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ADAPTIVE DATA-DRIVEN SUMMARY OF NATURAL MOTION
IN CISLUNAR SPACE

Miguel Rebelo; Natasha Bosanac’

This paper introduces an adaptive clustering framework for summarizing planar
trajectories by their geometry in the Earth-Moon circular restricted three-body
problem. First, a coarse grid of initial states is defined using the hypersurface
formed by maxima in the curvature along a trajectory. Their trajectories are gen-
erated and clustered by geometry. New initial conditions are then sampled to bal-
ance 1) global exploration, using the curvature of the hypersurface, and 2) local
exploitation, using the change in the total absolute curvature along trajectories and
null cluster assignments. This process is repeated to adaptively generate a data-
driven summary of a complex solution space.

INTRODUCTION

Planning, operating, and protecting a diverse array of spacecraft in cislunar space will benefit
from a comprehensive understanding of possible motions. However, in a multi-body gravitational
environment, an analytical solution does not exist and the solution space is chaotic, diverse, and
high-dimensional. These characteristics can challenge manual analysis and design tasks, or demand
sufficient a priori expertise to bound the analysis. These challenges are exacerbated when using
higher-fidelity dynamical models or considering motion across a large array of energies with di-
verse control profiles. To address these challenges, data-driven approaches have the capacity to
automatically summarize the solution space in support of trajectory design and prediction.

Data mining methods, in particular, have found success across multiple disciplines that encounter
complex and high-dimensional datasets. One popular tool is clustering, an unsupervised technique
used to partition a dataset into smaller groupings based on their similarity.! For example, in air
traffic management, Gallego et al.” used density-based clustering to extract primary air traffic flows
from a large dataset whereas in biology, Paccanaro et al.> devised a spectral clustering scheme to
identify proteins which share a common evolutionary origin. Other notable applications of cluster-
ing for analysis and knowledge discovery have occurred in fields such as astronomy, medicine and
human movement analysis.*® In astrodynamics, clustering has been used by Nakhjiri and Villac
to detect regions of stability near distant retrograde orbits on a Poincaré map’ as well as by Villac,
Anderson and Pini.® Smith and Bosanac® as well as Gillespie, Miceli, and Bosanac!? have also used
clustering to extract motion primitive sets as summaries of periodic orbits families, their hyperbolic
invariant manifolds, and thrust-enabled approaches and departures.

*Graduate Research Assistant, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineer-
ing Sciences, University of Colorado Boulder, Boulder, CO, 80303.

T Associate Professor, Colorado Center for Astrodynamics Research, Smead Department of Aerospace Engineering Sci-
ences, University of Colorado Boulder, Boulder, CO, 80303.



Recently, clustering has been used to automatically summarize the prominent geometries of a
diverse array of trajectories across a multi-body system. Early proofs of concepts were developed
by Bosanac!! followed by Bonasera and Bosanac'? to summarize key geometries of trajectories that
begin from perigees in the Sun-Earth circular restricted three body problem (CR3BP). Since then,
Bosanac has developed an improved framework that has been applied to natural and low-thrust
trajectories in the Earth-Moon CR3BP'* !4 and an ephemeris model of cislunar space.'> This im-
plementation consists of three major steps: 1) constructing a training dataset by sparsely sampling
trajectories across the solution space using differential geometry and a predefined grid of initial
position vectors and energy levels, 2) describing the diverse array of continuous trajectories with a
finite-dimensional feature vector that consistently captures their geometry, and 3) using distributed
clustering to group trajectories by their geometry. Representative members of the resulting clusters
then supply a summary of a diverse and complex solution space. This paper builds upon this clus-
tering framework by improving the generation of the training dataset and reducing the dependence
on predefined parameters for discretizing the solution space.

This paper introduces an adaptive and automated scheme for sampling the trajectories that form
the training dataset for the clustering-based summarization framework. First, a coarse grid of initial
state vectors is sampled from the hypersurface formed by maxima in the curvature along a trajec-
tory. Then, the trajectories associated with these initial conditions are generated, characterized, and
clustered by their geometry using the framework developed by Bosanac.!®> This information is used
to automatically refine the grid of initial state vectors in a manner that balances global exploration
with local exploitation. To support global coverage of the solution space, concepts from shape inter-
rogation are used to place more samples in regions of high curvature along the hypersurface that is
used to define the initial conditions. In addition, to encourage local exploitation, samples are added
1) between neighboring trajectories that possess a significant change in the total absolute curvature
along their paths and 2) near trajectories that are not assigned to a cluster. This process is repeated
to produce a training dataset that better captures the diverse array of trajectory geometries across a
chaotic multi-body system and, as a result, supports a more accurate clustering-based summariza-
tion of the prominent geometries. This original contribution is demonstrated by adaptively sampling
and summarizing planar trajectories across a single energy level in the Earth-Moon CR3BP.

BACKGROUND
Circular Restricted Three-Body Problem

The dynamics of a spacecraft in cislunar space are approximated by the CR3BP, with the Earth
serving as the primary body and the Moon as the secondary. These two primaries are modeled using
spherically symmetric gravity fields and are assumed to travel on circular orbits about their barycen-
ter.!0 The spacecraft is the third body, with a negligible mass when compared to the primaries.'®

States are typically expressed in nondimensional form in the Earth-Moon rotating frame. The
characteristic quantities used to normalize length, mass, and time quantities are defined as follows:
the characteristic length [* = 384, 400 km is selected as the average distance between the primaries;
the characteristic mass is the total mass of the system, m* = 6.045626 x 10** kg; and the char-
acteristic time t* = 3.751903 x 10° sec, sets the mean motion of the primaries to unity.!”-!8 In
addition, the Earth-Moon rotating frame is centered at the system barycenter with the axes £¢2 de-
fined as follows: Z points towards P»; Z is aligned with the primaries’ orbital angular momenta; and
¢ completes the orthogonal, right-hand triad.'® The nondimensional state vector is then defined in
the rotating frame as « = [x,y, 2, Z, 9, Z].



