].

2.2.2.2 Resonant Orbits

Resonant orbits are defined based on the two-body problem (2BP) [78, 107]. In this context,

a spacecraft is said to follow a pr:qr resonant orbit if it completes pr revolutions around the main

primary body in the same amount of time that the smaller primary completes qr revolutions around

the main primary in the inertial frame [78]. The resonance is termed interior if pr > qr, and

exterior when qr > pr. Depending on the direction of angular momentum, the orbit is prograde or

retrograde, aligning with the positive or negative direction of the inertial frame’s ẑ-axis, respectively.

The initial condition for a resonant orbit is obtained by defining the orbital elements of an elliptical
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orbit in the 2BP framework. First, the semi-major axis is computed as

a =
( qr
pr

)2/3
am (2.37)

where am is the semi-major axis of B2’s orbit. The eccentricity e is then selected within the range

[0.2, 0.8] to ensure that the apses remain sufficiently distant from the primaries. Once a and e are

defined, the position and velocity at one of the apses are calculated as

ra = a(1± e)

va =

√
µN

(
2

ra
− 1

a

) (2.38)

Here, µN = G̃M̃N = 6.8351 · 106 km3/s2 is Neptune’s gravitational parameter [82]. The minus sign

yields the periapsis position, while the plus sign gives the apoapsis. The inertial frame is centered

on B1, with its axes aligned with those of the CR3BP rotating frame at a chosen time t, such that

both frames are instantaneously aligned as represented in Figure 2.4. In this frame, the apsis is

placed along the X̂-axis and defined as

ra = [±ra, 0, 0]
T (2.39)

Selecting the sign of the x-component allows to capture different geometries corresponding to the

same pr:qr resonance. For families symmetric about both the x and y-axes, additional configurations

can be generated by placing the apsis along the Ŷ -axis instead:

ra = [0, ra, 0]
T (2.40)

The velocity at the apsis is perpendicular to the position vector, yielding:

va = [0,±va, 0]
T (2.41)

A positive sign produces a prograde orbit in the inertial frame, while a negative sign results in an

orbit with retrograde direction of motion, as it is represented in Figure 2.4 for a 1:3 resonant orbit

with a) prograde and b) retrograde initial conditions. When the apsis lies along the Ŷ -axis, the

velocity vector becomes:

va = [±va, 0, 0]
T (2.42)



25

To obtain the resonant orbit in the CR3BP, the initial condition is first transformed into the

rotating frame, then propagated using the CR3BP equations of motion, and finally corrected to

enforce periodicity. Depending on the placement of the initial condition along the X̂-axis of the

inertial reference frame and its direction of motion, the resonant orbit is defined with the label

±x,±h, where +x (−x) indicates the placement along the positive (negative) side of the X̂-axis

and +h (−h) indicates a prograde (retrograde) motion.

Figure 2.4: Examples of initial condition computation for a planar 1:3 resonant orbit in the Neptune
2BP: a) using the apoapsis on +X̂ to generate a prograde orbit +h and b) using the periapsis on
+X̂ to generate a retrograde orbit −h

2.2.2.3 B2-Centered Orbits

Periodic orbits that evolve around the smaller primary are referred to as the B2-centered

orbits. This type of orbit includes the distant prograde (DPO) and retrograde orbit families (DRO),

as well as the low prograde orbits (LPO), which are often leveraged in trajectory designs targeting

the exploration of the system’s second primary. In this work, the DPO family and its hyperbolic

invariant manifolds are leveraged in the design of a trajectory to reach a low prograde orbit around

Triton.

B2-centered orbits can be generated from analytical approximations of the dynamics around

the B2 as presented by Hénon [49], or with numerical approaches [51]. In the analytical approach,

for the planar B2-centered orbits, the derivation considers the first two equations of motion for the
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CR3BP, as given in Equation 2.13. In the case that r2,3 ≪ 1 and µ → 0, i.e., the spacecraft is very

close to the second primary and the mass of the first primary is much larger than the mass of the

second primary, the Equations 2.13 are simplified by expanding the second term on the left-hand

side around x = y = 0 and neglecting the seond order terms of small quantities to obtain

ẍ = 2ẏ + 3x− x

ρ3

ÿ = 2ẋ− y

ρ3

(2.43)

with

ρ =
√
x2 + y2 (2.44)

which are referred to as the Hill’s equations. With these equations, a new constant of motion is

found from the expression of the Jacobi constant and is defined as

Γ = 3x2 +
2

ρ
− ẋ2 − ẏ2 (2.45)

Considering this dynamics, a periodic orbit can be defined by the value of the constant Γ and of

the variable x. In particular, for an orbit that crosses the x̂-axis perpendicularly in the positive

direction, the state has y = 0 and ẋ = 0, thus the value of ẏ can be found from the knowledge

of x and Γ. Therefore, an orbit can be represented as a point in an x − Γ plane, and a periodic

orbit family is a curve in that space [49]. At this point, initial conditions can be found from a grid

search in the x and Γ space, or considering previously published values [50, 55, 53, 69]. The initial

conditions can be integrated with the CR3BP equations and corrected for periodicity; then, a family

can be found using a continuation scheme, such as the pseudo-arclength continuation method.

2.2.2.4 Stability of a Periodic Orbit

The variational equations can also be used to study the stability at any state along a periodic

orbit in the CR3BP. The stability evaluation is an important step in trajectory design as it supplies

insight into the dynamics governing the regions around the selected orbit. For example, if the

orbit is unstable, a small perturbation of the spacecraft’s state might lead to departure from the
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orbit, requiring frequent station-keeping maneuvers. Therefore, considering a state along a periodic

orbit x(t) with an orbit period T , the system of variational equations evaluated at x(t) is a linear

time-varying system [56]. The first order linear approximation of the evolution of the perturbed

state along a period orbit, x(t), after a period T is

δx(t+ T ) = Φ(t+ T, t)δx(t) (2.46)

where Φ(t + T, t) is the monodromy matrix of the periodic orbit, defined as the state transition

matrix (STM) propagated for one orbital period [56]

M(t) = Φ(t+ T, t) (2.47)

By leveraging the properties of the STM, the value of the monodromy matrix is defined at any

other ti+1 along the periodic orbit as

M(ti+1) = Φ(ti, ti+1)
−1M(ti)Φ(ti, ti+1) (2.48)

proving that the monodromy matrices at two different states along a periodic orbit are similar, and

therefore have the same stability properties [14].

The stability of a periodic orbit is assessed from the eigenvalues of its monodromy matrix at

any state. M is a real matrix; additionally, due to the autonomous Hamiltonian structure of the

dynamical system, M is also a symplectic matrix [56]. As a consequence of these properties, the

eigenvalues of M exist in reciprocal pairs, and all complex eigenvalues exist in complex conjugate

pairs [56]. Moreover, M admits a pair of trivial eigenvalues always equal to 1 [56], which are

associated with the dynamical structure of the periodic orbit and its existence in a family. On the

other hand, the other eigenvalues are used to assess the stability of the orbit.

The eigenvalues of the monodromy matrix reflect the mode resulting from stepping along

the relative eigenvector. The modes are deducted from the eigenvalues as in any discrete linear

time-invariant system, by their location relative to the unit circle in the complex plane. Therefore,

when the eigenvalue is λ = a and |λ| < 1, the associated mode is stable; otherwise, if |λ| > 1,
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the mode is unstable. On the other hand, if the eigenvalue is complex, i.e., λ = a + bj, then the

associated mode is oscillatory if |λ| = 1, stable spiral if |λ| < 1, and unstable spiral if |λ| > 1.

Since the eigenvalues exist in reciprocal pairs, computing the sum of the non-trivial reciprocal

eigenvalue pairs defines the stability indices s1 and s2 [52]. For planar periodic orbits, the value

of s1 indicates the in-plane orbit modes while s2 indicates the out-of-plane modes. However, this

distinction is not possible for spatial orbits, where s1 and s2 are arbitrarily selected for one family

member and maintained consistently along the family. If s1 and s2 lie within the range [−2, 2], then

the orbit is linearly stable and the motion in its surroundings is bounded. On the other hand, if

either of the two stability indices is outside the [−2, 2] boundaries, the orbit is considered unstable

and possesses hyperbolic invariant manifolds.

2.2.2.5 Correction via Multiple Shooting

Amultiple-shooting scheme is an iterative numerical method that solves multiple two-boundary

value problems, which are coupled by continuity constraints [56]. This approach is often used while

correcting periodic orbits or trajectories in the CR3BP, as discretizing such a complex two-boundary

value problem into several smaller ones facilitates the correction process. This numerical approach

works by creating a vector of states and times, describing the states along a trajectory, and then

updating it with Newton’s method until a set of constraints is satisfied [56, 8].

In this dissertation, a free variable vector is constructed using states equally spaced in time

along the discontinuous initial guess of a periodic orbit, and the time constant interval between

two samples. Starting from the initial condition of the initial guess, the samples capture the initial

state of each arc along the trajectory that constitutes the first states of a two-point boundary value

problem. Thus, considering the desired number of arcs along the initial guess na, the free variable

vector is computed as

V = [xT
1,i,x

T
2,i, ...,x

T
na,i,∆t]T (2.49)

where xj,i identifies the state at the beginning of the jth arc, and ∆t = T/na. This vector has

dimension nV = 6na + 1.
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The constraint vector is formulated to ensure continuity between successive arcs and between

the initial state of the first arc and the final state of the final arc. Thus, the constraint between

consecutive arcs is

Fc = [x1,f − x2,i]
T (2.50)

While the periodicity constraint is formulated as

Fp = [x
(5)
na,f

− x
(5)
1,i ]

T (2.51)

where the superscript (5) above each state indicates that the constraint is only imposed on the

x, y, z, ẋ and ż component at those states, since the value of ẏ is implicitly enforced by conservation

of the Jacobi constant value along a natural solution. Finally, a constraint is imposed on the value

of y at the initial state to avoid ambiguity regarding the location of the initial state and facilitate

the correction process. Therefore, the last component of the constraint vector is

Fy0 = y1,1 − yd (2.52)

Where yd is a user-defined value, based on the type of periodic orbit. Overall, the constraint vector

is defined as

F (V ) = [Fc,1,Fc,2, ...,Fc,na ,Fp, Fy0]
T (2.53)

where the F (V ) has dimension nF = 6(na − 1) .

The free variable vector is corrected iteratively until the constraints are met. First, each

node of the feature vector is propagated with the dynamics described in Section 2.1. Then, after

propagating each state for the corresponding ∆t, each component of the constraint vector is eval-

uated, and the norm of the total vector is computed. If ||F (V )|| ≠ 0, then the free variable vector

must be updated. Due to possible inaccuracies of numerical propagation, it might not be possible

to achieve the values such that ||F (V )|| = 0, therefore, the termination condition is defined as

||F (V )|| < tol. In this work, the tolerance is set to tol = 10−12. If this condition is not met, then

the free variable vector is updated using Newton’s method [56, 8]. Considering the free variable
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vector V ∗ that satisfies the condition F (V ∗) = 0, a vector V ∗ close to the initial guess should

fulfill the condition

F (V ∗) = 0 ≈ F (V ) +DF (V )(V ∗ − V ) (2.54)

where DF (V ) is the Jacobian of F with respect to the free variable vector V and has dimensions

nF × nV . From Equation 2.54, two update equations are written as

Vi+1 = Vi −DF (Vi)
T [DF (Vi) ·DF (Vi)

T ]−1F (Vi) if nV > nF

Vi+1 = Vi −DF (Vi)
−1F (Vi) if nV = nF

(2.55)

In both cases, the DF (Vi) matrix is computed with the analytical formulation of the partial

derivatives as

DF (Vi) =

[
∂Fc,1

∂V
,
∂Fc,2

∂V
, ...,

∂Fc,na

∂V
,
∂Fy0

∂V

]T
(2.56)

where each component is computed as

∂Fc,i

∂V
= [06×6(i−1), −Φ(ti+1, ti), I6×6, 06×(6(na−1)−6), ẋi,f ], i ̸= na (2.57)

and

∂Fc,na

∂V
= [I

(5)
6×6, 0

(5)
6×6(na−12), −Φ(ti+1, ti)

(5), ẋ
(5)
i,f ] (2.58)

and

∂Fy0

∂V
= [0, 1, 06×6(na−1)] (2.59)

Once Equation 2.57 is evaluated for all the arcs, then these expressions are used to compute the

DF (V ) matrix and the value of V is updated until ||F (V )|| < tol.

2.2.2.6 Pseudo-Arclength Continuation

Periodic orbits exist in families, and they are computed using numerical methods such as

pseudo-arclength continuation [54]. This continuation approach involves using one or more variables

of a family member to determine the initial conditions of the next one. These variables are perturbed

by stepping along the function describing their variation within the family. The pseudo-arclength

continuation leverages the orbit’s representation with its free variable vector V across the family.
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When a member of the family pj is known and is represented with Vj , the initial conditions of the

next orbit are computed by finding the instantaneous rate of change of the solution curve, to find

a first-order approximation of Vj+1. This new free variable vector is then used within a multiple-

shooting scheme to correct the initial guess for the new member of the periodic orbit family and

find Vj+1 [54, 8].

Given the definition of the free variable vector V , the constraint vector F and the Jacobian

DF (V ) from Section 2.2.2.5, the matrixDF (V ) has a 1-dimensional null space only if the condition

|nF −nV | = 1 is met. Therefore, the function F (V ) = 0 has infinite solutions, i.e., there are infinite

free variable vectors that can satisfy the constraint. From this property, the instantaneous variation

of the curve is computed as the null-space of DF (V ). Thus, given the free variable vector of a

periodic orbit of the family Vj , the initial guess for the next periodic orbit is found as

Vj+1 = Vj + δs Null(DF (V )) (2.60)

where δs is a user-defined scalar value. Given the initial guess of Vj+1, the correction process

to recover the new periodic orbit of the family is similar to the one described in Section 2.2.2.5.

A modification is employed in the definition of the constraint vector, to ensure that the correct

value of Vj+1 lies within a step δs from Vj along the direction given by Null(DF (V )). The new

constraint vector H(V ) is then defined as

H(V ) = [F (V ), (Vj+1 − Vj)
T (Null(DF (V ))− δs)]

T (2.61)

Other continuation schemes exist, such as natural parameter continuation, where the contin-

uation is based on the perturbation of a natural property of an orbit, such as its period, Jacobi

constant, or a component of its initial state. While the pseudo-arclength continuation might be

computationally more expensive than a natural parameter continuation, it is preferred to the latter

as it does not require prior knowledge on the evolution of a specific parameter within the family.

Moreover, it is more robust to sudden variations in the free variable vector curve, enabling larger

step sizes during the continuation process.
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The pseudo-arclength continuation scheme is used to find any periodic orbit family used in

this dissertation. Figure 2.5 shows an example of a libration point, a primary-centered, and a

resonant periodic orbit family existing in the Neptune-Triton CR3BP. In particular, Figure 2.5a

shows selected members of the L1 Lyapunov orbit family, generated by the planar oscillatory

mode obtained from linearized perturbed dynamics about L1. The family is generated until the

last orbit of the family reaches Triton’s surface. Figure 2.5b shows some members of the distant

prograde orbit family centered about Triton. The family is generated from initial conditions of a

periodic moon-centered orbit provided by Dr. Natasha Bosanac, then propagated until an initial

condition produces an orbit that intersects with Triton’s surface. Finally, Figure 2.5c provides a

representation of a 3:1 resonant orbits family. First, a single resonant orbit is generated from 3:1

resonant orbit defined in the Neptune 2BP with apoapsis on the X̂-axis and prograde direction of

motion, and then corrected in the NT-CR3BP. Then, the family is obtained via pseudo-arclength

continuation until intersection with Neptune’s radius.

Figure 2.5: Families of libration periodic orbits in the Neptune-Triton System: a) L1 Lyapunov
orbits family, b) distant prograde orbits family, c) 3:1 resonant orbits family
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2.2.3 Hyperbolic Invariant Manifolds

Hyperbolic invariant manifolds constitute another fundamental solution of the CR3BP. These

structures appear when a periodic orbit is linearly unstable along one or more of the directions of

the eigenvectors of its monodromy matrix. The hyperbolic invariant manifolds are classified as

stable or unstable if they are respectively asymptotically approaching or departing from a periodic

orbit as t → ∞ [56, 103]. They are computed numerically by perturbing a state x(t) along the

periodic orbit by a value γ, along the direction provided by the stable or unstable eigenvector of

the monodromy matrix at that state as:

xs(t) = x(t)± γv̂s

xu(t) = x(t)± γv̂u

(2.62)

where v̂s and v̂u are the unit vectors along the eigenvector vs and vu. The perturbed state x(t)s

is propagated backward in time to obtain a trajectory along the stable half-manifold approaching

the periodic orbit. Vice versa, x(t)u is propagated forward in time to produce a trajectory along

the unstable half-manifold departing the periodic orbit. The propagation time is typically selected

based on the application of the manifold trajectories. Usually, trajectories along hyperbolic invari-

ant manifolds are propagated until reaching a certain event, such as the crossing of a hypersurface

or the impact with a primary.

Examples of hyperbolic invariant manifolds are presented in Figure 2.6. These manifolds are

generated by stepping along the stable (blue) and unstable (red) eigenvectors obtained from the

linearized perturbed dynamics at about 100 points along an L1 Lyapunov orbit in the NT-CR3BP.

Figure 2.6a represents the trajectories obtained from stepping along the positive direction of the

eigenvectors in Equation 2.62, propagated until hitting the terminal conditions imposed as x = 0.95

and x = 1.10. On the other hand, Figure 2.6b shows the trajectories obtained by stepping along

the negative direction of the eigenvectors and imposing the terminal condition at x = 0.
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Figure 2.6: Example of stable (blue) and unstable (red) hyperbolic invariant manifolds generated
from an L1 Lyapunov orbit with CJ = 3.01385 and directed a) along the positive direction and b)
along the negative direction of the stable and unstable eigenvectors

2.3 Point Mass Ephemeris Model

In Chapter 7, trajectories in the Neptunian system are corrected in an ephemeris model, and

orbits in Chapter 5 are propagated in a high-fidelity gravity model around the Moon. In the first

case, trajectories are obtained considering the point mass gravity of n bodies at each instant. On

the other hand, lunar orbits are generated considering the high-fidelity gravity model of the Moon

augmented by the point mass gravity of secondary bodies.

In this model, states are defined in an inertial frame centered on the primary body, e.g.,

the axes of the International Celestial Reference Frame centered on the primary body, as shown

in Figure 2.7. The state vector for the spacecraft relative to the primary body is defined as

X̃ = [X,Y, Z, Ẋ, Ẏ , Ż]T = [R̃Bi,3, ṼBi,3]
T .

The equations of motion for a spacecraft subject to the gravitational influence of Nb bodies in

an inertial reference frame are computed from Newtonian mechanics, considering the gravitational

attraction force between two bodies, Bi and Bj defined as

Fi,j =
−G̃M̃iM̃j

R̃3
i,j

R̃i,j (2.63)

where G̃ is the universal gravitational constant, M̃i and M̃j are the mass of Bi and Bj respectively,
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Figure 2.7: Configuration of B1, B3 and a ith celestial body in an inertial reference frame IE with
axis X̂E , ŶE , ẐE

R̃i,j is the position of Bj and Bi, and R̃3
i,j is the l2-norm of that vector. Then, considering this

force as acting on B3, given the gravitational influence of B1, the acceleration exerted on B3 is

computed as

R̈3 =
−G̃M̃1

R̃3
1,3

R̃1,3 +

Nb∑
i=2,i ̸=3

G̃M̃i

R̃3
3,i

R̃3,i (2.64)

and similarly, the acceleration of B1 given the gravitational influence of B3 is

R̈1 =
−G̃M̃3

R̃3
3,1

R̃3,1 +

Nb∑
i=2,i ̸=3

G̃M̃i

R̃3
1,i

R̃1,i (2.65)

Thus, the inertial acceleration of B3 with respect to B1 is computed from Equations 2.64 and 2.65

with the assumption that M̃3 is negligible as

R̈3 − R̈1 =
−G̃M̃1

R̃3
1,3

R̃1,3 +

Nb∑
i=2,i ̸=3

G̃M̃i

(
R̃3,i

R̃3
3,i

− R̃1,i

R̃3
1,i

)
(2.66)

Considering any additional accelerations due to higher-order gravity terms, the equation becomes

R̈1,3 =
−G̃M̃1

R̃3
1,3

R̃1,3 +

Nb∑
i=2,i ̸=3

G̃M̃i

(
R̃3,i

R̃3
3,i

− R̃1,i

R̃3
1,i

)
+ ai (2.67)

where ai captures the higher-order gravitational accelerations, which in this work are only used to

generate lunar orbits.

Depending on the application, the DE440 or DE421 lunar and planetary ephemerides, main-

tained by NASA’s Navigation and Ancillary Information Facility (NAIF) [2, 3], are used to locate
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each celestial body at each epoch during numerical integration [88, 34]. Additionally, the naif0012

file is used for the accurate conversions between UTC and Ephemeris Time, while the pck00011 file

is used to obtain the axis orientation for the inertial frames. Other SPICE kernels, i.e., nep095 and

nep097, are included to get the accurate position of planetary satellites with respect to Neptune.

To capture the higher-order gravitational accelerations to which a spacecraft is subject or-

biting the Moon, the lunar gravity field is represented by a 100 × 100 degree and order spherical

harmonics model. The Moon-fixed frame is defined using principal axes, and the potential function

for the deviation of the gravity field from a point mass is defined in this frame as

UL =
GML

r

[
100∑
l=2

l∑
m=0

(
RL

r

)l

Pl,m (sin(ϕ)) (Cl,m cos(mλ) + Sl,m sin(mλ))

]
(2.68)

where RL is the reference radius of the Moon, Pl,m is the associated Legendre polynomial for degree

l and order m, ϕ and λ are the selenocentric latitude and longitude, and Cl,m and Sl,m are the

coefficients of the spherical harmonic expansion [?]. In this dissertation, the coefficients of expansion

and model parameters are accessed using the 900 × 900 gravity model (GRGM900C), compatible

with the DE421 ephemerides [62]. Then, a frame transformation is applied to the vector derivative

of the potential function to calculate the acceleration ai in the Moon-inertial frame.

The solution space of the N -body problem is both complex and chaotic. Consequently,

trajectories in this model are often derived by first computing solutions in a lower-fidelity model.

For instance, trajectories from the CR3BP can serve as initial guesses, which are then numerically

corrected within a point-mass ephemeris model to incorporate the gravitational influence of other

bodies and any additional perturbations of the dynamical environment.

2.4 Reference Frame Transformation

The initial conditions for orbit insertion into the Neptunian system used in Chapter 5 are

transformed from an inertial frame centered on Neptune to the rotating (synodic) frame used in

the NT-CR3BP. The opposite transformation is performed in the same chapter to correct the

final optimal trajectories into a point mass ephemeris model, where states are defined in an ICRF
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centered on Neptune. This transformation is performed as described by Folta et al. in Reference

[35].

