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LONG-TERM SPACECRAFT TRAJECTORY PREDICTION USING
BEHAVIORAL MOTION PRIMITIVES

Austin Bodin*, Natasha Bosanac†, and Cole Gillespie‡

This paper leverages behavioral motion primitives for spacecraft trajectory predic-
tion in cislunar space. A behavioral motion primitive summarizes trajectories with
a similar geometry and is labeled by the associated behaviors (e.g., maneuvering
objective and intent) and spacecraft parameters. The volume spanned by these ge-
ometrically similar trajectories is labeled as the region of existence of each prim-
itive and approximated using voxels. Uncertain state estimates are projected onto
these regions of existence for short-term predictions. Sequences of composable
primitives, with overlapping regions of existence in the configuration space, are
then used to generate digestible long-term trajectory predictions.

INTRODUCTION

Cislunar space is of growing interest for supporting commercial infrastructure, scientific explo-
ration, and defense applications. The associated spacecraft could possess a wide array of behaviors
composed of intents, i.e., itineraries; maneuvering objectives, i.e., control profiles; and spacecraft
properties, e.g., propulsion system and mass. The range of possible intents, maneuvering objectives,
and spacecraft properties produces a diverse array of motions that a spacecraft could follow within
the chaotic dynamical environment of cislunar space. Furthermore, similar trajectory geometries
can be generated through distinct combinations of spacecraft properties and behaviors. As a result,
with limited or no information about the behaviors and capabilities of an observed spacecraft, tra-
jectory prediction from uncertain state estimates becomes a challenging task that can produce an
overwhelming amount of information for an operator or analyst.

Initial orbit determination (IOD) is a critical task for space operations. Foundational methods
such as Laplace’s method, Gauss’ method, Double r-iteration, and Gooding’s method1, 2 construct
orbit fits that often rely on concepts or mathematical relationships from the two-body problem,
which can lead to poor approximations in a multi-body system. To refine the state estimate and
provide state uncertainty, large numbers of these measurements are often used in a batch estimation
method such as weighted nonlinear least squares.3 The IOD estimate is then used to predict possible
trajectories of the spacecraft. Existing techniques including Monte Carlo analysis, which relies on
repeated random sampling to numerically generate trajectories,4 can impose a high computational
burden when there is limited information on the behavior and properties of the spacecraft. Linear
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mean and covariance propagation, as used in various Kalman filtering implementations, can struggle
when distinct types of motion emerge over long time intervals.5 To address this, Sorenson and
Alspach have extended linear uncertainty propagation to some nonlinear systems using Gaussian
sums to represent non-Gaussian probability distributions.6 Although these heritage methods have
proven valuable for IOD in dynamical environments where the gravity field of a single celestial
body is dominant, they have limited applicability in cislunar space. Furthermore, these approaches
may result in a large amount of generated information.

Complex path and movement prediction problems have been encountered across a diverse array
of disciplines. In robotics, the concept of motion primitives has been used to represent fundamental
building blocks of motion.7 These motion primitives can be extracted from groups of similar motion
within a set of observational or simulated data.8–10 A library of motion primitives then supplies a
discrete and digestible summary of the solution space. By sequencing composable motion primi-
tives, analogous to assembling building blocks with compatible connections, more complex paths
can be rapidly generated.11 Due to their capability to summarize distinct types of paths or move-
ments, motion primitives have been useful for supplying rapid and digestible path and behavioral
predictions. For example, Habibi, Jaipuria, and How have used motion primitives to predict future
pedestrian motions.12 Edelhoff et al. also used motion primitives to extract behavioral models from
animal movement observations and identify behavioral changes.13

Motion primitives have been used for spacecraft trajectory design in multi-body gravitational
systems. Smith and Bosanac have used motion primitives to summarize a set of arcs with a similar
geometry in the circular restricted three-body problem (CR3BP).14 These groups of geometrically
similar arcs have been extracted using clustering, with substantial improvements recently developed
by Bosanac as well as Gillespie, Miceli, and Bosanac.15, 16 Distinct motion primitives separate mo-
tions with distinct geometries. Smith and Bosanac also defined a graph-based procedure to identify
sequences of motion primitives that produce geometrically distinct initial guesses for spacecraft
trajectory design.14 Miceli, Bosanac, and Karimi have extended this work to improve the graph
construction process, incorporate constraints, and improve the graph search algorithm to produce a
more diverse array of primitive sequences.17, 18 Leveraging this foundation, Gillespie, Miceli, and
Bosanac have introduced behavioral motion primitives to also encode the array of behaviors, ma-
neuvering objectives, and spacecraft parameters that produce each group of geometrically similar
arcs for natural and thrust-enabled motions in cislunar space.16

This paper focuses on using behavioral motion primitives for long-term spacecraft trajectory
prediction in cislunar space. First, this paper leverages the diverse library of behavioral motion
primitives generated by Gillespie, Miceli, and Bosanac.16 Then, the region of the phase space
encompassed by arcs that geometrically resemble each primitive, labeled its region of existence, is
approximated using voxels. Initial state estimates are then projected onto the library of behavioral
motion primitives: any primitives with regions of existence that overlap with an uncertainty ellipsoid
centered on the state estimate supply short-term motion predictions. Next, recent work by Miceli
and Bosanac19 is extended to construct a graph of behavioral motion primitives. This graph captures
the connections between primitives that are sequentially composable in the configuration space,
estimated via intersections of the voxel approximation of their regions of existence. Searching this
graph produces primitive sequences that are used to rapidly generate a digestible summary of long-
term possible trajectory predictions. This new approach to trajectory prediction is demonstrated
by exploring generating possible long-term future motions of a spacecraft from an uncertain state
estimate in the planar Earth-Moon CR3BP, assuming only impulsive maneuvers.
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BACKGROUND

