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SUMMARIZING RELATIVE MOTION NEAR PERIODIC ORBITS
WITH MOTION PRIMITIVES

Maxwell Joyner* and Natasha Bosanac †

This paper focuses on using motion primitives to summarize relative motion in the
neighborhood of a target vehicle that is located along a periodic orbit in the Earth-
Moon circular restricted three-body problem. These relative trajectories are gen-
erated near states along various libration points and Moon-centered orbits. Then,
each trajectory is transformed into a suitable reference frame and discretized. The
sampled states are used to form finite-dimensional feature vectors that are clus-
tered to generate groups of geometrically similar relative trajectories. A motion
primitive is extracted from each cluster to explore fundamental types of relative
motion in cislunar space.

INTRODUCTION

Orbital rendezvous operations in cislunar space are becoming an increasingly common element of
space operations. NASA’s Artemis missions currently plan for docking and crew transfer between
the Orion spacecraft and the Human Landing System in an Earth-Moon L2 halo orbit.1 The Lunar
Gateway station is expected to eventually function as a rendezvous hub occupying a similar orbit.
Although orbital rendezvous has become nearly routine in low-Earth orbit (LEO), the more complex
dynamics in cislunar space limit the applicability of heritage approaches to describing, analyzing,
and designing motions for a chaser vehicle relative to a target vehicle.

Relative motion is studied via the trajectory of a chaser spacecraft measured relative to the state
of a target spacecraft. The well-known Clohessy-Wiltshire equations for studying relative motion
cannot be accurately applied to a multi-body system.2 Alternatively, the nonlinear dynamics of a
multi-body gravitational system may be linearized about the target, as performed by Luquette and
Sanner.3 However, Franzini and Innocenti demonstrated that they are sensitive to perturbations and
the accuracy of linear approximations decreases rapidly with increasing state deviations from the
target.4 Accordingly, Franzini and Innocenti formulated equations of relative motion in the Earth-
Moon circular restricted three-body problem (CR3BP) using the well-known local vertical, local
horizontal (LVLH) frame relative to the Moon.5 Based on the use of the LVLH frame in study-
ing relative motion in LEO, the origin is located at the target and the axes are calculated using the
position vector and orbital angular momentum of the target relative to a central body.6 However,
in the CR3BP, periodic orbits can revolve around equilibrium points or multiple reference points,
limiting the applicability of these axes. Motion relative to a target along a periodic orbit in the
CR3BP has also been studied using the structure of its local neighborhood. For example, Hsiao
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and Scheeres used information about the eigenspace of a periodic orbit to introduce linear orbital
elements.7 Elliott and Bosanac built upon this foundation to define local toroidal coordinates that
use approximations of the invariant tori of a target periodic orbit to form a geometric description of
relative motion.8 However, when trajectories are generated in models of higher-fidelity, with con-
tinuous thrust, around complex and non-periodic trajectories, and/or over time-spans that violate the
assumptions of linearization, more generalizable procedures for studying and describing a diverse
array of relative motions can be valuable.

A variety of technical disciplines have addressed similar challenges in summarizing motions in
complex dynamical environments. In robotics, motion primitives have been defined as the building
blocks of motion.9 A library of these motion primitives, extracted from observations or simulated
data, can supply a digestible summary of the solution space. Sequences of these motion primitives
have also supported rapid design or the prediction of paths for robotics, humans, or animals.10

In astrodynamics, motion primitives have recently been used to design complex spacecraft tra-
jectories within multi-body gravitational systems and explore the associated tradespace. For this
application, Smith and Bosanac introduced a motion primitive as a single trajectory that summa-
rizes a set of neighboring trajectories in the phase space with a similar geometry.11 A proof of
concept was presented for periodic orbits and arcs along hyperbolic invariant manifolds of periodic
orbits in the Earth-Moon CR3BP.12 Specifically, clustering was used to group arcs from each type
of fundamental solution by their geometry. Then, a single representative member of each group sup-
plies a motion primitive. More recently, Gillespie, Miceli, and Bosanac built upon this foundation to
1) calculate groups of geometrically similar periodic orbits as continuous segments of a family with
the same number of maxima in the curvature, and 2) present an updated clustering approach that
generates more accurate groupings of arcs along natural or thrust-enabled trajectories that approach
or depart a periodic orbit.13 Smith and Bosanac also demonstrated the construction of a motion
primitive graph that can be searched to generate primitive sequences.12 These sequences are then
refined to produce initial guesses that are corrected to continuous trajectories.12 Recently, Miceli
and Bosanac have improved upon this motion primitive approach to trajectory design by defining an
updated graph structure, k-best paths search algorithm, and refinement process to generate a geo-
metrically diverse array of transfers within a multi-body system.14 These works have demonstrated
that a library of motion primitives is capable of summarizing a segment of the solution space in the
CR3BP and support rapid and efficient trajectory design space exploration in a complex gravita-
tional environment. This paper leverages this prior work as a foundation, but builds upon it through
an application to relative motion between two spacecraft.

