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GENERATING THE TRAJECTORY DESIGN SPACE FOR
NEPTUNIAN SYSTEM EXPLORATION

Giuliana E. Miceli*, Natasha Bosanac†, Reza Karimi‡

This paper uses a motion primitive approach to explore a constrained trajectory tradespace
for a spacecraft in the Neptunian system. First, motion primitives are generated to supply a
subset of building blocks for more complex trajectories. A graph is then constructed to rep-
resent the potential for these primitives to be connected while satisfying path and maneuver
constraints. Searching this graph produces an array of geometrically distinct initial guesses.
After corrections and optimization, the result is a tradespace of constrained transfers from a
high-energy interplanetary arrival condition to various scientific orbits.

INTRODUCTION

The only two planets within our solar system that have not been visited for substantial periods of time
are Uranus and Neptune.1 Often labeled as ‘ice giants’, these two planets are predominantly composed of
ice-forming elements, e.g., oxygen and carbon; are significantly more massive than terrestrial planets; and
possess many moons.2 However, there are still many unknowns about the nature of the ice giants such as
their formation, bulk and atmospheric composition, and presence of water oceans on their moons. These
outstanding questions can likely only be answered through a dedicated planetary exploration mission.

The science and space exploration communities have formulated mission concepts for spacecraft to visit
Neptune and Uranus for flybys, orbiters, and probes.3–9 One important task for developing these concepts
and missions is designing trajectories for a spacecraft that is operating within an ice giant system to support
scientific observations. However, this task is challenging due to the often high-energy interplanetary arrival
conditions; the complex solution space in a multi-body gravitational system at these high energies; the con-
straints imposed by spacecraft hardware, e.g., limited maneuvering capability; and mission and operational
constraints. In this paper, we focus specifically on the trajectory design problem for a spacecraft operating in
the Neptunian system.

To address the challenges of trajectory design within multi-body gravitational systems, Smith and Bosanac
have developed a motion primitive approach;10, 11 and Miceli et al. have recently built upon this procedure.12

This approach leverages the concept of motion primitives, used in the field of robotics, to represent the build-
ing blocks of motion. Then, complex trajectories are rapidly formed from sequences of motion primitives.
When applied to the trajectory design problem by Smith and Bosanac, a motion primitive library is generated
by using clustering to summarize arcs along selected periodic orbit families and their associated hyperbolic
invariant manifolds in a low-fidelity model such as the circular restricted three-body problem (CR3BP).10, 11

A motion primitive graph is then formed to reflect their potential for connectivity. This motion primitive
graph is searched to rapidly identify distinct primitive sequences that supply initial guesses for geometrically
distinct transfers. These initial guesses are corrected using collocation and multi-objective optimization to
generate continuous, maneuver-enabled paths in the CR3BP. Miceli et al. demonstrated that this approach can
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be used to design geometrically distinct spacecraft trajectories from a high-energy interplanetary arrival con-
dition to a 3:4 resonant science orbit in the CR3BP.12 These transfers can then be corrected in a higher-fidelity
ephemeris model.

This paper builds upon our prior work by using a motion primitive approach to 1) generate constrained
spacecraft trajectories within the Neptunian system and 2) explore a region of the trajectory trade space for
various science-driven target orbits and spacecraft characteristics. We have updated the existing motion prim-
itive trajectory design approach to incorporate path and hardware constraints. This information influences a
spacecraft’s operability and maneuverability and, as a result, can influence the characteristics of viable tra-
jectories. Constraints considered in this paper are applied to the periapsis or apoapsis distance relative to
primary bodies and maneuver magnitudes. Some of these constraints influence the inclusion and connec-
tivity of motion primitives within the graph. For example, a primitive summarizing arcs that violate a path
constraint is omitted from the graph. Alternatively, two primitives that are expected to require too large an
impulsive maneuver between them would not be connected. In addition, these constraints are incorporated
into the trajectory corrections and optimization procedure to ensure they are satisfied by the final solution.

The constrained motion primitive graph is then used to generate a region of the trajectory trade space.
First, two target orbits and two arrival conditions are considered, capturing some of the trades that may be
performed during the mission design process. Once motion primitive graphs have been constructed, initial
guesses for transfers are generated using an updated k-shortest path algorithm to identify the most efficient,
geometrically distinct sequences that are likely to satisfy the constraints. The resulting primitive sequences
are then corrected and optimized in an ephemeris model along with the constraints and propulsion system
characteristics.

BACKGROUND

Circular Restricted Three-Body Problem

The dynamics of a spacecraft in the Neptunian system are modeled using the Neptune-Triton Circular
Restricted Three-Body Problem (NT-CR3BP), where the primary bodies are Neptune and Triton, labeled P1

and P2, and the third body is the spacecraft. This model assumes that the spacecraft possesses a negligibly
small mass compared with the primaries, which is reasonable for the Neptune-Triton system. Moreover, P1

and P2 are modeled to have the same gravity field as a point mass with constant mass while following circular
orbits about their barycenter.13 Because Triton’s orbit relative to Neptune has an eccentricity of 0.000016,14

this assumption is also reasonable.

The formulation of the CR3BP involves defining both a rotating frame and a nondimensionalization scheme.
In the rotating frame, the origin is located at the system barycenter whereas the axes x̂, ŷ, ẑ are defined as fol-
lows: x̂ is directed from P1 to P2, ẑ is in the direction of the orbital angular momentum vector of the primary
bodies, and ŷ completes the right-handed triad.13 Finally, length, time and mass quantities are nondimen-
sionalized by the characteristic quantities l∗, m∗, and t∗:13 m∗ ≈ 1.024569 × 1026 kg is the sum of the
masses of the primaries, l∗ = 354, 760 km is set equal to the average distance between the primaries, and
t∗ ≈ 8.081353× 104 s sets the mean motion of the primary system to unity.15

In the CR3BP, the nondimensional equations of motion are expressed in the P1 - P2 rotating frame. First,
the state of the spacecraft is defined as x = [x, y, z, ẋ, ẏ, ż]T , assuming an observer in the rotating frame.
The equations of motion are then written in the rotating frame as