Using these definitions, the equations of motion for the spacecraft in the CR3BP are written in
the rotating frame. These second-order differential equations are equal to'6

i =29+ U, jj=—2i+U, 5=U, (1)
Where U (z,y, z) is the pseudo-potential function, equal to
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and Uj; is its partial derivative with respect to the ith position coordinate. In addition, 1 =
V(@ +p)?2+y2+z2and ry = /(x — 1+ p)2 + y2 + 22 are the distances from the spacecraft
to the Earth and Moon, respectively, and 1 ~ 0.012151 is the mass ratio. The CR3BP possesses
one integral of motion,'® the energy-like Jacobi Constant C'; = 2U —v?, where v = /@2 + 92 + 22
is the speed of the spacecraft. Furthermore, there are five equilibrium points, L through Ls.'6

Fast Lyapunov Indicators

In dynamical systems theory, chaos indicators are typically used to distinguish between regular
and chaotic motion.!® Moreover, they provide a quantitative measure of how rapidly nearby trajec-
tories diverge, which can be interpreted as the strength of chaos in the system near a given initial
condition.!” In the astrodynamics community Froeschlé, Gonczi and Lega®® used a special class
of these indicators, the Fast Lyapunov Indicator (FLI), to study the stability of asteroids’ orbits for
finite time horizons. Later, Nakhjiri and Villac demonstrated that the FLI is also useful for refining a
grid of initial conditions to identify trajectories that are bounded near a distant retrograde orbit.” For
a trajectory generated from an initial state vector xg at ¢y and perturbed by a small vector dx(t),
the FLI is calculated over a propagation time 7 as>!>2?

FLI(xo, dxo; 7) = max logyg w
where dx(t) is the perturbation from the reference trajectory associated with @ at time ¢. This
quantity can be computed from the variational equations derived from Equations (1), together with
the corresponding state transition matrix, ®(t,tp), as dx(t) = ®(t,to) 0. The FLI definition
is often expanded to capture the maximum possible growth of a generic initial perturbation to the
initial condition as?!-?

FLIy (z0, {6xb};7) = sup FLI(xg, 6x); T) 3)

where {0z} } is a set of initial perturbation vectors, selected in this paper as unit vector perturbations
in each dimension of the phase space.??

Differential Geometry for Curves

Differential geometry is used to mathematically describe and computationally discretize curved
trajectories in a geometrically aware manner. Consider a spatial trajectory (i.e., a curve C) that is
generated over a time interval ¢ € [to, ;] and described by its position 7(t) = [z(t),y(t), 2(¢)]T,
velocity 7(t) = [#(t), y(t), 2(t)]T and acceleration 7 (t) = [#(t), §j(t), £(t)]T vectors. The arclength
of this curve, s, is the distance traveled along its path, equal to?
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The instantaneous unsigned curvature, x¢(t), measures the rate of rotation of the velocity vector
with respect to the arclength, i.e., the extent to which the trajectory deviates from a straight line, at
a time ¢. This scalar curvature is calculated as?*

) x #(1)
"el®) = D

and possesses a singularity when the speed is zero; the subscript ‘C’ emphasizes that this quantity
is calculated along a curve. The total curvature of the trajectory is calculated using the integral of
the curvature along its arclength as?
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and captures the angle traced out by the path within its evolving osculating plane.

Differential Geometry for Surfaces

The concept of curvature is useful for describing the geometric properties of a surface near a
specified point. Consider a general surface in three dimensional space, S C R3, implicitly described
by the equation f(z1,x2,x3) = 0, where f is assumed to be differentiable. At any point p € S, the
normal vector 1y, to the surface is calculated using the vector gradient of f, g, = V f(p), as?4

. dp
Ny = —— @)
P lgpll
This vector locally orients the surface and is perpendicular to the tangent plane 75,

The curvature of the surface at a point measures the local deviation from the tangent plane.?*

Consider an arbitrary direction in the tangent plane @ € T},. A plane M is then formed using the
basis vectors 4 and 7. As depicted in black in Figure 1, the intersection of M, colored blue, with
the surface S, colored gray, is a curve. The normal curvature is defined as the component of the
curvature of this curve along n and denoted as Ks, where the subscript ‘S’ emphasizes that this
quantity corresponds to a surface. This quantity captures the surface curvature in the 4 direction.

Figure 1. Conceptual definition of variables used to describe the curvature of a sur-
face S near a point p.



The shape operator mathematically encodes the evolution of the normal vector and, therefore, the
tangent plane when stepping away from a specified point along a specified direction.?* This shape
operator S, is calculated using the directional derivative of 7 along as?4

Sp(tt) = —Vyn=—-Va-a=—(Va) a (8)

The gradient of the normal vector is calculated as”®
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where H), = V2 is the Hessian of f calculated at p and P, = I33 — ﬁpﬁIT, is a projection oper-
ator which projects vectors onto the tangent plane at p.2® Because both H, and P, are symmetric

matrices, the shape operator simplifies to

1
Sp(tt) = ——— Py Hpi (10)
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Then, the normal curvature of a curve passing through p in the direction % is derived as>*
0=Vyun-a)=(Vya) n+ (Vyn) - a4 =Ksn-n—Sp(u) = Ks=Sp(a)-u (11)

Accordingly, (V@) = Ksn.2* Stepping in different directions @ away from a selected point may
result in distinct values of the normal curvatures.