This paper focuses on generating relative motion primitives for spacecraft operating near peri-
odic orbits in the Earth-Moon CR3BP. These motion primitives capture fundamental modes in the
relative motion problem which can, eventually, support rapid rendezvous trajectory design. First,
trajectories are generated and described for a spacecraft that operates near a target vehicle located
along several example periodic orbits in the CR3BP. Multiple approaches to sampling spacecraft
paths are evaluated to identify a new finite-dimensional description of continuous relative trajec-
tories that sufficiently captures their geometries. Then, a two-step clustering process is applied to
automatically extract groups of arcs with a similar geometry. A single representative trajectory is
then extracted from each group to form the relative motion primitive. After generating a library
of relative motion primitives that summarize the solution space, the fundamental types of relative
motion near the selected periodic orbits are examined.
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BACKGROUND

Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CR3BP) is used to approximate motion of each
spacecraft in cislunar space. The Earth (P1) and Moon (P2) are modeled with the same gravitational
field as point masses, following circular orbits about their barycenter.15 The masses of spacecraft in
this system are assumed to be negligible compared to the constant masses of primaries P1 and P2.

States and parameters are typically nondimensionalized in the CR3BP using characteristic length,
mass, and time quantities. The characteristic length is set to the average separation between the
Earth and the Moon, equivalent to l∗ = 384, 000 km. The total mass of the Earth and Moon is
set as the characteristic mass, m∗ ≈ 6.046804 × 1024 kg. Finally, the characteristic time is set to
t∗ ≈ 3.751903× 105 s to produce a mean motion of the primaries equal to unity.

Trajectories in the CR3BP are analyzed in a rotating frame. The origin is placed at the barycenter
of P1 and P2. The axes are defined with x̂ directed along the line from P1 to P2, ẑ aligned with the
orbital angular momentum vector, and ŷ completing the right-handed, orthogonal triad.15

The nondimensional equations of motion for the CR3BP are formulated in the rotating P1 − P2

frame. A state vector is defined for a spacecraft as x̄ = [x, y, z, ẋ, ẏ, ż]T . Equations of motion15 are
then succinctly written as

ẍ = 2ẏ +
∂U∗

∂x
, ÿ = −2ẋ+

∂U∗

∂y
, z̈ =

∂U∗

∂z
(1)

using the pseudopotential function U∗, equal to

U∗ =
1

2

(
x2 + y2

)
+

1− µ

r1
+

µ

r2
(2)

where r1 =
√
(x+ µ)2 + y2 + z2 and r2 =

√
(x− 1 + µ)2 + y2 + z2 are the distances of the

spacecraft from the primaries P1 and P2 whereas the mass ratio µ represents the mass of the smaller
primary over the total mass of both bodies. For the Earth-Moon system, µ ≈ 0.012151. Although
no analytical solution to the CR3BP exists, an integral of motion CJ equals

CJ = 2U∗ − ẋ− ẏ − ż (3)

This energy-like constant CJ is labeled the Jacobi constant.

A variety of fundamental solutions exist in the autonomous CR3BP.15 Five equilibrium solutions,
L1-L5 known as libration points or Lagrange points exist in the CR3BP as stationary solutions in the
rotating frame. Trajectories that repeat their motion over a constant time period in the rotating frame
are defined as periodic orbits. These periodic orbits exist in continuous families within various
regions of the system. Finally, hyperbolic invariant manifolds associated with libration points or
periodic/quasi-periodic orbits capture trajectories that asymptotically depart (unstable manifold) or
approach (stable manifold) these solutions.