Given the inertial frame I centered on B1, the rotating frame R defined in the previous

section to model the Neptune-Triton CR3BP is obtained considering the position R̃I
1,2 and velocity

Ṽ I
1,2 of the second primary with respect to the first primary at a specific epoch t0, which can be

obtained via ephemerides. The position and velocity of the spacecraft in the inertial frame are

defined via the state vector X̃I = [R̃I
1,3, Ṽ

I
1,3] with respect to the first primary B1. With respect to

the rotating frame R, the position of the spacecraft is rotated by the angles that define the position

of B2 in I and translated by the position of the NT-system barycenter. Therefore, the position of

the spacecraft in the rotating frame is obtained as

R̃R
1,3 =

[
RCI(Et0)

]
R̃I

1,3 + R̃R
b (2.69)

where R̃R
b is the position of the origin of I with respect to R expressed in the rotating frame and[

RCI(Et0)
]
is the rotation matrix encoding the rotation of R with respect to I about their common

origin and is computed as

[
RCI(Et0)

]
= [x̂C , ŷC , ẑC ]T =

[
R̃I

1,2

||R̃I
1,2||

, x̂C × ẑC ,
R̃I

1,2 × Ṽ I
1,2

||R̃I
1,2,×Ṽ I

1,2||

]T
(2.70)

On the other hand, the transformation of the spacecraft’s velocity vector from the inertial frame to

the synodic frame is obtained considering the time derivative of the rotation matrix
[
RCI(Et0)

]
,

which is computed as

[
RĊI(Et0)

]
=

[
dx̂C

dt
,
dŷC

dt
,
dẑC
dt

]T
=

[
Ṽ I
1,2

||R̃I
1,2||

− x̂C

(
x̂C · Ṽ I

1,2

||R̃I
1,2||

)
,
dẑC
dt

× x̂C + ẑC × dx̂C

dt
, 0

]T
(2.71)

The third component of the time derivative of the rotation matrix is considered zero, assuming

that ẑ does not shift significantly relative to the inertial frame in time [35]. With the derivative of

the rotation matrix in time, the transformation of the velocity vector is obtained as

Ṽ R
1,3 =

[
RCI(Et0)

]
Ṽ I
1,3 +

[
RĊI(Et0)

]
R̃I

1,3 + Ṽ R
b (2.72)
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where Ṽ R
b is the velocity of the origin of I with respect to R expressed in the rotating frame. Since

the rotation matrix
[
RCI(Et0)

]
is orthogonal, the rotation from the rotating synodic frame to the

inertial frame is computed as

R̃I
1,3 =

[
RCI(Et0)

]T
R̃R

1,3 + R̃I
b

Ṽ I
1,3 = −

[
RCI(Et0)

]T [RĊI(Et0)
] [

RCI(Et0)
]T

R̃R
1,3 +

[
RCI(Et0)

]T
Ṽ R
1,3 + Ṽ I

b

(2.73)

The transformation from the rotating synodic frame to the inertial frame can also be rewritten

in the same form used in Equations 2.69 and 2.72 considering the rotation matrix
[
ICR(Et0)

]T
obtained as the transpose of

[
RCI(Et0)

]
[35]. The states obtained after the transformation in

Equations 2.69 and 2.72 can be normalized using three characteristic quantities l∗, m∗, and t∗

and propagated using the equations of motion in 2.13, while the state in the inertial frame can be

propagated considering the point mass gravity of Nb-bodies in an ephemeris model described with

the Equation 2.67.



Chapter 3

Clustering Techniques

Clustering is a method for grouping members of a dataset based on a specified set of features

without requiring a human-in-the-loop. Clustering algorithms are often categorized as hierarchical-

based, partitioning-based, density-based, grid-based, and/or model-based [47]. Furthermore, hard

clustering uniquely assigns each member of a dataset to a single cluster, whereas fuzzy clustering

assigns probabilities of membership to each cluster. In astrodynamics, clustering has been used to

detect bounded motions around small bodies [108] and near distant retrograde orbits [79], group

periodic orbits that are independently computed [46], extract motion primitive sets that summarize

families of trajectories [100], and summarize a wide variety of trajectories in the circular restricted

three-body problem and ephemeris model at a single or multiple energy levels [9, 7, 10, 12].

3.1 DBSCAN

The Density Based Spatial Clustering of Applications with Noise [32] is used in the process

to identify clusters or trajectory arcs with similar geometries, from which motion primitives are

extracted. This algorithm is agnostic to the data’s shape and the number of groups, making it

particularly useful for clustering large datasets with non-uniform groups of data. This algorithm

is governed by two parameters: ϵ, which is the size of the neighborhood around a point Si of the

dataset, and nsample is the number of samples in a neighborhood for a point to be considered as a

core point [32].

In DBSCAN, the output is a vector indicating the cluster number, or label, to which each
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point has been assigned. Labels are assigned only to core points and boundary points. A core point

is a point of the dataset that has at least nsample points in its neighborhood. Points that are not

core points but lie in the neighborhood of another point are defined as border points. Points that

are neither core points nor border points are defined as noise points and are indicated with a zero

entry in the label vector.

To understand the algorithm steps, it is also important to define the concepts of directly

density-reachable, density-reachable, and density-connected points. In particular, when a point Si

is in the neighborhood of a point Sj and Sj is also a core point, then Si is defined as directly

density-reachable from Sj . Otherwise, Si is density-reachable from Sj if there exists a chain of

points S1, s2, ..., sn where Sj = s1 and Si = sn, and each point Sa+1 is directly density-reachable

from Sa. Finally, two points Si and Sj are density-connected if there is a point Sk such that both

Si and Sj are density-reachable from Sk [32].

DBSCAN clusters points in a dataset through five steps. First, the algorithm is initialized

on a point Si and marks Sj as visited. Then all the neighbors of Si are retrieved, i.e., all the points

lying within a radius ϵ from Si. If the neighbors are larger or equal to the values of nsample, then

Si is defined as a core point, and a new cluster is created. The cluster is iteratively expanded by

visiting all the points that are density-reachable from Si. In this way, a cluster includes core points

and border points. However, if a point Si does not have nsample points in its neighborhood and is

not in any other point’s neighborhood, then it is marked as noise. This definition could be changed

later in the process if Si is within the neighborhood of another point. In either case, no points

are density-reachable from Si, and DBSCAN visits the next point in the database. The process is

repeated for every point in the dataset until all of them have been marked as visited [32].

In the cluster expansion step, DBSCAN visits all the neighbors of Si. Then, if a neighbor Sj

is also a core point, it adds its neighbors to the list of points to be visited (expanding the cluster).

The process stops when all the points in the list have been checked and no more points can be

added to the list [32].
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3.2 HDBSCAN

The Hierarchical Density-Based Spatial Clustering of Applications with Noise is a clustering

algorithm developed by Campello, Moulavi, and Sander [18]. HDBSCAN is a hard clustering

algorithm that discovers clusters of arbitrary shape and density that are separated by an unknown

or nonconstant distance. Similarly to DBSCAN, HDBSCAN does not require a priori knowledge

of the number of clusters and labels data in insufficiently sampled regions as noise. Because of

these characteristics, HDBSCAN has successfully been used in a variety of fields, from medicine

[40] to computer vision [63]. This clustering algorithm has also previously been demonstrated

to successfully cluster spacecraft trajectories in a chaotic dynamical model [9, 7]. In this work,

HDBSCAN is leveraged in the identification of trajectories with a similar perilune evolution, as it

will be described in Chapter 4, and in the creation of geometrically distinct trajectory arcs from

natural solutions of the NT-CR3BP, as will be discussed in Chapter 6.

HDBSCAN uses a hierarchical and density-based approach to group the N members of a

dataset, each described by m-dimensional feature vectors that capture user-specified characteristics

of interest. The governing hyperparameters nsample and nsize are, respectively, the number of points

in a neighborhood for a point to be considered a core point and the minimum number of points to

form a cluster. Any members that are not assigned to a group are labeled as noise. Based on a

modification presented by Malzer and Baum, a quantity ϵmerge can be used to specify a minimum

threshold on when members are split into multiple clusters.

The algorithm transforms the dataset into a hierarchical structure following six steps. First,

the core distance dcore is computed for each member. For the ith member, this quantity is defined

as the distance of the feature vector νi from its (nsample − 1)th nearest neighbor, assessed using

a specified distance measure. The core distance is used to calculate the mutual reachability distance

(MRD) between each pair of feature vectors νi and νj as dmreach = max(dcore(νi), dcore(νj), d(νi,νj)),

where d(νi,νj) is the distance between νi and νj . Using this information, a mutual reachability

graph is constructed with N nodes defined as the feature vectors and the edges between each pair
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of nodes weighted by the MRD of the associated feature vectors. This graph is summarized using

a minimum spanning tree (MST) that is augmented by adding self-loops to each node that are

weighted by the core distance of its feature vector.

HDBSCAN then constructs a dendrogram from this augmented MST to produce a clustering

hierarchy. Clusters are identified from this hierarchy as groups of members that are sufficiently

stable as a function of density and possess a size that is above a minimum value, denoted nsize.

Then clusters with a distance below the threshold ϵmerge are merged. If the local neighborhood of a

member of the dataset does not encompass at least (nsample−1) neighbors, that member is labeled

as a noise point. The output of this process is a set of labels assigning each of the N members

of the dataset to either a cluster or a noise group. In this paper, HDBSCAN is accessed via the

hdbscan clustering library in Python [70].

The Density-Based Clustering Validation (DBCV) index introduced by Moulavi et al. is

used to assess the quality of a clustering result generated by HDBSCAN [76]. The DBCV index

measures the ratio of the inter-cluster separation to the intra-cluster density with values between

-1 and 1; a high value of the DBCV index indicates a better clustering result with clusters that are

more tightly packed and well-separated. Mathematically, the DBCV index is defined for a dataset

that has been grouped into nclust clusters as

DBCV =

nclust∑
i=1

Ci

nnoise
VC(Ci) (3.1)

where nnoise is the number of noise points and VC(Ci) is the validity index of cluster Ci, defined as

VC(Ci) =
min1≤j≤l,j ̸=i(DSPC(Ci, Cj))−DSC(Ci)

max(min1≤j≤l,j ̸=i(DSPC(Ci, Cj)), DSC(Ci))
(3.2)

where DSPC is the density separation of a pair of clusters, defined as the minimum reachability

distance between the internal nodes of the MST of clusters Ci and Cj ; and DSC is the density

sparseness of a cluster, defined as the maximum edge weight of the internal edges in the MST of

the cluster Ci. This validity index compares the internal density compactness of a cluster and the

density separation between two clusters, with a positive value of VC(Ci) indicating that a better

cluster is one that is compact and well separated from other clusters.



Chapter 4

Clustering Approach to Identify Long-Term Stable Orbits about Planetary

Moons

This chapter presents a clustering-based approach to summarizing a wide variety of trajecto-

ries that are numerically generated in a high-fidelity lunar gravity model. This summary is used to

extract insight into the solution space and locate motions with a bounded evolution of perilune that

may supply candidates for low lunar frozen and quasi-frozen orbits. First, initial conditions are

defined as perilunes with distinct combinations of orbital elements. To support a proof of concept,

these perilunes possess a fixed semi-major axis of 1838 km and an initial epoch on January 1, 2025.

Trajectories are generated for up to 180 days from these initial conditions in a 100 × 100 lunar

gravity model with the point mass gravity of the Earth and Sun. This model fidelity is selected

to balance prediction accuracy against computational time. Consistent with previous analyses of

frozen orbits, each trajectory is characterized by the time evolution of the eccentricity e and ar-

gument of periapsis ω at each perilune in a Moon-fixed frame defined using principal axes. The

evolution of perilune over 180 days is then summarized to produce a finite-dimensional feature

vector that encodes its size and shape. Next, HDBSCAN is used to cluster these feature vectors

in a two-step process [17]. Each cluster corresponds to trajectories with a geometrically similar

evolution of perilune. The result is a clustering-based summary of the geometries exhibited by tra-

jectories near the Moon that is also used to identify candidates for low lunar frozen or quasi-frozen

orbits. The clustering-based framework for summarizing lunar trajectories and extracting bounded

orbits consists of the following steps:
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(1) Numerically generating a set of trajectories in a selected dynamical model

(2) Describing each trajectory using a finite-dimensional feature vector

(3) Clustering the dataset to produce groups of spatiotemporally similar trajectories

(4) Summarizing each cluster using a representative member

(5) Merging clusters with geometrically similar representatives

4.1 Step 1: Generating a Set of Trajectories

To generate a set of lunar trajectories, a wide range of initial conditions is defined using

Keplerian orbital elements at a fixed epoch and semi-major axis. Although epoch and semi-major

axis are both variables that impact the characteristics of the associated trajectories, they are

constrained in this work to reduce the size of the dataset and support a proof of concept. The

ranges and step sizes of each orbital element are listed in Table 4.1. All the possible combinations

of these orbital elements result in 58,608 initial conditions that lie above the lunar radius, assumed

to equal 1738 km in this work. Each initial condition is propagated for up to 180 days or until it

reaches the lunar radius. This numerical propagation is performed in the high-fidelity dynamical

model presented in Section 2.3. To limit data storage requirements, only the perilune states are

recorded along each trajectory. These trajectories were generated by Dr. Natasha Bosanac.

Table 4.1: Ranges of orbital elements used to define initial conditions

Orbital Element Range Step

Epoch, t0 January 1, 2025 00:00.000 UTC -

Semi-major axis, a 1838 km -

Eccentricity, e [10−4, 0.1] 0.005

Inclination, i (in Moon-fixed frame) [0.001◦, 179.999◦] 5◦

Right ascension of the ascending node (RAAN),
Ω (in Moon-fixed frame)

[0◦, 360◦] 30◦

Argument of periapsis (AOP),
ω (in Moon-fixed frame)

[0◦, 360◦] 30◦
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4.2 Step 2: Describing Each Trajectory via a Feature Vector

Consistent with traditional analyses of frozen orbits, each lunar trajectory in this work is

represented by the evolution of perilune over time. Researchers have commonly searched for frozen

orbits as trajectories with a bounded variation in the eccentricity and argument of periapsis [15,

94, 37]; some researchers also use alternative orbital element sets [89, 29]. In this dissertation, each

perilune is partially described using the variables p = e cos(ω) and q = e sin(ω) because they possess

equivalent value ranges but visualized in an e−ω polar plot for clarity. To demonstrate the value of

this low-dimensional representation, Figure 4.1a displays a 4-day segment of a lunar trajectory in

the Moon-fixed frame that is generated from an initial perilune with the following orbital elements:

e = 0.025, i = 85◦, ω = 0◦, Ω = 210◦. The associated evolution of each perilune over 180 days in

the Moon-fixed frame is then plotted in black in Figure 4.1b on an e− ω polar plot with the first

and last perilune located by red and blue markers, respectively. Using this figure as an example,

trajectories that are generated for at least 27.3 days tend to possess an evolution of perilune that

exhibits multiple revolutions in the pq-plane and e − ω polar plot, with each revolution occurring

over one lunar rotational period, i.e., 27.3 days [59]. Later steps in the clustering framework exploit

this geometric property.

Figure 4.1: a) A 4-day segment of a lunar trajectory in the Moon-fixed frame generated from a
perilune with e = 0.025, i = 85◦, ω = 0◦, Ω = 210◦ and b) Associated evolution of perilune over
180 days in an e− ω polar plot; red and blue markers indicate the initial and final perilunes

The evolution of the perilunes along each trajectory is summarized using a feature vector
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that is input to a clustering algorithm. In general, the feature vector νgp,i is a finite-dimensional

representation of the characteristics of interest for the ith member of a dataset D. In this work, this

feature vector is constructed to capture the spatiotemporal evolution of these perilunes; thus, it is

labeled with the subscript gp, indicating the description in geometry and phasing. First, a fixed

number of mp perilunes are evenly sampled from the perilunes along each trajectory. Using a fixed

number of samples for all trajectories enables the definition of a feature vector with a fixed length

along the entire dataset and, therefore, the use of fast distance measures during clustering. In this

work, mp = 90 is selected empirically: for the trajectories in our dataset, 15 perilunes along each

lunar rotational period can sufficiently describe the perilune evolution shape. Then, si,k is defined

as a unit vector directed from the kth perilune to the k + 1th perilune along the ith trajectory in

the pq plane. Mathematically, this unit vector is defined as

si,k =
[pi,k+1 − pi,k, qi,k+1 − qi,k]

∥[pi,k+1 − pi,k, qi,k+1 − qi,k]∥
(4.1)

At the kth perilune along the ith trajectory generated over an integration time of tmax, a normalized

elapsed time is also defined as

t′i,k =
ti,k
tmax

(4.2)

Using these two quantities, the feature vector for the ith trajectory is defined as

νgp,i = [si,1, si,2, ..., si,m−1, t
′
i,1, t

′
i,2, ...t

′
i,m] (4.3)

producing a (3m − 2)-dimensional description. This feature vector approximates the shape of the

discrete path formed by the perilunes along a trajectory in the pq-plane as well as its phasing.

4.3 Step 3: Clustering the Trajectories by Geometry and Phasing

To cluster the feature vectors generated in Step 2 using HDBSCAN, multiple governing

parameters must be selected. First, the Euclidean distance is used to assess the difference between

feature vectors νgp,i and νgp,j , computed as

de(νgp,i,νgp,j) =

√√√√mp∑
k=1

(si,k − sj,k)T (si,k − sj,k) +

mp∑
k=1

(t′i,k − t′j,k)
2 (4.4)
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Although the Euclidean distance only compares two time-ordered sequences as opposed to two

geometric paths, this distance metric is used because it enables fast and computationally tractable

clustering for a large dataset. Then, a grid search is used along with cluster validation techniques

to select suitable values of nsample and nsize. This grid search is performed by generating clustering

results for various combinations of nsample = [2, 26] with a step size of 4 and nsize = [30, 100]

with a step size of 10. After clustering the generated set of trajectories using HDBSCAN for all

possible combinations of these parameters, nsample and nsize are selected to balance producing

a high DBCV index with identifying a reasonable number of clusters and noise points. With

these goals, nsample = 2, nsize = 50 and ϵmerge = 0.0 are selected to produce DBCV = 0.1745,

nnoise = 30% of the dataset, and nclust = 402 clusters; this set of clusters is labeled Cgp to reflect

that the trajectories are grouped according to both geometry and phasing. The percentage of

trajectories designated as noise is relatively high; however, ongoing work has focused on addressing

this issue.

Across the 402 clusters in Cgp, trajectories with perilune evolutions that exhibit similar geom-

etry and phasing are grouped together. As an example, Figure 4.2 displays the perilune evolution

of a subset of the trajectories in four clusters in the e−ω polar plot; each path is uniquely colored.

The black curve highlights the perilune evolution of a single trajectory to facilitate comparison,

while red and blue markers locate the first and last perilunes, respectively. Within each subfigure,

the evolution of the perilunes along each trajectory is geometrically similar, with a similar phas-

ing. However, the location and secular drift in the e − ω polar plot vary across the cluster. In

addition, Figures 4.2a and 4.2b display two clusters capturing perilune evolutions with a similar

geometry but distinct phasing. Alternatively, Figures 4.2c and 4.2d display two clusters that, when

compared, contain geometrically distinct paths traced out by the perilunes in the e− ω polar plot.

Accordingly, these four clusters demonstrate the capability of the clustering framework to group

the generated lunar trajectories based on the geometry and phasing of their evolution of perilune.
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Figure 4.2: Perilune evolution of selected members of four clusters: sample member in black with
red and blue points indicating the initial and final perilunes, respectively

4.4 Step 4: Extracting a Cluster Representative

To summarize each cluster, a cluster representative is extracted as the trajectory with the

most bounded evolution of perilune in the pq-plane. This trajectory is identified as the sequence

of perilunes that possesses the smallest cumulative distance, dseq, between revolutions in the pq-

plane. Recall that each revolution traced out by the perilunes in the pq-plane occurs over one lunar

rotational period. Accordingly, a perilune path completes w = Tp/Tl revolutions in the pq-plane,

where Tp is the integration time along the trajectory and Tl is the lunar rotational period. As a

result, there are approximately τ = ⌊mp/w⌋ perilunes sampled along each revolution. Using this

approximation, the distance is calculated between the ith sampled perilune that lies along the jth

revolution and the i+τth sampled perilune in the pq-plane. This distance is displayed conceptually

in Figure 4.3 as d([p, q]i, [p, q]i+τ ). Along the jth revolution, the Euclidean distances between each

sampled perilune and the associated perilunes along the j + 1th revolution are averaged. These

distances are computed between all subsequent revolutions and summed to produce the cumulative

distance dseq. The member of a cluster with the smallest value of dseq is selected as the representative

trajectory of the cluster.

Considering a state along the perilune trajectory xi, where i is the index representing the ith

cycle of the trajectory, the distance between subsequent revolutions is computed as the Euclidean

distance between xi and xi+τ , where τ is defined above as the number of sample along each perilune.
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Figure 4.3: Calculating the distance between perilunes along neighboring revolutions in the pq-
plane to identify a representative member of a cluster

This process is repeated on a subsample of perilunes along each revolution, and then the distances

obtained are used to compute the average distance between each revolution. A representative

trajectory is extracted from each cluster in Cgp to support further analysis. This is the member of

the cluster with the smallest average distance between each revolution.

Figure 4.4 displays an example of a cluster representative. In Figure 4.4a, the evolution of

perilune is shown in the Moon-fixed frame with the red and blue markers indicating the first and last

perilunes, respectively. The evolution of perilune for this representative trajectory is also depicted

in Figure 4.4b in the e− ω polar plot. In this particular case, the evolution of perilune associated

with this cluster representative exhibits only a slight drift between subsequent revolutions, both in

the pq-plane and in the Moon-fixed frame. For additional examples, the black highlighted paths in

Figure 4.2 are the representatives of those four clusters.

4.5 Step 5: Merging Clusters with Geometrically Similar Representatives

Members of multiple clusters in Cgp may exhibit a geometrically similar evolution of perilune

but are correctly separated due to distinct phasing of the initial and final perilunes. Accordingly,

a second clustering step is used to merge clusters with a similar geometry, independent of phasing.

This additional step is completed by using HDBSCAN to cluster only the representatives of each

cluster from Cgp with a new geometric feature vector and distance measure; the resulting set of
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Figure 4.4: Perilune path associated with a cluster representative in the a) Moon-fixed frame and
b) e− ω polar plot

clusters of representatives is labeled Cr. For each group of representatives in Cr, their associated

clusters from Cgp are merged. By applying this second clustering step to the cluster representa-

tives, the increased computational expense associated with this new feature vector and distance

measure does not become burdensome. The result of this second step is a set of clusters, each

containing trajectories with a similar geometry regardless of the relative phasing of the initial and

final perilunes.