Dynamical Model

The Circular Restricted Three-Body Problem (CR3BP) is used to model the motion of a space-
craft. This dynamical model assumes that the mass of the spacecraft is negligible compared to the
two primary bodies, the Earth and the Moon, which follow circular orbits.20 The primary bodies are
also modeled with the same gravity fields as point masses with masses M1 and M2, respectively.20

State vectors are specified in nondimensional form using a rotating frame. The rotating frame
is defined with an origin at the center of mass of the Earth-Moon system. The axes {x̂, ŷ, ẑ} are
defined with x̂ directed from the Earth to the Moon, ẑ aligned with the orbital angular momentum
vector of the primaries, and ŷ completes the right-handed, orthogonal triad.20 Quantities are also
nondimensionalized using characteristic parameters for length (l∗), mass (m∗), and time (t∗): l∗ =
384, 400 km is the distance between the Earth and Moon, m∗ = 6.046× 1024 kg is the total system
mass, and t∗ = 3.752× 105 s produces a nondimensional period of the primaries equal to 2π.

The equations of motion for the spacecraft are typically expressed in the Earth-Moon rotating
frame. The nondimensional state of the spacecraft is first defined as x = [x, y, z, ẋ, ẏ, ż]T. Then,
the equations of motion are written as20

ẍ = 2ẏ +
∂U∗

∂x
, ÿ = −2ẋ+

∂U∗

∂y
, z̈ =

∂U∗

∂z
, (1)

where r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1 + µ)2 + y2 + z2 are the distances to the
primaries, and U∗ = 0.5(x2 + y2) + (1− µ)/r1 + µ/r2. In the Earth-Moon system, the mass ratio
of the primaries is µ ≈ 0.01215. The Jacobi constant is an integral of motion equal to20

CJ = 2U∗ − ẋ2 − ẏ2 − ż2. (2)

This energy-like quantity supplies insight into allowable regions of motion.20 In this dynamical
model, the five libration points, L1-L5 are stationary solutions in the system.20 Periodic orbits are
solutions that repeat after a finite time in the rotating frame. Finally, hyperbolic invariant manifolds
asymptotically depart or approach a libration point, periodic orbit, or quasi-periodic orbit.

Differential Geometry

Differential geometry supports the analysis of nonlinear trajectories. At any instant of time,
the position, velocity, and acceleration vectors are equal to r(t) = [x(t), y(t), z(t)]T, v(t) =
[ẋ(t), ẏ(t), ż(t)]T, and a(t) = [ẍ(t), ÿ(t), z̈(t)]T, respectively. Over the time interval t ∈ [t0, tf ],
a trajectory propagated from a reference initial state traverses a distance equal to the arclength21

sp =

∫ sf

s0

dsp =

∫ tf

t0

√
ẋ2 + ẏ2 + ż2 dt. (3)

The velocity hodograph also traces out a curve with the following distance:

sv =

∫ sf

s0

dsp =

∫ tf

t0

√
ẍ2 + ÿ2 + z̈2 dt, (4)

equivalent to the cumulative change in velocity over the trajectory.
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At any location along the trajectory, the curvature captures the extent to which the path curves
away from a straight line. Curvature is calculated as22

κ(x̄) =

√
(ẋ ÿ − ẏ ẍ)2 + (ż ẍ− ẋ z̈)2 + (ẏ z̈ − ÿ ż)2

(ẋ2 + ẏ2 + ż2)3/2
. (5)

At maxima in curvature, the trajectory most rapidly changes direction. In the CR3BP, these maxima
often occur close to apses relative to the meaningful reference points.23

Density-Based Clustering

Clustering partitions a dataset into groups of similar data points while separating dissimilar data.
In this paper, density-based techniques are used to identify regions in a finite-dimensional feature
space where data points exhibit sufficient local concentration. Specifically, two algorithms are em-
ployed: Density-Based Spatial Clustering of Applications with Noise (DBSCAN)24 and Hierarchi-
cal Density-Based Spatial Clustering of Applications with Noise (HDBSCAN).25

DBSCAN was introduced by Ester, Kriegel, Sander, and Xu to detect arbitrarily shaped clusters
by linking points with overlapping neighborhoods.24 A core point possesses at least mpts points (in-
cluding itself) that fall within its ϵ-neighborhood. Those points that lie within the ϵ-neighborhood
of a core point but do not themselves satisfy the core point criterion are labeled border points.
The remaining points are labeled as noise. Clusters in DBSCAN consist of all core points that are
density-connected, reachable through a chain of overlapping core neighborhoods, and their associ-
ated border points. Because DBSCAN requires specifying both mpts and ϵ, it is useful when these
parameters can be selected heuristically. In this paper, MATLAB’s dbscan function is employed.

HDBSCAN, developed by Campello, Moulavi, and Sander, extends DBSCAN by building a clus-
ter hierarchy over varying density thresholds.25 HDBSCAN begins by defining the mutual reacha-
bility distance between two points as the maximum of their pairwise distance and each point’s core
distance (the distance to its mpts-th nearest neighbor). A minimum spanning tree constructed on
this metric captures the data’s intrinsic density structure. This tree is then condensed into a clus-
ter hierarchy where each node represents a candidate cluster containing at least mmin,clust points.
When moving up the hierarchy, which corresponds to increasing the density level, clusters may
shrink, split, or vanish. A stability criterion based on excess of mass is used to extract the most
persistent clusters from this hierarchy, whereas points that fail to meet density requirements remain
classified as noise.25 Because HDBSCAN does not depend on a fixed neighborhood radius and can
accommodate clusters of differing densities and sizes, it is particularly useful when ϵ is not known
in advance. HDBSCAN is governed by two parameters: mpts and mmin,clust.25 An explicit reach-
ability threshold ϵ may also be applied to constrain cluster formation.26 In this paper, HDBSCAN
is implemented via the Python hdbscan library.27