To summarize the normal curvatures of a surface at point p, two principal curvatures are defined.
Specifically, KCs yqz and ICs iy, are defined as the vectors associated with the maximum and min-
imum values of which g, respectively.?* These directions are depicted conceptually in Figure 1
using orange and blue arrows, respectively. From Equation (10), these principal curvatures occur
when Sp(w) and @ are parallel, i.e., when there exists a constant value of « such that

1
9p

Because w4 is a unit vector, « = Kg. Therefore, the principal directions and curvatures correspond
to the eigenvectors and eigenvalues of the shape operator.?*

The principal curvature directions form an orthonormal basis for the tangent plane 7;,. Accord-
ingly, the principal curvatures supply a local description of the surface shape in the local neighbor-
hood of p. Consider the orthonormal local reference frame at p defined as {ICpin, Kpnaz, 7p } and
corresponding coordinates {x, 7, (}. From the Implicit Function Theorem, S is locally described

near a sufficiently small neighborhood around p in terms of a height function ¢ = h(x, n):?"28

¢ =h(x,1) = KminX> + Kmazn® (13)

This expression supplies a local quadratic approximation of the surface at p.



Triangulation and Adaptive Mesh Refinement

Surface discretization has been used to describe and render surfaces computationally across vari-
ous disciplines, from computational fluid dynamics (CFD) to computer graphics. In these domains,
triangulations focus on approximating a curved surface by a set of triangles 7 that together define a
mesh. These triangulations are typically used due to their simple and robust capability to describe
complex surfaces embedded in three-dimensional space. Furthermore, structured meshes, such as
those generated by triangulation, have a regular, predictable arrangement of elements that simplifies
the computational implementation of algorithms designed to operate over a surface.?’

Adaptive mesh refinement involves adapting a mesh to local properties of the surface, typically
via subdivision. For example, in CFD, it is common to subdivide the mesh near areas with high flow
complexity,® whereas in computer graphics, regions of the mesh at locations of higher curvature
are subdivided to better capture the local surface characteristics.?” In these examples, adaptive mesh
refinement process may result in higher numerical simulation accuracy, greater space and memory
efficiency, or improved surface representation fidelity.

Although a variety of techniques for mesh subdivision exist, one foundational approach is the
red-green refinement technique.’! Red-green refinement then consists of the following steps:

1. Select the initial triangles to be refined.

2. Divide all edges of the selected triangles in half.

3. For any triangle that has a divided edge, subdivide the longest edge. Repeat until no additional
edges need to be divided.

4. Insert new points at the midpoints of all divided edges.

5. Construct the new triangles. If a triangle has its three sides divided, new triangles are formed
by joining the side midpoints. If two sides are divided, the midpoint of the longest edge
is joined with the opposing corner and with the other midpoint. If only the longest edge is
divided, its midpoint is joined with the opposing corner.

This refinement technique is conforming, meaning that the mesh is topologically consistent every-
where, allowing the refinement algorithm to be used recursively at any region of the mesh.3!

Clustering

This paper leverages two density-based clustering algorithms to summarize the geometries of tra-
jectories in the CR3BP: Density-Based Spatial Clustering of Applications with Noise (DBSCAN)?*?
and HDBSCAN.* Both algorithms act on a dataset with N members, described by m-dimensional
feature vectors, to produce a set of 1) clusters C as members that form high-density groupings and
2) null assignments A that exist in low-density regions within the feature vector space. DBSCAN
is accessed via MATLAB whereas HDBSCAN is accessed using the hdbscan Python library.3*

DBSCAN Without a-priori knowledge of the number of clusters, DBSCAN can identify arbitrarily-
shaped clusters and label outliers as noise. The grouping relies on identifying density-connected
neighborhoods in the m-dimensional dataset. The algorithm relies on two user-defined parameters,
the neighborhood radius € and a number of points mpts.” Clusters are defined as sets of core points
that exist within each other’s my,s-neighborhoods with radii less than ¢.3 Border point exist in the
mpts-neighborhoods of core points but their own my,s-neighborhood are larger than ;32 accord-
ingly, they are added to the clusters of those core points. The remaining points which do not satisfy
these conditions are labeled as noise and correspond to null assignments.*?



HDBSCAN Expanding on DBSCAN,*?> HDBSCAN? eliminates the need for a constant value
of e. First, the radius of the m;s-neighborhood of point 7 is defined as its core distance d§°". The
mutual reachability distance, d%RD , 1s then calculated between any two data points ¢ and j as

MRD __ core jcore . .
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where d; ; is the Euclidean distance calculated between the feature vectors of points ¢ and j. This
mutual reachability distance further separates points in low-density regions. HDBSCAN then con-
structs a minimum spanning tree (MST) between all the points in the dataset using the mutual reach-
ability distance to the define the edge weights. By progressively removing edges in decreasing order
of their edge weights, a hierarchical tree is built using the resulting connected components present
in the modified MST. Finally, clusters which contain more than 1,y c1us points and exhibit the
greatest stability, i.e., persisting the longest across the range of mutual reachability distances, are
selected as the final output. Points that are not assigned as clusters are designated as noise.>> More
recently, the algorithm was refined to merge any two points within a distance of ememe.35

Clustering-Based Framework for Summarizing Trajectories

Recently, clustering has been used to automatically summarize the prominent geometries of a
diverse array of trajectories across a multi-body system. The most recent implementation of this
framework has been developed by Bosanac using concepts from differential geometry and dis-
tributed clustering.'> A brief overview of this procedure is presented in this section.