A geometric feature vector is defined to describe the boundary of the path traced out by

the perilunes along each cluster representative in the pq-plane. This boundary is computed using

shape-related functions in MATLAB [68]. First, the alphaShape function is applied to the ordered

set of perilunes along the cluster representative to construct a polygon shape in the pq coordinates.

The polygon obtained with this function entirely encloses the perilune path, creating a convex

shape with no internal holes. Then, the pq-coordinates of the perilunes that lie at the boundary

of this polygon shape are extracted using the boundaryFacets function. Linear interpolation is

used to extract a fixed number of pq coordinates that lie along each boundary to ensure that a

boundary with the same resolution describes all cluster representatives; the number of points is

selected as the largest number of boundary perilunes calculated by the boundaryFacets function
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Figure 4.5: Computed boundaries of the paths traced out by perilunes along three trajectories in
the e− ω plane

along the entire set of representatives. Then, the geometric feature vector νg,i describing the ith

cluster representative is defined as

νg,i = [pb1 , qb1 , ..., pbk , qbk ] (4.5)

using the interpolated set of k boundary points bj for j = [1, k]. Examples of the boundaries

obtained from three sample perilune paths (black) in the pq-plane are displayed in Figure 4.5.

In this figure, the left and center cluster representatives with blue boundaries possess a similar

geometry and are, therefore, grouped together after clustering. The rightmost cluster representative

with the red boundary, however, possesses a distinct geometry from the other two representatives.

To cluster the geometric feature vectors describing the representatives of Cgp via HDBSCAN,

multiple governing parameters must be selected. First, the values of the hyperparameters governing

HDBSCAN are modified to nsample = 1, nsize = 2, and ϵmerge = 0.08 based on visual inspection of

the clusters to accommodate the smaller dataset. The choice of nsample = 1 and nsize = 2 reduces

the algorithm to a single linkage. In fact, the value nsize = 2 disables the pruning of the MST

branches, i.e., of the hierarchical representation of the dataset, similarly to a robust single linkage

[17]. Additionally, by setting nsample = 1, the core distance of each point is reduced to zero, and

the MRD becomes the Euclidean distance between two points as in the ordinary single linkage
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approach [70]. Next, the modified Hausdorff distance dmhd is used as a distance measure during

this second clustering step to capture geometric differences in each path, independent of phasing.

This distance measure is mathematically defined as:

dmhd(νg,i,νg,j) = dmhd,f (νg,i,νg,j) + dmhd,b(νg,j ,νg,i) (4.6)

where

dmhd,f (νg,i,νg,j) = max
i=1,..m

( min
j=1,..m

∥νg,i − νg,j∥2) (4.7)

dmhd,b(νg,i,νg,j) = max
j=1,..m

( min
i=1,..m

∥νg,i − νg,j∥2) (4.8)

Due to the complexity of computing this distance measure, a higher computational time is required

when compared to the Euclidean distance. However, the size of the reduced dataset of cluster

representatives makes this computational time reasonable.

HDBSCAN is used to cluster the geometric feature vectors describing only the representatives

of the clusters in Cgp. This second clustering step produces 41 clusters of representatives with similar

geometry and 55 noise points. Representatives that exist in the same cluster in Cr indicate that

their associated clusters from Cgp should be merged. The cluster representatives labeled as noise

points in Cr, however, indicate that 55 of the original clusters from Cgp should not be merged.

Following the cluster merging process, there are 96 clusters of trajectories, labeled as the global

clustering result Cg throughout the remainder of the work to reflect that the trajectories are only

grouped by geometry. Polar plots of the representative trajectories of these 96 clusters appear in

the Appendix.

Visual inspection reveals that the merging process successfully combines trajectories with a

similar geometry, regardless of phasing. An example of a merged cluster in Cg is displayed in Figure

4.6a, with each of 12 representatives from the original clusters in Cgp uniquely colored. Each cluster

representative from Cgp exhibits a similar geometry in the e − ω plane. Figure 4.6b also includes

selected members of all 12 clusters from Cgp, displayed with the same color as the representative

but a thin, transparent curve. The gray circle represents the value of eccentricity at impact with

the Moon’s surface when a = 1838 km. The region of the e − ω plane encompassed by members
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of this larger merged cluster indicates the region of existence of lunar trajectories with a similar

geometric evolution in perilune but varying phasing, drift, and average eccentricities.

In addition to exhibiting a similar geometry in the e−ω polar plot, the 12 representatives that

are plotted in Figure 4.6a also exhibit a similar evolution of the remaining orbital elements. Figure

4.7 displays the range of values of the altitude, argument of perilune, eccentricity, inclination, and

RAAN of perilunes along each cluster representative; each angle is calculated in the Moon-fixed

frame. The orbital elements of each representative are colored using the same color scheme as

Figure 4.6. The 12 representatives all begin with perilunes that exist at an inclination of i = 75◦

in the Moon-fixed frame and exhibit only a small variation in this angle over time. Across all 12

representatives, the perilune altitude also varies by approximately 30 km over 180 days.

Figure 4.6: a) 12 representatives of clusters in Cgp that are grouped based on geometry in the
second clustering step and b) Selected members of the merged cluster in Cg
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Figure 4.7: Initial orbital elements (diamond) with angles in the Moon-fixed frame associated with
the 12 cluster representatives in Figure 4.6a and their ranges of values during propagation



Chapter 5

Application of Clustering Approach Identifying Low Lunar Long-Lifetime

Orbits in a High-Fidelity Model

Using the approach presented in Chapter 4, this chapter presents a broader analysis of the

clustering-based summary of lunar trajectories generated in a high-fidelity model. First, several

candidates for lunar frozen or quasi-frozen orbits are identified across the entire clustering result.

Note, the phrase ‘candidate for a frozen or quasi-frozen orbit’ is used in this work because 1)

trajectories are only generated for 180 days, and 2) the analysis is initially performed on the

evolution of the eccentricity and argument of perilune; subsequent analysis requires examining the

evolution of all orbital elements over longer time intervals. In addition, the clusters of trajectories

with a geometrically similar evolution of perilune are used to identify local trends in the orbital

elements that lead to changes in the orbit lifetime.

5.1 Identifying Candidates for Frozen Orbits

By analyzing the final clustering result Cg from Chapter 4, trajectories with a tightly bounded

evolution of perilune in the pq-plane and a lifetime of 6 months are analyzed as candidates for

frozen orbits. For example, consider the merged cluster of trajectories with a perilune evolution, as

displayed in Figure 4.6. Figure 5.1 displays the perilunes along these 12 representative trajectories in

Cartesian coordinates in the Moon-fixed frame using a different color scheme; each subfigure displays

an alternative three-dimensional view for clarity. This figure reveals that the 12 representative

trajectories can be divided into two groups. The perilune paths that are colored in shades of blue
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Figure 5.1: Three-dimensional views of the uniquely-colored paths traced out by perilunes of 12
grouped cluster representatives in two different orientations in the Moon-fixed frame

revolve around the +Ẑ-axis of the Moon-fixed frame, aligned with the third lunar principal axis,

twice every lunar rotational period. In the polar plot, the associated values of the argument of

perilune in the Moon-fixed frame lie predominantly in the range [0◦, 180◦]. Similarly, the perilune

paths that are colored in shades of red perform two revolutions around the −Ẑ-axis of the Moon-

fixed frame and possess arguments of perilune that are predominantly in the range [180◦, 360◦]. The

perilunes along all 12 representative trajectories also predominantly pass over the +X̂ hemisphere

of the Moon, corresponding to the first lunar principal axis and mean direction to the Earth.

The evolution of the perilune along grouped cluster representatives supports the visual iden-

tification of one or more candidates for low-lunar, frozen, or quasi-frozen orbits. To understand

this process, consider an analogy to a stable periodic orbit with nearby quasi-periodic orbits in the

well-known planar circular restricted three-body problem. In this dynamical model, Poincaré maps

are frequently employed to analyze the structure of the solution space. On a suitably constructed

Poincaré map, stable periodic orbits appear as a fixed point that is surrounded by concentric closed

curves corresponding to quasi-periodic orbits. When generating these Poincaré maps, a stable pe-

riodic orbit is rarely computed exactly. However, the presence of concentric curves and, therefore,

a family of quasi-periodic orbits indicates the existence of the associated stable periodic orbit,
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supporting the localization of its precise trajectory with the aid of differential corrections or other

numerical methods [90].

Although the ephemeris model used in this work is not autonomous and does not admit

periodic orbits, the presented analogy is still useful. In Figures 4.6 and 5.1, the representative

trajectories exhibit various levels of drift in the perilunes during each subsequent lunar rotational

period. In this figure, the lower the drift, the darker the shade of blue or red of the path traced

out by the perilunes of the associated trajectory. In this case, the perilune paths that are colored

in the darkest shades of blue and red correspond to two trajectories with a perilune evolution that

exhibits a low drift in the eccentricity over 180 days: one trajectory with a perilune predominantly

over the northern hemisphere and the other over the southern hemisphere, supplying two suitable

candidates for lunar frozen or quasi-frozen orbits.

The manual identification of candidates for low lunar frozen and quasi-frozen orbits is re-

peated across all clusters in Cg. For initial conditions that are constrained to possess a semi-major

axis of 1838 km at January 1, 2025, 00:00.000 UTC with the discretization scheme outlined in Step

1, a total of 15 candidates have been identified. These candidates possess various geometries in the

evolution of perilune in both the pq-plane and the Moon-fixed frame. The initial conditions used

to generate these 15 trajectories are displayed in the table contained within Figure 5.2, together

with the variation in the perilune altitude during the 6-month propagation time. Of course, these

initial conditions are not necessarily unique, but they supply insight into a combination of orbital

elements that lead to each type of motion. Figure 5.3a-d also displays the paths traced out by the

perilunes along these candidates in the e− ω polar plot. Each path is plotted with a unique color

that matches the color in the first column of the table in Figure 5.2. For clarity, these 15 paths are

separated across multiple plots based on their inclination.

Using the table in Figure 5.3 as a reference, each type of motion exists at a unique value of

inclination in the Moon-fixed frame, consistent with previous analyses. For instance, Lara, Ferrer,

and De Saedeleer identify low lunar frozen orbits with eccentricities between ∼ 0 to 0.035 and

initial arguments of perilune that place the initial perilune close to an axis of inertia, in particular
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Figure 5.2: Initial orbital elements used to generate the 15 candidates for low lunar frozen orbits
at a = 1838 km at January 1, 2025 00:00.000 UTC in a 100x100 gravity field. Colors in the first
column match the color scheme in Figure 5.3

Figure 5.3: Evolution of perilune in the e− ω polar plot for the 15 candidates for low lunar frozen
orbits at a = 1838 km at January 1, 2025 00:00.000 UTC in a 100x100 gravity field, with the
red and blue dots indicating the initial and final states, grouped by initial inclination: a) from
i = 0.001◦ to i = 50◦, b) from i = 70◦ to i = 85◦, c) from i = 95◦ to i = 130◦, and d) from i = 135◦

to i = 179.999◦

near the Ẑ- or Ŷ -axes, which are therefore associated with higher stability [61]. This result is also

consistent with the conditions derived by Folta and Quinn using Lagrange’s planetary equation,

such that for 39.23◦ < i < 140.77◦ if ω = 90◦ or ω = 180◦ there is a value of eccentricity that

drives ω̇ and ė to zero [37]. Similar results have also been found using the averaged Hamiltonian

equations with higher-order gravity field models [61].
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Some of the candidates for low lunar frozen orbits in Figure 5.3a-d have been identified

by previous authors, offering verification of the results presented in this work. For example, the

candidates that exist at 75◦ ≤ i < 105◦ match the frozen orbits presented in 2007 by Russell and

Lara [96]. Lara also studied a frozen orbit at i = 88◦ with a similar perilune evolution to the

candidate frozen orbit at i = 85◦ [60]. Furthermore, Park and Junkins use the Lagrange planetary

equations in a low-fidelity gravity model to derive combinations of the average eccentricity and

inclination of frozen orbits at a = 1838 km when ω = 90◦ or ω = 270◦ [89].

To further analyze the extracted candidates for lunar frozen orbits, the evolution of perilune

is examined in the Moon-fixed frame. Specifically, Figure 5.4 displays a selection of the most

bounded members of several clusters. Each subfigure displays a group of representatives that are

clustered together in Cr during Step 5 of the presented framework. Trajectories with perilunes that

predominantly exist in the northern hemisphere of the Moon are plotted in shades of blue, whereas

those with perilunes mostly in the southern hemisphere are plotted in shades of red. In the right

inset of each subfigure, the path traced out by the most bounded trajectory in the e−ω polar plot

appears along with the initial inclination labeled for reference.

The evolution of perilune along the candidates for frozen orbits is compared in the Moon-fixed

frame. Figure 5.5 displays the perilune location along each trajectory in the Moon-fixed frame using

unique colors; these colors do not match previous figures. Figure 5.5a plots the perilune evolution

for trajectories with a low inclination, as listed in the legend. Across this plot, the perilunes evolve

with small variations in the latitude. Notably, trajectories with initial inclinations of i = 1× 10−3◦

and i = 179.999◦ produce perilunes that are tightly bounded to a region that is slightly offset from

the −X̂- and +X̂-axis, respectively. Figure 5.5b displays the perilune evolution of trajectories with

a higher inclination. In this case, the perilunes evolve over a larger range of latitudes, with some

completing two revolutions in the Moon-fixed frame every lunar rotational period.

Figures 5.4 and 5.5 reveal near antisymmetric properties in the candidates for frozen orbits

as a function of inclination around i = 90◦. For instance, the trajectories with the most bounded

evolution of perilune at i = 20◦ and i = 160◦ possess a similar geometry with perilunes occurring
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Figure 5.4: Perilune evolution in the Moon-fixed frame for selected representatives that are grouped
together in Cr during Step 5 of the clustering-based framework

at near constant latitudes over the northern hemisphere of the Moon, except for one region where a

ripple occurs. This ripple nearly antisymmetrically occurs over the +X̂ and −X̂ hemispheres of the

Moon, respectively. A similar observation holds for the trajectories with i = 20◦ and i = 160◦. The

trajectories at high inclinations exhibit a slightly different geometry of the perilune evolution in the

Moon-fixed frame: each path performs two revolutions near the +/− Ẑ-axis. However, for i = 85◦,

for example, this path spans the +X̂-hemisphere in the Moon-fixed frame, whereas for i = 95◦,

the perilunes exist predominantly over the −X̂-hemisphere. Aggregating these observations, the

candidate lunar frozen orbits that are prograde and nonplanar produce perilunes that evolve most

significantly over the +X̂ hemisphere, while orbits that are retrograde and nonplanar possess
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Figure 5.5: Evolution of perilune in the Moon-fixed frame for candidates for low lunar frozen orbits:
a) low inclination trajectories and b) high inclination trajectories

perilunes that evolve most significantly in the −X̂ hemisphere. Although the X̂-axis is aligned

with the mean direction to the Earth, a more extensive analysis of the dynamical contribution

governing the characteristics of the perilune evolution in the Moon-fixed frame is the focus of

ongoing work.

5.2 Evolution of Orbit Lifetime in each Cluster

Clusters of trajectories also support the identification of trends in the orbital elements that

lead to changes in the orbit lifetime. Consider the 26 clusters that do not contain bounded motion

and compare the evolution of trajectories across clusters at the same inclination when the eccen-

tricity increases. The perilunes possess varying levels of drift and, as a result, orbit lifetimes. This

drift tends to increase as the maximum eccentricity along the path increases. As an example, con-

sider the time evolution of trajectories with an initial inclination of i = 5◦ in Figure 5.6. For each

trajectory, displayed on a single row, the following information is plotted from left to right: the

evolution of perilune in the pq-plane; the variation in altitude over time, normalized by 180 days;

the variation in inclination over time, normalized by 180 days; and the variation in eccentricity
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Figure 5.6: Comparing the evolution of the orbital elements for three orbits in a cluster at i = 5◦:
(top) frozen orbit, (center) orbit with 1-6 month lifetime, and (bottom) orbit with < 1 month
lifespan

as a function of RAAN. At this inclination, the initial value of e = 0.005 produces a candidate

for a frozen orbit, as displayed in the top row. However, as the initial eccentricity is increased to

the values annotated in red in the right column of this figure, an increased drift occurs between

the revolutions in the pq-plane over each lunar rotational period; simultaneously, the orbit lifetime

decreases. At sufficiently high values of the eccentricity, the trajectory impacts the lunar surface

in less than one lunar rotational period before completing a full revolution in the pq-plane.

Within Cg, some clusters of trajectories with a lifetime of 180 days do not lead to frozen

orbit candidates. Consider the representative trajectory of a cluster with i = 90◦, plotted in Figure

5.7a in the e − ω polar plot along with the variation in its altitude, inclination, eccentricity, and

RAAN. The perilune along this trajectory traces out a curve on average in the e − ω polar plot.

This perilune evolution is similar to the evolution of paths that exist in the same cluster as a

frozen orbit, e.g., in Figures 4.2 and 4.6. However, the perilunes along the trajectory in Figure 5.7a
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and its associated cluster members intersect the lunar surface before completing a full revolution.

Furthermore, the center of these curves traced out by the drifting perilune paths does not exist at

an eccentricity that lies below the critical value corresponding to lunar impact at a = 1838 km.

However, frozen orbits with a geometrically similar perilune evolution to this trajectory have been

observed by Folta and Quinn to exist at i = 90◦ with a higher-semi-major axis of a = 1861 km [37].

The remaining 26 clusters within Cg that do not produce candidates for lunar frozen orbits

include clusters of trajectories with a lifetime of less than 180 days. As an example, the evolution

of perilune for members of two clusters is plotted in the pq-plane in Figure 5.7b with i = 120◦ and

5.7c with i = [160◦, 180◦]. In Figure 5.7b, the perilunes of trajectories with a 1-6 month lifetime

secularly drift towards the right in the pq-plane until impacting the lunar surface. Physically,

this drift corresponds to the argument of perilune approaching 0◦ and, therefore, the perilune

approaching a region around the mean direction to the Earth within the X̂Ŷ plane of the Moon-

fixed frame. A similar secular drift in the perilune location within the pq-plane occurs in Figure

5.7c for a group of trajectories with an orbit lifetime of less than 1 month.

Figure 5.7: Evolution of perilune in the e − ω polar plot for two clusters of trajectories: a) with
> 6 month lifetime but not bounded; b) with a 1-6 month orbit lifetime and c) with a <1-month
orbit lifetime



Chapter 6

Motion Primitive Approach to Trajectory Design in Multi-Body System

This Chapter presents an updated motion primitive approach to trajectory design in a multi-

body system. This version of the trajectory design framework is used throughout this chapter to

generate trajectories between L1 and L2 Lyapunov orbits at different energy levels.

6.1 Motion Primitives in Robotics

In robotics, motion primitives are defined as the building blocks of motion [112] and have

typically been extracted using manual labeling, clustering, or basis function approximations [39, 87,

109, 93]. Using motion primitives, a continuous-time path planning problem can be reformulated

as a discrete graph search problem. For instance, Frazzoli, as well as Majumdar and Tedrake,

have constructed graphs by defining the nodes as motion primitives and directed edges connecting

selected nodes [39, 65]. Graph search algorithms may then be used to construct sequences of motion

primitives that form a complex trajectory. This approach has been successfully applied to a variety

of problems, ranging from describing and planning motion for humans or robots performing simple

movement tasks [58, 27, 21] to path planning for autonomous air or land vehicles [65, 39, 58, 27, 21].

6.2 Motion Primitives in Spacecraft Trajectory Design

Inspired by the use of motion primitives in robotics, Smith and Bosanac introduced a motion

primitive approach to spacecraft trajectory design in a multi-body system [101]. In their work,

primitives are extracted as geometrically different arcs along fundamental solutions of the CR3BP.
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Similar to the motion primitives in robotics, these arcs can be composed together to create a path

connecting one state to another in the rotating frame, composing a trajectory initial guess. The

first version of the motion primitive design approach consisted of six steps.

First, a segment of the solution space is summarized by constructing a library of motion

primitives that have been extracted using consensus clustering. In their proof-of-concept, Smith

and Bosanac used this clustering approach to summarize the geometric, stability, and energy char-

acteristics of fundamental solutions such as periodic orbit families and their associated hyperbolic

invariant manifolds in the Earth-Moon CR3BP [100]. Then, a motion primitive graph is con-

structed, with nodes defined as the motion primitives and directed edges reflecting the potential

for sequential composability of the selected primitives. This graph was constructed in two steps.

Initially, a set of subgraphs was used to summarize the sequential composability of primitives de-

rived from the same family of fundamental solutions, i.e, the edges connecting nodes representing

primitives of the same family are defined. Subsequently, the subgraphs are connected via a high-

level itinerary graph, a structure that determines which and how the subgraphs are connected

[101]. Subsequently, a depth-first search algorithm was employed to generate all possible primitive

sequences of a specified length that connect a desired initial and target primitive [101].

Selected primitive sequences of specified lengths are then refined to improve the quality of

the associated initial guess. In their work, Smith and Bosanac used a sequential trimming and

morphing approach to trim the primitives and select the best member of the primitive set that

would reduce the overall discontinuity of the initial guess [101]. Then, these initial guesses are

corrected using collocation and multi-objective optimization to compute a transfer resembling the

initial guess while reducing the maneuver requirements [101]. Finally, the continuous initial guesses

serve as input to a continuation process, which produces a set of trajectories with gradually varying

geometries, times of flight, and total ∆v [101].

Although the motion primitive design approach was originally introduced by Smith and

Bosanac [101], several substantial improvements are presented in this dissertation and detailed in

the following sections.
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6.3 Step 1: Generating Motion Primitives

Motion primitives are generated in the Neptune-Triton CR3BP to supply the building blocks

of complex spacecraft trajectories. Similar to their use by Smith and Bosanac [100], motion primi-

tives are generated in the NT-CR3BP to summarize continuous families of periodic orbits as well

as arcs along the hyperbolic invariant manifolds of unstable primitives from selected periodic orbit

families [72]. First, groups of orbits or arcs with a similar geometry are constructed to summarize

each family of periodic orbits or set of hyperbolic invariant manifolds. Then, a motion primi-

tive is defined as a single representative member of each group. This process is repeated across

the selected set of fundamental solutions to produce a library of motion primitives that discretely

summarize continuous trajectories across a segment of the phase space. Although this library of

motion primitives provides sufficient information for the trajectory design problems addressed in

this dissertation, ongoing work by other researchers involves expanding the library to encompass a

more general set of trajectories that do not necessarily correspond to fundamental solutions.

6.3.1 Curvature

The concept of curvature from differential geometry is used in this work to create geometri-

cally meaningful arcs along trajectories in the CR3BP [13, 41]. The value of curvature κ can be

computed at any state along a trajectory as [91]

κ(t) =

√
(z̈ẏ − ÿż)2 + (ẍż − z̈ẋ)2 + (ÿẋ− ẍẏ)2

(ẋ2 + ẏ2 + ż2)3/2
(6.1)

While the value history of curvature along a trajectory provides insights about its general shape,

the maxima of this function identify the locations where the trajectory is most significantly curved.