ẍ = 2ẏ +
∂U∗

∂x
, ÿ = −2ẋ+

∂U∗

∂y
, z̈ =

∂U∗

∂z
(1)

where

U∗ =
1

2
(x2 + y2) +

(1− µ)

r1
+

µ

r2
(2)

r1 =
√
(x+ µ)2 + y2 + z2 and r2 =

√
(x− 1 + µ)2 + y2 + z2 (3)
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In these expressions, the mass ratio of the Neptune-Triton system is µ = M2/(M1 + M2) ≈ 0.00020895.
This model possesses only one integral of motion, the Jacobi constant, which is computed as CJ = 2U∗ −
ẋ2 − ẏ2 − ż2.13

The solution space in the CR3BP includes fundamental solutions such as equilibrium points that are labeled
Li for i = [1, 5], families of periodic and quasi-periodic orbits, and their hyperbolic invariant manifolds.
Families of periodic orbits include paths that are periodic in the rotating frame after a minimal time labeled
the period.13 This paper uses periodic orbits that emanate from the collinear equilibrium points and their
hyperbolic invariant manifolds, as well as resonant orbits. Consistent with their definition in the Keplerian
dynamics, a spacecraft following a p : q resonant orbit completes p revolutions around the larger primary
body in approximately the time that the smaller primary body completes q revolutions in the inertial frame.16

A resonant orbit is labeled as interior if p > q, and exterior when q > p; these resonant orbits can be
either prograde or retrograde in the rotating frame. Hyperbolic invariant manifolds emanate from an unstable
periodic orbit. Stable (or unstable) manifolds capture flow that asymptotically approaches the periodic orbit
in forward (or backward) time.

Ephemeris Model

A point mass ephemeris model is also used to construct a high-fidelity model of the gravitational influence
of Neptune and its main 14 moons. The equations of motion are formulated in an inertial frame; in this
paper, using the axes of the International Celestial Reference Frame and the origin located at the center of
Neptune. The state vector for the spacecraft relative to Neptune is defined as X̄ = [X,Y, Z, Ẋ, Ẏ , Ż]T =
[R̄N,sc, V̄N,sc]

T . The equations of motion governing the spacecraft, assumed to possess a comparatively
negligible mass, are then written as

¨̄RN,sc = −GMN

(
R̄N,sc

R3
N,sc

)
+G

Nb∑
i=1

Mi

(
R̄sc,i

R3
sc,i

− R̄N,i

R3
N,i

)
(4)

where the subscripts N and sc indicate Neptune and the spacecraft, Mi is the mass of body i, G is the
universal gravitational constant, ˙(.) indicates a time derivative with respect to an observer in the inertial
frame, and R̄i,j indicates the position vector measured from body i to body j. The DE440 lunar and planetary
ephemerides, maintained by NASA’s Navigation and Ancillary Information Facility (NAIF),17, 18 are used to
locate each celestial body at each epoch during numerical integration.19 Additionally, the naif0012 file is used
for the accurate conversions between UTC and Ephemeris Time and the pck00011 kernel is used to obtain
the axis orientation for the inertial frames. The SPICE kernels nep097, nep095 and nep102 are included to
obtain the accurate position of Neptune’s satellites. The solution space of this n-body problem is chaotic,
but solutions from the Neptune-Triton CR3BP may be approximately retained in the point mass ephemeris
model.

Numerically Correcting Trajectories

In this paper, two corrections schemes are used. First, coarsely-generated initial guesses are corrected and
optimized in the Neptune-Triton CR3BP using collocation. Then, these transfers are corrected to produce a
continuous path in the ephemeris model using multiple-shooting. These two different corrections schemes
are selected based on the requirements of each correction step. In the first step, collocation is better suited
to robustly generating continuous paths from discontinuous initial guesses at the expense of lower accuracy
due to the representation of a curve as a sequence of polynomials. In the second step, multiple shooting is
used to generate a path in the point mass ephemeris model of the Neptunian system using the solution that
was previously corrected in the CR3BP. In this case, the initial guess lies close to the corrected transfer and
the solution is more accurate as each arc is propagated in the dynamical system.

In this paper, the collocation scheme is implemented using the approach presented by Grebow and Pavlak20

and previously used to correct primitive-based initial guesses by Smith and Bosanac.11 In this implementa-
tion, the initial guesses are first split into m segments and each segment is then split into n arcs. Then, p
collocation nodes are distributed along each arc. The number and location of the nodes are influenced by the
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type and order of collocation scheme. In this case, the collocation scheme is obtained through a 7-th order
polynomial with a Legendre-Gauss-Lobatto (LGL) node spacing strategy. Therefore, p = 7 nodes are placed
along each arc. The k-th node of the j-th arc within the i-th segment is described by the state vector xi

j,k and
the time elapsed from the first node along the entire trajectory is identified with tij,k. The nodes are placed
along each arc at normalized times that are equal to the roots of the derivative of the (p−1)-th order Legendre
polynomial.20–22 This normalized time is defined as τ = 2((t − tij,1)/∆tij) − 1 ∈ [−1, 1] where ∆tij is the
elapsed time from the beginning of the arc. The odd-numbered nodes, i.e. k = 1, 3, 5, 7 are defined as free
nodes and are used to fit the polynomial along the arc, while the even-numbered nodes k = 2, 4, 6 are the
defect nodes and are used to assess the differences between the polynomial representation and the value of
the states computed with the system dynamics.

The trajectory is described using a free variable vector Vi that includes the state and time at the free nodes
of each arc in the i-th segment. For the i-th segment, the free variable vector is computed as

Vi =


xi

1,1

xi
1,3

xi
1,5

T xi
2,1

xi
2,3

xi
2,5

T

. . .

xi
ni−1,1

xi
ni−1,3

xi
ni−1,5

T

. . .


xi
ni,1

xi
ni,3

xi
ni,5

xi
ni,7


T


∆ti1,i
∆ti2,i

...
∆tini,i


T

 (5)

and the trajectory free variable vector V is formed by the free variable vectors Vi for all m segments, resulting
in a total of ((3p− 2)

∑m
i=1 ni + 6m) variables. Note that the last node of the j-th arc overlaps with the first

node of the subsequent arc. Accordingly, the node xi
j,7 is not included in Vi.