An important definition in the clustering-based framework previously developed by Bosanac?® is

the description of a continuous trajectory via a finite-dimensional feature vector. Given an initial
state vector, a trajectory is propagated for up to 21 days. This continuous solution is then sampled
in a geometry-based manner at states that are evenly distributed in the total absolute curvature
along each half-revolution, n, in the Earth-Moon rotating frame.'* A trajectory completing up to
n = [Ke tot(to, tf) /7] half-revolutions within the evolving osculating plane is first sampled at the
initial condition. Then, it is evenly sampled every m/N, in the total absolute curvature for the
first n — 1 half-revolutions. The last half-revolution is sampled by N, equally spaced states in the
remaining total absolute curvature. Accordingly, longer trajectories are sampled by more states and
these states tend to be located closer together in regions of high curvature. Following Bosanac and
Joyner,'* we take N, = 3 to accurately describe each trajectory while reducing the number of total
samples. These sampled states are then used to construct two feature vectors: one position-based
feature vector, f,, composed of the position components of each state and one shape-based feature
vector, f, that consists of the velocity unit vectors of each sampled state:'*
P £1 = (o767 o)

To select the initial state vectors that are used to generate the set of trajectories to be summarized,
a static grid definition and differential geometry are employed. First, the initial position vectors
are defined using a static, uniform grid. Prespecified values of the Jacobi constant are then used to
calculate the associated speed at each initial condition. For each initial position vector and associ-
ated speed, the velocity direction is selected to produce a maximum in the instantaneous curvature
along the trajectory, k¢, at the initial condition.'* Similar to how apses are used traditionally,
maxima in the curvature offer a geometrically meaningful definition for automatically and robustly
sampling initial conditions in a multi-body system.?” For planar trajectories, up to four curvature
maxima exist at any position vector. After combining these initial velocities with their associated



position vector, the associated trajectories are generated, summarized, and stored in the training
dataset. However, for spatial trajectories, these velocity vectors exist in continuous families that
are discretely approximated.’’” Thus, the associated trajectories are generated and grouped in a
local clustering step that applies HDBSCAN to their shape-based feature vectors. Representative
members of these local clusters supply the trajectories that are stored in the training dataset.'*

The training dataset is then distributed across multiple, smaller partitions of trajectories that are
sampled using the same number of states. The trajectories within each partition are coarsely clus-
tered via HDBSCAN using the shape-based feature vectors evaluated over their entire duration. !
These coarse clusters are then processed by a cluster refinement technique inspired by a convoy
detection scheme.?® The ith states along all the trajectories within a coarse group are then indepen-
dently clustered in each of the position- and shape-based three-dimensional feature vector spaces
using DBSCAN with adaptive heuristics for selecting €.!> This process is repeated for all N sub-
sequent sampled states to produce 2N, clustering results. Any trajectories that are consistently
grouped together correspond to a refined cluster. The result of this process is a set of local clusters
and noise for each partition; each local cluster is described by a representative member, equal to the
medoid in the position-based feature vector space.11 Following Bosanac,'> we take Mmin,clust = 9
and my,; = 4 for either clustering step and €p,crge = 2sin (10°/2) for HDBSCAN.

Consistent with distributed clustering, local clusters are aggregated across partitions if they con-
tain trajectories with a similar geometry.!* Candidate neighboring pairs are first coarsely identified
using nearest neighbors in the position- and shape-based feature vector spaces. Then, the trajec-
tories within these candidate neighboring pairs are input to the cluster refinement process. If any
members are grouped together, the associated clusters are merged.!> The connected sets of local
clusters then form the global clusters that summarize the entire training dataset.

TECHNICAL APPROACH

This paper focuses on expanding the existing clustering framework to adaptively summarize the
prominent geometries of trajectories originating within a specified region of the phase space in the
CR3BP. There are three main steps in this process, as depicted in the flowchart in Figure 2. The
input to this framework is a user-defined, initial coarse grid of position vectors. These position
vectors are used to generate the initial conditions of trajectories in the training dataset; these initial
conditions follow a hypersurface of curvature maxima. At each iteration of the framework, this grid
is automatically refined in a manner that balances 1) global exploration of the array of prominent
geometries across the solution space, at a desired resolution; and 2) local exploitation to ensure
sufficient sampling to improve the quality of the clustering results. The trajectories generated at
each iteration of the framework are then clustered using the procedure developed by Bosanac'> and
described in the Background. To support a proof of concept, this paper focuses on summarizing
planar motion at a fixed energy level in the Earth-Moon CR3BP.

Coarse IC surface Pre-clustering Adaptive )
position grid generation & | =) adaptive = | clustering Final summary
triangulation sampling loop of motion

Figure 2. Condensed flowchart of the new adaptive clustering framework.




Defining Initial Conditions

Following the implementation by Bosanac,'” the initial conditions are defined to produce maxima
in the curvature along a trajectory. However, this paper presents an analytical approach to generating
these initial state vectors for planar motion. While avoiding numerical inaccuracies of a root-finding
scheme, this analytical method also reduces the required computational time.