In particular, maxima in the curvature satisfy the following condition:

κ̇(x) = 0 =
2(

...
y ẋ− ...

x ẏ)(ẋÿ − ẍẏ) + 2(
...
x ż − ...

z ẋ)(żẍ− z̈ẋ) + 2(
...
z ẏ − ...

y ż)(ẏz̈ − ÿż)

2(ẋ2 + ẏ2 + ż2)3/2
√
(ẋÿ − ẏẍ)2 + (żẍ− ẋz̈)2 + (ẏz̈ − ÿż)2

−
3(2ẋẍ+ 2ẏÿ + 2żz̈))

√
(ẋÿ − ẏẍ)2 + (żẍ− ẋz̈)2 + (ẏz̈ − ÿż)2

2(ẋ2 + ẏ2 + ż2)5/2

(6.2)
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where

...
x = 2ÿ + ẋ− (1− µ)ẋr31 − (1− µ)(x+ µ)ṙ31

r61
− µẋr32 − µ(x− 1 + µ)ṙ32

r62
(6.3)

...
y = −2ẍ+ ẏ − (1− µ)ẏr31 − (1− µ)yṙ31

r61
− µẏr32 − µyṙ32

r62
(6.4)

...
z = −(1− µ)żr31 − (1− µ)zṙ31

r61
− µżr32 − µzṙ32

r62
(6.5)

and κ̈ < 0. These maxima often occur in similar locations to apses relative to meaningful ref-

erence points, with the advantage that they do not require the specification of a reference point

[11]. Therefore, maxima in curvature are used to identify geometrically meaningful points along a

trajectory spanning a wide region of the Neptune-Triton system.

6.3.2 Motion Primitives of Arcs Along Stable or Unstable Manifolds

The primitives from the hyperbolic invariant manifold are obtained from clusters of manifold

trajectory arcs with similar geometric features. Bosanac developed the clustering procedure em-

ployed in this section, originally presented in Reference [12] and later adapted for motion primitives

in Reference [41]. Clusters obtained from this approach group trajectory arcs with consistent shape

and path locations, accurately summarizing the fundamental solutions of the system.

First, arcs are defined leveraging the concept of curvature [13]. After trajectories are gen-

erated along the selected stable or unstable manifold, the curvature κ is calculated as outlined in

Section 6.3.1 at all the states along trajectories. Then, initial conditions for arcs are selected at

each maximum in the curvature along these trajectories. The arcs are defined to include a specified

number of maxima in the curvature. In this work, arcs span an nκmax = 5 maxima, and subsequent

arcs have four overlapping maxima in curvature [41].

Successively, clustering is used to group arcs with similar geometry. Initially, each arc is

described using two finite-dimensional feature vectors: the first captures the shape of the trajectory,

and the second describes the positions it traverses in configuration space. Successively, each arc is

discretized at the point of maxima in curvature, and then at two states that are equally spaced in

arclength between pairs of subsequent maxima. Therefore, each trajectory arc is discretized at a
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total of nL = 13 states. Given the samples, the shape-based feature vector νv is defined as

νv = [ˆ̇x1, ˆ̇y1, ˆ̇z1, ..., ˆ̇xnL ,
ˆ̇ynL ,

ˆ̇znL ]
T (6.6)

where [ˆ̇xi, ˆ̇yi, ˆ̇zi] is the velocity unit vector at the ith sample in R. While the position-based feature

vector is defined as

νp = [x1, y1, z1, ..., xnL , ynL , znL ]
T (6.7)

where [xi, yi, zi] is the position vector at the ith sample in R. These feature vectors produce a

3nL-dimensional description of the arc.

The feature vectors describing the arcs along each manifold trajectory are clustered to identify

groups of geometrically similar trajectories. This clustering step is performed in two stages, utilizing

two clustering algorithms. First, the Hierarchical Density-Based Spatial Clustering of Applications

with Noise [17] is leveraged to retrieve coarse clusters of trajectories with similar shapes. Then, the

coarse clusters are refined using the Density-Based Spatial Clustering of Applications with Noise

algorithm, considering both shape and position feature vectors.

In the first step, Nt trajectories are sampled in nL nodes to create the shape-based feature

vectors. This creates a Nt×3nL matrix of features, which is then input to HDBSCAN. Additionally,

the algorithm requires the specifications of hyperparameters nsize, nsample, and ϵmerge, as discussed

in Section 3.2. At this step, nsize = 5 and nsample = 4, whereas ϵmerge = 2
√
13 sin (5◦) [13].

Together, small values of nsize and nsample prioritize grouping trajectories with localized variations

across the dataset. On the other hand, ϵmerge is computed as the Euclidean distance between a

sequence of 13 unit vectors that are separated by an angle of 10◦. This process produces CC coarse

groups that contain trajectory arcs with similar geometrical evolution.

In the second step, the coarse clusters are refined following the approach originally developed

by Bosanac [12], which uses a convoy detection scheme to ensure that each cluster comprises

only members with consistent shapes that exist in a similar configuration space location. In this

refinement approach, each coarse cluster is evaluated independently. First, the values of the shape-

based feature vector νv and position-based feature vector νp are extracted at each ith sample.
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Considering a cluster composed of Ncg members, this produces an Ncg × 3-dimensional matrix for

each type of feature vector, Dp and Dv.

Secondly, the matrices Dp and Dv at all the ith samples are input independently to DBSCAN

to produce 2nL clustering results. From the 2nL clustering results, the refined clusters are generated

as follows: if any trajectories are consistently clustered together in all 2nL clustering results, then

they are considered similar; however, if at one point, the trajectories are assigned to different

groups, they are considered dissimilar and cannot be assigned to the same cluster. Trajectories

existing in clusters with at least nsize members will form a refined cluster; otherwise, they will

be labeled as noise and discarded. This process can potentially maintain a single unique cluster,

remove outliers and noise points, or split a cluster into multiple smaller clusters. This process is

repeated for all CC coarse groups to produce a set of CR refined clusters.

Additional inputs to DBSCAN are the hyperparameters nsample and ϵ, as discussed in Sec-

tion 3.1. In this dissertation, these values are selected as nsample = 4 and ϵ = (nsample +

1)max(e, ϵthreshold), where ϵthreshold is a minimum threshold and e is the nsize-largest distance

between each member and its nearest neighbor. This heuristic is modified compared to Reference

[12] based on several factors. First, scaling the neighbors’ distance, rather than the actual nsample-

neighborhood radii, minimizes the presence of outliers in the cluster. Secondly, the nsize-largest

nearest neighbor distance helps reduce the impact of outliers while avoiding excessive splitting of

clusters or misclassification of noise during refinement. Finally, by introducing the (nsample + 1)

scaling factor, the estimate of the nsample-neighborhood size incorporates some margin.

Consistent with the original concept by Smith and Bosanac [101], motion primitives are

extracted as a single representative member of each cluster. The medoid of the cluster in the

position-based feature vector space of the entire trajectory is selected as the representative member

and can be computed as

νr = arg min
i∈{1,..,Nt}

 Nt∑
j=1
j ̸=i

||νi − νj ||

 (6.8)

Then, NRe = 50 trajectories in the clusters are sampled at an equal distance from the primitive to
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obtain a representation of the region of existence (Re) of that motion type in the solution space.

An example of the geometrically different clusters obtained with this approach is shown in

Figure 6.1, both for stable and unstable invariant manifolds of an L1 Lyapunov orbit. The primitives

are highlighted with thick lines, while the light-colored region surrounding them represents the

region of existence. In each subfigure, the gray or blue circles indicate Neptune and Triton, scaled by

their equatorial radii of 24,764 km and 1,352.6 km, respectively. Then, the circle along the trajectory

indicates the arc’s initial state, and red diamonds locate nearby equilibrium points. This same

figure configuration is used throughout this work when visualizing selected motion primitives. The

primitives and their regions of existence are stored in a motion primitive library, which offers both a

condensed, discrete representation of the continuous solution space and supports the construction

of complex trajectories. These clusters, as well as other clusters used in this dissertation, were

generated by Dr. Natasha Bosanac and are used in the trajectory design problems presented in

this and the following chapter.

6.3.3 Motion Primitives of Periodic Orbit Families

Different from the hyperbolic invariant manifolds, motion primitives from periodic orbits are

obtained by considering the full trajectories and not splitting them into arcs. Previous versions of

this work have shown the applicability of clustering techniques such as WEAC [100, 101, 74] and

HDBSCAN [73, 72] to identify primitives from periodic orbit families. However, this process can

sometimes lead to the creation of motion primitives with little geometrical difference or a strong

dependence on the density of the samples along a continuous family. Therefore, this work employs

an analytical approach to detect changes in the continuous evolution of a periodic orbit family,

thereby identifying the fundamental, geometrically distinct members of the set.

Changes in geometry within an orbit family can be computed analytically without resorting

to unsupervised learning approaches. This approach, previously presented by Gillespie, Miceli,

and Bosanac [41], leverages the evolution of curvature along a nonlinear trajectory to capture its

shape within the rotating plane. First, all the members of periodic or resonant orbit families are
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Figure 6.1: Selected motion primitives (thick curves) and their region of existence (shadowed area)
for the L1 Lyapunov orbit family at CJ = [2.9981, 3.0037, 3.01400]. The dot represents the initial
state of each trajectory

propagated to compute the maxima in curvature as described in Equation 6.1. Then, the change

of maxima in curvature points is monitored along the family. Subsequent orbits with the same

number of curvature maxima are considered similar and assigned to the same group; then, when

the number of curvature points changes, a new group is formed. The change in curvature points

is an indicator of a geometric change within the family; therefore, it is leveraged to automatically

group trajectories that exist in a continuous set, such as a periodic orbit family. Once the groups of

similar orbits are found, primitives are extracted as the medoid of each set, together with NRe = 20

trajectories that represent the primitive’s Re.

To demonstrate this process, consider motion primitives extracted to summarize selected

planar periodic orbit families. Each subfigure in Figure 6.2 displays motion primitives and the

associated regions of existence for the following families: a) L1 Lyapunov orbits, b) DPOs, and c) a
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3:1 resonant orbit family. In each figure, each color corresponds to a group of geometrically similar

periodic orbits: the thick curve traces out the periodic orbit selected as the motion primitive,

whereas the associated region of existence is depicted using the light-colored region in the same

shade. Analysis of this figure reveals that this approach yields sets of motion primitives that capture

both obvious and subtle geometric changes along each family of periodic orbits.

Figure 6.2: Selected motion primitives (thick curves) and their regions of existence (translucent
shading) for the a) L1 Lyapunov orbit family, b) distant prograde orbits, and c) a 3:1 resonant
orbit family

6.3.4 Summary of Procedure

Step 1 focuses on generating motion primitives that summarize the diverse array of geometries

exhibited across families of periodic orbits and arcs along the hyperbolic invariant manifolds of

selected periodic orbits. A graphical, high-level overview of the technical approach described in

Sections 6.3.2 and 6.3.3 is presented in the flowchart in Figure 6.3. Several parameters and decisions

govern the motion primitives generated in this step, summarized in Table 6.1.
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Figure 6.3: Flowcharts of process used to generate a) motion primitives from periodic orbits and
b) motion primitives from hyperbolic stable and unstable invariant manifolds.

6.4 Step 2: Constructing a Motion Primitive-Informed Graph

The trajectory design process begins by relating the motion primitives through the definition

of a graph. Graphs have been used in robotics and other disciplines to represent relationships

between elements in a given space, such as locations on a map for a path-planning problem [85].

These structures are composed of nodes and edges. The edges can be directional or non-directional,

and weighted or unweighted, depending on the type of relationships they represent. In previous

applications of path-planning with motion primitives, both in robotics and astrodynamics, graphs
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Governing parameter Influence Value

Arc definition

Defines region described
by the motion primitive
and influences the geo-
metric representation of
the solution space

Encompassing 5 maxima
in curvature

Sampling scheme

Characterizes the low-
dimensional representa-
tion of the trajectory
arcs.

13 samples: 5 at maxima
in curvature and 2 equally
spaced in arclength be-
tween consecutive max-
ima in curvature

Feature vector

Influences how trajectory
arcs are compared to as-
sess similarities. Can be
used to highlight a spe-
cific property more than
another, e.g., position,
shape, time of flight, etc.

position νp and velocity
direction νv

Roe size

Describes the area where
similar geometries exist
and influences the initial
guess refinement by pro-
viding more options to
move across primitives

50 members from the
manifold cluster and 20
members for periodic or-
bit groups, equally spaced
in position from the prim-
itive

Clustering algorithm

Influence how arcs with
similar features are
grouped and distin-
guished from dissimilar
arcs

HDBSCAN for coarse
clustering and DBSCAN
for refinement

Clustering parameters

Govern the clustering al-
gorithms and influence
their results, and as a con-
sequence, the primitives

nsize = 5, nsample = 4,
ϵmerge = 2

√
13 sin (5◦)

and ϵ = (nsample +
1)max(e, ϵthreshold)

Table 6.1: Table of governing parameters for motion primitive generation

have been formulated to assign distinct motion primitives as nodes and directed, weighted edges

to describe the connectivity between the primitives [39, 65, 101, 74, 72].

This step of the technical approach builds upon the previous approach presented by Smith

and Bosanac [101] to include several improvements. First, primitives are not represented as a node

of the graph, but instead, they inform the definition of the graph components. The graph’s nodes

are now defined as states along the primitives, while the graph’s edges are added only between nodes
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closely located in phase space and are weighted by the velocity direction discontinuity between the

two nodes. Additionally, constraints can be imposed during the graph construction to incorporate

path or maneuver constraints. This new definition of the motion primitive graph results in a better

description of the primitives’ sequential composability and thus, better recovery of initial guesses

that could support the design of constrained trajectories.

6.4.1 Selecting Motion Primitives for the Graph

Primitives potentially suitable for the design are selected from the database generated in

Step 1. Among all available motion primitives, selection can be guided by several factors. In this

work, a primitive is considered suitable if its geometry and direction of motion resemble those of

the boundary primitives of the transfer and if it falls within the Jacobi constant range defined by

the initial and final targets. When no prior knowledge is available regarding the type of transfer

or its boundary conditions, any or all primitives in the database may be included in the design.

However, this may result in graphs that yield no valid solution and require significant computational

effort to generate. When a specific geometry or energy range is identified, the database is searched

for the periodic orbit families or hyperbolic invariant manifolds that have members that meet the

desired characteristics. Then, motion primitives are selected from the periodic orbit families or the

hyperbolic invariant manifolds to which they belong. For example, up to three motion primitives

could be selected from the L1 Lyapunov family shown in Figure 6.2a, depending on the energy and

geometry that is required from the design.

The selected primitives and the members of their Re might span a large area of the state space.

However, mission or scientific constraints might require the spacecraft to fly at a specific distance

from a body or to avoid certain regions of the system. To address this concern, path constraints

can be added to modify the extension of a primitive region. Specifically, these constraints are

formulated as the minimum or maximum distance from a primary and can be applied to all or

some of the selected primitives within the graph [72]. At this stage, as the graph represents a

discrete approximation of the solution space, the values of the constraint should be considered with
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a margin. For example, if the mission requires a minimum allowable altitude from the surface of

Triton of hmin = 500 km, this constraint can be imposed on the graph step as hmin = 300 km.

Then, the initial guesses resulting from a constrained graph can be corrected using the actual

constraint value of 500 km.

The primitives selected for the design are analyzed to check if they meet the conditions

imposed by the constraint. If any primitive or any trajectory in the region of existence violates the

distance threshold, the trajectory is flagged for removal from the set. If all the trajectories in the

region of existence associated with a primitive are flagged, including the primitive, then that entire

primitive is removed from the graph. Otherwise, if only some trajectories are flagged, the region of

existence is simply resized to contain only the members that meet the constraints. If the primitive

of the set is flagged, then another primitive is identified among the remaining trajectories. The

primitives and the members of its Re that satisfy the constraint are input for the graph generation.

6.4.2 Identifying Sequentially Composable Motion Primitives

In this work, unlike previous applications of motion primitives in path planning [39, 65,

101, 74, 72], motion primitives do not constitute the nodes of the graph. Although such an ap-

proach could lead to the recovery of geometrically diverse trajectories as demonstrated by Smith

and Bosanac [101], these graphs do not sufficiently capture the sequential composability of the

primitives. When reducing a set of states, i.e., a primitive, to a single node, the definition of an

edge cannot be generalized to any couple of nodes, but must take into account the properties of

each primitive. In their earlier work, Smith and Bosanac proposed four different types of edges

to accommodate that need [101]. The user could select the most appropriate edge between two

nodes based on the knowledge of the primitives, e.g., primitives derived from the same manifolds

would be connected considering the last sample along the first primitive and any sample along the

second primitive. Overall, the construction of the graph required knowledge of the properties of

primitives and the manual definition of the types of edges to use between specific primitives. There-

fore, extending the approach to larger trajectory design problems and connecting diverse types of
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primitives extending across the configuration space could be challenging and time-consuming.

To eliminate the need for manual graph setting, the definition of the edge has been generalized

to encompass any pair of nodes. In this case, an edge can be constructed considering any state along

the primitives represented by the nodes. However, the paths recovered using this definition of nodes

and edges would often lead to unfeasible primitive sequences. To demonstrate this concept, consider

the definition of the previous motion primitive graph over a generic set of arcs, without specifying

the type of edge to use between pairs of primitives. First, motion primitive arcs are discretized in

a set of samples to account for their geometrical evolution. Each primitive is considered a node

of the graph. Then, edges are allowed between any pair of primitives, and the minimum state

discontinuity between a pair of samples along two primitives is taken as the weight of the edge

connecting two nodes. However, such an edge definition does not reflect the actual composability

of a sequence of primitives. Figure 6.4 provides an example of a connectivity issue that arises with

this approach. In Figure 6.4a, P1 (in maroon) and P2(in lilac) are connected considering the state

at sample 5 along P1 and the state at sample 6 along P2. In the same figure, P2 is connected to P3

(in blue) using the state at sample 2. The sequence of primitives P1−P2−P3 in 6.4b obtained after

trimming the primitives in sequential order results in an infeasible path because the connection

between P2 and P3 is defined at a state that exists temporally “before” the state at which P1 and

P2 are connected.

To address the sequentiability problem, this work formulates a motion primitive graph to

capture the feasible sequences of motion primitives in the NT-CR3BP. In this approach, the samples

along each motion primitive become nodes in the graph, and the edges represent connections

between composable nodes. For instance, each primitive sampled at Ms states evenly distributed

along the arc length contributes to Ms nodes in the graph. Accordingly, a graph capturing Nmp

motion primitives includes Nmp ·Ms nodes. Therefore, the motion primitives are not nodes of the

graph, but rather inform the construction of the graph.

Edges between nodes are added only if the composability requirements are met. First, the

regions of existence of the two primitives at the corresponding samples must overlap or be within
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Figure 6.4: Example of a primitive sequence when considering primitives as a node of a graph. a)
P1 (in maroon) and P2 (in lilac) are connected at samples 5 along P1 and 6 along P2; while P2

and P3 (in blue) are connected at samples 2 along P2 and 1 along P3. b) the primitive sequence
obtained by linking the primitives at the samples used to create the graph’s edges. This graph
cannot consider the order of the samples used to create the edges, resulting in a discontinuous
sequence.

close proximity. This condition is evaluated in two steps. First, the radius of position proximity

around each sample, labeled ea,b, where a is the primitive number and b is the sample number, is

computed considering the average inter-sample distance between all the members in the Re at that

sample. Then, the pairwise distance between each sample along the two primitives Re is computed

and compared to the proximity region of the samples. If the distance between two samples is less

than the sum of the position proximity radius ea,b, then the samples are considered to be in position

proximity. For example, considering the fourth sample along the first primitive P1 and its region

of existence Re(P1) in light blue in Figure 6.5, then the radius of close proximity at that sample is

computed as

e1,4 = c ·
∑UN1

−1

i=1 r1,i+1,4 − r1,i,4
NRe(P1)

(6.9)

where NRe is the number of trajectories in Re(P1) and c is a user-defined constant set to c = 1.5,

while UN1 is the total number of elements in Re(P1). Then, considering the first sample along

P2, the same value can be computed to obtain e2,1 as shown in lilac in Figure 6.5. The distance
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between the fourth sample in Re(P1) to the first sample in Re(P2) is evaluated to obtain the matrix

d(r1,k,4 − r2,l,1), with dimension NRe(P1) × NRe(P2). If any of these pairwise distances satisfy the

condition

d(r1,k,4 − r2,l,1) ≤ e1,4 + e2,1 (6.10)

then the fourth sample of P1 is considered in close proximty with the first sample of P2. In Figure

6.5, the intersecting spheres indicate that the fourth sample along P1 and the first sample in P2

meet the proximity constraints.

Successively, nodes in position proximity are analyzed to check composability in velocity. In

general, nodes are allowed to have a discontinuity in velocity magnitude to recover initial guesses,

allowing for the placement of maneuvers. However, initial guesses characterized by abrupt changes

in direction of motion and large energy difference between the arcs composing the paths would

lead to unfeasible or expensive trajectories. Therefore, the nodes’ composability conditions include

limitations on the velocity discontinuity between two nodes. Among the pair of nodes satisfying the

position proximity condition, the discontinuity in velocity magnitude, ∆v, and velocity direction,

∆v̂, is assessed. The pair of nodes must satisfy

∆v̂ ≤ θmax

∆vmin ≤ ∆v ≤ ∆vmax

(6.11)

where θmax is the change in velocity direction between the two nodes which is set to θmax = 30◦,

while the values ∆vmax and ∆vmin can be specified if desired. If constraints on velocity magnitude

are not included at this step, this condition is automatically satisfied for all nodes that meet the

velocity direction change constraint.

Pairs of nodes that satisfy all conditions are considered composable and are connected with

directed, weighted edges. The outputs of the composability check include the indices of the com-

posable nodes along two primitives, as well as the members of the regions of existence Ui of the

two primitives where those nodes are composable. The nodes are used to generate the edges in the

primitive informed graph, while the indices of the Re’s trajectories are used in the search algorithm
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described in Step 3.

Figure 6.5: Schematic representation of composability assessment between two primitives and the
trajectories in their region of existence

6.4.3 Defining the High-Level Graph Structure

In this work, the motion primitive graph is initialized as a high-level itinerary graph, as

presented by Smith and Bosanac [101]. After selecting the appropriate primitives for the design,

these are assigned to sets that define the order in which they can be leveraged during the path

search. Sets are typically defined in the following order: the Start, the Transfer, and the Target

sets. The Start set contains the primitives representing the trajectory’s initial conditions, while the

Target set contains its destination. The Transfer sets group all primitives that can be leveraged to

reach the target primitives from the initial ones. Multiple Transfer sets can be used to incorporate

an itinerary via waypoints. With this definition, high-level itineraries can be defined with three or

more sets as required.