Numerically Correcting Trajectories

Multiple shooting is used to recover continuous trajectories from discontinuous initial guesses.
In this paper, a free variable vector V is defined as

V =
[
x1,0 ∆T1 x2,0 ∆T2 . . . xn,0 ∆Tn

]T (6)

where xi,0 and ∆Ti are the initial state and time of flight along the i-th arc, respectively. A constraint
vector F0(V ) that only enforces continuity in the configuration space while allowing impulsive
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maneuvers between subsequent arcs is defined as

F0(V ) =
[
rT1,f − rT2,0, r

T
2,f − rT3,0, ..., r

T
n−1,f − rTn,0

]T
(7)

where ri,0 is the initial position vector along the ith arc and ri,f is the final position along the ith
arc. Additional boundary and path constraints can be added as needed, whereas full state continuity
can be used if a maneuver is not allowed. Inequality constraints can be included by converting them
to equality constraints through the addition of slack variables βi in the free variable vector. Once
any additional constraints are appended to F0 to form the full constraint vector F , an initial guess
for the free variable vector is iteratively updated via Newton’s method. These updates continue until
|F (V )| < τ , where τ is a specified tolerance. At each iteration, the derivatives of the constraints
with respect to the free variables are calculated analytically.

Voxel Representations

A voxel is a three-dimensional analog of a pixel often used for computer graphics and medical
or scientific visual analysis.28 Voxels are typically cubes with uniform size used to discretize more
complex shapes. This volume representation supports efficient rendering, simple intersection or
overlap calculations, and variable resolution. Their positions can be defined through a spatial data
structure (e.g. an octree or k-d tree), or each voxel can carry its own absolute coordinates.28 Voxels
can also be encoded with additional information, such as color, texture, or group identifiers.28 In
this paper, voxels are utilized to represent volumes of the phase space with uniform side lengths si
and specified center positions ci, as depicted in Figure 1.

Graph Search Algorithms

Two fundamental search algorithms are Dijkstra’s29 and A*,30 both of which are used in this
work. These algorithms are used within weighted graphs with nonnegative edge weights to identify
the shortest path from one node, the start node, to another node in the graph, the end node. Although
Dijkstra’s algorithm can identify the shortest path from a start node to all other reachable nodes, it
is often terminated early to provide just the shortest path to a single end node.29 In graph theory, the
term “shortest path” is the path with the minimum cost when summing the weights of the traversed
edges.29 In general, the edge weights or costs in a graph can be any value that describes the ease of
moving from one node to another.

The A* search algorithm identifies the shortest path between two nodes faster than Dijkstra’s
algorithm through the use of a heuristic.30 The heuristic guides the search algorithm at each node
through providing approximate knowledge of the cost to the end node. For this algorithm to work

Figure 1: A group of voxels, each with a side length si and absolute center positions ci.

5



properly, the heuristic must be “admissible,” i.e., h(n) ≤ h∗(n), where h∗(n) is the true cost from
node n to the end node.30 As h(n) approaches 0, A* explores more of the graph and effectively
behaves like Dijkstra’s algorithm. As h(n) approaches h∗(n), A* explores fewer nodes, traversing
only those necessary to reach the goal.

Yen’s algorithm identifies the K-shortest loop-less paths between a start node and an end node in
a weighted graph with non-negative edge costs.31 This graph search algorithm begins by computing
the first shortest path using Dijkstra’s algorithm. Additional candidate paths k = 2, 3, . . . ,K are
generated using each node i in the (k − 1)-th path: 1) the segment from the start node to node i
is defined as a root path, 2) edges that would recreate any of the previous (k − 1) root segments
up to i are temporarily removed, 3) a spur path is computed from i to the goal, and 4) that spur
path is concatenated to the root to form a complete candidate path. These candidates are stored and
the lowest-cost candidate is selected as the next shortest path. This spur-and-root procedure repeats
until the top K loop-less paths have been identified.

TECHNICAL APPROACH

Building a Motion Primitive Library

A library of motion primitives is generated to discretely summarize the continuous solution space.
This step closely follows the procedure previously developed by Gillespie, Miceli, and Bosanac16

and a brief overview is presented here. In this proof of concept, the motion primitives are generated
to summarize natural arcs along the stable and unstable manifolds of Lyapunov orbits. Although
behavioral labels are not employed in this preprint, their use is an avenue of ongoing work.

The stable and unstable manifolds of Lyapunov orbits are numerically approximated. First, each
orbit is discretized into 500 states that are equally distributed in the arclength. Then, these states
are perturbed to produce initial conditions that lie in the stable or unstable eigenspaces. Each initial
condition is propagated for a duration equal to ∆tprop = ∆tpertdoub+ 3 months. In this expression,
∆tpertdoub is the perturbation doubling time, calculated from the magnitude of the unstable eigen-
value of the monodromy matrix.32 However, propagation terminates early upon impact with either
the Earth or Moon. During propagation, the curvature maxima along the trajectories are recorded.

Arcs are then sampled as “building-block” sized segments of each set of approach or departure
trajectories.16 For a trajectory that possess at least three maxima in the curvature, the initial state,
each maximum in curvature, and any impact states supply initial conditions for the arc. Each arc
is then defined to span an additional three curvature maxima as well either a fourth maximum in
curvature or the termination condition. If a trajectory possesses fewer than three maxima in the
curvature, the window is shortened but the initial and final state definitions remain unchanged.

Each arc is then sampled geometrically.16 First, the arc is sampled at its initial condition, any
maxima in the curvature, and any termination conditions. In between these initial samples, two
additional samples are added spaced evenly in arclength. Figure 2(a) depicts a conceptual trajectory
sampled in this manner where the red diamonds mark the initial samples and the black diamonds
locate the intermediate samples. The region in between each sample is designated a “section.” For
the example in Figure 2(a), the arc is divided into twelve sections. The red diamonds are curvature
maxima and the black diamonds are intermediate arclength samples. This sampling methodology
ensures that samples are placed in geometrically meaningful regions.