The maximum curvature condition, evaluated in the rotating frame for planar trajectories, is
expressed in terms of the spacecraft state vector. To simplify the derivation, the velocity vector
v = [&, 9] is expressed in polar coordinates (v, #) where v is the speed of the spacecraft and 6 is the
angle between the velocity vector and . The relationship between these coordinates is

& =wvcosf v = /2% + y?
e .
Yy =vsind = arctan (%)

The differential equations governing the spacecraft are then rewritten in terms of v and 6 as

2+ gy 2Uz +9U,y

& =wvcost U= = Uz cosf + Uysin 6
v v
(14)
J = vsind é:igj—zyéc':UycosH—UwsiHH_z
v v
The second and third time derivatives of v and 6 are calculated as
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where U;; = 0?°U/0z;0x; and Uyjp = 03U/dx; Oxj Oxy, for 4,5,k € {x,y}. Because these
derivatives are symmetric, there are only 10 independent values of U jy.

The curvature of a trajectory, k¢, is calculated in terms of the coordinates (x,y, v, ). In polar

velocity coordinates, ¥ = ¥€é, 4+ vféy. Thus, Equation (5) is rewritten as

loxol| 10 6 .
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where the explicit time dependence has been omitted to simplify notation. Due to the change in the
coordinates that describe the velocity vector, this expression for the curvature along a trajectory is
more straightforward and offers an intuitive interpretation: higher curvature occurs when traveling
at low speed with rapid directional changes. The time derivatives of ¢ are then expressed as

. Gv — 60 . .

ke = 5— - sign(0) (19)

v




v (v d5) — 20 (6o - 60)  Fu_di '
-sign(f) = ———5—— -sign(f) at curvature extrema (20)
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Each expression relies on the position vector and time derivatives of the velocity vector coordinates.
Extrema in the curvature are calculated as stationary points in the curvature along the trajectory.

The condition /¢ = 0 is rewritten as the following trigonometric function by substituting Equations
(14) and (16) into Equation (19), and performing some algebraic manipulation:

Acos26 + Bsin20 4+ Ccosf + Dsinf =0 21
where ST AU
A:ny—# C=-"2
v v
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For a given value of the Jacobi constant and mass ratio, the coefficients A, B, C, D are a function of
only the position because v = /2U (x, y) — C;. By using Euler’s identity and defining Z = €l =
cos @ + isin 0, Equation (21) is rewritten as

(A—iB)Z* +(C —iD)Z® + (C +iD)Z + (A+iB) =0 (22)
This expression is a quartic equation of the form
aZ' +bZ° +cZ*+dZ +e=0 (23)

where ¢ = (A—iB),b = (C—iD),c=0,d = (C+iD), and e = (A+iB). From the Fundamental
Theorem of Algebra, Equation (23) has exactly 4 complex roots: 27, Z3, Z3, Z; € C. One of the
methods to obtaining the solutions to Equation (23) was first obtained by Ferrari,*® as

b 1
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According to the Abel-Ruffini theorem, a quartic polynomial is the highest order polynomial with
roots that can be expressed in terms of radicals.

From the Fundamental Theorem of Algebra, there are at most four curvature extrema per position
vector for each value of C; and p in the planar CR3BP. To justify this result, the Ferrari method>’
is used to obtain the solutions Z* € C of Equation (22). These solutions correspond to the desired
velocity directions 8* = —iln Z*, where only real valued 6* are considered, i.e., those for which
|Z*| = 1. Finally, only values of 8* that yield k¢ < 0 are retained to produce four or fewer maxima
in the curvature at any given position vector for a single Jacobi constant and mass ratio.
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Initial Condition Surface Triangulation

For fixed values of C'y and p, &¢ is only a function of the position coordinates x,y and the
velocity direction 6. As such, the equation &¢(z,y,0) = 0 implicitly defines a surface embedded
in R3. Thus, differential geometry of surfaces is leveraged to analyze this complicated surface of
initial conditions. Accordingly, the triangulation procedure presented in this paper to approximate
the surface of initial conditions is performed through a sequence of steps.

First, an initial triangulation, 7, is defined over an initial, coarse, and uniform grid of position
vectors using MATLAB’s built-in triangulation functions. This procedure is depicted in Figure 3a)
for C; = 3.14, where the triangulation is shown in light blue, the initial positions are marked with
blue points, the zero-velocity curves are plotted in gray, the Moon is represented by the gray circle,
and the L, and L9 Lagrange points are indicated by red diamonds. This step identifies neighbors
of each state vector only in position. Next, the speed at a desired value of C'y is calculated at each
position vector. Then, as depicted in Figure 3b), the up to four values of  that define the velocity
directions of curvature maxima are calculated for each position using the methodology described in
the previous subsection. The next step is to extend the triangulation across the full state description.

Consider an initial condition IC* = [z*,y*,0*]T at a point p on the surface of initial condi-
tions. In 7,5, IC* can be connected to up to six nearby position vectors in the configuration space.
Because each position vector can produce up to four states that are maxima in curvature, up to

a) |, b)

0.1

-0.1

-0.2

d)

A 4
S
o

-120

Figure 3. Flowchart depicting the initial condition surface triangulation scheme:
a) position triangulation, b) initial condition generation, c) local quadratic surface
approximation and d) surface triangulation.
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24 + 3 = 27 candidate states could be connected to IC*; these states are denoted as IC,;,q.. How-
ever, not all these candidates exist nearby IC* on the surface associated with curvature maxima.