To capture the constraints that a continuous trajectory must satisfy, a constraint vector F (V ) is defined. A
constraint vector Fc enforces continuity between subsequent segments and is equal to

F i
c =

{
(xi+1

1,1 − xi
ni,p)

T if natural motion
(ri+1

1,1 − rini,n)
T if impulsive maneuver applied

(6)

for i < m. The constraint vector Fd constrains the polynomial representation of each arc to accurately
describe the dynamics at the defect nodes along each arc. This constraint along the j-th arc of the i-th
segment is computed as

F i
d,j =

(q̇i
j,2(τ2)− ẋi

j,2)w2

(q̇i
j,4(τ4)− ẋi

j,4)w4

(q̇i
j,6(τ6)− ẋi

j,6)w6

T

(7)

where wk is the LGL weight associated with the k-th collocation node, q̇ is the derivative of the polynomial
along the arc with respect to normalized time τ , and ẋ is the normalized time derivative of the state vector
xi
j,k calculated as

ẋi
j,k =

∆tij
2

g(xi
j,k) (8)

where g = [ẋ, ẏ, ż, ẍ, ÿ, z̈]. For all ni arcs along the i-th segment, the defect constraint vector is

F i
d =

[
F i
d,1,F

i
d,2, . . . ,F

i
d,ni

]
(9)

Therefore, the constraint vector F (V ) imposed on the entire trajectory is

F (V ) =
[
F 1
c ,F

2
c , . . . ,F

m−1
c ,F 1

d ,F
2
d , . . . ,F

m
d

]T
(10)

This constraint vector is used to update the free variable vector V using Newton’s method until the norm of
the constraint vector is equal to zero to within a tolerance of 10−12.
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In this paper, the collocation scheme includes a mesh refinement method, which redistributes arcs and
nodes along the segments to improve the polynomial approximation of the trajectory. For a trajectory com-
posed of m segments and ni arcs along the i-th segment, the placement of the collocation nodes is mathemat-
ically defined, regardless of the characteristics of the trajectory. However, nodes will be placed further apart
along long trajectories and very close to each along smaller trajectories. As a consequence, the polynomial
fitting of the free nodes might result in a more or less accurate representation of each arc compared to the true
solution of the dynamical system. This difference causes some arcs to have a higher error at the defect nodes.
Accordingly, mesh refinement is used to equally distribute the error on the defect nodes along the arcs of the
solution.23 In this paper, hybrid mesh refinement is implemented using the approach presented by Grebow
and Pavlak and the method for error redistribution by Carl de Boor;20, 24, 25 this approach was also used by
Smith and Bosanac for primitive-based initial guesses correction.11

To describe a trajectory in the multiple-shooting corrections problem, the free variable vector is constructed
using the states and the epoch of a sequence of nodes that are located along the continuous trajectory that
exist in the CR3BP. In this paper, a selected number of nodes are sampled at equal intervals in the arclength
along a continuous path, with nodes also placed at any location where an impulsive maneuver is allowed.
The node placement discretizes the continuous trajectory in N arcs. Then, the state of each node is first
transformed from the Neptune-Triton rotating frame into the Neptune-centered inertial frame and is labeled
as Xi. Similarly, the epoch ti at the beginning of the i-th arc and its associated propagation time ∆ti are
converted from nondimensional time to ephemeris time. All the states and times are nondimensionalized
using the characteristic quantities of the Neptune-Triton CR3BP to facilitate numerical propagation.26 Using
these definitions, the free variable vector is defined as

V = [x1,t0 , t1,∆t1, x2,t0 , t2,∆t2, ..., xN,t0 , tN ]T (11)

where the subscript t0 represents the state at the beginning of the i-th arc, ti is the initial epoch of the i-th arc
and ∆ti is its propagation time.

To correct the maneuver-enabled trajectory to be continuous, a constraint vector is defined. The constraint
vector is equal to

F =[x1,tf − x2,t0 , t2 − (t1 +∆t1), ..., sm−1,tf − sm,t0 , tm − (tm−1 +∆tm−1), ...,

xn−1,tf − xn,t0 , tn − (tn−1 +∆tn−1)]
T

(12)

where the subscript tf represents the state at the end of the i-th arc. If a maneuver occurs immediately before
the state at epoch, then tm and sm,i represents the position vector at the beginning of the associated arc. The
free variable vector is updated via Newton’s method until the norm of this constraint vector equals zero to
within 10−8.

Constrained Local Optimization

Continuous transfers obtained in the Neptune-Triton CR3BP via collocation are optimized to balance re-
ducing the maneuver magnitude with geometrically resembling the initial guess. This optimization is per-
formed using constrained local optimization via fmincon with the sqp algorithm.27, 28 The free variable
vector and the equality constraints vector used in these steps come from the collocation scheme described
in the previous paragraph. In this paper, optimization is used to minimize a multi-objective cost function
J which balances minimizing geometric differences between the current trajectory and initial guess with
minimizing the total ∆v. The objective function is mathematically defined as

J = wgeo(∆rig−ct)
2 + wman

nm∑
i=1

(∆vi)
2 (13)

where ∆rig−ct is the difference between the position vectors of each collocation node along the initial guess
and current trajectory, and ∆vi is the magnitude of the i-th of nm impulsive maneuvers. The two competing
objectives are balanced in J via two scalar weights, wgeo and wman; these values are either set by the user or
varied gradually in a continuation approach.
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In addition to the equality constraints describing the collocation problem, additional path constraints are
included. For an initial guess, the following inequality constraints can be used: maximum time of flight
(TOF) as TOFig ≤ TOFmax, maximum total ∆v as ∆vTOT,ig ≤ ∆vTOT,max, maximum or minimum
single maneuver magnitude as ∆vi,min ≤ ∆vi,ig ≤ ∆vi,max, and the maximum or minimum distance from
a body (Neptune P1 or Triton P2) as dPi,min ≤ dPi,ig ≤ dPi,max. These inequality constraints are appended
to the constraint vector and additional rows added to the Jacobian matrix.

TECHNICAL APPROACH

An updated version of the motion primitive trajectory design, originally introduced by Smith and Bosanac,11

is described in detail in this section. This approach consists of the following five steps:

1. Extract motion primitives that summarize the geometries of arcs along selected families of periodic
orbits and their stable/unstable manifolds.

2. Generate a motion primitive graph, discretely approximating the potential connectivity of the motion
primitives.

3. Search the motion primitive graph to produce one or more sequences of motion primitives that supply
an initial guess for a trajectory.