Relative Motion in the Circular Restricted Three-Body Problem

Relative motion in the CR3BP is described using the standard definitions of target and chaser
spacecraft.2 A passive target spacecraft (denoted by the subscript t) travels along its orbit while the
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active chaser spacecraft (denoted by the subscript c) approaches or departs its vicinity. The relative
state vector, and its time derivatives, of the chaser spacecraft is expressed with respect to the target
vehicle as

r̄c = R̄c − R̄t , v̄c = V̄c − V̄t , āc = Āc − Āt (4)

A 12-dimensional vector composed of the absolute state of the target spacecraft along with the
relative state of the chaser spacecraft with respect to the target is defined as

x̄full = [Xt, Yt, Zt, Ẋt, Ẏt, Żt, xc, yc, zc, ẋc, ẏc, żc] (5)

The relative equations of motion for the chaser are thenwritten as15

ẍc =

(
2Ẏc +

∂U∗
c

∂Xc

)
−

(
2Ẏt +

∂U∗
t

∂Xt

)
(6)

ÿc =

(
−2Ẋc +

∂U∗
c

∂Yc

)
−
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−2Ẋt +

∂U∗
t

∂Yt

)
(7)

z̈c =
∂U∗

c

∂Zc
− ∂U∗

t

∂Zt
(8)

where U∗
t and U∗

c are equal to the pseudopotential function evaluated using the absolute state vectors
of the target and chaser spacecraft, respectively.

Curvature

Nonlinear trajectories are analyzed and described using concepts from differential geometry.
These techniques are defined using the instantaneous position, velocity, and acceleration vectors
of a curve, r̄(t) = [x(t), y(t), z(t)]T , v̄(t) = [ẋ(t), ẏ(t), ż(t)]T , and ā(t) = [ẍ(t), ÿ(t), z̈(t)]T , re-
spectively. Beginning from an initial state, a trajectory generated over the time interval t ∈ [t0, tf ]
traversed a distance s equal to the arclength16

s =

∫ tf

t0

ds =

∫ tf

t0

√
ẋ2 + ẏ2 + ż2dt (9)

The instantaneous curvature κ(t) quantifies the deviation of a path from a straight line in the oscu-
lating plane, defined as the plane formed by three points along the curve as the limit of the arclength
between them approaches zero.17 For a given point along a trajectory, the corresponding state vec-
tors can be used to express the curvature mathematically as

κ(t) =
∥v̄(t)× ā(t)∥

∥v̄(t)∥3
=

√
(z̈ẏ − ÿż)2 + (ẍż − z̈ẋ)2 + (ÿẋ− ẍẏ)2

(ẋ2 + ẏ2 + ż2)3/2
(10)

with a singularity when the speed equals zero.

Geometrically significant locations along a trajectory can be located through tracking where max-
ima in this curvature value occur.17 Curvature maxima occur when κ̇ = 0 and κ̈ < 0. For multi-body
systems, these curvature maxima can be located near apses defined with respect to points of interest
in the CR3BP such as primary bodies or libration points.18 Curvature maxima can also be located
along curves in the relative CR3BP, where they can exist near points of local minima or maxima in
the relative distance of the chaser spacecraft with respect to the target.
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Curve-Based Reference Frames

Reference frames based on the shape of spatial curves are often employed in differential geometry
and computer graphics. These curve-based frames consist of axes constructed using the local geom-
etry of a curve as opposed to the location of the trajectory in configuration space used in reference
frames like the Velocity-Normal-Conormal (VNC) axes.19 Curve-based reference frames can be
useful for trajectories in the CR3BP that traverse multiple regions of the system. The Frenet frame
is an example that is defined based on the curvature. The axes are defined using the tangent vector
T̂ parallel to the velocity unit vector, the normal vector N̂ directed towards the center of curvature
in the osculating plane, and the binormal vector B̂ normal to the osculating frame to complete the
right-handed coordinate frame.16 When the curvature is non-zero (κ ̸= 0), the Frenet unit axes are
calculated from the position vector and its time derivatives as