To identify neighboring states along the surface, this paper leverages curvature-based criteria.”®

Specifically, candidates that are sufficiently close to IC* are identified using a local quadratic ap-
proximation of the local surface curvature using Equation (13). First, the normal and the shape
operator at IC*, are calculated using Equations (7) and (10). When applied to the planar CR3BP,
the gradient and the Hessian are rewritten as
9%k 9%k 92k
T Ox? Oxdy  0xdl
vy _ [8ke  Bhe 85 _ . | 82 82k 9%
gp=Vic| . =[5 e Be|  H,=HGo)|  =|25 55 o4
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The eigenvalues and eigenvectors of the shape operator are then calculated and sorted to supply a
local basis Biocal = [Krmin, Kmaz, Tp), and the principal curvatures at IC*. These basis vectors are
used to rewrite ICeqpg. = [2,y,0]" in the local IC* frame via the following transformation:

X
Bl"c‘lllccand, =\nl = (ICcand. - IC*)T Blocal

¢

Note that IC* is at the origin of this new frame. Then, as depicted in Figure 3c), a local quadratic
approximation to the surface is constructed at IC* with Equation (13), and the local coordinates
{x,n} of the candidates are used to produce the approximated height values, f . When compared to
the true height value ¢, the local height error is defined as 0, = | — f |. The candidate states IC 4,4,
that are considered triangulation neighbors of IC* must satisfy the following two conditions: 1) dj,
is below a user defined threshold Ay, and 2) their separation distance ¢ = ||IC* — ICqpq.|| is
below a user defined threshold AZ,,,qz.

The triangulation 7, is then extended to the full phase space using this information from the
neighboring states along the surface of initial conditions. First, each state IC* defines a node in
the triangulation. Then, edges are added between the node associated with IC* and the nodes of
candidate states IC,,,,4. that satisfy the neighborhood criteria. Repeating the process for every initial
condition in the coarse grid produces a triangulation 7 for the surface, as depicted in Figure 3d).
Here, the initial conditions are represented by blue dots, connected by black edges that define the
triangulation, represented as light blue surface patches. Figure 3d) highlights two current limitations
of the algorithm: 1) some initial conditions are not included in the triangulation, and (2) there are
no edge connections between points near §# = —180°nd § = 180°, which correspond to similar
velocity directions. Addressing these limitations is an avenue of ongoing work.

Adaptive Mesh Refinement

Given an initial triangulation of the surface, the mesh of initial conditions is refined. Similar
to the exploration-exploitation tradeoff in machine learning,*’ the goal of mesh refinement is to
both improve the resolution of poorly sampled regions (global exploration) and reduce the error in
the clustering result (local exploitation). In this paper, each of these goals in the mesh refinement
process is defined using information from differential geometry and the clustering results.

In the global exploration phase, the goal is to capture the overall shape of the surface of initial
conditions and, therefore, increase the likelihood that the array of prominent trajectories geometries
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a) Modified Step 2 b) IC Projection

Figure 4. Modified step 2 of red-green mesh refinement and projection onto the
surface of initial conditions.

appears within the training dataset with sufficient density. To achieve this goal, the root-mean-
+ K2

az.» 18 calculated at each of the initial conditions

squared curvature value, ICppps = lC?nm
in the current mesh. At any given point, a high value of ;s indicates that the surface is more
curved and, therefore, more complex. Thus, every initial condition for which /s is larger than a

user-defined value AK, ;5 maaz, is flagged for refinement by adding initial conditions in its vicinity.

In the local exploitation phase, the goal is to reduce clustering error by increasing the resolution
in dynamically sensitive regions and/or areas where initial conditions correspond to trajectories that
were labeled as noise by the clustering framework. Dynamically sensitive regions are identified
based on two criteria: geometric changes, detected heuristically using the total trajectory curvature,
and relative trajectory stability, measured via the Fast Lyapunov Indicator defined in Equation (3).
These quantities are calculated for all initial conditions by propagating the total curvature and the
STM alongside the equations of motion. Note that the total curvature adds one equation to the
propagation whereas the STM adds 16 extra equations for planar motion. Then, for any given initial
condition IC*, the variance of these quantities is calculated over its neighborhood, defined as the set
of initial conditions belonging to every triangle containing IC* in the current surface triangulation.
Let AV (IC*) denote this set, which includes IC* itself, with a total of N members. Then, for any
scalar quantity ¢ associated with each initial condition, its variance over the neighborhood of IC* is

Virvaen(@ = g Y (@iC) -7 a=5 Y q0c)

TG EN(ICY) IC; €N (IC)

Here, g can be either k¢ ot or FLI7. Initial conditions for which this variance is greater than
user-defined thresholds o2, (k¢ tor.) and o2, (FLI7) are flagged for refinement. Finally, initial

conditions of trajectories that are labeled as noise during clustering are also flagged.

Given a set of flagged initial conditions, the mesh refinement algorithm is inspired by red-green
refinement, with minor modifications. The primary difference is that in step 2, instead of refining
entire triangles, the procedure used in this paper only marks for subdivision the edges between
flagged initial conditions and their triangulation neighbors, as depicted in Figure 4a). Here, the red
star is the flagged initial condition, the solid blue lines represent triangulation edges between other
initial conditions, shown as black dots, while the dashed lines indicate edges marked for subdivision.

Whenever an edge is divided during refinement, the new initial condition, 1C,,¢,,, must be pro-
jected back onto the surface defined by curvature maxima. The position vector at the center of this
edge is first calculated between IC* and its neighbor IC,,cig. as Thew = (T + Tpeign.) /2. Because
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up to four curvature maxima may exist at this position, the resulting set of actual curvature maxima
ICpey are compared with the approximated state ICy,, as depicted in Figure 4b). Then, only the
initial condition in IC,,.,, that lies on the surface but possesses a distance d to 1Cy,¢,, that is lower
than a user defined threshold Ad,,.,, is retained as the new sample for this specific edge.