These sampled states are used to create two feature vectors that supply a finite-dimensional de-
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(a) (b)

Figure 2: (a) Conceptual trajectory discretized into sections to encompass five maxima in the cur-
vature. (b) The region of existence for a motion primitive departing an L1 Lyapunov orbit.

scription of a continuous arc.16, 33 A shape-based feature vector fs and position-based feature vector
fp are defined as

fs = [v̂1, v̂2, ..., v̂n]
T fp = [r1, r2, ..., rn]

T, (8)

where n is the number of sampled states. Each feature vector possesses a dimension of 3n× 1.

The arcs sampled from the same fundamental solution are clustered by their geometry. First,
the arcs are coarsely clustered in the shape-based feature vector space using HDBSCAN.25, 27 The
governing parameters are selected as mpts = 4, mminclust = 5, and ϵmerge = 2 sin(5◦/2).33 Each
coarse group is then refined using a process developed by Bosanac that is modeled after convoy
detection to define each cluster as a set of arcs with a consistently similar shape and path.33, 34

First, the ith sampled state along each arc in the coarse group is described by fs and fp, producing
two three-dimensional feature vectors. These sampled states are clustered in each feature vector
space independently using DBSCAN.24 The governing parameters are selected as mpts = 4 and
ϵ = (mpts + 1)max(emaxk, ϵthresh), where emaxk is the mminclust-largest distance from each
member to its nearest neighbor and ϵthresh is a specified threshold, equal to 2 sin(5◦/2) in fs and
10−3 in fp.33 This procedure is repeated for all n states along the arc to produce 2n clustering
results. Any arcs that are consistently grouped together in all clustering results produce a refined
cluster. This step produces a set of clusters L, localized to each half-manifold of each periodic orbit.
Similar motion types that exist across different families of fundamental solutions are aggregated
together using pairwise merging decisions: 1) nearest neighbor representatives are calculated in
each of the position and velocity feature vector spaces, 2) the arcs in each pair of clusters are input
to the cluster refinement process, and 3) two clusters with members that are grouped together are
merged.16, 33 This aggregation process results in a set of global clusters Gj summarizing arcs that
approach or depart members of the jth family of periodic orbits.

Periodic orbits are discretely sampled along continuous families and their curvature profiles
are analyzed to extract motion primitives. This procedure was previously presented by Gillespie,
Miceli, and Bosanac.16 Groups of geometrically similar orbits within each family are created by
calculating the number of curvature maxima along each family. Then, sets of neighboring members
along the family with the same number of curvature maxima form a geometrically similar group.
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To support trajectory prediction, each cluster is summarized by its motion primitive and region
of existence.16 First, the motion primitive is selected as the arc that is equal to the medoid of the
cluster, evaluated in the position-based feature vector space. Next, the associated region of exis-
tence, i.e., the volume that the cluster encompasses within the phase space, is approximated through
a discrete voxel representation. To support accurate bounding of these regions, the continuous tra-
jectories are further sampled in even increments of 0.05 non-dimensional arclength and velocity
arclength to produce a finer discrete set of states. The fine resolution of these samples is shown in
Figure 2(b), where the region of existence of a set of geometrically similar trajectories that departs
an L1 Lyapunov orbit is plotted around the trajectory samples. The voxels are colored by the highest
section index of any intersecting samples, the samples for a subset of the trajectories are shown in
blue, and the primitive trajectory is overlaid in black. Additionally, in Figure 2(b), trajectories begin
within section 1, the red diamonds locate L1 and L2, and the gray sphere represents the Moon (to
scale).

Each voxel signifies a small region in the configuration space that contains at least one state along
a trajectory within the cluster associated with the selected primitive. These voxels also contain data
encoding the velocity of states that pass through the voxel. The centers of the voxels themselves
act as rounded position values. In a similar manner, the encoded velocities are rounded to further
reduce the data size of each region of existence object. The voxels inside each object also contain
additional information, including an index for each trajectory of the cluster that passes through it
and a list of section indices.

This paper leverages a library of 6,861 motion primitives. This library includes arcs that follow,
approach, or depart selected L1 and L2 Lyapunov orbits along with the Moon-centered distant
prograde orbits, distant retrograde orbits, and low prograde orbits. Future work will incorporate
spatial and thrusting primitives as well.

Estimation Mapping

An uncertain state estimate is projected onto the motion primitive library to identify short-term
motion types that it may follow. First, a three-sigma uncertainty ellipsoid centered at an estimate
mean x̄ is defined analytically in the phase space. Then, the velocities contained within the N vox-
els of a primitive’s region of existence are combined with their respective voxel center positions to
form a list of rounded states xi for i = 1, 2, . . . , N . A series of intersection checks are performed to
decide if a corresponding full precision state could have intersected the uncertainty ellipsoid. A pre-
liminary coarse intersection check is performed to exclude xi that are far from the estimate mean.
For each xi, consider a six-dimensional hypercube centered at xi with side length li equal to the
larger of the position voxel side length and the velocity discretization step. This hypercube is sub-
sequently converted to a hypersphere with center xi and radius equal to the distance from the center
of the hypercube to one of its corners, calculated as di = (

√
6/2)li. This hypersphere serves as a

conservative bound on the corresponding full precision state. Additionally, the uncertainty ellipsoid
is approximated as a hypersphere centered at x̄ with radius equal to the largest principal axis length
amax of the three-sigma uncertainty ellipsoid. To identify xi whose full precision counterparts
cannot possibly intersect the uncertainty ellipsoid, any xi meeting the condition