T̂ =
v̄

|v̄|
=

˙̄r

| ˙̄r|
, N̂ = B̂ × T̂ , B̂ =

v̄ × ā

|v̄ × ā|
=

˙̄r × ¨̄r

| ˙̄r × ˙̄r|

Density-Based Clustering

Clustering algorithms are used to discover groupings within a dataset.20 Individual members
of the dataset are first summarized using finite-dimensional feature vectors representing relevant at-
tributes related to the desired sorting criteria. The clustering algorithm then groups or separates these
feature vectors based on the distance between them calculated using a specified distance metric, with
similar members grouped closer together and dissimilar members lying further apart. Although a
variety of approaches to clustering exist, this paper uses two density-based clustering algorithms
for their suitability in identifying irregularly shaped clusters: 1) Density-Based Spatial Clustering
of Applications with Noise (DBSCAN)21 and 2) Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN).22

DBSCAN was developed by Ester, Kriegel, Sander, and Xu to group dense regions of data with
overlapping neighborhoods of a user-specified radius.21 The mpts-neighborhood of a member of the
dataset is defined as a hypersphere that encompasses its mpts-th nearest neighbors. This member
is classified as a core point if these neighbors lie within a specified radius ϵ. If fewer than mpts

members lie within a distance of ϵ but they include another core point, the member is defined as
a border point. However, if neither of these criteria are satisfied, the member is labeled as a noise
point. Core points and their associated border points are then grouped together as clusters if their
neighborhoods overlap. DBSCAN is useful when suitable values for mpts and ϵ can be selected.
For this paper, DBSCAN is accessed through the MATLAB library.

HDBSCAN was developed by Campello, Moulavi, and Sander to extend the density-based ap-
proach of DBSCAN.22 Similar data points are first identified in dense local neighborhoods, then
groupings of clusters are formed through hierarchical association with each other. This approach is
useful when the neighborhood size or local density of a data set are not known a priori. HDBSCAN
formulates the similarity or dissimilarity between two data points through a mapping into the mutual
reachability distance. The core distance for each member of a data set is defined as the distance to
its mpts-nearest neighbor using a specified distance metric. For any two points, the mutual reach-
ability distance is then defined as the maximum value of the distance between them and either of
their respective core distances.

A weighted graph is constructed from the data points with each edge weight representing the
mutual reachability distance between all pairwise combinations of data points.22 The connections in
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this graph are then summarized using a minimum spanning tree. This tree is further condensed into
a hierarchical tree ranked by mutual reachability distance, where each node represents a potential
cluster. Stable clusters with at least mclust,min members are then extracted from this condensed tree
based on the criteria of maximizing the excess of mass.22 HDBSCAN assigns all data points in dense
neighborhoods as cluster members or labels them as noise if they lie within insufficiently dense
regions of the mutual reachability distance space. An additional modification to the HDBSCAN
introduces a distance threshold ϵmerge to join two data points below this value together in the same
cluster to prevent excessive subdivision beyond a desired resolution.23 For this paper, HDBSCAN
is accessed through the hdbscan Python library.24

TECHNICAL APPROACH

Relative Motion Primitives

Spacecraft rendezvous in cislunar space is dependent on the complex dynamics governing their
motion in this gravitational environment. Periodic orbits in the CR3BP also exhibit a much wider
diversity of geometry compared to the near-circular orbits for target spacecraft typical of rendezvous
in LEO. Both of these factors require the development of new strategies to characterize the design
space for relative motion. This paper builds upon prior work by Smith and Bosanac12 as well
as Miceli and Bosanac14 in applying the motion primitive concept to relative trajectory design in
multi-body systems. However, relative motion near periodic orbits in the CR3BP possess their own
distinct geometric characteristics on time and distance scales that differ from those used for absolute
motion. Thus, these characteristics require the development of a modified technical approach for
seeding initial conditions, propagating and sampling the associated trajectories, and clustering the
resulting feature vectors for identifying relative motion primitives.

Step 1: Generating initial target spacecraft states

Figure 1. Target spacecraft occupying a periodic orbit about L1 and nearby chaser
spacecraft with a relative state X̄rel in the Earth-Moon CR3BP.