4. Refine each initial guess to increase the likelihood of successful corrections.
5. Correct and optimize the initial guess to produce continuous trajectories with impulsive maneuvers in

the CR3BP and then correct them in an ephemeris model.

Several steps of this process have been updated compared to the previous work from Smith and Bosanac as
well as Miceli and Bosanac.11, 12 The primitive extraction process in Step 1 has been updated to produce
higher quality clusters of geometrically similar arcs that are used to define motion primitives. In steps 2,
4 and 5, this paper demonstrates the capability to include path constraints in the graph and initial guesses
construction and in the corrections processes. Step 3 has been modified to include a custom k-best search
algorithm producing longer sequences of motion primitives that supply initial guesses with different geome-
tries. Additionally, trajectories are now corrected in an ephemeris model to supply higher fidelity solutions
in the final step of the primitive-based trajectory design process.

Step 1: Extract Motion Primitives

Motion primitives, which have been used in robotics, are described by Wolek and Woolsey as a set of
fundamental building blocks of motion.29 These primitives can be composed in a sequence to form more
complex paths or actions. In this work, motion primitives are used to discretely summarize the geometries
of arcs that lie along fundamental solutions that govern natural transport within the system; ongoing work
is focused on extending these primitives to summarize more general arcs. These primitives are extracted
using a clustering algorithm due to the complexity of categorizing nonlinear paths in a chaotic system where
analytical expressions for geometry do not exist.

Motion primitives are used to summarize periodic orbits that exist in continuous families and arcs along
segments of their global stable and unstable manifolds. In the case of hyperbolic invariant manifolds, arcs
are sampled along the finite set of trajectories that are generated to discretely approximate a segment of
the manifold. Each trajectory is first sampled at local maxima in the curvature, and split in windows of a
user-defined nmax samples. The curvature along a nonlinear path is defined as30

κ(x) =

√
(ẋÿ − ẏẍ)2 + (żẍ− ẋz̈)2 + (ẏz̈ − ÿż)2

(ẋ+ ẏ + ż)3/2
(14)

Unlike apses, time intervals, or arclength, this sampling approach adapts to the geometry of the arc, does not
require specification of a reference point, is less sensitive to changes in speed along a trajectory, and does not
require a priori knowledge of the solution characteristics. When κ̇(x) = 0 and κ̈(x) < 0, a local maximum
exists and seeds an initial condition for an arc. These initial conditions are propagated until the nmax-th next
maximum in the curvature. These arcs form the dataset that is clustered and summarized to extract motion
primitives for the stable or unstable manifold. For periodic orbits, no sampling is performed.
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Each arc is a continuous path that must be discretely described prior to clustering and encoded in a finite-
dimensional feature vector. This feature vector is calculated for each member of the dataset. Then, during the
clustering process, the distance between two feature vectors captures the dissimilarity between two members.
Thus, the feature vector must be formulated to capture the characteristics of interest in a specific application.
In this paper, the goal is to capture geometric differences between two arcs. Accordingly, the feature vector for
the i-th trajectory is defined using the position vectors at r states that are distributed evenly in the arclength.
Mathematically, this vector is equal to

fi =
[
xi,1, yi,1, zi,1, xi,2, yi,2, zi,2, . . . , xi,r, yi,r, zi,r

]
(15)

to produce a 3r-dimensional vector. A set of arcs, either periodic orbits along a family or arcs along a
stable or unstable manifold, are clustered by their geometry in a two-step process. This paper uses the
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm.31 This
algorithm groups members of a dataset that exist in sufficiently dense regions of the feature vector space and
are most stable across a hierarchy of all possible clusters. It is particularly well suited for identifying clusters
of varying densities and effectively handles noise. Along with the feature vectors that describe each set of
trajectories (i.e., one orbit family or arcs along one manifold), the hyperparameters nmin,core and nmin,size

are also provided as an input to the algorithm. The smaller (or larger) these governing parameters are, the
more localized (or global) variations they capture. HDBSCAN then outputs a set of labels, assigning each
trajectory to a unique cluster or as noise. Except for those that lie at the border of a cluster, most of the
noise points correspond to elements in less dense regions of the dataset that cannot be grouped with at least
nmin,size − 1 other members. Those noise points are then input to HDBSCAN again for more localized
clustering with smaller values of nmin,core and nmin,size. Any smaller clusters generated in this localized
clustering step are then appended to the set of clusters generated in the first step, adding distinct geometries
but smaller groupings.

A motion primitive p is extracted to summarize cluster along with a small set of representative members.
Specifically, the primitive is defined as the cluster medoid, i.e. the member of the cluster that is most similar
to all other members. Additional members of each cluster are also stored to capture the region of the phase
space, labeled roe, spanned by geometrically similar arcs, following the approach presented by Smith and
Bosanac.10 The primitives and additional members that summarize each cluster are stored in a library or
database for use in the next step.

Step 2: Generate A Motion Primitive Graph with Constraints

The potential connectivity of motion primitives is represented using a graph structure. A graph is a set
of nodes and edges that are used to model the relationships between objects existing in the same space.32, 33

Frazzoli as well as Majumdar and Tedrake have constructed motion primitive graphs by defining the nodes
as motion primitives and using directed edges to connect primitives that may be sequentially composed to
produce a nearby continuous path.34, 35 This graph discretely summarizes a continuous solution space.

Following the approach presented by Smith and Bosanac, a motion primitive graph is constructed in this
work in two layers10 At the lowest layer, the motion primitives belonging to a specific family of periodic orbits
or hyperbolic invariant manifolds form the nodes of a subgraph. A user then specifies whether the primitives
in this subgraph may be connected internally. If a subgraph is not internally connected, two or more motion
primitives from that subgraph may not be sequentially composed. At the highest layer, each subgraph forms
a node of an itinerary graph. The edges connecting the nodes of the itinerary graph are specified by the user,
allowing them to impose any knowledge of the desired solution structure or lack thereof. These edges in the
itinerary graph indicate whether primitives in two different subgraphs may be sequentially composed.