Finally, the user can specify two mesh resolution thresholds. One threshold governs the minimum
separation between initial conditions in position, Ar,,;,, whereas the other threshold governs the
minimum separation in velocity direction Af,,;,. During any subsampling step, if the distance
between IC* and IC,cign. 1s less than 2A7rpi, in the configuration subspace and less than 2A6,,,
in the velocity angle subspace, the edge is not subdivided.

Adaptive Clustering Framework

£ LAY
gigeiztrif(ilze& ||| Krms -based | | | |c,eoe/FLI-based ‘ Pre-clustering
triangulation refinement refinement refined IC mesh
[
—
No | | Noise-based K¢ tor /JFLI-based Refined
e refinement " refinement IC mesh

v
i=i Cluster & noise Clustering
i =i+1 ¢

assignment framework

Final summary
of motion

Figure 5. Flowchart describing the full adaptive clustering framework.

The three components of adaptive mesh refinement are leveraged to construct an adaptive clus-
tering framework. Figure 5 presents an overview of this general framework. Given a single value
of the Jacobi constant and a coarse, initial position grid, the surface of initial conditions is calcu-
lated and triangulated using the methodology described above. Then, in a global exploration phase,
the resolution of the surface is improved by performing mesh refinement, driven by the root mean
squared surface curvature. This step can be performed iteratively up to a number of Nge,, iterations.
After the surface of initial conditions is well-resolved, the local exploitation phase begins. This
mesh is first refined using the variance of the total trajectory curvature and FLI within each initial
conditions’ neighborhood. This refinement is performed for up to iterations, Npre-clust.. The result is
a sufficiently dense initial condition mesh M ¢ to begin the adaptive clustering loop.

For the first iteration of adaptive clustering, the dataset is summarized using the clustering frame-
work by Bosanac,!” to extract the first set of cluster and noise assignments. Then, M ¢ is refined
sequentially by first considering the presence of noise and using the local variance of k¢ 4+, and
FLI7. The resulting mesh is then passed through the clustering framework again to update the sum-
mary of motion, and the process repeats. The adaptive clustering loop terminates when either 1)
reaching a maximum number of iterations N ¢ or 2) no initial conditions added to the mesh, by
virtue of either the mesh resolution thresholds or no more flagged initial conditions. At this point,
the mesh is considered to have converged and the last obtained set of cluster and noise assignments
supplies the final summary of motion.
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RESULTS

The presented adaptive clustering framework is used to summarize planar motion in the vicinity
of the Moon in the Earth-Moon CR3BP at a Jacobi constant of C; = 3.12. Specifically, the region
of interest is defined by: R = {(z,y) | 0.8 <z < 1.2, —0.2 < y < 0.2}. This section analyzes
the results of two main steps in Figure 2: the pre-clustering adaptive sampling and the adaptive
clustering loop. For this application, Table 1 lists the selected values of the hyperparameters that
govern the adaptive sampling scheme. The coarse position grid is initially defined by sampling the
region R with a step of 0.01 in each direction of the configuration space, producing only 4,342
initial state vectors.

Triangulation Adaptive Sampling Mesh Resolution Makx. iterations
Ahmam Almaa: Admax A]Crms,max Urznaz(ﬁc,tot.) Uyznaz (FLIT) Armin Aemin Nqso Nprcfclust NAC
0.05 0.5 0.1 80 0.25 0.015 5x 1074 | 0.5° 6 2 3

Table 1. Selected values of parameters governing the adaptive sampling framework.

Mesh Refinement via Surface Curvature

Once the surface of initial conditions has been generated and triangulated for the first time, the
mesh is refined using the surface curvature. This step corresponds to the global exploration phase
of the adaptive sampling framework, where the goal is to discretize the initial condition surface
efficiently while obtaining a sufficient representation of its geometric features. After the Ky s-
based refinement, the initial condition mesh is as plotted in Figure 6a), where the color indicates the
value of the root mean square curvature at each point.

b) ..

©)

02 0.8

Figure 6. Initial condition mesh after /C,,, -based refinement and zoom on curved
(b)) and flat (c)) regions.

The refinement process at this step successfully adapts to the geometry of the surface of initial
conditions. For instance, the indicated region labeled with the text annotation ”’b)” is visualized
in a zoomed-in view in Figure 6b). In this local region, the surface possesses a saddle shape,
which would not be visible without refinement. The refinement process successfully captures the
geometric features of the surface, strategically adding samples where necessary. However, there are
other portions of the surface that are less geometrically complex. For instance, in the local region
visualized in Figure 6¢), the surface appears to be relatively flat and requires no refinement under the
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selected curvature threshold. With the surface geometry better captured through adaptive sampling,
there is a higher likelihood that the trajectories generated from these initial conditions better capture
the array of prominent geometries.

Comparing Mesh Refinement via Total Absolute Curvature and Chaos Indicators

Following K, s-based refinement, the mesh is then passed through two refinement steps using
the total trajectory absolute curvature and the chaos indicator FLIr. However, to investigate the
effects of each quantity independently, each refinement is performed with only one parameter active
at a time. Figures 7a) and c) (as well as b) and d)) display the mesh before and after refinement
using the total absolute curvature (and chaos indicator FLI7), with the initial conditions colored
by their corresponding value of k¢ ;0. (and FLI7). In this example, the values of O'gnaz(liatot,) and
02, (FLI7) are listed in Table 1 and selected to produce approximately the same number of initial
conditions after refinement (~ 27, 700).

a)
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=
9 o N

202 08
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Figure 7. Refined initial condition meshes using either x¢ ;,;., a) and ¢), or FLI7 , b) and d).