∥ xi − x̄∥ > amax + di (9)

are removed from consideration. This quick operation greatly reduces the number of necessary
precise intersection checks.
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As an intermediate precision check, to determine whether a rounded state itself lies within the
three-sigma error ellipsoid, the squared Mahalanobis distance35 of xi from the mean state estimate
is computed and used to evaluate the inequality

(xi − x̄)TΣ−1 (xi − x̄) − σ2 ≤ 0, (10)

where Σ is the covariance matrix defining the ellipsoid and σ = 3 corresponds to the three-sigma
confidence level. If this inequality holds, xi lies inside the uncertainty ellipsoid and is marked as
intersecting; otherwise, a constrained root-finding method is employed to check if a corresponding
full precision state could intersect the uncertainty ellipsoid. The root finding method works by
solving for a full precision state positioned within the same voxel, that causes the left-hand-side
of Equation 10 to evaluate to zero subject to linear inequality constraints. These constraints force
the position component to lie within the voxel position bounds and the velocity component to lie
within plus or minus the velocity discretization step from the rounded state’s velocity. If a solution
is found, then the rounded state is conservatively marked as intersecting. Any rounded state found
to intersect the uncertainty ellipsoid is stored, along with information such as the intersecting voxel,
section, and trajectory. This process is repeated for each primitive in the library to produce a list of
primitives that intersect the uncertainty ellipsoid. These primitives supply a digestible summary of
possible short-term trajectory predictions.

Figure 3: Trajectories prop-
agated to generate an un-
certainty ellipsoid (projected
onto R3) and x̄.

In this paper, an example observation is generated through the
random sampling of trajectories. A trajectory that departs an L1

Lyapunov orbit is propagated one thousand times for a duration of
one day with a specified standard deviation in initial position and
velocity. For reference, when processing ground tracking measure-
ments from the THEMIS-ARTEMIS mission, Woodard et al. found
that position and velocity accuracies of 20 m and 0.002 cm/s, re-
spectively, were achievable for spacecraft in libration point orbits
with ten days of batch processing.36 To approximate a reasonable
position uncertainty near a libration point orbit, a standard devia-
tion of 20 m is selected; To simulate a thruster misfire or similar
event, a larger velocity standard deviation of 10 m/s is used. After
propagating, a mean state estimate x̄ is extracted from the terminal
states along with a covariance matrix Σ ∈ R6. These trajectories
are visualized in Figure 3 in black with x̄ as a blue star. The resulting three-sigma uncertainty el-
lipsoid is projected onto R3 and plotted in transparent red, possessing a similar size to the voxels
utilized in this work, 0.01 nondimensional position units.

Mapping the state estimate depicted in Figure 3 against the library of 6,861 motion primitives
identifies a set of 18 primitives in approximately three minutes. In this paper, all computations are
performed using a 6-core AMD Ryzen 5 7600X CPU. The majority of computations are highly
parallelizable and scale well on clusters with higher core counts. Three of these primitives are
visualized in Figure 4, where intersecting voxels are highlighted blue and the uncertainty ellipsoid
projected onto R3 is in red. The regions of existence all possess similar shapes nearby the initial state
estimate, but the subsequent geometries and itineraries vary drastically: Figure 4(a) displays a self-
intersecting geometry that gradually moves towards the L1 gateway, Figure 4(b) depicts a different
self-intersecting geometry that remains within the vicinity of the Moon, and Figure 4(c) shows a
third possible geometry that quickly departs through the L1 gateway. Thus, the selected uncertain
state estimate could potentially lead to a spacecraft following a variety of distinct itineraries.
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(a) (b) (c)

Figure 4: Three regions of existence that intersect with the uncertainty ellipsoid in Figure 3.

Motion Primitive Graph Construction

To support long-term trajectory prediction, sequences of composable primitives are generated.
To summarize the potential sequential composability of behavioral motion primitives from the li-
brary, a high-level graph is constructed. This step leverages and builds upon prior work by Miceli
and Bosanac19 to increase the accuracy by leveraging the voxel representation of each region of
existence. To demonstrate this process, consider the regions of existence of two primitives, one
containing trajectories that departs an L1 Lyapunov orbit and another containing trajectories ap-
proaching an L2 Lyapunov orbit, as plotted in Figure 5(a). In this subfigure, the color varies along
each region of existence from cyan at the initial section to magenta at the final section.

The graph is first populated with nodes that are defined using the motion primitives in the library.
Each node represents a single section along the region of existence of a motion primitive. Thus, a
region of existence containing 12 sections contributes 12 nodes to the graph.

Zero-weight, directed edges connect sequential sections associated with the same motion primi-
tive. Accordingly, these edges reflect that a spacecraft can naturally traverse the continuous sections
of trajectories with a similar geometry. The final section node for periodic orbits is connected with
a similar, zero-weight edge to the first node to encode periodicity.

(a) Departing an L1 Lyapunov or-
bit and approaching an L2 Lya-
punov orbit

(b) The two regions colored red
and blue, with their intersections
colored purple

(c) Edge weights between inter-
secting sections of the two regions

Figure 5: Identifying intersections between the regions of existence associated with a pair of be-
havioral motion primitives to estimate their potential for sequential composability.
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Directed edges are added between selected nodes associated with intersecting motion primitives
that are considered sequentially composable. To identify intersections between each pair of motion
primitives in the library, the center of every voxel from one primitive’s region of existence is com-
pared to the centers of the voxels from the other primitive’s region of existence. If two voxel centers
overlap, those voxels and the corresponding sections in each region are marked as intersecting. Fig-
ure 5(b) represents each region of existence in either red or blue with the colors darkening as the
section index increases; the intersecting voxels are then colored in purple. For each unique combi-
nation of section indices along both regions of existence, two directed edges are added between the
associated nodes in the graph. This bidirectionality reflects that initial guesses could be constructed
using these two sections sequentially composed in either order.