At both the subgraph and itinerary graph levels, each motion primitive may be connected to its k-nearest
neighbors via a directed edge that is weighted by their potential for sequential composability. First, each
primitive is sampled at s states, evenly distributed in the arclength. Then, qi,j , the potential for primitive i
and primitive j to be sequentially composed is calculated as

qi,j = min
l∈[1,s]

( min
m∈[1,s]

(∆ril,jm + (1−∆α(v⃗il,jm)))) (16)
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where ∆ril,jm and ∆α(v⃗il,jm) are the differences in position and velocity direction between the l-th state on
the i-th primitive and the m-th state on the j-th primitive. Accordingly, the sequential composability of two
primitives captures a weighted sum of position and velocity discontinuities at the two nearest state vectors.
When connections are allowed, a directed edge is added to the graph from one primitive to its k-nearest
neighbors with the lowest values of the sequential composability.

In this paper, the graph construction step is enhanced to incorporate path and maneuver constraints. In
this way, the graph can be modified to include only motion primitives or connections that satisfy the desired
constraints. As a result, the complexity of the graph may be reduced and primitive-based initial guesses
that are generated from this graph have a higher likelihood of satisfying the constraints. In this proof of
concept, these constraints can include minimum or maximum periapsis or apoapsis distance from a primary
and minimum or maximum magnitude of a ∆v. The path constraints are implemented in the node generation
step. If a motion primitive pi or any of the trajectories in its roei violates a path constraint, those are removed
from the primitive phase space set. A new motion primitive is identified from any trajectories in the roei that
satisfy the constraints. Otherwise, if all the trajectories violate the constraint then the node representing that
primitive is not included in the graph. Alternatively, the constraint on the magnitude of a single ∆v is applied
to the edges. When computing the edge weights between two primitives qi,j , the velocity difference between
the closest states is evaluated. If the magnitude of this velocity difference violates the constraint imposed on
the ∆v, then the edge is removed from the graph.

Due to the discrete nature of the motion primitive graph, the constraints imposed at the graph construction
level should include a margin. For example, if the minimum closest passage to a primary is 300 km, the
constraint applied to the graph could use a minimum periapsis altitude of 200 km. This margin can avoid
excessive reduction of the solution space in the initial guess computation step. Then, the initial guesses that
meet the constraints with a margin can be corrected using the actual constraints.

Step 3: Search the Motion Primitive Graph For Initial Guesses

The graph is searched to generate distinct primitive sequences that connect an initial arc to a final arc;
these sequences form a coarse initial guess for a trajectory. This paper uses a modified k-best path search
algorithm with A* to obtain k distinct paths through the graph. As a result, long sequences of primitives can
be recovered in a computationally tractable manner.

To address the computation time and path similarity challenges of well-known k-best path algorithms, a
variation of Yen’s algorithm that uses A* is employed. The original version of A* was first proposed by
Hart, Nilsson and Raphael36 in 1968, to prove that a heuristic function could be incorporated into the formal
mathematical theory of graph searching and achieve optimality when compared to other search algorithms.
A* explores the neighboring nodes by computing a cost c(n) = g(n) + h(n), which is the sum of the cost
to go from the current node to the next, g(n), and the cheapest expected cost to go from the next node to the
target node, h(n). All the incomplete paths and their relative cost up to the current node c(n) are stored in a
queue. When the exploration of the closest neighbors of the current node is complete, the algorithm orders
the list of current incomplete paths in the queue, so that the node selected for the successive explorative
iteration is the one that minimizes the total expected cost of the path. After reaching the target node, the
search is concluded. The selection of the heuristic depends on the application of the graph. However, given
a heuristic such that h(n) ≤ h∗(n), A* always returns the least expensive path from the start to the goal
node, where h∗(n) is the true or optimal cost to go from the current node to the goal node.36 In this paper,
h(n) is the true best cost to go from the current node to the goal node, so h(n) = min

∑T
i,j=1 qij , where T

is the number of all the primitives pj connected with an edge to the primitive pi. However, in some cases,
the heuristic is computed as the minimum difference in Jacobi constant from the current node to the target
node, h(n) = min

∑T
i,j=1 ∆CJ,ij to guide the search through the sequence of primitives with the smallest

difference in CJ .

The k-best path algorithm presented in this paper is used to rapidly obtain k geometrically different se-
quences of primitives. The graph is first searched with A* to find the overall best path. After this is found,
the edges composing the path are removed from the graph except for the last and/or first one; and the queue
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with the incomplete path is emptied. After completing these steps, A* explores the modified graph to search
for a new path from the initial to the target node. The process is repeated until the list of best paths contains k
elements. The described modifications are justified by some observations. First, to obtain k paths, removing
the best path from the queue once it is found is necessary to enable iteratively searching the graph for addi-
tional paths. In addition, for a large and fully interconnected graph, the list of paths in the queue following
the first best solutions are often subpaths or slight variations of the saved best path. If a node can reach any
other node in the graph, the most optimal solution from that node is to always re-converge to the minimum
cost path. Therefore, the subpaths created before arriving at the best path are removed from the queue and the
connections between the nodes of the saved paths are removed from the graph, to avoid repetition of the same
node sequences during the path search. The last and or first edges are not removed to prevent the complete
disconnection of the starting node from the rest of the graph. Similar to how Yen’s algorithm modifies the
graph to ensure geometric diversity, this concept is taken to an extreme level here due to the edge density of a
fully interconnected graph. Using this k-best path algorithm accelerates the process of searching for solutions
through a large graph while guaranteeing solutions with enough geometric difference.

Step 4: Refine Initial Guesses

Once the k-best initial guesses are found, they are refined to obtain smoother sequences of motion primitive
that minimize the state discontinuity. This refinement involves a morphing and a trimming step presented by
Smith and Bosanac.11 In the morphing step, two consecutive primitives of an initial guess and their regions of
existence are considered at the same time. The morphing is obtained by analyzing the composability between
the trajectories in the region of existence of the primitives and taking the pair that minimizes the discontinuity
in position and velocity direction. For example, taking two primitive pi and pj , and their regions of existence
roei and roej , the value qi,j is computed for every ri ∈ roei and rj ∈ roej : two members of roei and roej
that result in the lowest value of qi,j are used as part of the initial guess. After morphing, the selected initial
guesses are trimmed at the sample states that minimize the value of qi,j .