In this paper, the positions of target spacecraft are constrained to natural motion along periodic
orbits in the Earth-Moon CR3BP. These target states are used to define the relative state of a chaser
spacecraft as depicted in Figure 1. In the context of future exploration efforts, orbits in the vicinity
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of the Moon are of particular interest for placing rendezvous targets such as orbital platforms or
refueling stations.1 Families of planar and spatial periodic orbits near the libration points L1 and
L2 (Lyapunov, halo, vertical and axial) as well as those centered around the Moon (distant prograde
orbits, low prograde orbits, and distant retrograde orbits) are explored to provide a diversity of ge-
ometric and stability characteristics. For this proof of concept, a single member is selected as an
example from each periodic orbit family. The attributes of these example periodic orbits are sum-
marized in Table 1. The speed and distance from the secondary body may vary substantially along
many periodic orbits in the CR3BP. These factors significantly impact the relative motion behavior
of a chaser spacecraft. To sufficiently capture the design space of the resulting chaser trajectories,
a set of initial target states is sampled from the orbits selected for this analysis. This approach dis-
ributes nodes equally spaced in arclength along the periodic orbit. These nodes represent initial or
final states for a target spacecraft.

Table 1. Orbital period, Jacobi constant, and stability indices for example periodic orbits.

Orbit Period (n.d.) Period (days) Jacobi Constant s1 s2

L2 Lyapunov Orbit 3.6485 15.84 3.0864 1156.84 2.17

L1 Halo Orbit 2.6194 11.37 3.0143 -1.933 34.69

L1 Vertical Orbit 3.8240 16.61 3.0153 1.80 627.16

L2 Axial Orbit 4.3954 19.09 2.9771 319.14 2.26

L2 Southern NRHO 1.5151 6.58 3.0462 1.02 -0.18

Distant Prograde Orbit 2.1743 9.44 3.1713 -1.96 -0.53

Low Prograde Orbit 0.6188 2.69 3.2648 1.58 1.7344

Distant Retrograde Orbit 1.3541 5.88 3.0178 0.47 0.94

Step 2: Generating initial chaser spacecraft relative states

Initial chaser positions are then defined relative to the target for each of the target states generated
in the previous step. Previous investigations have revealed a strong dependence on the orientation
of the chaser displacement with respect to the target’s unit velocity vector in the rotating frame
on the resulting relative motion behavior.25, 26 Position displacements are therefore consistently
defined around the target’s direction of motion for any point along each periodic orbit. The Frenet
frame axes are first calculated for a given target state. The basis vectors X̂Ŷ Ẑ are defined using
the target’s Frenet axes such that the Ẑ axis is parallel to T̂ , X̂ is aligned with N̂ , and Ŷ is aligned
with B̂. Points along the surface of a unit sphere are then spaced at equal angular intervals with
increments of θIP,r = 30◦ about the T̂ axis in the N̂ − B̂ plane and increments of θOOP,r = 30◦

offset from the N̂ − B̂ plane. Each position defined along this unit sphere is then multiplied by a
desired range value ∥dr̄∥ to produce a set of chaser position vectors with equivalent distances from
the target spacecraft. This work uses a value of ∥dr̄∥ = 10 km, consistent with the boundary of the
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rendezvous sphere concept employed in collision avoidance analysis for the Lunar Gateway.27

A set of initial chaser relative velocities for each relative position is defined using a similar unit
sphere approach. The Ẑ axis is rotated to align with the relative position vector r̂c and the X̂ and Ŷ
axes lie within a plane tangent to the surface of the sphere. Equal angular intervals with increments
of θIP,v = 15◦ about the r̂c axis and increments of θOOP,v = 15◦ offset out of the plane are used
to define unit velocity vectors. These vectors are then multiplied by a speed dv̄c to obtain an initial
relative velocity with respect to the target. In this paper, the magnitudes used are selected from the
set ∥dv̄c∥ = [0.5, 1, 2, 5]m/s based on typical values for periodic orbit rendezvous.25 The results
are analyzed individually for each relative speed due to the large dependence of the initial velocity
on the resulting relative trajectory geometry. Finally, initial conditions generated for the target and

Table 2. Summary of values used to generate initial values for relative chaser position and velocity.