To calculate the weight of the edge connecting section a of one primitive and section b of the
other primitive, let Va and Vb denote the sets of velocities in all intersecting voxels within sections a
and b, respectively. Then, the edge weight between the two sections wa,b is defined as the minimum
normalized velocity discontinuity over all pairs (vi,vj) in their respective sets

wa,b = min
vi∈Va
vj∈Vb

∥vi − vj∥
∥vi∥+ ∥vj∥

. (11)

Normalizing the edge weight by the speeds focuses on analyzing relative changes in the velocity,
which is useful when generating sequences of primitives that may pass close to the Moon with
higher speeds.19 Figure 5(c) displays the calculated edge weight of each section pair from the two
selected primitives, labeling the red and blue voxel sets from Figure 5(b) as regions of existence 1
and 2, respectively. Two groups of intersecting sections are visible in the grid: a smaller, higher edge
weight group and a larger, lower edge weight group. These groupings are consistent with Figure
5(b) where there is a large purple voxel intersection region with well-aligned velocity vectors and
a smaller purple voxel intersection region with larger differences in the velocity directions. For
inter-primitive edges with a calculated edge weight of zero (vi = vj), the actual edge weight is set
to 10−14. This value captures that vi and vj are rounded quantities and any trajectory connecting
them would likely require an impulsive maneuver of nonzero magnitude. This also helps the graph
search prioritize flow edges over inter-primitive edges when appropriate.

As previously demonstrated by Miceli and Bosanac,19 additional path or maneuver constraints
can be applied when calculating edge weights. In this paper, a maximum velocity angle difference of
30◦ is applied except for velocity pairs where both velocity norms are below 10 m/s. This constraint
avoids populating the graph with sharp turns and unnecessarily high maneuver costs.

Generating Motion Primitive Sequences

The motion primitive graph is searched to generate motion primitive sequences that support gen-
erating long-term trajectory predictions from an uncertain state estimate. The estimation mapping
process provides a list of start nodes, corresponding to sections along primitives that overlap with
the uncertainty ellipsoid. Sequences of motion primitives that begin from these nodes support gen-
erating a summary of reachable orbits, regions, or vantage points. In this proof of concept, a set of
candidate destinations are selected as libration point and Moon-centered periodic orbits, the Moon’s
surface, and the L1 and L2 gateways. A primitive sequence that connects the initial uncertainty el-
lipsoid to any of these destinations is used to generate a continuous trajectory in the next step and,
therefore, supply a single long-term trajectory predication. Furthermore, the collection of primitive
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sequences supplies geometrically distinct pathways to reachable destinations, potentially supplying
a digestible set of long-term trajectory predictions.

This paper uses a K-shortest paths search algorithm developed by Miceli and Bosanac19 and
based on Yen’s algorithm to generate multiple paths through the graph between selected start and
end nodes. These paths correspond to sequences of nodes and edges that are transformed to primitive
sequences. The only difference from the standard Yen’s algorithm, is that rather than removing the
single edge from a spur node to the subsequent node in the original path, all edges from the spur
primitive to the next primitive in the sequence are removed. Within the modified Yen’s algorithm,
Dijkstra’s algorithm is used to compute each candidate path with MATLAB’s shortestpath.

The target node is specified before each graph search. If the destination is a periodic orbit group,
its associated region of existence is located. Then, one node corresponding to a section along the
primitive is selected. The nodes of the periodic orbit group in the graph can be freely traversed in
a loop, so the search algorithm will naturally choose the optimal node to insert onto. If, however,
the destination is the Moon’s surface, then a ring of voxels each with a side length of 1 km is
placed at the Moon’s surface to target a close approach to the Moon with an altitude of less than
approximately 500 m. This ring of voxels is represented as a single node in the graph and marked
as the target node. Finally, if the destination is the L1 or L2 gateway, then a line of voxels is placed
in the (x̂, ŷ) plane and parallel to the ŷ axis at x = 0.75 or x = 1.23, respectively. These lines of
voxels span y = [−0.125, 0.125] to target a variety of escape geometries and are each assigned a
single node in the graph. The corresponding node is selected as the target node.

For each of the 18 initial primitives identified by the estimation mapping process, 50 paths are
generated to each of the 22 destinations by searching the motion primitive graph. This search
process results in 19,800 paths that require approximately two hours to compute. Two of these
primitive subsequences are plotted in Figure 6. In each subfigure, the series of sections selected
by the graph search are plotted using portions of the respective regions of existence. Each section
is colored according to its primitive. The first primitive in the sequence, which intersected the
observation uncertainty ellipsoid, has its sections colored purple. In Figure 6(a), the path arrives
at an L1 Lyapunov orbit primitive. In Figure 6(b), the path escapes through the L2 gateway. Both
motion primitive sequences intersect relatively smoothly, increasing the likelihood of producing a
good initial guess for a trajectory with impulsive maneuvers.

Generating an Initial Guess from a Primitive Sequence

To generate initial guesses, the sequences of primitive sections are processed. This refinement
process is implemented in a manner similar to Miceli and Bosanac,19 through the construction of
a low-level graph that uses states along an array of trajectories from each region of existence for
nodes. A representative subset of the trajectories that lie within the region of existence of each
primitive in a sequence is identified by clustering in the position-based feature vectors space using
the k-medoids algorithm, accessed in MATLAB. This clustering step samples the set of trajectories
associated with each primitive to reduce the low-level graph size and computational costs. Then,
the sampled states along each selected trajectory define the nodes in the low-level graph.