In this paper, the morphing and trimming steps are modified when a constraint has been applied to the graph
generation step. In particular, this step is different only when the magnitude of a single ∆v is constrained
because the path constraints are already applied to the primitives and their associated representative members.
When considering the constraint on a single maneuver, both the morphing and trimming steps are limited to
pairs of primitives where the minimum value for qi,j is computed at a set of states x, y where ∆vx,y ≤ ∆vmax

and or ∆vx,y ≥ ∆vmin.

Step 5: Correct And Optimize Initial Guesses With Constraints

The initial guesses are corrected and optimized in the Neptune-Triton CR3BP via collocation and then
corrected in the ephemeris model via multiple shooting. For each initial guess, the initial mesh parameters
for the collocation correction are specified by the user, and the maneuver locations can be placed at any of the
nodes of the mesh and at the initial or final state of each primitive. For example, if some of the mesh nodes
are placed at apsis along the primitives, then maneuvers can be placed at those states.

Using the collocation-based optimization scheme, the weights of the objective function are gradually mod-
ified to recover a maneuver-optimal solution in the Neptune-Triton CR3BP. First, the initial guess is used to
recover a nearby continuous solution with wgeo = 1 and wman = 0, prioritizing resembling the initial guess.
Once corrected, the transfer is optimized in a continuation scheme using the same optimization algorithm,
but varying the weights from wgeo = 1 and wman = 0 to wgeo = 0 and wman = 1 in a user-defined number
of steps s. As a result of this process, the transfers at each step gradually evolve away from the initial guess as
the total maneuver magnitude decreases. If desired, path and/or maneuver constraints may be added during
the correction and optimization step. Unlike the graph construction step, these constraints do not incorporate
any margin in their values.

Finally, the optimal transfers in the CR3BP are corrected in the ephemeris model using multiple shooting.
In this implementation, the central body is Neptune and the secondary bodies are the Neptunian moons:
Triton, Naiad, Thalassa, Despina, Galatea, Larissa, Hippocamp, Proteus, Nereid, Halimede, Sao, Laomedeia,
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Psamathe, Neso. Although these trajectories are corrected in the inertial frame, they may also be analyzed in
the Neptune-Triton rotating frame.

RESULTS

The updated motion primitive process presented in this paper is used to compute a set of trajectories
that exist within the trajectory tradespace for a Neptune mission, focused on the phase that begins from the
interplanetary arrival into the Neptunian system and ends with insertion into a science orbit. The analysis
presented in this paragraph considers two arrival conditions and two potential target orbits. For each target
orbit, a graph is user-constructed by selecting the most appropriate set of motion primitives. The graphs are
searched to obtain the k-best and geometrically distinct initial guesses, that are then corrected and optimized.
The TOF and total ∆v of these trajectories are used to capture part of the trajectory trade space. In this paper,
this process is applied to transfers that are computed with and without constraints to compare the results.

Graph Construction

The two initial conditions used in this paper are selected as periapses with respect to Neptune along two
different interplanetary transfers. These two states, labeled as Neptune Orbit Insertion (NOI) states, are
described in Table 1. These states have been propagated backwards and forward in time respectively for
3.5 days in the rotating frame to obtain the trajectory arcs represented in red in Figure 1. The original initial
conditions have out-of-plane components with respect to the Neptune-Triton plane. However, a planar version
of these trajectories is used for the demonstrative purpose of this study and the spatial case will be the subject
of future analysis. The planar orbit insertion arcs are plotted in blue in Figure 1. These two initial arcs are for
the first set of nodes that are included in the motion primitive graph.

Table 1. Neptune Orbit Insertion Characteristics

Property NOI State 1 NOI State 2

Epoch at apsis October 2, 2045, 11:52:51 UTC January 11, 2052, 14:22:33 UTC
Periapsis altitude 2460.11 km 1300.00 km

Hyperbolic excess velocity v∞: 11.5252 km/s v∞: 8.83 km/s
Declination angle δ = 8.3778◦ δ = 9.3076◦

Jacobi Constant CJ = 0.950385 CJ = 0.896031

Figure 1. View of the spatial (red) and planar (blue) arcs leading to the first orbit
insertion point (a) and the orbit second insertion point (b).

Two different resonant orbits have been selected as the target of the transfer and supply the final node
of each graph. The first target is a 3 : 4 resonant orbit with a Jacobi constant of CJ = 1.75598. This
orbit allows for two Triton’s flybys at altitudes lower than 300 km and at two different locations along its
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orbit around Neptune. The mission orbit is selected to support measuring the magnetic induction at Triton
when crossing Neptune’s magnetic field, as discussed in Cochrane et al.37 Such science would support
the identification of potential subsurface oceans on Triton, confirming its ocean world classification; which
represents a fundamental goal of a future mission to the Neptune system. The second target orbit has been
selected to be a 1 : 4 resonant orbit with periapsis with respect to Neptune outside of Neptune’s rings, to
allow for an in situ measurement of their composition. The characteristics of both target orbits are listed in
Table 2 and are plotted in the rotating frame in Figure 2. The selected orbits represent the final node of two
different graphs.

Table 2. Target Orbits Characteristics

Property 3:4 Resonant Orbit 1:4 Resonant Orbit

Period 23.2441 days 23.5059 days
Periapis to Neptune 34, 247.993 km 135, 761.897 km
Periapis to Triton 1, 353.753 km 218, 998.103 km
Semi-major axis 477, 362.857 km 893, 931.923 km
Jacobi Constant CJ = 1.75598 CJ = 2.07803

Figure 2. Target orbits in the Neptune-Triton CR3BP: a) 3:4 resonant orbit and b)
1:4 resonant orbit.