Using the total curvature along a trajectory to refine the mesh effectively resolves regions where
the quantity changes rapidly. In Figures 7a) and c), initial conditions near the Moon, colored in yel-
low near the center of the figure, result in trajectories with high values of k¢ ;o:.. These trajectories
are quasi-periodic trajectories that perform multiple revolutions around the Moon. Moreover, mesh
refinements are observed in regions where the stable manifold of the Lyapunov orbits at this energy
level intersects the initial condition surface. Ongoing work aims to investigate this observation.

Using the chaos indicator to refine the mesh effectively resolves regions where the dynamics are
more sensitive. For instance, Figure 7d) features ridges in the value of the chaos indicator along
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the surface of initial conditions. Similar to a separatrix in phase space diagrams, these ridges form
the boundary between regions of distinct dynamical behavior. The adaptive scheme successfully
resolved these features, which were not clearly visible in the initial coarse grid.

The meshes refined using either k¢ 4ot or FLI7 are similar. In each case, the areas where new
initial conditions are placed are closely correlated. This result is consistent with the expectation that
a trajectory located near another path that is sensitive to small changes in the initial condition, as
quantified by FLI7, will likely exhibit a different shape, leading to a different value of x¢ tor.. How-
ever, k¢ tot. Offers an interesting benefit for performing refinement as this approach better correlates
with the partitioning process used in the clustering framework by Bosanac!® and requires 15 fewer
additional ordinary differential equations to be integrated, speeding up trajectory propagation.

Adaptive Clustering

The grid depicted in Figure 7¢) is used to perform three iterations of the adaptive clustering loop
depicted in Figure 5. Figure 8 displays two views of the grid: (left) after the first clustering step
and (right) after three iterations of the adaptive clustering loop. Cluster labels are indicated with
color and noise is displayed in brown. Note that the same color does not correlate to the same exact
cluster before and after the adaptive clustering refinement.

Near the Lo gateway, the initial mesh is quite coarse and produces many unlabeled trajecto-
ries. Thus, the adaptive clustering scheme places more initial condition in that area, leading to the
successful clustering of the respective trajectories and eliminating noise. The grid in the region
{(z,y,0) ] 0.8 < x <0.85, 0.15 <y < 0.2, —180° < # < —160°} is also coarse. However, the
sample density there is sufficient for clustering, so no initial conditions are added.

Even after refinement, noise tends to persist near cluster boundaries. Due to the density-based
nature of clustering and the lack of clear, separable boundaries between trajectory geometries in a
continuous system, the designation of some trajectories as noise cannot be completely eliminated.
However, the adaptive clustering scheme successfully reduces the noise in these areas, as depicted
in the inset of Figure 8. This noise reduction leads to better defined clusters across the dataset.

Figure 9 summarizes statistics of the dataset throughout the adaptive clustering scheme. The
number of initial conditions, noise percentage, and number of local clusters is plotted across itera-
tions of the loop, marked by bars of different colors. The vertical axes are displayed on a logarithmic
scale. The bars are grouped together by the number of half-revolutions n, i.e. number of arcs, of
the trajectories in the total data set. With the exception of n = 10, the noise percentage generally
decreases throughout the refinement process. Ongoing work includes investigating the high number
of trajectories designated at noise when n = 10. For example, for n = 1, the number of local
clusters slightly decreases, as does the noise percentage, as more initial conditions are added.

Through the adaptive clustering process, the percentage of trajectories designated as noise drops
from 11% to 2%. The final number of initial conditions is 187, 470, resulting in 1,205 local clusters
which are aggregated to produce 955 global clusters. For comparison, generating a uniform initial
position grid with a resolution of A7y, = 5 X 10—, would produce 1,688,528 initial conditions,
9 times larger than the size of the dataset after the adaptive clustering scheme. This increase in
the size of the dataset would have significant implications for data storage requirements and the
computational time required to propagate and cluster all the trajectories.
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Figure 8. Initial condition mesh before and after the adaptive clustering loop. Inset
shows the persistence of noise between cluster boundaries.
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Figure 9. Data set statistics throughout the adaptive clustering loop.

18



CONCLUSIONS

This paper expands on the framework developed by Bosanac!’ by introducing an adaptive and
automated scheme to generate the training dataset for the cluster-based summarization of trajec-
tories in the planar Earth-Moon CR3BP. This paper demonstrates that, for planar motion, the set
of curvature maxima belongs to a surface. This surface is discretized based on its geometric fea-
tures by using differential geometry. The clustering framework is then embedded in a loop where
the summary of motion is iteratively improved through the strategic addition of samples near noise
points and dynamically sensitive regions, driven by the total absolute curvature of the trajectories.
Consequently, the algorithm supplies a heterogeneous, automatic, and adaptive sampling proce-
dure, densely sampling areas with greater dynamical complexity while sampling simpler regions
more sparsely. As a result, the approach reduces the reliance on prior expertise about the specific
environment and decreases the time required from a human analyst to generate the data set. This, in
turn, facilitates the study of a wider range of systems while producing motion summaries that more
accurately capture the diverse geometries exhibited by trajectories in a chaotic solution space.
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