Edges are added between nodes associated with states along the same trajectory and between
composable states from sequential primitives. Zero-weight, directed edges are added between nodes
defined using sequential states sampled from the same trajectory, ensuring that trajectories can be
traversed without penalty. Similar zero-weight edges are added from the last node to the first node
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along trajectories following periodic orbits to encode periodicity. Directed, weighted edges are then
added between nodes on distinct primitives that are sequentially composable. These edge weights
W between the nodes are calculated by weighting position and velocity discontinuities as

W = wp |∆r|+ wv(1− cos θ), (12)

where ∆r is the position difference between two corresponding states and θ is the angle between
their velocity vectors. Scalar coefficients wp = 10 and wv = 1 are used to balance the relative
importance of connections with close proximity or well aligned velocity directions, respectively.

Edges are added between trajectories of each primitive set according to the high-level graph. As
a result, at each node of the graph the only choices are to continue along the current trajectory or
jump to a state along a trajectory associated with the next primitive in the higher level path.

The modified A* search algorithm, developed by Miceli and Bosanac,19 is used to search this
graph for a sequence of nodes and edges that minimizes the cumulative edge weight. One modi-
fication requires the path consist of at least two nodes along any trajectory, i.e., every arc must be
traversed for a nonzero duration. A list of potential start nodes are selected from the trajectories of
the primitive set that intersect the uncertainty ellipsoid. From this set, one potential start node per
trajectory is selected as the state closest to the mean estimate. The list of multiple start nodes is
incorporated by adding them all to the priority queue when initializing the modified A* algorithm.
A list of potential end nodes is populated from the final nodes along each primitive in the desti-
nation set. Accordingly, an additional modification to A* is the allowance of multiple end nodes
by 1) allowing termination upon reaching any end node and 2) setting an A* heuristic h(n) that
considers all possible end nodes. The selected A* heuristic is the cost of the shortest path from the
current node n to any end node. This cost is calculated without considering the two node sub-path
constraint and will always be less than or equal to the true cost when accounting for the constraint
to satisfy the admissible heuristic criteria for A*.

Of the 19,800 high-level paths generated, 18,252 of them are successfully refined to produce
initial guesses in under two hours. A failure to refine indicates that the A* algorithm failed to find a
viable path through the low-level graph. Two of the refined initial guesses are included in Figure 7
plotted with dashed lines. Each unique color in the initial guess corresponds to a different segment

(a) (b)

Figure 6: Two primitive subsequences from the observation to (a) an L1 Lyapunov orbit primitive
and (b) L2 gateway escape.
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(a) (b)

Figure 7: Two discontinuous initial guesses and the corrected trajectories: (a) from the observation
to an L1 Lyapunov orbit and (b) from the observation to an escape through the L2 gateway.

of a primitive from the high-level graph search. These initial guesses exhibit a wide variety of
geometries with small position discontinuities and velocity direction changes.

Correcting Initial Guesses Using Multiple Shooting

Each discontinuous initial guess is corrected via multiple-shooting to produce a continuous im-
pulsive maneuver-enabled trajectory. Initial guesses for impulsive maneuvers are placed at maxima
in the curvature and at the boundaries of trajectories from distinct primitives. At these points, only
position constraints are enforced. Two samples are evenly distributed in the arclength between each
of these impulsive maneuvers, and full state continuity is enforced between the associated arcs. In
addition, the initial position is constrained to lie within the three-sigma uncertainty ellipsoid in con-
figuration space. This constraint is enforced through the addition of a slack variable βe. The final
position is constrained to match the final position of the initial guess, xf,IG. Further constraints
are added to ensure that periapses maintain an altitude of 10 km above the Moon’s surface. Two
constraints are added for each of the j = 1 . . .m identified periapsis events

Fp,j =

[
(rp,j − rmoon) · v∥∥rp,j − rmoon

∥∥− rmoon,rad − β2
pj

]
. (13)

This implementation assumes that for a good initial guess, a periapsis event will not become an
apoapsis event and, therefore, the sign of the time derivative of the first constraint is not incorporated
into Fp,j . Finally, constraints are added to enforce positive time of flight along each arc using slack
variables βti for arcs i = 1 . . . n. The set of additional constraints Fadd is defined as

Fadd =



(x1,0 − x̄)TΣ−1(x1,0 − x̄)− σ2 + β2
e

xn,f − xf,IG

Fp,1

...
Fp,j

∆T1 − β2
t1 = 0

...
∆Tn − β2

tn = 0


(14)

Together, all the constraints are used to define the full constraint vector as F = [FT
0 FT

add]
T.
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The initial guesses, derived from primitive sequences, are corrected. During the corrections pro-
cess, the constraint vector must reach a norm of less than or equal to τ = 10−10 within 100 itera-
tions. Of the 18,252 initial guesses generated, 14,254 of them are successfully corrected to produce
continuous trajectories in about twenty minutes. Two corrected trajectories are included in Figure 7,
overlaid with their corresponding initial guesses and marked with circles to indicate impulsive ma-
neuver locations. The corrected trajectories retain the geometry of their initial guesses, but are now
continuous at each arc intersection. Optimizing these trajectories to reduce their total maneuver
magnitudes is an avenue of ongoing work.

Generating a Digestible Trajectory Prediction Summary

Generating a digestible summary of possible trajectories from an observation requires a reduction
in the total number of trajectories. To reduce the number of trajectories included in the summary,
their similarity is assessed through the use of dynamic time warping (DTW).37 DTW is typically
used in time series analysis for comparing signals of varying speed.38 This distance measure pairs
similar samples from two sets to minimize the sum of Euclidean distances between the pairs. A
sample from one set may be paired with multiple, sequential samples from the other set if necessary
to produce the minimum sum of distances.

Before applying DTW to the corrected trajectories, they are grouped by destination and sorted by
their total maneuver magnitude within the groups. The trajectory with the minimum total maneuver
magnitude from each group is added to the group’s final list. Each subsequent trajectory is then
compared to the trajectories in the list through two separate applications of dynamic time warping,
in position and velocity, to determine if it is sufficiently different to be added to the final list. If the
position and velocity similarity metrics from DTW are both above a manually selected similarity
threshold, the trajectory is added to the list for its respective group. The similarity thresholds are
tuned for the individual destinations and range from 1-2 and 2-10 nondimensional units for position
and velocity, respectively.