Once the initial and final nodes of each graph are selected, the remaining part of the graph can be gen-
erated by adding motion primitive sets, selected to have similar Jacobi constant values and geometries
to the initial and final orbits of the transfer. For this paper, the two graphs are composed of two dif-
ferent sets of motion primitives, which include the following periodic orbits: L3 Lyapunov orbit family;
distant retrograde orbit family; 1:2, 1:3, 1:4, 1:5, and 3:4 prograde resonant orbit families with periap-
sis on the −x̂-axis; 1:2, 1:3, and 1:4 prograde resonant orbit families with periapsis on the x̂-axis; 2:3,
3:5 and 4:5 prograde resonant orbit families; 3:1 retrograde resonant orbit families with periapsis on each
of the +x̂- and −x̂-axes; and 4:1 retrograde resonant orbit family. Motion primitives summarizing sta-
ble and unstable manifolds of the following orbits also included: 7 members of the 1:2 prograde resonant
orbit family with CJ = [1.50, 1.56, 1.61, 1.65, 1.70, 1.75, 1.81]; 6 members of the 1:3 prograde resonant
orbit family with CJ = [1.22, 1.30, 1.35, 1.40, 1.45, 1.51]; 4 members of the 1:4 prograde resonant or-
bit family with CJ = [1.15, 1.17, 1.20, 1.25]; 5 members of the 1:5 prograde resonant orbit family with
CJ = [1.09, 1.10, 1.12, 1.13, 1.15]. For these manifolds, given that the in-plane instability of the resonant
orbits used to generate the manifolds is close to 2, only the trajectory arcs that sufficiently depart the orbits
have been stored and used in the motion primitive generation step. Finally, the graph includes primitives
extracted from the stable manifolds of the 3:4 resonant target orbit.

The motion primitives have been extracted as detailed in Step 1 of the Technical Approach Section. In par-
ticular, the manifolds have been first split in smaller arcs defined by an even number of maxima in curvature,
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e.g. one arc along a 1 : 2 resonant orbit manifold includes 2 maxima in curvature, and then sampled in 25
nodes equally spaced in arclength. On the other side, the motion primitives for the periodic orbits are ob-
tained by considering the whole orbits and sampling them in the maxima in curvature as presented by Miceli,
Bosanac, Stuart and Alibay.12 In both cases, the feature vectors contain the position components at the sample
nodes. An example of the motion primitives extracted from a periodic orbit family and an invariant manifold
is provided in Figure 3.

Figure 3. a) Set of clusters obtained from a stable invariant manifold of seven 1:2
resonant orbits with initial conditions on −X-axis. b) The clusters obtained from the
distant retrograde orbit family.

The motion primitives in the two graphs are interconnected between the initial and final nodes as presented
in the high-level itinerary graph Figure 4 and Figure 5. The primitives within the transfer set are all connected
bidirectionally, i.e. one primitive can be reached from any other primitive in the set. Additionally, each of the
primitives belonging to the same families are internally connected. These properties are represented by the
symbols at the top right corner of the transfer set box and on the top right corner of each family icon.

Figure 4. High-level itinerary graph showing the connection between the motion
primitives selected to reach the 3:4 resonant orbit. Purple arrows indicate that the
primitives within the family are internally connected. The gray arrow indicates that
all the motion primitive families are connected with bidirectional edges.

Both graphs are generated first without any constraints and then adding two different constraints. Specif-
ically, a minimum periapsis distance from Neptune of 30, 000 km is added to the graph targeting the 3:4
resonant orbit, and a maximum single ∆v of 2.0 km/s is added to the graph targeting the 1:4 resonant orbit.
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Figure 5. High-level itinerary graph showing the connection between the motion
primitives selected to reach the 1:4 resonant orbit. Purple arrows indicate that the
primitives within the family are internally connected. The gray arrow indicates that
all the motion primitive families are connected with bidirectional edges.

In the first case, the goal is to obtain a transfer that does not intersect with the ring region around Neptune,
which ranges from 40, 000 km to 57, 000 km. Imposing a lower periapsis constraint in the graph construc-
tion phase helps filter the solution space while considering some margin on the constraints. Similarly, in the
second case, the maximum single maneuver magnitude constraint has been considered with a higher value
compared to the desired constraint to allow some flexibility in the graph construction. This constraint aims
to target transfers from the NOI that perform various smaller maneuvers to get to a low energy level, rather
than allowing them to reach the same orbit with fewer but more expensive maneuvers.

Initial Guesses

The initial guesses resulting from the constrained and unconstrained graph are compared. Selected geo-
metrically different initial guesses generated by searching the graph in Figure 4 are shown in the first and
third rows of Figure 6 and Figure 7; both cases target a 3:4 resonant orbit in the Neptune-Triton system but
start from a different orbit insertion. In the figures, the first row of initial guesses is obtained by searching
the unconstrained graph and the third row displays initial guesses from the constrained graph. From the
comparison of the solutions between the constrained and unconstrained graph, it is visible how the addition
of the constraint of min distance from Neptune min(hP1 > 30.000) over the graph produces initial guesses
with primitives existing further away from the first primary and connecting to different parts of the initial
and final arcs to fulfill the minimum distance requirement. Similarly, the initial guesses in the first and third
rows of Figure 9 and Figure 10 are affected by the application of the single ∆v < 2 km/s constraints over
the graph in Figure 5. The introduction of this constraint is not particularly visible from the initial guesses
in this case since the constraint acts on the maneuver cost. However, the edges and nodes for both graphs
are considerably reduced when introducing respectively the limit on the single maneuver or the minimum
distance from a body. For this reason, the constraints on this step are always considered with a margin, as
mentioned in the previous paragraphs. Overall, all the initial guesses show a smooth transition between pairs
of motion primitives due to the minimization of the edge weight value qi,j , which captures the variation of
the velocity direction in addition to the discontinuity in position.

Final Transfers and Trade Space

The initial guesses are corrected placing maneuvers between discontinuous primitives and at periapsis with
Neptune and imposing the associated constraints. For this case study, a minimum distance from Neptune of
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57.000 km is imposed on the transfers targeting the 3:4 resonant orbit, whereas a max single ∆v of 1.8 km/s
is applied to the transfers targeting the 1:4 resonant orbit. With the first constraint, we impose that transfer
to reach the target orbit is performed outside of the main ring region around Neptune, which terminates at
a radius of 63.000 km from the planet’s center. In the second case, we force the trajectories to perform
the energy change from the orbit insertions to the target trajectory in smaller maneuvers and avoid more
expensive and shorter transfers. The final trajectories for both scenarios are visible in the second and fourth
rows of Figures 6, 7 and Figures 9, 10, where the grey arcs are the initial and final state of the transfer and
the red circles identify maneuvers locations.