The connectivity between and within the sets defines the direction of the edges between

composable nodes along the primitives. In this work, the primitives of one set are connected to all

the primitives of the following set; that is, all the members of the Start set are connected to all

the members of the Transfer set. Then, the primitives within the same set are all interconnected;

that is, primitives belonging to a family of the Transfer set can be connected to primitives of
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another family within the set, and vice versa. Moreover, primitives within the same family are

also allowed to be interconnected. These connectivity choices allow maximum flexibility in the

primitive exploration between and within the sets. However, different connectivity strategies can

be selected depending on the trajectory design case. If two primitives are connected, then the nodes

in the graph corresponding to those primitives can be connected by an edge, if the composability

conditions illustrated in section 6.4.2 are met.

An example of a high-level itinerary graph is provided in Figure 6.6. Here, the primitives in

one block are connected with the primitives in the next block on the right. The black symbol at the

top right of the Transfer set indicates that the different primitives within the set are interconnected.

Figure 6.6: Example of high-level itinerary graph for designing a transfer between an L1 Lyapunov
orbit at CJ = 3.01400 and L2 Lyapunov orbit at CJ = 3.01377, using the primitives from their
unstable and stable manifolds

6.4.4 Constructing the Nodes of the Graph

The nodes of the graph are defined as samples along the primitives. In this work, all the

primitives are sampled based on the curvature approach used in the primitive extraction process de-

scribed in Step 1. Thus, each primitive obtained from the hyperbolic invariant manifolds generates

nL = Ms,m = 13 nodes, where five states are located at maxima in curvature and two samples are

located at equal arclength intervals between each pair of maxima. For the primitives obtained from

periodic orbits, the total number of nodes added to the graph from each primitive Ms,p,i is variable

and depends on the total number of curvature maxima along the orbit. The arcs between maxima
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encompassed by periodic orbits, such as the exterior resonant orbits, are characterized by a high

arclength, which can often span more than a quarter of the position space. Therefore, periodic or-

bits are sampled by considering five equally spaced samples in arclength between pairs of maximum

points. The increased number of samples, in this case, produces a more accurate representation of

the primitive. Overall, if the motion primitive-informed graph includes Nmp,m motion primitives

that are generated from arcs along stable or unstable manifolds and Nmp,p primitives from peri-

odic orbits, then the total number of nodes composing the graph is Nmp,mMs,m +
∑Nmp,p

i=1 Ms,p,i.

Each node is labeled based on its position in the high-level itinerary and the corresponding family

member, allowing it to be easily recognized when analyzing the initial guesses in Steps 3 and 4.

6.4.5 Constructing the Edges of the Graph

Directed edges are added only between composable nodes, as discussed in Section 6.4.2, and

between nodes along the same primitive to represent how the motion can flow across and along the

primitives. To represent the smoothness of transitioning from one primitive to another, the edges

are weighted by a positive scalar that encodes the change in velocity direction between two nodes.

Between the reachable states ra,k,i and rb,l,j along two primitives Pa and Pb, the edge weight is

defined as

qi,j = max
[
(1− v̂i · v̂j), 10−15

]
(6.12)

where vi and vj are the velocities at the nodes ra,k,i and rb,l,j .

Note, however, that the nodes belonging to the same primitives are connected with quasi-

zero weight qi,i+1 = 10−15 to describe that traveling along the same primitive doesn’t require a

maneuver. This edge weight is not set to zero to avoid confusion with the description of missing

edges, which are represented by the value of 0 in the adjacency matrix representing the graph.

An example of this edge construction step between two primitives is depicted conceptually

in Figure 6.7. Composable samples are shown in red in Figure 6.7a. The nodes in the graph

corresponding to the red samples are connected with weighted edges. Otherwise, if no samples

are composable in Figure 6.7b, then no edge is created between the nodes corresponding to these
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Figure 6.7: Example of: a) Primitive’s region of existence intersecting along the red nodes leading
to edges placement between correspondent nodes in the graph; and b) non-intersecting primitive
regions that do not produce edges between nodes in the graph

samples in the graph. Compared to the prior version of this approach, this motion primitive graph

better captures potential connectivity between two primitives. This approach adaptively adds edges

as needed, eliminating the need for manually selecting the number or types of edges. The graph

generated from the high-level itinerary in Figure 6.6 using the approach described in this section

consists of 200 motion primitives, which correspond to 1003 nodes and 12058 edges.

6.4.6 Summary of Procedure

Step 2 focuses on generating a motion primitives graph that summarizes the sequential com-

posability of the primitives selected for the design. A graphical, high-level overview of this approach

is presented in the flowchart in Figure 6.8. Several parameters and decisions governing this step

are summarized in Table 6.2.
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Figure 6.8: Flowcharts of the process used to generate motion primitive informed graph

6.5 Step 3: Generating Sequences of Motion Primitives

Consistent with path-planning literature, motion primitives can be composed in sequences

to form complex paths [112, 44]. Accordingly, Smith and Bosanac [101] searched the motion

primitive graph to produce motion primitive sequences to support the initial guess construction

process. However, rapidly discovering diverse primitive sequences with low total edge weight cost

and diverse sequence lengths is challenging. Accordingly, this work presents a custom algorithm for

searching the motion primitive graph. This algorithm is inspired by two well-known path planning

algorithms, A* and Yen’s algorithm [48, 113], but includes modifications to the original algorithms

to ensure that the resulting paths exhibit sufficient diversity. Overall, this new approach can find a

larger variety of solutions, producing smoother and diverse initial guesses in a more computationally

efficient time.

6.5.1 Overview of Graph Search Algorithms

Considering a graph composed of nodes and directed, weighted edges, graph search algo-

rithms can be used to solve the shortest-path problem, i.e., the problem of finding the sequences

of nodes that minimize the sum of the edge weights, given the desired initial and final nodes.

Many algorithms, including Dijkstra’s algorithm [28] and A* [48], have been developed to find the

shortest-path problem and have been successfully used in a variety of path-planning applications.
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Governing parameter Influence Value

Nodes
Govern the discrete rep-
resentation of the primi-
tives in the state space

Sample states maxima in
curvature and at 2 or 5
nodes equally spaced in
arclength between consec-
utive curvature maxima

Edges
Represent the potential
composability between
primitives

Connecting only compos-
able nodes and nodes
along the same primi-
tive, i.e., nodes that exist
in position proximity and
that satisfy the Equation
6.11, as described in Sec-
tion 6.4.2

Edge weights
Define the value of state
discontinuity between two
composable nodes

Defined as in Equation
6.12

Composability parame-
ters

Influence the identifica-
tion of composable nodes
based on position and ve-
locity discontinuity

For position composabil-
ity the constant value
multiplied to the average
node distance is c = 1.5,
for velocity discontinuity
in Equation 6.11 θmax =
30◦ and ∆vmax/min may
be included depending on
the scenario

High-level itinerary con-
nections

Influences how primitives
are connected between
different sets and within
the same set

All the primitives in one
set are connected to all
the primitives of the next
set, and all the primitives
within one set are con-
nected

Table 6.2: Table of governing parameters for constructing the motion primitive-informed graph

However, graphs might provide a variety of useful but sub-optimal solutions to a single-source

single-target path planning problem. To address the necessity of exploring additional diverse paths

in a graph, a problem commonly known as the k-shortest paths problem [86], other algorithms

have been developed. These include Yen’s algorithm [113], Eppstein’s algorithm [31], and the

Bellman–Ford algorithm [6, 38, 75].

Many k-shortest paths search algorithms leverage Dijkstra’s algorithm to find the single



86

best solution in a graph. Dijkstra’s algorithm searches the shortest path between two nodes in

a weighted graph. Starting from the initial node, the algorithm computes the cost gi,j to reach

each jth neighboring node from the current ith node and selects the node associated with the

minimum cost as the next node to explore. This process is repeated for the subsequent nodes until

the destination node is reached or all the reachable nodes have been visited. Therefore, the result

is the path in the graph that minimizes the sum of the edge weights [28].

While Dijkstra’s algorithm is accurate as it explores paths based on their actual cost, it can

be computationally expensive, especially for large graphs. Therefore, A* algorithm is preferred in

many applications. A* was first introduced by Hart, Nilsson, and Raphael [48] in 1968 to prove that

a heuristic function could be incorporated into the formal mathematical theory of graph searching

and achieve optimality when compared to other search algorithms. The difference from Dijkstra’s

algorithm is in fact that at each iteration, A* explores the neighboring nodes by computing a cost

fi,j = gi,j + hj , which is the sum of the cost to go from the current node to the next, gi,j , and

the heuristic cost to go from the next node to the target node, hj . All the incomplete paths up

to the current node are stored in a queue with their associated temporary costs ft and gt. When

the exploration of the closest nodes is complete, the algorithm orders the list of current paths so

that, at the successive iteration, the path that is expanded is the one that minimizes the total

expected cost of the path. Once the target node is reached, the search is concluded. The selection

of the heuristic depends on the application of the graph. However, it can be proved that given

a heuristic such that hj ≤ h∗j , A* always returns the least expensive path from the start to the

goal node, where h∗j is the true or optimal cost to go from the current node to the goal node. By

including this heuristic, the A* search algorithm produces a shortest path through the graph with

lower computational complexity and in less time than the well-known Dijkstra’s algorithm [86].

To solve the k-shortest paths problem, the search algorithm must be able to identify the

overall best path in the graph, as well as k − 1 diverse paths with a sub-optimal cost. Yen’s

algorithm is used to identify k loopless paths within a directed weighted graph. At each iteration,

the best solution within the graph is identified using Dijkstra’s algorithm and stored in a permanent
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list A. From the latest best path composed on Nn nodes, Nn−1 subgraphs are created by removing

one edge from the initial path at a time from the original graph. On each subgraph, Dijkstra’s

algorithm is used to identify the best path starting from the root, i.e., the sequence of nodes

composing the best path up to the removed edge, to the target node. The paths obtained from

each subgraph are saved in a temporary list B. This list is ordered to rank the paths in terms of

cumulative edge weight cost. The path with the lowest cost is then saved as the new best path and

moved to list A. List B is never emptied, thus the saved paths are the global optimal paths in the

graph. This process is repeated until the k-best or all the possible paths existing in the graph are

identified [113].

6.5.2 Searching the Motion Primitive Graph

The motion primitive search algorithm presented in this section is used to rapidly identify

k-best diverse sequences of nodes. The nodes correspond to states along the primitives; thus, the

paths identified on the graph can be translated into sequences of primitives. The search algorithm

used in this step is based on A* and Yen’s algorithms; however, k-shortest paths algorithms, such

as Yen’s algorithm, are formulated to identify the k paths with the lowest cost, i.e., those that

have the closest cost to the best overall path. Within a reasonable number of iterations, this

approach yields paths that are highly similar to one another and often closely resemble the best

overall path. These solutions have limited interest in many applications [20] and do not provide a

sufficiently representative view of the solution space summarized by the graph. Consequently, in

this work, Yen’s algorithm and A* are modified to ensure that a sufficiently diverse set of paths

is discovered using a wider variety of motion primitives. The algorithm used to search the motion

primitive-informed graph requires two steps: 1) generate one primitive sequence from the graph,

and 2) generate an additional k − 1 primitive sequence.

The first step is obtained with this primitive-based A* described in Algorithm 1. In this

approach, the cost gi,j is the value of the graph edge weight qi,j , while the heuristic hj is selected

to equal the true cost to reach the target node from any node j, ensuring that the relationship
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hj ≤ h∗j is always respected. This heuristic is computed using MATLAB’s distances algorithm

[68] to generate the shortest path from node j to the target with Dijkstra’s algorithm. The A*

algorithm is preferred over Dijkstra’s algorithm because the use of a perfect heuristic and path

pruning makes it faster, thereby speeding up the computation of k paths through Yen’s algorithm.

Algorithm 1 Modified A* for Searching an Motion Primitive-Informed Graph

1: Initialize a queue at the start node. Each queue entry contains:

• a sequence of nodes (an incomplete path),

• nc the current node (last node in the path),

• values of ft and gt,

• indices of composable trajectories in the region of existence of a primitive at the current
node.

2: while current node ̸= target node do
3: Sort the queue in increasing order of ft.
4: Select the incomplete path with the lowest ft. The current node is the last node of the

selected path.
5: Identify all neighboring nodes connected to nc.
6: Filter out neighbors not connected through the same trajectory within the region of existence

of a primitive.
7: Remove neighbors already present in the current path to avoid cycles.
8: for each remaining neighboring node do
9: Run Algorithm 2.

10: end for
11: Rank neighbors by increasing ft.
12: Select neighbors to explore.
13: for each selected neighbor do
14: Create a new path by appending the neighbor to the current path.
15: Add the new path to the queue with updated gt, fr, and composable trajectory indices.
16: end for
17: end while

In a traditional implementation of A*, step 9 of Algorithm 1 would always involve selecting all

the available neighbors. However, to encourage the generation of diverse paths while still identifying

node sequences with relatively low-velocity discontinuities, this work modifies the logic used to select

the neighboring node as described in Algorithm 2. For each case described in Algorithm 2, the

algorithm ensures the following conditions:

• Line 3: Encourage exploration of the current primitive and avoid reduction of a primitive
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arc to a single node.

• Line 5: Supports increasing the diversity of paths soon after the initial condition, although

the associated node may be suboptimal with respect to ft.

• Line 8: Prioritizes the natural flow along a primitive while making sure the least expensive

path is explored.

• Line 10: Ensures that additional np incomplete paths are added to the queue for future

consideration, improving exploration of the solution space.

Algorithm 2 Neighbor Selection Strategy

1: Input: Current node nc, list of neighboring nodes N(nc), primitive information, initial condi-
tion state, cost function ft, parameter np

2: if nc is the first visited node along the current primitive then
3: Select the next node along the primitive as the only neighbor to explore
4: else if nc is part of the nodes along the starting primitive or arc then
5: Select one neighbor at random from N(nc)
6: Explore only the selected neighbor
7: else if lowest-cost neighbor corresponds to the next state along the current primitive then
8: Select and explore only the lowest-cost neighbor
9: else

10: Randomly select np neighbors from N(nc), ensuring inclusion of the lowest-cost neighbor
11: Explore the selected np neighbors
12: end if
13: for each jth neighbor do
14: Compute gi,j , hj and fi,j
15: end for

To identify an additional k − 1 diverse paths through the directed weighted graph, Yen’s

algorithm is slightly adapted to the characteristics of the motion primitive-informed graph. The

modification of Yen’s algorithm in line 7 removes all edges between nodes along the same primitive,

rather than a single edge between subsequent nodes, when constructing each subgraph. Accordingly,

if the latest best path is composed of Nn nodes that correspond to a sequence of Nmp motion

primitives, Nmp − 2 subgraphs would be created at each iteration of Yen’s algorithm since the

first and last primitive are never removed. Moreover, paths searched on the subgraphs are not

constrained to start from the root of the last best path, as in the original Yen’s algorithm [113].
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Another difference from the traditional implementation of Yen’s algorithm is the emptying of the

list B, containing the paths obtained from the subgraphs after each iteration. This choice promotes

the selection of a more diverse array of paths, albeit at the slight compromise of path optimality.

This search algorithm produces k diverse, yet relatively low-cost paths through the graph that

connect the initial and target nodes. A pseudo-code of the approach is provided in Algorithm 3.

Algorithm 3 k-Best Paths Search Algorithm

1: Run Algorithm 1 to calculate the globally optimal path in the motion primitive-informed graph
2: Save the primitive sequence and cumulative edge weight in permanent list A
3: while number of paths in A < k do
4: Let π be the most recently added path in A
5: Extract the list of Nmp primitives from π
6: for each primitive Pi in the list of Nmp primitives do
7: Remove all edges in the graph connecting nodes in Pi to create subgraph Gi

8: end for
9: In parallel, run Algorithm 1 on each subgraph Gi to calculate a path from the start to goal

nodes
10: Save each new primitive sequence and cumulative edge weight into temporary list B
11: Select the path in B with the lowest cumulative edge weight
12: Add this path to A
13: Empty list B
14: end while

Once a path through the graph has been identified, the node sequence is transformed into a

primitive sequence to support efficiently generating a diverse set of initial guesses. As an example,

consider a sequence of 10 nodes: the first four nodes are associated with states along motion P1,

the next three nodes are associated with states along motion P2, and the final three nodes are

associated with states along motion P3. This node sequence, generated from the graph search, is

then translated into the primitive sequence P1 − P2 − P3. While the primitive sequence does not

explicitly define the connecting arcs between P1, P2, and P3, it implies the presence of a set of states

exhibiting low discontinuity across the respective regions of existence Re(P1), Re(P2), and Re(P3).

This information is used in the refinement process to generate the most optimal path across the

regions of existence, considering all the trajectories in these regions.

For the trajectory design used as an example in this Chapter, the motion primitive-based

search algorithm is applied to the graph to generate 50 primitive sequences connecting the starting
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L1 Lyapunov to the target L2 Lyapunov. The computational time required for this step strictly

depends on the size of the graph, but can be the order of hundreds of seconds. Then, these sequences

of primitives are used to obtain 50 trajectory initial guesses, which are then corrected and optimized

to obtain continuous trajectories as presented in Steps 4 and 5.

Figure 6.9: Flowcharts of search algorithms used to generate a) one sequence of motion primitives
and b) a diverse set of k optimal motion primitive sequences
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6.5.3 Summary of Procedure

Step 3 describes the search algorithm developed to return diverse primitive sequences that

minimize the edge weights over the motion primitive graph. A graphical, high-level overview of this

approach is presented in the flowchart in Figure 6.9. Several parameters and decisions governing

this step are summarized in Table 6.3.
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Governing parameter Influence Value

Start node
Defines the beginning of
the motion primitive se-
quence

First sample along the
primitive representing the
initial conditions of the
transfer.

Goal node
Defines the end of the mo-
tion primitive sequence

Last sample along the
primitive representing the
target conditions of the
transfer.

Number of best paths

Defines the number of di-
verse motion primitives
initial guesses to extract
from the graph.

Depends on the design
scenario and a variable
computational time.

Graph’s edge weights
Influences which primi-
tive is selected for the
path

Minimum discontinuity
in velocity directions at
composable nodes.

Search algorithm

Identifies the best se-
quence of nodes that min-
imizes the sum of the edge
weights

Custom algorithm that
rapidly identifies diverse
motion primitive se-
quences.

A* heuristic
Influences the way A* pri-
oritizes the next node to
explore.

hi is equal to the exact
cost to go from the next
node to the target node.

Number of neighbors to
explore in A* np

Influences how many
neighboring nodes are
explored at each iteration
before arriving at the
target node.

np = 1 if the next node
is along the same primi-
tive as the current node
or if the current node is
along the primitive repre-
senting the transfer’s ini-
tial conditions, otherwise
np = 20.

Starting and ending tra-
jectory index

Indicates the member of
the primitive’s region of
existence from which the
path starts and ends.
It is included in the
queue when considering
the reachable trajectory
in step 6 in Algorithm 1

Index of the primitive tra-
jectory.

Table 6.3: Table of governing parameters for motion primitive based search algorithm
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6.6 Step 4: Constructing an Initial Guess for a Trajectory

The k-best initial guesses, corresponding to sequences of motion primitives, are refined to

obtain arcs that minimize the state discontinuity and improve the likelihood of successfully recov-

ering a nearby solution via differential corrections. This process is formulated using a second graph

that includes only the sequence of primitives composing each path, with the members of their Re.

This refinement graph is then searched to generate the sequence of arcs that minimize the veloc-

ity discontinuity. This approach provides a globally optimal, refined path, enhancing the original

refinement process presented by Smith and Bosanac, which is based on sequential morphing and

trimming [101]. This process is composed of three steps as depicted conceptually in Figure 6.10.

6.6.1 Defining the High-Level Graph Structure

First, each initial guess is considered as a sequence of motion primitive sets, where each set

is composed of the motion primitive and the members of its Re, as displayed in Figure 6.10a. A

high-level graph is constructed using each member of a motion primitive set as a node. In this

graph, the nodes of the same set are not connected, but every member of one motion primitive set

is connected to every member of the subsequent set to allow every possible combination within the

primitives and the trajectories in Re. This step is displayed in Figure 6.10b.

Considering, for example, a primitive sequence generated in Step 3, P1 − P2 − ... − PN , the

high-level itinerary generated from this sequence would include the primitives and the trajectories of

their region of existence Re(P1), Re(P2), to Re(PN ). Each Re contains 20 members if the primitive

is generated from a periodic orbit, and 50 members if the primitive is obtained as an arc along a

hyperbolic invariant manifold. The trajectories within each Re are labeled Ui and form the nodes

of a layer of the high-level itinerary, as in Figure 6.10b. This process is repeated for all N motion

primitives composing the primitive sequence to obtain N layers. Nodes within the same layer are

not connected to ensure that the final path geometrically resembles the motion primitive sequence

generated in Step 3, thus leveraging the specific geometry represented by a primitive only once
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along the path. On the other hand, nodes in a layer are connected to all nodes in the following

layer, ensuring flexibility in path search.

Figure 6.10: Constructing a refinement graph to support generating an initial guess from a motion
primitive sequence

6.6.2 Constructing the Graph

The refinement graph is built using the states sampled along each trajectory as the nodes,

consistent with the approach presented in Step 2. Each trajectory arc is sampled at maxima in

curvature and at points equally spaced in arclength to create the sets of nodes consistent with the

procedure outlined in Section 6.4.4. Considering all the Um and Up members of each manifold and

periodic primitive set, the final graph will be composed of Nmp,mUmMs,m+
∑Nmp,p

i=1 UpMs,p,i nodes.

The nodes representing the states along one trajectory are sequentially connected with quasi-

zero-weight, set to wi,i+1 = 10−15, to capture natural flow along these nodes. These are represented

with magenta arrows and labeled wi in Figure 6.10c. The nodes belonging to trajectories in the

same sets are not connected as specified in the high-level graph. On the other hand, the nodes

representing a state along one trajectory in the Re(Pi)th set are connected via directed edges to

the composable nodes in the set Re(Pi+1), where the composability is defined in Step 2 considering

the discontinuity in position, velocity direction and magnitude between samples states. Recall that

the composability algorithm described in Section 6.4.2 outputs the indexes of the composable nodes

between two primitive sets, as well as the index of the set members along which those nodes are
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composable. Therefore, consider the composable nodes between two primitive sets, labeled as Mc,i

and Mc,i+1. The edges between these nodes are created only between the Ujth and Ukth members

of each set Re(Pi)th and Re(Pi+1) where the nodes Mc,i and Mc,i+1 are composable.