RESULTS AND DISCUSSION

Trajectory predictions to a variety of destinations are generated and corrected using the process
detailed in this paper. Table 1 summarizes the ranges of total maneuver costs, flight time (TOF),
and final Jacobi constants for each prediction set. The destination orbit period is also included
when relevant. Total maneuver magnitudes (before optimization) vary from approximately 0.02
km/s to several km/s, flight durations span from about 0.7 days (≈17 hours) to 84 days, and final
Jacobi constants range between 2.63 and 3.19. For reference, the Jacobi constant of the observation
estimate mean x̄ is 3.19.

The predicted trajectories are plotted in Figures 8 and 9, respectively. Each trajectory is plotted
in a distinct color, final periodic orbits are drawn with black dashed lines, circle markers indicate
impulsive maneuver locations, and the libration points are depicted with red diamonds. For partic-
ularly extensive paths, adjacent zoomed figures provide additional detail.

The generated summary includes long-term trajectory predictions with a wide variety of geome-
tries, including multiple lunar revolutions, direct gateway escapes, and Moon impacts. Traditional
methods such as Poincaré mapping39 and Monte Carlo4 sampling, while effective for many sit-
uations, can be time-consuming and produce an overwhelming volume of data, rendering them
impractical for rapid decision-making. Poincaré maps require extensive computation and manip-
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Figure 8: Trajectory predictions for destinations a through l
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Figure 9: Trajectory predictions for destinations m through v
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Table 1: Ranges of ∆v (km/s), flight time (days), final Jacobi constant, and period of destination
periodic orbit (where applicable) for each destination in Figures 8 and 9.

Set L1 Lyapunov Distant Retrograde
a b c d e f

∆V [0.05, 0.61] [0.13, 0.65] [0.27, 1.19] [0.34, 1.70] [0.35, 3.74] [0.43, 1.57]
TOF [22.2, 32.3] [30.1, 36.8] [29.3, 49.6] [32.9, 54.4] [7.3, 38.1] [41.9, 54.6]
CJ,f [3.16, 3.19] [3.02, 3.15] [2.91, 2.95] [2.52, 2.91] [2.95, 3.40] [2.63, 2.82]
P [11.7, 12.2] [12.3, 17.1] [23.8, 28.7] [28.3, 32.4] [0.9, 11.4] [23.9, 26.5]

Set L2 Lyapunov Distant Prograde
g h i j k l

∆V [0.14, 0.68] [0.12, 0.28] [0.17, 0.49] [0.18, 0.75] [0.15, 0.64] [0.13, 0.24]
TOF [18.9, 44.7] [23.8, 36.1] [24.9, 44.6] [6.9, 41.6] [16.7, 42.7] [23.9, 44.5]
CJ,f [3.15, 3.17] [2.97, 3.13] [2.90, 2.96] [3.16, 3.18] [3.10, 3.14] [3.09, 3.10]
P [14.7, 14.9] [15.1, 23.3] [24.4, 32.4] [5.9, 8.1] [9.9, 13.7] [14.0, 15.0]

Set Distant Prograde Low Prograde
m n o p q r

∆V [0.12, 0.27] [0.14, 0.29] [0.17, 0.45] [0.13, 0.60] [0.06, 0.45] [0.09, 0.47]
TOF [26.8, 54.3] [28.8, 62.7] [29.2, 83.7] [3.2, 27.6] [9.1, 31.7] [11.8, 31.3]
CJ,f [3.00, 3.02] [2.99, 3.00] [2.94, 2.99] [3.19, 3.42] [3.18, 3.19] [3.18, 3.18]
P [23.1, 26.7] [27.0, 28.3] [28.9, 40.5] [1.2, 5.1] [5.3, 10.3] [10.9, 11.8]

Set Low Prograde L1 Gateway L2 Gateway Moon Impact
s t u v

∆V [0.08, 1.13] [0.02, 0.17] [0.10, 0.86] [0.22, 0.93]
TOF [12.5, 41.6] [12.5, 12.8] [14.1, 33.6] [5.4, 17.4]
CJ,f [3.18, 3.18] [3.16, 3.19] [3.02, 3.16] [3.17, 3.19]
P [11.8, 11.8] — — —

ulation to identify reachable sets, whereas Monte Carlo approaches lack a natural mechanism to
incorporate intentional maneuvers or destination constraints. In contrast, the behavioral motion
primitive framework delivers concise, destination-focused summaries. The periodic-orbit predic-
tion sets delineate accessible vantage points suitable for long-duration missions. The L1 and L2

gateway escape prediction sets highlight available departure options or warn of inadvertent exits
from the lunar region. Similarly, the lunar impact trajectory set informs risk assessments or planned
impact strategies, depending on mission objectives.

Due to the lack of a maximum maneuver constraint in the high-level graph search, some high
maneuver cost trajectories are returned. These may not be reachable for every spacecraft, but still
contribute important information to the prediction summary. However, optimization is expected to
further reduce the total maneuver magnitudes in future work.
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CONCLUSION

This paper presents a new approach to long-term spacecraft trajectory prediction in cislunar space
by leveraging a library of motion primitives. Each primitive’s region of existence is approximated
via discrete voxels with encoded velocity information, enabling rapid mapping of uncertain state
estimates onto a set of short-term motion predictions. By constructing and searching a motion
primitive graph, sequences of composable primitives are generated from the initial state estimate to
various vantage points. Diverse trajectory prediction sets are generated in the CR3BP for destina-
tions including 18 periodic orbit primitives, L1 and L2 gateway escapes, and lunar impacts. Future
work will extend this framework to spatial and continuous thrust primitives.
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