θIP θOOP Total Samples Magnitude

Relative Position dr̄ 30◦ 30◦ 62 10 km

Relative Velocity dv̄ 15◦ 15◦ 266 0.5, 1, 2, 5 m/s

Figure 2. Example chaser relative positions (orange) and their associated relative
velocities (black arrows) generated with respect to the target and local Frenet axes

chaser spacecraft are combined into complete state vectors. The chaser displacement magnitudes
for ∥dr̄∥ and ∥dv̄∥ are conveniently defined in km and m/s for clarity, but are nondimensionalized
using the characteristic length and time values for the Earth-Moon system. Each target state is
associated with a set of chaser positions and their corresponding set of chaser velocities, producing
16, 492 chaser relative states for each target. An illustration of this concept with larger angular
intervals for clarity is shown in Figure 2, while the actual values used are summarized in Table 2.
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Step 3: Propagate initial conditions and collect samples for feature vectors

Full state vectors containing the absolute target state and relative chaser state are integrated using
their respective equations of motion to generate sets of relative motion trajectories. Each set of initial
conditions is propagated twice: 1) forward in time to represent a chaser spacecraft departing from an
initial state and 2) backward in time for an approaching chaser spacecraft reaching the condition as
a final state. Two termination conditions are enforced when critical ranges from the target spacecraft
are reached: 1) ∥r̄c,out∥ = 2000 km for the chaser spacecraft departing or approaching the relative
motion regime surrounding the target spacecraft, and 2) ∥r̄c,in∥ = 0.2 km when the chaser crosses
into a keep-out sphere surrounding the target.28 The larger boundary value is chosen to constrain a
region where relative motion is applicable while still allowing for an overlap with far-range motion
for connection in future work. An additional constraint when 10 time units have elapsed is also
necessary for stable orbits to prevent excessive computational time.

To discretely summarize the relative motion trajectories and capture their geometric characteris-
tics, a variety of approaches for sampling states are evaluated, as illustrated in Figure 3. A range-
based method collects samples when the chaser spacecraft reaches critical user-defined distance
values while approaching or departing from the target. Similarly, an approach using critical user-
defined values of arclength as the chaser travels along a path is implemented. Curvature maxima
events where the derivative ∂κ

∂t = 0 are also explored as sampling criteria. Two approaches using
1) curvature maxima alone 2) both curvature maxima and minima to identify sample locations are
tested. Finally, a hybrid approach incorporates samples from both maximum curvature events and
even intervals of arclength between them. This procedure is based on work by Gillespie, Miceli,
and Bosanac,13 but multiple values of intervals are evaluated and both the initial and final state are
treated as curvature events if none exist for arclength intervals to ensure that every trajectory is
sampled at least once.

Figure 3. Various approaches to sampling chaser spacecraft states in relative motion
trajectories, including 1) range-based, 2) arclength-based, 3) maximimum curvature,
4) maximum and minimum curvature, 5) maximum curvature with one arclength
sample, and 5) maximum curvature with two arclength samples

9



For each approach, the resulting samples are assembled into finite-dimensional feature vectors
to summarize each relative motion trajectory for the clustering process. State information at each
sampled state is used to construct two feature vectors: the position-based vector is defined as

f̄p = [x1, y1, z1, . . . , xNs , yNs , zNs ]

whereas the velocity-based vector is defined as

f̄v =
[
˜̇x1, ˜̇y1, ˜̇z1, . . . , ˜̇xNs , ˜̇yNs , ˜̇zNs

]
where ˜̇x denotes the normalized unit velocity components used to capture the shape of each trajec-
tory. Normalization promotes feature vectors that represent path geometry regardless of speed.

Step 4: Cluster and select primitives

Relative motion trajectories generated for a chaser spacecraft are clustered to identify groups with
similar geometry for selecting motion primitives. The two sets of departing and approaching paths
are each processed separately. Trajectories are also sorted into partitions with equal numbers of
samples prior to clustering, since the algorithms require feature vectors with an equivalent number
of dimensions. To ensure high-quality clustering results for a variety of geometries, a two-step
clustering approach originally developed by Bosanac29 and then used by Gillespie, Miceli, and
Bosanac13 is adapted for relative motion trajectories.