As an example, consider the graph in Figure 6.10c. The second node along Re(P1) set is

composable with the first node along the Re(P2). The composable nodes lies along U1 and UN1 of

P1 and U1, U2 and UN2 of P2. Therefore, edges are created between these nodes for the selected

members of the primitive regions of existence. For the composable nodes, the edge weights are

computed using the difference in the normalized discontinuity in position between two nodes, as

expressed as

wi,j =
∆ri,j −∆rmin

∆rmax −∆rmin
· [1− 10−10] + 10−10 (6.13)

where ∆ri,j is the distance between nodes a and b, ∆rmax and ∆rmin are the maximum and

minimum distances between all the composable nodes within R(Pi) and R(Pi+1). Normalizing the

position difference between two nodes to within the range wi,j ∈ [1, 10−10] mitigates biasing due to

the size of the region of existence and the spacing between arcs sampled to span this region while

ensuring that the edge weight remains positive. Figure 6.10c depicts these edges using blue arrows

and labeled we.

6.6.3 Searching the Graph

The graph is searched using the A* algorithm [48] to obtain one path that minimizes the

cumulative edge weights. The retrieved path is composed of the subset of nodes along the selected

trajectory associated with each R(Pi), in the sequence obtained from Step 3. The cost of the path,

which measures the total discontinuity of the initial guess, is given by the sum of edge weights

connecting the selected nodes. To mitigate the potential for any primitive sets to be reduced to a

single node with no coast segments, the search algorithm is modified to enforce that each sequence

is composed of at least two nodes along the same primitive or a member of its Re.

The initial guess construction process is visualized through the foundational transfer example

from an L1 Lyapunov orbit at CJ = 3.0092 to an L2 Lyapunov orbit at CJ = 3.01383 in the NT-
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CR3BP as shown in Figure 6.6. The unrefined sequence of primitives obtained from Step 3 is

visualized in Figure 6.11a. In this figure, each motion primitive is displayed using uniquely-colored

dashed lines, following the color scheme in Figure 7.1. These primitives exhibit discontinuities and

overlapping regions. Following the refinement described in this section, the resulting initial guess

is displayed in Figure 6.11b. Through this process, the final initial guess minimizes discontinuities

and overlaps between arcs, such that the solution has a higher likelihood of successful corrections

than the original sequence of primitives. This initial guess can be input to a corrections scheme.

An example of the variety of initial guesses obtained for the trajectory design in this section

is presented in Figure 6.12. Subplots a to e show initial guesses for trajectories with two or three

revolutions around Triton that remain in the cislunar region. Each trajectory is characterized by

a diverse geometry, resulting from the sequential composition of a set of diverse primitives. Then,

Figure 6.12f shows a trajectory initial guess that revolves around Triton a few times before leaving

the cislunar region through the L2 gateway, moving toward the L3 point, to eventually reenter

the L2 gateway and reach the targeted L2 Lyapunov orbit. Figure 6.12 illustrates the diversity of

solutions generated from the motion primitives graph, as well as the effect of the refinement step

in producing smoother and more continuous initial guesses.

Figure 6.11: a) Coarse initial guess obtained from Step 3 and b) Refined initial guess obtained from
Step 4
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Figure 6.12: Selected examples of initial guesses for a transfer from an L1 Lyapunov orbit at
CJ = 3.01400 to an L2 Lyapunov orbit at CJ = 3.01377 in the CR3BP

6.6.4 Summary of Procedure

Step 4 summarizes the process used to transform a primitive sequence into a trajectory initial

guess. This process, referred to as initial guess refinement, utilizes a graph to transform a sequence

of motion primitives into a set of nodes. Then, a search algorithm is used to find the sequences of

nodes that minimize the sum of their position discontinuity. Overall, the refinement process creates

a sequence of motion primitive arcs that minimize the discontinuity in position and the primitive

overlap. A graphical, high-level overview of the technical approach described in this subsection is

presented in the flowchart in Figure 6.13. This refinement step is governed by a few parameters

and decisions, summarized in Table 6.4.
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Figure 6.13: Flowcharts of the process used to generate the trajectory initial guess from a motion
primitive sequence

Governing parameter Influence Value

Starting and ending tra-
jectory index

Indicate the member of
the primitive’s region of
existence from which the
path starts and ends

Index of the primitive tra-
jectory.

Graph’s edge weights
Influences which nodes
are selected to obtain the
minimum-cost path

Normalized discontinuity
in position at composable
nodes.

Search algorithm

Identifies the best se-
quence of nodes that min-
imizes the sum of the edge
weights

Modified version of A*
that ensures minimum arc
size along each primitive.

Table 6.4: Table of governing parameters for constructing a motion primitive initial guess

6.7 Step 5: Trajectory Correction and Optimization

The trajectory initial guesses are corrected and optimized in the Neptune-Triton CR3BP.

Then, the final continuous and optimal trajectories are also corrected in an ephemeris model that

includes the gravitational influence of Neptune and its inner moons. This step leverages correction

via collocation and constrained local optimization as presented by Smith and Bosanac [101].

6.7.1 Numerically Correcting Trajectories via Collocation

Coarsely designed initial guesses are corrected and optimized in the Neptune-Triton CR3BP

and then in the ephemeris model by using collocation. Collocation relies on fitting polynomials of
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Nth order to states distributed along arcs of a trajectory. These polynomials are constrained to 1)

be continuous between arcs and 2) closely approximate solutions to a specified dynamical model

by minimizing the residuals between the time derivatives of the polynomial and the evaluated

dynamics at other nodes along each arc. These polynomials are updated iteratively until the

continuity and dynamical constraints are satisfied to within a specified tolerance. In this work, the

formulation of the collocation problem follows the approach presented by Grebow and Pavlak [42].

This formulation was also used in the motion primitive approach to trajectory design developed

by Smith and Bosanac [101]. This subsection presents a brief overview using states defined in

the rotating frame for demonstrative purposes; however, the same formulation is straightforwardly

extended to the inertial frame by using XBi,3 rather than x.

The first step of collocation involves creating a mesh of nodes. Each initial guess is discretized

into ns segments. Then, each segment is split into na arcs, and nn nodes are placed along each arc.

Within this mesh, the state at the kth node of the jth arc along the ith segment of the trajectory is

described by the state vector xi
j,k. This segment is composed of na arcs, and ∆tij is the integration

time along the jth arc. Although the number and spacing of segments and arcs are an input of

the correction step, the number and location of nodes are defined by the order and type of the

selected collocation scheme. Consistent with the approach presented by Grebow and Pavlak [42],

this work uses a 7th order polynomial collocation scheme with a Legendre-Gauss-Lobatto (LGL)

node spacing strategy. Thus, each arc is discretized into nn = 7 nodes, placed at normalized times

τ ∈ [−1, 1] that are equal to the roots of the derivative of the (nn−1)th order Legendre polynomial

[23, 42, 111]. The odd-numbered nodes, i.e., k = 1, 3, 5, 7, are used to fit the polynomial q(x) along

the arc and, therefore, are labeled as free nodes. On the other hand, the even-numbered nodes, i.e.,

k = 2, 4, 6, are used to assess the difference between the polynomial representation and the system

dynamics; these nodes are labeled as defect nodes. Then, the states xi
j,k and integration times ∆tij

for each arc along the ith segment are used to generate a free variable vector Vi, that is computed
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as

Vi =




xi
1,1

xi
1,3

xi
1,5


T 

xi
2,1

xi
2,3

xi
2,5


T

. . .


xi
na−1,1

xi
na−1,3

xi
na−1,5


T



xi
na,1

xi
na,3

xi
na,5

xi
na,7



T 

∆ti1

∆ti2
...

∆tina



T


(6.14)

Note that xi
j,7 is not included in Vi because the last node of the jth arc coincides with the first

node of the (j + 1)th arc. The free variable vector for the entire trajectory V is then formed by

the free variable vectors Vi for all ns segments, resulting in a total of ((3nn − 2)
∑ns

i=1 na + 6ns)

variables.

A constraint vector is defined to enforce continuity at the free nodes and the dynamics at the

defect nodes. The continuity constraint vector along the ith arc is defined as

F i
c =

 (xi+1
1,1 − xi

na,nn
)T if natural motion

(ri+1
1,1 − rina,nn

)T if impulsive maneuver applied

(6.15)

for i < ns. Then, the defect constraint vector enforcing the system dynamics at the defect nodes

along the jth arc of the ith segment is defined as

F i
d,j =


(q̇ij,2(τ2)− ẋi

j,2)ω2

(q̇ij,4(τ4)− ẋi
j,4)ω4

(q̇ij,6(τ6)− ẋi
j,6)ω6


T

(6.16)

where ωk is the LGL weight associated with the kth collocation node, q̇ is the derivative of the

polynomial along the arc with respect to normalized time τ , defined as τ = 2((tij,k− tij,1)/∆tij)−1 ∈

[−1, 1], and tij,k is the time at the kth node along the jth arc and ith segment. In this expression,

ẋ is the normalized time derivative of the state vector xi
j,k calculated as

ẋi
j,k =

∆tij
2

g(xi
j,k) (6.17)

where g = [ẋ, ẏ, ż, ẍ, ÿ, z̈]. For all na arcs along the ith segment, the defect constraint vector is

F i
d =

[
F i
d,1,F

i
d,2, . . . ,F

i
d,na

]
(6.18)
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Finally, the constraint vector F (V ) for the entire trajectory is defined as

F (V ) =

[
F 1
c ,F

2
c , . . . ,F

ns−1
c ,F 1

d ,F
2
d , . . . ,F

ns
d

]T
(6.19)

Once the vectors V and F are computed, Newton’s method is used to iteratively update V until

the norm of the constraint vector is equal to zero within a tolerance of 10−12 in the NT-CR3BP.

Following the correction, the mesh that is composed of the set of segments, arcs, and nodes is

refined to improve the accuracy of the polynomial approximation of the trajectory. This refinement

step enables arcs to possess different lengths in more or less sensitive regions of the phase space. The

mesh refinement step aims to equally distribute the error on the constraint nodes along the arcs of

the solution [92]. In this work, hybrid mesh refinement is implemented using the approach presented

by Grebow and Pavlak and the method for error redistribution by Carl de Boor [42, 26, 95]; Smith

and Bosanac previously implemented this approach for correcting primitive-based initial guesses

[101].

The first step of mesh refinement is to redistribute the error in the polynomial approximation

along the mesh. In this step, Carl de Boor’s method is used to adjust the location of the nodes at

the boundaries of each arc and, therefore, the integration time along each arc; the total number of

arcs does not change. Once the boundary nodes of each arc have been updated, the polynomials

computed from the previous mesh are used to place the LGL nodes along each arc in the new

mesh. This error distribution is repeated until either: the maximum error difference along the

current solution between any two arcs is ≤ 10−5; the maximum error difference along the current

solution changed by ≤ 10% from the previous iteration; or a maximum number of iterations,

selected in this work as 5, is exceeded. The values used to specify these termination conditions are

the same as those used by Smith and Bosanac [101] but may be adjusted as needed.

Next, Control with Explicit Propagation (CEP) is used to iteratively merge or split arcs to

balance reducing the dimension of the corrections problem with reducing the error along each arc

[42, 92]. First, the state xi
j,1 at the first node along the jth arc within the ith segment is propagated

forward in time for ∆tij +∆tij+1. If the magnitude of the error between this propagated state and



103

the state xi
j+1,nn

(or Xi
j+1,nn

) at the final node of the (j + 1)th arc is below a tolerance of 10−13,

these two arcs are merged into a single arc. Next, the state xi
j,1 at the first node along the jth arc

within the ith segment is propagated forward in time for ∆tij . If the error between this propagated

state and the state xi
j,nn

is above a tolerance of 10−12, the arc is split into two arcs with the same

integration time. For either split or merged arcs, the collocation nodes are recomputed between

the updated boundary nodes using the polynomials from the previous mesh. The refined mesh is

used in a new iteration of the correction process until there are no more arcs to merge or split, or

a maximum of 10 iterations is exceeded [101].

6.7.2 Constrained Local Optimization

Continuous transfers obtained in the Neptune-Triton CR3BP via collocation are optimized

to balance reducing the maneuver magnitude with geometrically resembling the initial guess. The

optimal trajectory obtained from this step is then corrected in an ephemeris model using the same

process, as detailed below. This optimization is performed using constrained local optimization via

fmincon with the sqp algorithm in MATLAB [68, 84]. The free variable vector and the equality

constraints vector used in these steps come from the collocation scheme described in the previous

paragraph.

In this work, optimization is used to minimize a multi-objective cost function J , which

balances minimizing geometric differences between the current trajectory and initial guess with

minimizing the total ∆v. The objective function is mathematically defined as

J = wgeo(∆rig−ct)
2 + wman

nm∑
i=1

(∆vi)
2 (6.20)

where ∆rig−ct is the difference between the position vectors of each collocation node along the initial

guess and current trajectory, and ∆vi is the magnitude of the ith of nm impulsive maneuvers. The

two competing objectives are balanced in J via two scalar weights, wgeo and wman; these values

are either set depending on the scenario or varied gradually in a continuation approach.

In addition to the equality constraints describing the collocation problem, additional path
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constraints can be included in this step. For an initial guess, the following inequality constraints can

be used: maximum time of flight (TOF) as TOFig ≤ TOFmax, maximum total ∆v as ∆vTOT,ig ≤

∆vTOT,max, maximum or minimum single maneuver magnitude as ∆vi,min ≤ ∆vi,ig ≤ ∆vi,max, and

the maximum or minimum distance from a body (Neptune B1 or Triton B2) as dBi,min ≤ dBi,ig ≤

dBi,max. These inequality constraints are appended to the constraint vector and additional rows

are added to the Jacobian matrix.

The first two constraints are evaluated by summing the time or ∆v at each free node along

the trajectory, then subtracting the sum from the desired maximum or minimum value, obtaining

a single entry to the non-linear constraint vector FmaxTOF or FmaxTotDv. For the third and fourth

items, the constraints are evaluated at each free node (or at all free nodes where a maneuver

is applied). The difference between the ∆v or the distance from a body at that node and the

corresponding minimum or maximum constraint value is then added to the vector of nonlinear

constraints as FsDv or FdB . The same approach is applied to the Jacobian of each constraint. If

considering all the constraints, the non-linear constraint vector and its Jacobian will be computed

as

Fnl = [F iM ,jM ,1
sDv ;F i,j,k

dB
;FmaxTOF ;FmaxTotDv] (6.21)

DFnl = [DF iM ,jM ,1
sDv ;DF i,j,k

dB
;DFmaxTOF ;DFmaxTotDv] (6.22)

for i = 1, ..., na, j = 1, ..., ns, k = 1, ..., nn, where the subscript M indicates a segment and an

arc where a maneuver is applied. The vectors of the linear and non-linear constraints, and their

Jacobians, are merged and given to fmincon as the input for the nonlcon value, considering the

linear constraints must satisfy F (V ) = 0 and the non-linear constraints Fnl(V ) ≤ 0.

6.7.3 Correcting and Optimizing Motion Primitive Initial Guesses

In the first step of the correction process, each initial guess is discretized to form the initial

mesh for the collocation. At this step, user-defined nodes are placed along the trajectory to create

segments and arcs. In this work, segments are created between extrema in curvature, i.e., at
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maxima and minima in the curvature function described as in Section 6.3.1, while arcs are obtained

by placing 7, 5, or 3 nodes at equal arclength distance. Then, seven collocation nodes are placed

along each arc using the values of τ as described in Section 6.7.1. The set of collocation nodes

for each arc along every segment forms the initial mesh. At this stage, maneuver locations can be

placed at any node of the mesh and at the initial or final state of each primitive.

Using the collocation-based optimization scheme described in this section, an initial guess is

corrected to minimize the maneuver costs while maintaining its geometry. Using continuation, the

weights of the objective function are modified in a user-defined number of steps from wgeo = 0.99

and wman = 0.01, to wgeo = 0.01 and wman = 0.99, similar to the approach presented by Smith

and Bosanac [101]. Note that wgeo = 0 and wman = 1 are not used as the final values, as fmincon

sometimes struggles to return a nearby solution within a reasonable computational time. At each

step, the trajectory is corrected and optimized. This corrected trajectory seeds the initial guess

for the next correction problem at a new combination of wgeo and wman. As a result of this

approach, the transfer obtained at each step might gradually evolve from the initial guess as the

total maneuver magnitude decreases. If desired, path and/or maneuver constraints may be added

during the correction and optimization step using the exact values required to meet the mission

requirements.

Finally, the optimal transfers in the CR3BP are corrected in the ephemeris model. At this

step, the point-mass ephemeris dynamical model described in Section 2.3 is used to describe the

gravitational influence of Neptune and its moons. In this work, the central body B1 is Neptune, and

the secondary bodies are the inner Neptunian moons: Triton, Naiad, Thalassa, Despina, Galatea,

Larissa, and Proteus. Even though there are other Neptunian moons outside the orbit of Triton,

these cannot be included in the correction step as information about these moons’ mass is not

directly available from the SPICE kernels [80]. The trajectories are corrected in the inertial frame

with the collocation-based optimization described in the previous section, then they are visualized

in the Neptune-Triton rotating frame and in the ICRF centered on Neptune when appropriate.

The optimization is obtained through MATLAB’s fmincon function [68] with the sqp al-
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gorithm. For fmincon, the following options are specified: OptimalityTolerance = 1e − 3,

StepTolerance = 1e − 6, and ConstraintTolerance = 1e − 12. Moreover, the objective and

constraint gradients are computed analytically and provided to the solver.

As an example, the top three trajectories in Figure 6.12 are first corrected and then optimized

in the NT-CR3BP imposing a constraint of minimum altitude for Triton of hmin = 300 km, which

is visualized in Figure 6.14 as a magenta circle around the moon. Each subplot shows the initial

and final periodic orbits in blue, the optimal transfer in black, the initial guess in a gray dashed

line, and the maneuver locations as red dots. Moreover, the final TOF, which is the time from

the departure of the initial orbit to arrival into the target orbit, i.e., the time along the black

trajectory, is listed on the bottom left corner of the subplots. Then, the sum of all the impulsive

maneuvers is also shown in the bottom right corner. Throughout this work, impulsive maneuvers

are allowed at maxima in curvature and at departure and arrival from the initial and final orbit,

respectively. If during the correction or optimization problem, the maneuver magnitude becomes

less than 0.01 m/s, then the maneuver is removed and the trajectory at that node is corrected for

full state continuity.

Figures 6.14a, 6.14b show that the initial guesses obtained from Step 4 are close to the final

corrected and optimal trajectories. In case of Figure 6.14c, the trajectory is morphed to meet the

minimum altitude constraint with respect to Triton. However, the final trajectory still resembles

the initial guess, especially in the departure arc from the L1 Lyapunov and the arrival arc to the

L2 Lyapunov. The close resemblance of the final trajectories to the initial guesses shows that the

primitives’ composability and discontinuity minimization obtained through Steps 1 to 4 are the key

to obtaining initial guesses that easily lead to low-cost trajectories.

The optimal trajectories in Figures 6.14a, 6.14b, and 6.14c are then corrected in the ephemeris

model at the epoch of December 1st, 2045, at 00:00.000 UTC and visualized in the rotating frame

in Figures 6.14d, 6.14e and 6.14f. In each transfer in this example and in the results presented

in the next chapter, three additional revolutions are added around the initial and final orbits to

anchor the transfer to the selected initial and final Lyapunov orbits. The time of flight below each
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figure indicates the number of days required for the transfer segment, i.e., from the maneuver to

depart the L1 Lyapunov orbit to the maneuver to insert the L2 Lyapunov orbit, whereas the ∆v

value in the bottom right is the sum of all the impulsive maneuvers. By comparing the results

in Figure 6.14, it can be noticed that the correction in the ephemeris maintains the geometry of

the transfers, as well as the time of flight. The correction in a high-fidelity model influences the

maneuver magnitude, making it slightly larger than the value in the CR3BP. This effect is expected

as the ephemeris dynamical model includes gravitational forces that are not modeled in the NT-

CR3BP, such as the effect of the smaller Neptunian moons. Overall, the optimal trajectories are

easily corrected into a high-fidelity model, maintaining their original configuration and time of

flight. This example demonstrates that initial guesses in a multi-body model can help recover

diverse high-fidelity trajectories, especially in the proximity of the primaries.

Figure 6.14: a), b) and c): Optimal trajectories in the NT-CR3BP model and d), e) and f) Optimal
trajectories in the ephemeris model. All the trajectories are obtained from the first three initial
guesses in Figure 6.12 for a transfer from an L1 Lyapunov orbit at CJ = 3.01400 to an L2 Lyapunov
orbit at CJ = 3.01377 in the NT-CR3BP
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6.7.4 Summary of Procedure

Step 5 describes the approach used to obtain continuous and optimal impulsive trajectories

from the primitive-based initial guesses. A graphical, high-level overview of the technical approach

described in this step is presented in the flowchart in Figure 6.15. Several parameters and decision

variables employed in this step are summarized in Table 6.5.

Figure 6.15: Flowcharts of the process used to generate optimal trajectory in an ephemeris model
from a trajectory initial guess
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Governing parameter Influence Value

Collocation mesh
Influences the speed and
accuracy of the correction
via collocation

Segments between max-
ima in curvature and arcs
between points equally
spaced in arclength.

Collocation polynomial
order

Affects the accuracy of
the correction

7th-order polynomial.

Collocation node spacing
strategy

Identifies the location and
the time components of
the collocation nodes

Legendre-Gauss-Lobatto
node spacing.

Maneuvers placement
Influences the cost and
geometry of the final cor-
rected trajectory

At maxima in curvature
and between the initial
and final orbits and the
transfer trajectory.

Optimization cost func-
tion

Influences the properties
of the final trajectory

Cost function as in
Equation 6.20, with
weights modified from
[wgeo, wman] = [0.99, 0.01]
for correction to
[wgeo, wman] = [0.01, 0.99]
for optimization.

Optimization algorithm

Influences the scale of the
optimization problem to
be solved and the solution
of the optimization prob-
lem

Sequential Quadratic
Programming (sqp) via
MATLAB’s fmincon
function.

Ephemeris model

Identifies the dynamical
model to be used for a tra-
jectory’s high-fidelity cor-
rection

Point mass gravity of
Neptune and its main
moons.

Table 6.5: Table of governing parameters for constructing the correction and optimization of the
motion primitives trajectories



Chapter 7

Motion Primitive Approach to Designing Trajectories in the Neptunian System

The scenarios analyzed in this dissertation are categorized by the energy levels of the primi-

tives employed in the transfer design. In particular, Section 7.1 presents a high-energy scenario, in

which the motion primitive approach is used to compute transfers starting from the interplanetary

arrival into the Neptunian system and ending with insertion into a science orbit. Then, a medium-

energy case in Section 7.2 is used to study a trajectory design scenario for transferring from two

resonant orbits with close flybys of Triton. Finally, Section 7.3 describes how the motion primitive

approach is used to design trajectories in a low-energy regime to reach a low prograde orbit from

a Neptune-centered orbit.

The motion primitive graph is then obtained starting from the definition of the high-level

itinerary. The high-level itinerary is most often composed of a Start, a Transfer, and a Target set.

Then, the motion primitive informed graph is constructed using samples along primitives as nodes

and adding edges between the nodes that are considered composable.