Figure 6. A sample of four transfers generated from the graph in Figure 4 to go from
the first NOI arc to a 3:4 resonant orbit. On the first two rows, the initial guesses and
the final transfers obtained from the unconstrained graph. On the third and fourth
rows, the initial guesses and the final transfers obtained from the constrained graph.
The final altitude constraint of 57.000 km altitude is indicated with the pink circle.

For the transfer to the 3:4 resonant orbit, the final unconstrained trajectories in the first and second row in
Figure 6 and Figure 7 show that the final transfers perform close passages to Neptune, with the periapsis close
to the planet surface. In the third and fourth rows, the constrained trajectories are optimized considering the
minimum altitude of 57.000 km from the planet’s surface, which is represented with a magenta circle around
Neptune, and only passes outside of that minimum altitude. Both the constrained and unconstrained final
trajectories are evaluated in terms of the total time of flight and total ∆v in Figure 8, where the transfers from
the unconstrained initial guesses and graph are colored in red while the constrained trajectories are colored
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in blue. Additionally, the solutions coming from the first orbit insertion are represented by a square, while
the circle states the solutions obtained from the second orbit insertion arc. As expected, the unconstrained
solutions, that can perform maneuvers at a closer distance to the first primary are generally characterized by
lower total ∆v, with the solutions starting from the second NOI being on average more expensive due to the
higher difference in energy with the target orbit compared to the first orbit insertion. The constrained solution
in this case also causes a longer TOF, especially for the transfers obtained from the first orbit insertion.
Overall, only a few of the unconstrained solutions among the selected ones have a total ∆v below 2 km/s
which can be considered the maximum cost to perform orbit insertion and start a science phase for this mission
scenario. No solution is below a 1.5 km/s total maneuver cost (dashed line), representing the best value for
an orbit insertion maneuver in the Neptunian system. However, this study case is intended to demonstrate
the applicability of different mission constraints on the motion primitive trajectory design approach and the
presented results show only an example of the possible diverse geometries obtainable with this approach. It
is possible that imposing additional constraints on the same graph could result in a set of transfers that meet
the desired orbit insertion maneuver cost.

Figure 7. A sample of four transfers generated from the graph in Figure 4 to go from
the second NOI arc to a 3:4 resonant orbit. On the first two rows, the initial guesses
and the final transfers obtained from the unconstrained graph. On the third and
fourth rows, the initial guesses and the final transfers obtained from the constrained
graph. The final altitude constraint of 57.000 km altitude is indicated with the pink
circle.
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The final solutions itinerary targeting a 1:4 resonant orbit from the first and second orbit insertion are
presented in Figure 9 and Figure 10, where the second row shows the unconstrained solutions and the fourth
row the constrained solutions. The final TOF and total ∆v for this case are plotted in Figure 11 where,
similarly as before, the squares represent the solutions starting from NOI 1 and the circles the solutions
starting with NOI 2. Then, the orange indicates all the unconstrained solutions, while the light blue is used
for the solutions obtained by constraining the single maneuvers. The majority of the constrained solutions
lie within the bottom part of the plots, with one exception, indicating that the objective of the constraint of
minimizing big single maneuvers was obtained. Moreover several of those solutions have a total ∆v below
the ideal value of 1.5 km/s, making the ideal candidates for a mission scenario. The behavior of this small
sample of solution also indicates the expected behavior of a ∆v - TOF pareto front, where the longer transfers
can achieve lower total ∆vs and vice-versa.

On the right side of Figure 8 and Figure 11, one of the lowest cost solutions is corrected in ephemeris and
visualized in an inertial ’J2000’ frame centered on Neptune. The magenta arc is the incoming leg from the
interplanetary trajectory, the blue arcs are the set of revolutions obtained to transfer to the target orbit, which
is represented in gray, using the maneuvers indicated with the red dots. From the trajectory in Figure 8, it is
possible to see where the spacecraft will perform the close flybys with Triton along its orbits, targeting the
scientific goal of this scenario. Similarly, the trajectory in Figure 11 shows the orbit insertion to the desired
resonant orbit which has a periapsis with respect to Neptune that passes just on the outside of the planet’s
rings, allowing to perform in situ measurement of these interesting formations. This transfer is obtained
with a total ∆v = 1.1366 km/s, where every single maneuver indicated in the plot has the following values
∆vi = [0.4143, 0.0096, 0.1159, 0.1441, 0.4501, 0.0012, 0.0012] km/s, with i = [1, 7].

Figure 8. Trade space of solution for the transfer to a 3:4 resonant orbit. One of the
best solutions corrected in ephemeris is shown in an inertial frame on the right.

CONCLUSIONS

This paper presents an updated version of the motion primitive trajectory design approach, first introduced
by Smith and Bosanac11 and then applied to a Neptune mission scenario by Miceli, Bosanac, Stuart and Al-
ibay.12 The main novelty is the application of constraints to the transfers generated with the motion primitives,
which consent to obtain trajectories with a specific distance from a primary, or total TOF, single maneuver
cost, or total ∆v. Additionally, updates have been added in the primitive extraction process to produce higher
quality clusters of geometrically similar trajectory arcs, and in the initial guess search from the graph by
introducing a custom k-best search algorithm. Finally, trajectories are now corrected in an ephemeris model
to supply higher-fidelity solutions. This approach applied in the context of a Neptune mission targeting two
different resonant orbits can produce a trade space of trajectories with a variety of geometries, that can meet
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any of the imposed constraints. For example, solutions that constrained the single maneuver cost resulted
in trajectories with total ∆v smaller than 1.5 km/s, ideal NOI cost, proving the feasibility of the motion
primitives trajectory design technique.

Figure 9. A sample of four transfers generated from the graph in Figure 5 to go from
the first NOI arc to a 1:4 resonant orbit. On the first two rows, the initial guesses and
the final transfers obtained from the unconstrained graph. On the third and fourth
rows, the initial guesses and the final optimized transfers from the constrained graph.
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Figure 10. A sample of four transfers generated from the graph in Figure 5 to go
from the second NOI arc to a 1:4 resonant orbit. On the first two rows, the initial
guesses and the final transfers obtained from the unconstrained graph. On the third
and fourth rows, the initial guesses and the final transfers from the constrained graph.

Figure 11. Trade space of solution for the transfer to a 1:4 resonant orbit. One of
the best solutions corrected in ephemeris is shown in an inertial frame on the right.
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