Once the graph is completed, the custom k-best search algorithm is used to search for 50

diverse primitive sequences. These sequences can be composed of a variable number of primitives

that minimize the overall discontinuity in velocity direction at the composable nodes.

Trajectory initial guesses are obtained from the motion primitive sequences after a refinement

process. In this step, each motion primitive sequence is transformed into a graph where nodes are

samples along the primitives and the trajectories in their Re, while edges connect the composable

nodes. The graph is searched with a modified version of the A* algorithm to obtain the sequence
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of nodes along the primitive trajectories that minimizes the overall position discontinuity. The

algorithm is modified to ensure that arcs along each primitive in the sequence have a minimum

length, and no primitive is reduced to a single node. Initial guesses are always represented as a

sequence of arcs following the color scheme in Figure 7.1.

Figure 7.1: Color order for the primitive arcs composing the initial guesses

The initial guesses are corrected and optimized in the NT-CR3BP. The initial guess correction

is formulated as a local constrained optimization problem with a collocation transcription. The

collocation mesh is obtained by sampling the primitives at curvature extrema to create the mesh’s

arcs. Then, each arc is split into smaller segments obtained with points equally spaced in arclength.

The number of points is chosen between [3, 5, 7], and it is defined depending on the length of the

arcs forming the mesh: for shorter arcs, a smaller number of segments is sufficient to represent the

trajectory and obtain a corrected trajectory that resembles the initial guess; the opposite is true

for longer arcs. Given this mesh, maneuvers are imposed at mesh nodes corresponding to maxima

in curvature, and between the primitives connecting to the boundary conditions, i.e., between the

first (or final) primitive and the consecutive (or previous) primitive.

The solutions for each design are analyzed by cost and geometric diversity and then used

to define the trajectory trade space in a TOF and total ∆v. Next, one or two trajectories per

case are corrected in a point mass ephemeris model and visualized in an inertial frame centered

on Neptune and in the rotating frame. The results in this chapter are computed by running the

motion-primitive design approach with MATLAB R2022a [68] on a 2020 MacBook Pro with M1
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chip and 8 GB of RAM.

7.1 High-Energy Transfer

This section illustrates the trajectory design to perform a Neptune Orbit Insertion (NOI)

after arrival from an interplanetary trajectory. Following the insertion maneuver, the trajectory

brings the spacecraft to a 1:7 resonant orbit, which is a potential science orbit in the Neptune-

Triton CR3BP due to its favorable position with respect to Neptune’s inner moons. The primitives

leveraged for this design have a Jacobi constant in the range CJ = [0.9, 2.5[, corresponding to the

highest energy primitives in the database.

7.1.1 Graph Construction

To construct the motion primitive graph, the high-level itinerary is first defined. In this case,

the Start set of the high-level itinerary is composed of a trajectory arc obtained from the incoming

leg of the interplanetary transfer from Earth. The arc is generated from a state at periapsis with

respect to Neptune, computed by Dr. Reza Karimi during a prior study at NASA Jet Propulsion

Laboratory. This state has the following characteristics [74]:

• Epoch at periapsis, t1: October 2nd, 2045, 11:52:51 UTC

• Periapsis altitude relative to Neptune’s surface: 2460.11 km

• Hyperbolic excess velocity, v∞: 11.5252 km/s

• Declination angle, the angle between the velocity vector and the XY-plane of the Neptune-

fixed frame labeled ‘IAU NEPTUNE’ in the ‘pck00011.tpc’ kernel: δ = 8.3778◦

Since the original initial condition does not lie in the Neptune-Triton plane, the state components

are modified to obtain a state with similar velocity, energy, and distance from Neptune that lies on

the x-y plane of the NT-CR3BP rotating frame. This state is propagated backward and forward
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in time for 3.75 days to generate an arc that spans a vast region of the Neptunian system, offering

a variety of maneuver locations [74].

The Target set of the high-level itinerary is composed of a 1:7 resonant orbit, characterized

by a CJ = 1.8 and a period of 41.14 days. This orbit is selected as one of the Neptune-centered

orbits with the lowest value of the Jacobi constant, thereby minimizing the energy discontinuity

between the initial and final conditions of the transfer, while still providing relevant opportunities

for scientific observations. This resonant orbit possesses a periapsis with Neptune with radius

rpN = 108973.86 km, allowing close observations of some of the inner moons of the planet, such

as Proteus and Hippocamp, orbiting Neptune in semi-circular orbits with aP = 117, 647 km and

aH = 105, 300 km, respectively [83].

Finally, the Transfer set is populated by the selected set of primitives with similar geometry

and Jacobi constant to the initial and final primitives of the transfer. This set is composed of the

primitives listed in the second column of Table 7.1.

Orbit Family Selected Primitives

Res 1:x PO ±x,+h: 1:2, 1:3, 1:4, 1:5, 1:6

Res 2:x PO +x,+h: 2:3, 2:5 and 2:7

Res 3:x PO +x,+h: 3:5, 3:7 and PO −x,+h: 3:2

Res 4:x PO +x,+h: 4:7 and Manifolds of PO +x,+h 4:5 at CJ = 2.3

Table 7.1: List of primitives employed in the Transfer set the high-energy trajectory design scenario

Figure 7.2 provides a representation of the high-level itinerary: each set contains a plot of

the selected primitives, while the arrows between sets and the symbols at the top of the set boxes

describe the way edges are defined between and within each set. In the primitive subplots, each

primitive is represented as a tick line with a unique color, and the shadowed region of the same

color is the region spanned by the trajectories in the primitive’s Re. The purple symbol at the top

left corner of the Transfer set indicates that each primitive within a family is interconnected, i.e.,

a primitive of a family can be reached from any other primitive in the same family. Similarly, the

black symbol on the top right corner of the Transfer set indicates that each pair of primitive families

in the set is connected, i.e., any primitive in a family can be reached from any primitive of a different
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Figure 7.2: High-level itinerary for the high-energy trajectory design scenario

family. The motion primitive informed graph in this design is composed of 266 motion primitives,

creating a graph with 3,871 nodes and 255,550 edges. On the specified computer, the graph is

generated starting from the high-level itinerary in ∼ 29.33 minutes. Next, 50 motion primitive

sequences are obtained from the graph using the k-best search algorithm in ∼ 59.08 minutes.

7.1.2 Initial Guesses

Initial guesses are obtained from the primitive sequences after the refinement process. In this

case, the refinement was completed in ∼ 32.93 minutes on the specified computer. An example of

16 initial guesses obtained for the high-energy transfer design is presented in Figure 7.3. In the

subplots from a to p, each primitive is represented by a unique color: the first primitive, i.e., the

NOI arc, is always in purple, while the subsequent ones follow the color scheme in Figure 7.1.

The initial guesses in Figure 7.3 show a subsample of the solution space that is obtained with

the motion primitive design approach. In particular, initial guesses have different geometries based

on the primitive sequence that composes them. Primitives from the 4:5 resonant orbit manifolds
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produce initial guesses that remain within three nondimensional units from Neptune. On the

other hand, primitives from the resonant periodic orbits, such as the 1:2 and 2:3 resonant orbits,

form initial guesses with longer arcs at a larger distance from Neptune, which allow more rapid

connections to the targeted 1:7 resonant orbit. An example of the effect of different primitives can

be seen from the initial guesses in Figures 7.3a and 7.3m, compared to the ones in Figures 7.3c and

7.3h. The first are primarily composed of primitives obtained from the 4:5 resonant orbit manifolds,

and thus are characterized by arcs that remain in the vicinity of the larger primary before inserting

in the target 1:7 resonant orbit. In contrast, initial guesses that leverage the primitives from the

periodic orbits, such as the ones in Figures 7.3c and 7.3h, are characterized by longer arcs that get

further away from Neptune, following the geometries of each type of periodic orbit.

7.1.3 Final Transfers and Trade Space

The initial guesses are corrected and optimized in the NT-CR3BP. At this step, a constraint

on the minimum altitude h < 10 km from Neptune is imposed on all the initial guesses to avoid

collisions or excessive perturbations from the larger primary during maneuvers. Larger minimum

altitude constraints or constraints on single or total ∆v could be used in future work to incorporate

specific mission requirements.

Figure 7.4 shows an example of the path obtained after correction and optimization. In

particular, Figure 7.4a shows the trajectory initial guess, Figure 7.4b the corrected trajectory,

and Figure 7.4c the final optimal transfer. The time of flight and total ∆v are also added below

the corrected and optimized trajectories to demonstrate the effect of the trajectory optimization.

From the comparison of the orbits in Figure 7.4b and c, it is evident that the geometry of the

initial guess is retained in the corrected and optimized trajectories, while the maneuver cost is

reduced by approximately 14 times. However, more generally, the trajectory obtained after the

optimization step is influenced by the discontinuity of the initial guess and by the choice of the

maneuver placement.

The trajectories obtained after correction and optimization of the 16 initial guesses in Figure
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Figure 7.3: Selected initial guesses for high-energy trajectory design scenario

7.3 are presented in Figure 7.5. In each plot, the initial and final trajectories, i.e., the NOI arc

and the 1:7 resonant orbit, are shown in blue, while the transfer is in black, and the initial guess is

represented as a gray dashed line. The location of impulsive maneuvers is indicated by red circles,

while a full blue circle and an empty blue circle represent the initial and final states of the trajectory,
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Figure 7.4: Example of a trajectory initial guess a) after correction b) and optimization c) with
the associated TOF and ∆v

respectively. Finally, the location of the equilibrium points is indicated with red diamonds. The

primaries, scaled to possess their radii, are also highlighted with text and shown with blue and gray

circles. The direction of motion is marked with a black arrow.

Final optimized transfers in Figure 7.5 closely resemble their respective initial guesses. This

result demonstrates that the motion primitive design approach can obtain solutions that retain

their geometry during correction, which may be important when designing trajectories to meet

scientific objectives. The final optimal time of flight and total ∆v values for all the 16 trajectories

are presented in Table 7.1.3 and visualized in a TOF vs ∆v tradespace in Figure 7.6. In this list,

trajectories c and h have the lowest ∆v, close to ∆v∗ = 1.5 km/s, the ideal value for the NOI

maneuver 1 . After optimization, these two solutions are geometrically similar and approaching the

shape of a 2:7 resonant orbit, thus indicating that further optimizations might result in a transfer

along this periodic orbit.

The remaining trajectories in Figure 7.5 are characterized by longer times of flight and higher

maneuver costs, depending on the initial guess. However, it should be noted that the choice

of maneuver placement affects the overall maneuver cost, and therefore, the final cost can vary

depending on the variations in maneuver locations. Further optimization and a different selection

1 Private communication with Dr. Reza Karimi, NASA Jet Propulsion Laboratory, July 2023
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of maneuver locations could be the venue of future work.

Initial Guess TOF (days) ∆vtot (km/s)

a 80.25 4.26

b 57.82 2.76

c 16.77 1.69

d 57.82 3.73

e 51.53 4.75

f 39.58 4.72

g 57.40 3.34

h 16.45 1.76

i 51.07 3.47

j 75.06 4.39

k 92.76 4.25

l 57.35 2.76

m 15.85 2.53

n 45.56 3.93

o 104.69 3.64

p 34.43 3.28

Table 7.2: Time of flight and total ∆v for optimal transfers of the high-energy trajectory design
case in Figure 7.5

Two of the most diverse transfers presented in this design are corrected in an ephemeris model

and visualized in the inertial and rotating frames. These trajectories are corrected considering an

initial epoch of September 28th, 2045, at 00:00.000 UTC, which is consistent with the start of the

NOI arc, 3.75 days before the date at the periapsis state. The inertial frame representations are

shown in Figure 7.7, where Figure 7.7a represents transfer in Figure 7.5c while Figure 7.7b represents

transfer in Figure 7.5j. In these plots, the arc in gray is the arc along the NOI trajectory, and the

remaining part of the trajectory is shown in black. The red circles are placed at the maneuver

locations, while the purple circle is placed at the insertion into the target resonant orbit. The

final ∆v and TOF specified in the figure caption show that while the total duration of the transfer

is preserved, the final maneuver requirement for the orbits corrected in the ephemeris model has

increased compared to the trajectories in the CR3BP. This difference is expected, as the point-

mass ephemeris model accounts for the gravitational effects of all interior moons orbiting near the

periapsis of the trajectory, introducing additional perturbations to the motion.
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Figure 7.5: Final optimal trajectories for the high-energy trajectory design case

The same trajectories are also represented in the rotating frame in Figures 7.8a and 7.8b.

The blue arcs are the trajectory segments along the initial and final orbits, while the red circles

identify the maneuver locations. Comparing the trajectories in Figure 7.8 with the same trajectories

corrected in the CR3BP in Figures 7.5c and 7.5j shows that the trajectories’ geometry is preserved
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during the correction in a high-fidelity model.

Figure 7.6: a) History of TOF and total ∆v during the continuation steps to optimize each trajec-
tory in Figure 7.5 and b) final cost in TOF and total ∆v for the optimal trajectories in Figure 7.5

Figure 7.7: High-energy design trajectories corrected in an ephemeris model visualized in an ICRF
about Neptune. Trajectory possesses: a) ∆v = 1.97 km/s and TOF = 16.77 days and b)∆v = 5.69
km/s and TOF = 75.06 days
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Figure 7.8: High-energy design trajectories corrected in an ephemeris model visualized in the
rotating frame. Trajectory possesses: a) ∆v = 1.97 km/s and TOF = 16.77 days and b) ∆v = 5.69
km/s and TOF = 75.06 days

7.2 Medium-Energy Transfer

This section presents a trajectory design that leverages motion primitives in the Jacobi con-

stant range CJ = [2.5, 3.0[. The initial and final orbits, a 4:3 resonant orbit and a 3:5 resonant

orbit, are selected because they provide useful locations for close and slow flybys with Triton. At

this energy level, several invariant manifolds and periodic orbits exist in the NT-CR3BP. The mo-

tion primitives associated with such solutions are leveraged to solve the trajectory design problem

presented in this section.

7.2.1 Graph Construction

The motion primitive informed graph is obtained from the information of a high-level itinerary.

The high-level itinerary is constructed by populating its Start, Target, and Transfer sets with se-

lected motion primitives. In this design, the Start set contains a 4:3 resonant orbit with Jacobi

constant of CJ = 2.74. This orbit has a period of 17.83 days and two Triton’s periapsis passages

per orbit period at an altitude of hp = 5699.72 km. On the other hand, the Target set contains

a +x,+h 3:5 resonant orbit, characterized by CJ = 2.99, a period of 30.17 days. This orbit is
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selected as a potential science orbit for a Neptunian mission due to its two periapses with Triton at

hp = 3180.76 km within one orbit period. The initial and final orbits are represented in Figure 7.9

inside the Start and Target sets. Finally, the Transfer set consists of the motion primitives listed

in Table 7.3.

Orbit Family Selected Primitives

Res 1:x PO ±x,+h: 1:2, 1:3, 1:4, 1:5, 1:6, 1:7

Res 2:x PO +x,+h: 2:3, 2:5 and 2:7

Res 3:x
PO +x,+h: 3:1, 3:2, 3:5, 3:7 and PO −x,+h: 3:7

Manifold of +x,+h 3:5 at CJ = 2.99

Res 4:x
PO +x,+h: 4:5 and 4:7 and PO −x,+h: 4:7
Manifolds of PO +x,+h 4:3 at CJ = 2.74

Table 7.3: List of primitives employed in the Transfer set of the medium-energy trajectory design
scenario

The subplots in Figure 7.9 show the primitives selected from each of the periodic orbit

families and invariant manifolds listed in Table 7.3. As for the previous case, the bold line within

each subfigure is the primitive, while the shaded region represents the area spanned by the members

of the primitive’s region of existence. The purple and black symbols at the corners of the Transfer

set box indicate that each primitive family is internally connected, and different primitive families

are interconnected as discussed for the previous design case.

The graph obtained from this high-level itinerary comprises 237 primitives and is composed

of 4779 nodes and 291,613 edges. The edges are constrained by limiting the connection to all

the nodes that possess a velocity discontinuity ∆v < 3 km/s. Then, the motion primitive graph

is searched through the custom k-best search algorithm to find 50 primitive sequences. On the

specified computer, the graph generation was completed in ∼ 30.86 minutes, and the search of 50

primitive sequences was obtained in about 1 hour and 10 minutes.

7.2.2 Initial Guesses

Trajectory initial guesses are obtained from the motion primitive sequences after a refine-

ment process, which was achieved in ∼ 14.4 minutes on the specified computer. Figure 7.10 shows
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Figure 7.9: High-level itinerary for the medium-energy trajectory design case

a selection of 16 initial guesses for the medium-energy trajectory design scenario. Similarly to the

results presented in the previous design case, each initial guess is composed of numerous different

primitives, identified by different colors. Starting from the 4:3 resonant orbit in purple, the subse-

quent primitives are colored following the order outlined in Figure 7.1, the direction of motion is

represented with a black arrow, and the primaries are labeled accordingly.

The solutions in Figure 7.10 highlight some of the geometries that can be obtained from

concatenating the primitives selected for this design. Similar to the initial guesses obtained for

the high-energy scenario, the solutions presented in this section generate a diverse solution space.

In particular, solutions in Figure 7.10 are mainly composed of primitives generated from periodic

orbits. However, arcs from the manifolds of the starting and target orbits are often used to facilitate

departure from and insertion into the originating orbit, as they provide a lower-cost solution in terms

of position and velocity discontinuity. The various combinations of primitives yield initial guesses

with a range of geometries, maneuver cost, and time of flight, which helps explore the solution
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space.

Figure 7.10: Selected initial guesses for medium-energy trajectory design scenario



125

7.2.3 Final Transfers and Trade Space

The initial guesses are corrected and optimized in the NT-CR3BP. The correction and opti-

mization are obtained by imposing a constraint on the maximum single maneuver cost such that

∆v < 3 km/s. The trajectories obtained after correction and optimization of the initial guesses in

Figure 7.10 are presented in Figure 7.11. In each plot, the initial and final trajectories, i.e., the 4:3

resonant orbit and the 3:5 resonant orbit, are shown in blue, while the transfer is in black, and the

initial guess is represented as a gray dashed line. The location of impulsive maneuvers is indicated

by red circles, while a full blue circle and an empty blue circle represent the initial and final states

of the trajectory, respectively. Finally, the location of the equilibrium points is indicated with red

diamonds, the primaries, also highlighted with text, are shown with blue and gray circles, and the

direction of motion is marked with a black arrow.

As seen in the high-energy trajectory design, the final optimal trajectories show a geometric

resemblance to their initial guesses. However, in this trajectory design scenario, the final transfers

have shifted from the initial guess to ensure state continuity. The larger discontinuities in the

initial guesses for this design could be linked to two factors. First, the primitives selected for this

design may span large regions of the position space but have small regions of overlap with other

primitives. Secondly, when the initial guesses are composed of motion primitive arcs from different

periodic orbit families, their sequence might present larger gaps in position space, as opposed to

selecting primitives from the same family of hyperbolic invariant manifolds, such as the 4:5 manifold

primitives from the previous design. Upon this observation, it can be concluded that the prevalence

of a certain primitive family limits the geometric diversity of the initial guesses but increases their

overall smoothness. In contrast, the diversity of primitive families leads to a more substantial

diversity in final geometries, albeit with somewhat larger discontinuities in position. However, given

the definition of composability between samples along primitives in Section 6.4.2, the maximum

position discontinuity between two nodes is constrained by the width of the primitives’ regions of

existence at those nodes, thereby limiting the likelihood of producing highly discontinuous initial
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guesses.

The final optimal time of flight and total ∆v values for all the 16 trajectories in Figure 7.11 are

presented in Table 7.2.3. The majority of the corrected solutions are characterized by a variety of

flight times and total maneuver costs, with trajectory h showing the minimum cost of ∆vtot = 1.72

km/s. Compared to the previous design case, the effect of the composability logic when including

the limitation on ∆v between two nodes helps produce cheaper initial guesses. Additionally, the

least expensive trajectories represented in Figure 7.11h, 7.11o, 7.11l, and 7.11m are also among the

paths with the shortest times of flight. In fact, these solutions leverage short arcs along some of

the primitives originating from the highest resonance orbits, such as the 3:5, 4:5, and 4:7 resonant

orbits, to immediately connect with the target orbit.

Initial Guess TOF (days) ∆vtot (km/s)

a 20.05 3.15

b 136.01 6.15

c 14.71 3.28

d 84.58 2.66

e 57.69 3.25

f 21.80 2.41

g 45.94 3.12

h 13.50 1.72

i 42.31 5.45

j 32.67 3.39

k 62.60 4.51

l 39.39 2.11

m 10.03 2.16

n 103.30 7.71

o 10.71 1.73

p 27.34 3.75

Table 7.4: Time of flight and total ∆v for optimal transfers for the medium-energy trajectory design
case in Figure 7.11

Trajectories in Figures 7.11d and 7.11h are corrected in an ephemeris model and visualized

in the inertial and rotating frames. In this case, the trajectories are corrected considering an initial

epoch of December 1st, 2045, at 00:00.000 UTC, which could be consistent with the start of the

science phase following the orbit insertion and the first few phases of the mission. The trajectories
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Figure 7.11: Final optimal trajectories for the medium-energy trajectory design case

in Figure 7.13 are shown in the ICRF frame centered on Neptune. The gray segment represents the

starting arc of the trajectory, while the purple dot is the state at insertion into the target trajectory,

and the red circles indicate the maneuver locations. The correction in the ephemeris model results

in trajectories that preserve their geometry, proving that trajectory design in multi-body dynamics
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Figure 7.12: a) History of TOF and total ∆v during the continuation steps to optimize each
trajectory in Figure 7.11 b) Final TOF and total ∆v for the trajectories in Figure 7.11

can help easily recover trajectories in a high-fidelity model. The final cost in TOF and ∆v is higher

than the trajectory in the NT-CR3BP, as expected, due to the additional gravitational influence

of the inner moons of Neptune. The same trajectories are also represented in the rotating frame in

Figures 7.14a and 7.14b, resembling the trajectories in Figures 7.11d and 7.11h. Similarly to the

NT-CR3BP representation, the initial and final arcs of the trajectory are shown in blue, while the

transfer is in black, and the maneuvers are shown with red circles.

7.3 Low-Energy Transfer

The low-energy scenario is used to design a transfer from a 3:2 resonant orbit to reach a

low prograde orbit (LPO) around Triton, which could provide a strategic location for the scientific

investigations of Triton and of the characteristics of the planetary system. This design leverages

primitives from periodic orbits and invariant manifolds in the NT-CR3BP, possessing a Jacobi

constant of 3.0 or higher.
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Figure 7.13: Medium-energy design trajectories corrected in an ephemeris model visualized in ICRF
centered about Neptune. Transfer possesses: a) ∆v = 3.29 km/s and TOF = 84.58 days and b)
∆v = 1.89 km/s and TOF = 13.50 days

Figure 7.14: Medium-energy design trajectories corrected in an ephemeris model visualized in the
rotating frame. Transfer possesses a) ∆v = 3.29 km/s and TOF = 84.58 days and b) ∆v = 1.89
km/s and TOF = 13.50 days



130

7.3.1 Graph Construction

In this trajectory design case, the high-level itinerary is defined with a Start set, two Transfer

sets, and two Target sets, as represented in Figure 7.15. This high-level itinerary structure guides

the design from the Neptune-centered orbit to the Triton-centered orbit in a more gradual manner,

allowing the imposition of constraints over specific sets of primitives.

The Start set contains a 3:2 resonant orbit, characterized by a semi-major axis of a =

407885.96 km and a period of 11.74 days. This orbit provides opportunities for close observa-

tions of Neptune at the latitudes intercepted by Triton’s orbital plane, inclined by 157.345◦ with

respect to Neptune’s equator. Therefore, an additional scientific phase could be planned along this

trajectory before transitioning to the LPO.

The target orbit of this transfer is a low prograde orbit at CJ = 3.0216 with an orbital period

of 11.850 hours and a minimum altitude of approximately hp = 2400 km. These characteristics

enable close observation of Triton while also mitigating the higher-level gravitational perturbations

from the moon, which have yet to be mapped. Moreover, this orbit can be leveraged to leave

Triton’s proximity and explore other regions of the system, since its Jacobi constant is higher than

the value at which the L3 gateway closes.

Then, the Intermediate Target Set is composed of a L2 Lyapunov orbit, which is selected to

guide the trajectory from the Neptunian region to the L1 and L2 gateways. This orbit possesses

stable and unstable manifolds that extend to the Neptunian region, spanning a vast portion of

the phase space. This characteristic helps connect the starting resonant orbit and its neighboring

periodic orbits with the orbital region around Triton.

The Transfer Set 1 contains primitives that connect the 3:2 resonant orbit with the L2

Lyapunov. The starting 3:2 resonant orbit does not possess any invariant manifold; however,

several natural structures from other families exist in its proximity and can be used to depart this

orbit and approach the L2 Lyapunov orbit. The complete list of primitives composing the Transfer

Set 1 is reported in Table 7.5.
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Orbit Family Selected Primitives

Res 2:x PO +x,+h: 2:1, 2:5 and PO −x,+h: 2:3, 2:5, 2:7

Res 3:x PO +x,+h: 3:1, 3:5, 3:7 and PO −x,+h: 3:1, 3:2, 3:7

Res 4:x PO +x,+h: 4:3, 4:5 and PO −x,+h: 4:3, 4:7

L1 Lyapunov Manifold of PO at CJ = 3.0014

L2 Lyapunov Manifold of PO at CJ = 3.0037

DPO Manifold of PO at CJ = 3.0139

Table 7.5: List of primitives employed in the Transfer Set 1 of the low-energy trajectory design
scenario

Some of the selected periodic orbits follow the same direction of motion as the initial and

target orbits of this design, facilitating the recovery of a transfer following prograde motion. How-

ever, due to the retrograde direction of motion of the L2 Lyapunov and its manifolds, additional

retrograde orbits with resembling geometry and Jacobi constant are also added to the set.

Finally, the Transfer Set 2 is designed to obtain a transfer within the Triton orbital region,

from the L2 Lyapunov to the target LPO. This set is composed of the manifolds included in the

Transfer Set 1 and listed in the last three rows of Table 7.5. Additionally, two path constraints

are added in this set: first, primitives must remain within a radius of 0.1 from Triton, and second,

primitives must have a periapsis above 10 km from Triton’s surface. These constraints help retain

only the primitives that exist within the orbital region of Triton and do not exit the gateways,

while considering a minimum safe altitude from the moon to perform close flybys and maneuvers.

The high-level graph structure, composed of 1092 primitives, is used to form a motion

primitive-informed graph that is composed of 10, 126 nodes and 838, 869 edges. The motion

primitive-informed graph is generated in ∼ 3.13 hours, and 50 initial guesses are obtained us-

ing the k-best search algorithm over the graph in ∼ 2 days. Then, the motion primitives are refined

to obtain the final initial guesses in ∼ 6 hours. The longer runtime compared to the previous scenar-

ios is due to the graph’s larger size, the longer primitive sequences, and the limited computational

power of the specified computer. Improving the efficiency and reducing the memory requirements

for searching larger graphs can be an interesting avenue for future work.
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Figure 7.15: High-level itinerary for the low-energy trajectory design

7.3.2 Initial Guesses

The refined motion primitive sequences form the trajectory initial guesses. A subsample of

these initial guesses is presented in Figure 7.16, where two views are used to capture the global

geometries of the trajectories. In the first and third columns, 16 selected initial guesses are plotted

in a Neptune-centered view that allows for analysis of the departure from the 3:2 resonant orbit

in purple. The second and fourth columns of Figure 7.16 present a zoomed-in view of the region

around Triton for analysis of the approach to the LPO. Each pair of subplots represents one initial

guess, labeled with letters from a to p. The color scheme in the initial guesses plots indicates the

order in which the motion primitive arcs are composed to create the initial guess and follows the

order listed in Figure 7.1.

The selected initial guesses show diverse geometries, especially in the region near Triton. The

majority of the initial guesses have a smooth sequence of primitives in position space, except for

paths a, j, and n, where the primitives connecting to the L2 Lyapunov have a position difference

of ∼ 0.025 nondimensional units. However, this position gap can be addressed during correction,

as a low level of discontinuity characterizes the majority of the initial guess.

The geometries of the initial guesses in Figure 7.16 show that the L2 Lyapunov is not always
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leveraged in its integrity to reach the LPO. Solutions such as the ones in Figure 7.16c and 7.16k

leverage only small arcs along the periodic orbits before inserting into the primitives that connect

to the LPO. These results demonstrate that the intermediate target effectively serves as a bridge

between the two regions of the system. Moreover, it can be observed that the selection of the L2

Lyapunov orbit as the intermediate target does not bound the transfers to approach the Triton

region from the L2 gateway. On the contrary, the manifolds selected in the Transfer Set 2 provide

solutions that cross both L1 and L2 gateways while still connecting to the selected Lyapunov orbit,

creating a variety of approaching solutions.

7.3.3 Final Transfers and Trade Space

The initial guesses are corrected and optimized within the NT-CR3BP framework. At this

stage, a constraint is imposed to ensure the minimum altitude remains above 10 km from Nep-

tune, thereby avoiding trajectories that impact the smaller primary. The trajectories obtained

after correction and optimization are presented in Figures 7.17. In each plot, the initial and final

trajectories, i.e., the 3:2 resonant orbit and the LPO, are shown in blue, while the transfer is in

black, and the initial guess is represented as a gray dashed line. The maneuvers are represented as

red circles, while a full blue circle and an empty blue circle represent the initial and final locations

of the transfer, respectively. Finally, the cost in time of flight and total ∆v associated with each

trajectory is listed in Table 7.3.3 and in the trade spaces in Figure 7.18.

The optimal trajectories in Figure 7.17 closely resemble their respective initial guesses, es-

pecially after departure from the 3:2 resonant orbit. However, some optimal solutions exhibit a

more significant evolution from the initial guesses in the vicinity of the Triton orbital region. This

difference is expected in the trajectories with larger discontinuities in the initial guesses, such as

the ones in Figure 7.17a, 7.17j, and 7.17n. However, even some of the most continuous paths, like

the ones in Figure 7.17c, 7.17e, and 7.17o, evolve during optimization in the search for low-cost

maneuver cost trajectories. Many of the primitives approaching the LPO eventually evolve into

DPO-like orbits, characterized by the diamond shape about the second primary. The choice of
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maneuver placement could also drive the diversity between the initial guess and the final orbit.

Overall, the solutions in Figure 7.17 provide feasible transfers from a Neptune-centered orbit

to an LPO. The majority of the solutions depart the initial orbit with retrograde motion and only

change it back to prograde motion when reaching the LPO. Trajectory in Figure 7.17g is the only

prograde transfer in this solution subsample. This trajectory is also the path with the lowest

associated maneuver cost of ∆v = 0.91 km/s, possibly indicating that a change in direction of

motion might increase the overall maneuver requirement.

This trajectory is corrected in an ephemeris model at the initial epoch of December 1st, 2045,

at 00:00.000 UTC. The trajectory is visualized in a rotating and an inertial frame in Figure 7.19.

The representation in the inertial frame in Figure 7.19c shows the approach from the Neptune-

centered orbit in the most inner part of the trajectory, to the orbit of Triton in blue, until the

insertion into the LPO. The representation of the same orbit in the rotating frame in Figure 7.19a

and 7.19b demonstrates that the geometry of the trajectory designed in the CR3BP is maintained

after correction in the ephemeris model.

Initial Guess TOF (days) ∆vtot (km/s)

a 71.48 4.58

b 27.09 1.65

c 56.50 2.62

d 31.19 2.14

e 46.88 2.52

f 36.22 3.67

g 18.42 0.91

h 72.57 4.24

i 42.85 2.17

j 27.28 1.60

k 34.45 2.96

l 50.65 3.66

m 46.47 1.95

n 61.79 2.64

o 18.22 1.88

p 27.22 1.42

Table 7.6: Time of flight and total ∆v for optimal transfers for the low-energy trajectory design
case in Figure 7.17
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Figure 7.16: Selected initial guesses for low-energy trajectory design scenario
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Figure 7.17: Final optimal trajectories for the low-energy trajectory design case
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Figure 7.18: a) History of TOF and total ∆v during the continuation steps to optimize each
trajectory in Figure 7.17 b) Final TOF and total ∆v for the trajectories in Figure 7.17

Figure 7.19: Trajectory in Figure 7.17g corrected in ephemeris model with a total ∆v = 0.9115
km/s and TOF = 18.42 days, displayed (a) in the Neptune-Triton rotating frame with a global view
of the trajectory around Neptune and (b) in the Neptune-Triton rotating frame with a zoomed-in
view in the vicinity of Triton and c) in the ICRF centered on Neptune



Chapter 8

Concluding Remarks

8.1 Conclusions

This dissertation presents a data-driven approach to trajectory design for planetary missions.

First, an approach to identify families of long-term stable orbits around the Moon is presented and

applied to discover candidates for low lunar frozen orbits. Then, a motion primitive-based trajectory

design approach is applied to the case of a mission to the Neptunian system, considered one of the

future key targets of exploration in the 2023 NASA Decadal Survey [81].

In Chapters 4 and 5 of this dissertation, clustering is used to summarize a wide variety of lunar

trajectories and identify candidates for low-lunar frozen and quasi-frozen orbits. First, a large set

of trajectories is numerically propagated in a high-fidelity lunar gravity model with the point mass

gravity of the Earth and Sun. Then, the evolution of the eccentricity and argument of perilune

at a subset of perilunes along these trajectories is described using a finite-dimensional feature

vector that captures its shape. These feature vectors are input to a hierarchical and density-based

clustering algorithm, producing groups of trajectories with a similar geometry and phasing the

evolution of perilune. From each cluster, the most tightly bounded evolution of perilune produces

a trajectory that serves as the cluster representative. These representatives are then described by

their boundary shape to create a geometric feature vector. The geometric feature vectors of the

cluster representatives are grouped using a second clustering step. This grouping is used to merge

clusters of trajectories with representatives that possess a similar geometry but distinct phasing.

The result is a set of clusters of trajectories with a similar geometric evolution of perilune.
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This dissertation applies the presented clustering-based framework to low lunar orbits gen-

erated from a wide variety of initial conditions with a semi-major axis of 1838 km at an initial

epoch of January 1, 2025, 00:00.000 UTC. The resulting clusters of trajectories support the manual

identification of 15 candidates for low lunar frozen orbits, each with a distinct geometry in their

perilune evolution. Furthermore, the clusters support the identification of trends in the initial

orbital elements that lead to changes in the orbit lifetime across a group of trajectories with a

geometrically similar perilune evolution.

In the second part, this dissertation presents an extension of the motion primitive approach

to trajectory design in multi-body systems, originally presented by Smith and Bosanac [101]. In

robotics, motion primitives represent fundamental building blocks of motion that can be chained to-

gether to create a more complex trajectory. In their proof of concept, Smith and Bosanac extracted

motion primitives from fundamental solutions of the Earth-Moon CR3BP using a consensus clus-

tering approach. Then, they used the primitives to construct a graph, where each node represented

a primitive and the edges connecting all the primitives were weighted considering the minimum

discontinuity in position and velocity at nodes along the primitives. Then, using a breadth-first

search approach, the graph was searched to obtain primitive sequences, which were refined with

a sequential morphing and trimming approach to obtain trajectory initial guesses. Building on

the previous approach, this work reformulates the steps of the motion primitive trajectory design

framework to extend its applicability to more complex problems, such as planetary tours with path

constraints.

First, motion primitives are obtained from periodic orbit and their stable and unstable invari-

ant manifolds based on the geometric evolution of the trajectories. An analytical method, which

selects consecutive orbits with the same number of curvature maxima, is leveraged to extract prim-

itives from periodic orbits. Whereas a data-driven approach based on HDBSCAN and DBSCAN

[41, 12] is used to obtain arcs with similar position and shape from the manifolds. Subsequently,

the motion primitives are utilized to generate a graph that describes the flow across the selected set

of primitives. In this new approach, the nodes of the graph are states sampled along the primitives.
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The edge between two nodes is defined only if the two nodes meet the composability constraint,

i.e., a discontinuity in position and velocity must be less than some values defining the nodes’

proximity region. Constraints can be imposed in this step: constraints limiting the distance from

a primary can remove members from the primitive Re, and therefore affect nodes of the graph,

whereas constraints on velocity magnitude add another condition in the composability condition,

i.e., the ∆v between two nodes must be less than the imposed value.

The final graph is searched with a custom k-best search algorithm to produce diverse prim-

itive sequences from the designated start and target nodes that minimize the variation of velocity

direction across the nodes. The algorithm is based on a combination of Yen’s algorithm [113] and

A* [48] but adapted to retrieve solutions along primitive arcs. The sequences are the base for

trajectory initial guesses. These are found by generating a graph that represents only the samples

along the sequence’s primitives and the members of their Re. Solutions are obtained as sequences of

nodes that minimize the discontinuity in position. These initial guesses can be used in a correction

and optimization scheme to obtain trajectories with impulsive maneuvers in the restricted problem

and in an ephemeris model.

The updated motion primitive design approach is applied to three trajectory design scenarios

in the Neptune-Triton system. The planetary system is modeled as a CR3BP to leverage the

fundamental solutions governing the motion in the proximity of the primaries, Neptune and Triton.

In the first case, a high-energy design is formulated to perform the Neptune Orbit Insertion from the

incoming arc of an interplanetary transfer to a 1:7 resonant orbit, which could provide scientifically

relevant observation of two of the smallest moons of Neptune, Proteus and Hyperion. The design

results in a variety of initial guesses with various geometries and times of flight. These initial

guesses are corrected and optimized, first in the NT-CR3BP and then in a point mass ephemeris

model to obtain a solution trade space in total ∆v and TOF.

In the second trajectory design case, the motion primitive approach is leveraged to retrieve

trajectories within a medium range of Jacobi constant, from CJ = 2.5 to CJ = 3. The initial

and final orbits, respectively a 4:3 resonant orbit and a 3:5 resonant orbit, provide two periapsis
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passages with Triton at a few thousand km of altitude per period, thus creating relevant scientific

opportunities. As in the previous scenario, the motion primitive trajectory design approach is used

to retrieve smooth and diverse initial guesses from selected primitives. These initial guesses are

corrected and optimized to provide a solution space for the design problem.

Finally, the trajectory design process is repeated for a low-energy design case, using motion

primitives characterized by a Jacobi constant CJ > 3. Here, the initial orbit is a 3:2 resonant orbit

centered around Neptune, while the target of the transfer is a low prograde orbit around Triton. The

solutions leverage the manifolds of the L2 Lyapunov family to move from the Neptune-centered

orbit to the LPO through the L1 and L2 gateways. Also in this case, the final trajectories are

characterized by a variety of geometries, flight times, and maneuver costs, representing a large

portion of the solution space.

8.2 Recommendations for Future Work

As the motion primitive approach to trajectory design is adapted to more complex scenarios

in a multi-body system, a list of potential recommendations for future work includes:

• Incorporate the work from Gillespie, Miceli, and Bosanac [41] and Bosanac [12] to extract

motion primitives from low-thrust and general trajectory arcs to expand the capability of

the motion primitive design approach to generate initial guesses for more complex mission

scenarios.

• The composability algorithm introduced in this research improved the connectivity of the

graph, and consequently, the smoothness of the initial guesses. However, if a motion prim-

itive and its Re span a vast region of the proximity region around each sample of the

primitive, it might become pretty significant. If the value of this proximity region does

not reflect the actual composability of the node, the initial guess could be affected by

substantial discontinuities. The computation of the nodes’ composability region should be

addressed such that the size of the primitive region does not influence the region’s size.
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• In the correction via collocation, a mesh is required to discretize the solution into a set

of nodes, leveraged by the algorithm to retrieve a continuous trajectory. The mesh is

generated from the primitive arcs by applying the same discretization over the entire initial

guess. However, when the initial guess is composed of a series of primitive arcs of different

sizes, the mesh might become too dense or too sparse, depending on the initial size of

the arcs. To address this problem, which can slow down the correction step, an adaptive

mesh size could be implemented. Nodes would be distributed along the motion primitive

arc based on the length of the motion primitive arc. This improvement could significantly

accelerate the correction of the motion primitive initial guesses.

• Explore the influence of maneuver placement on the trajectory’s final geometry and cost

in total ∆v and time of flight.

• Incorporate other measures of trajectory characteristics that are desirable for planetary

exploration and enable the fulfillment of additional science objectives.

• Apply the motion primitive trajectory design approach to other planetary systems and

extend it to different dynamical models.
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André, David Andrews, Michele Bannister, Emma Bunce, Thibault Cavalié, Francesca Ferri,
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Appendix A

Motion Primitives for Periodic Orbits and Hyperbolic Invariant Manifolds in

the Neptune-Triton CR3BP

Figure A.1: Jacobi constant range for P2 centered motion primitives and their region of existence.
The primitives are indicated with a black diamond marker inside their respective region of existence
bar. The region of existence colors correspond to the primitive colors in Figure A.6. Lines indicate
the initial (IC) and final (FC) conditions for the high-energy (HE) transfer in red, and medium-
energy (ME) transfer in blue.



153

Figure A.2: Jacobi constant range for 1:q resonant motion primitives and their region of existence,
where q = [1, 2, 3, 4, 5, 6, 7]. The primitives are indicated with a black diamond marker inside their
respective region of existence bar. The region of existence colors correspond to the primitive colors
in Figures A.7 and A.8. Lines indicate the initial (IC) and final (FC) conditions for the high-energy
(HE) transfer in red, medium-energy (ME) transfer in blue, and low-energy (LE) transfer in pink.
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Figure A.3: Jacobi constant range for 2:q resonant motion primitives and their region of existence,
where q = [1, 3, 5, 7]. The primitives are indicated with a black diamond marker inside their
respective region of existence bar. The region of existence colors correspond to the primitive colors
in Figure A.9. Lines indicate the initial (IC) and final (FC) conditions for the high-energy (HE)
transfer in red, medium-energy (ME) transfer in blue, and low-energy (LE) transfer in pink.
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Figure A.4: Jacobi constant range for 3:q resonant motion primitives and their region of existence,
where q = [1, 2, 5, 7]. The primitives are indicated with a black diamond marker inside their
respective region of existence bar. The region of existence colors correspond to the primitive colors
in Figure A.10. Lines indicate the initial (IC) and final (FC) conditions for the high-energy (HE)
transfer in red, medium-energy (ME) transfer in blue, and low-energy (LE) transfer in pink.
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Figure A.5: Jacobi constant range for 4:q resonant motion primitives and their region of existence,
where q = [1, 3, 5, 7]. The primitives are indicated with a black diamond marker inside their
respective region of existence bar. The region of existence colors correspond to the primitive colors
in Figure A.11. Lines indicate the initial (IC) and final (FC) conditions for the high-energy (HE)
transfer in red, medium-energy (ME) transfer in blue, and low-energy (LE) transfer in pink.
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Figure A.6: Motion primitives obtained for P2 centered periodic orbit families. Each primitive set
is highlighted with a unique color. In each set, the thick line represents the motion primitive, while
the region of existence is represented as a shaded region of the same color of the primitive.
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Figure A.7: Motion primitives obtained for prograde 1:q resonant orbit families, where q =
[1, 2, 3, 4, 5, 6, 7]. The labels on the left indicate the location and direction of motion of the pe-
riapsis state used to generate the family, as detailed in Section 2.2.2.2. Each primitive set is
highlighted with a unique color. In each set, the thick line represents the motion primitive, while
the region of existence is represented as a shaded region of the same color of the primitive.
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Figure A.8: Motion primitives obtained for retrograde 1:q resonant orbit families, where q =
[1, 2, 3, 4, 5, 6, 7]. The labels on the left indicate the location and direction of motion of the periapsis
state used to generate the family, as detailed in Section 2.2.2.2. Each primitive set is highlighted
with a unique color. In each set, the thick line represents the motion primitive, while the region of
existence is represented as a shaded region of the same color of the primitive.
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Figure A.9: Motion primitives obtained for 2:q resonant orbit families, where q = [1, 3, 5, 7]. The
labels on the left indicate the location and direction of motion of the periapsis state used to generate
the family, as detailed in Section 2.2.2.2. Each primitive set is highlighted with a unique color. In
each set, the thick line represents the motion primitive, while the region of existence is represented
as a shaded region of the same color of the primitive.
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Figure A.10: Motion primitives obtained for 3:q resonant orbit families, where q = [1, 2, 5, 7]. The
labels on the left indicate the location and direction of motion of the periapsis state used to generate
the family, as detailed in Section 2.2.2.2. Each primitive set is highlighted with a unique color. In
each set, the thick line represents the motion primitive, while the region of existence is represented
as a shaded region of the same color of the primitive.
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Figure A.11: Motion primitives obtained for 4:q resonant orbit families, where q = [1, 3, 5, 7]. The
labels on the left indicate the location and direction of motion of the periapsis state used to generate
the family, as detailed in Section 2.2.2.2. Each primitive set is highlighted with a unique color. In
each set, the thick line represents the motion primitive, while the region of existence is represented
as a shaded region of the same color of the primitive.



Appendix B

Lunar Frozen Orbits

Figure B.1: Perilune evolution in the e− ω polar plot for representative members of clusters in Cg.
Most of these groups do not contain candidates for frozen and quasi-frozen orbits, whereas others
contain candidates for long-term bounded orbits.
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Figure B.2: Perilune evolution in the e− ω polar plot for representative members of clusters in Cg
containing candidates for frozen and quasi frozen orbits.
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Figure B.3: Isolated perilune evolution in the e − ω polar plot for representatives that were not
merged in Step 5.
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Figure B.4: Isolated perilune evolution in the e − ω polar plot for representatives that were not
merged in Step 5.
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