Departing and approaching paths are first coarsely clustered by processing each set of shape-
based feature vectors f̄v with the HDBSCAN algorithm. This step supports grouping trajectories
with a diverse array of densities and configurations to be identified without a priori knowledge of
their distribution or membership sizes.22 Feature vectors are clustered using a Euclidean distance
metric, with HDBSCAN parameters set to mmin,clust = 5 and mpts = 429 to emphasize the selec-
tion of smaller localized clusters. The epsilon threshold ϵ used to constrain the neighborhood size
used to distinguish between individual clusters is heuristically defined as ϵ = 2

√
Nssin(∆θ/2),29

where ∆θ = 10◦ is a limit on the average angle between velocity unit vectors and is scaled by the
Ns number of samples for the given set of relative motion trajectories. This initial course clustering
step produces groupings with roughly similar shapes; any unlabeled points are discarded as noise.

An additional cluster refinement step is applied to further ensure high-quality groupings of rela-
tive motion trajectories by removing outliers. This process is based on a convoy detection approach
in the trajectory clustering literature.30 Convoy detection works by analyzing each set of sample
points along a trajectory sequentially to identify groupings that remain density-connected for their
entire duration. First applied to trajectories in the CR3BP by Bosanac,29 this approach is adapted
for relative motion trajectories.

Each cluster of relative motion trajectories identified in the previous step is individually refined
through a convoy detection process.29 For the i-th sample along each set of paths, two three-
dimensional feature vectors f̄v,i and f̄p,i are formed to represent the associated state. These two
feature vectors are then independently clustered with DBSCAN and a Euclidean distance measure
for mpts = 4 and ϵ = mptsmax(e, ϵthreshold).29 Here, e is the median distance of each subset
of feature vectors from their nearest neighbors and ϵthreshold is a minimum threshold value. This
local neighborhood size is selected to be large enough to allow the DBSCAN algorithm to locate
a sufficient number of core points without excessive bias from outliers. This process is repeated
for all subsequent Ns samples using both shape-based f̄v,i and position-based f̄p,i for a total of
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2Ns convoy detection steps. If a set of relative motion trajectories is grouped together for all 2Ns

clustering results, they form a refined cluster. The previous coarse clusters may be subdivided into
multiple refined clusters, but if a feature vector associated with any sample is labeled as noise, then
the entire trajectory is discarded. Performing this clustering step independently for each sample
ensures that the sets of refined clusters are composed of relative motion trajectories that possess
similar geometry for their entire duration.

Relative motion primitives are extracted by selecting a representative from each refined cluster.
Each representative trajectory is selected as the medoid of its cluster,12 which is expressed mathe-
matically as

f̄medoid = min
f̄i∈F

 F∑
j=1

∥∥f̄i − f̄j
∥∥

This medoid is calculated in the position-based feature vector space.

The resulting clusters of relative motion trajectories are visualized by displaying their constituent
members along with the representative motion primitive. Each primitive is plotted using a thicker
and darker line to distinguish them, with a gray line depicting a two-dimensional projection at the
bottom of the plot. Trajectories departing from the vicinity of the target spacecraft are red, while
those approaching the target are blue. The shade of these colors is used to indicate the speed at the
critical range ∥r̄c,out∥ from the target, with slower trajectories plotted in lighter shades and faster
trajectories as darker shades. The positions at critical range ∥r̄c,out∥ for departing and approaching
trajectories are displayed as points of their respective color. Relative motion trajectories are plotted
using the same axes in the rotating frame defined for the CR3BP but shifted so that the target lies
at the origin. The target’s direction of motion at the time of initial departure or final approach is
represented by a black arrow.

RESULTS

The outlined technical approach is applied to a variety of representative periodic orbits in cislunar
space. Several sampling approaches are tested with the clustering process to determine an appropri-
ate methodology for capturing the geometry of trajectories in relative motion. The resulting samples
and clusters are compared for the same test case and the most suitable sampling approach is identi-
fied. Next, this approach is used to generate motion primitives for relative motion trajectories near
several periodic orbits in the Earth-Moon CR3BP. Selected clusters of departing and approaching
trajectories for each orbit are presented and discussed.

Evaluating Sampling Approaches

Multiple strategies for selecting appropriate sample locations are implemented for chaser space-
craft trajectories near a target in an L1 halo orbit at apolune with ∥dv̄c∥ = 1 m/s. Each set of
samples is then assembled into feature vectors and clustered using the same process. Statistics
for samples, clusters, and computational data for sampling approaches using set range and ar-
clength intervals as well as curvature extrema are summarized in Table 3. A Windows machine
with 16GB RAM and an AMD Ryzen 5 5600G processor is used for computation, and storage size
includes all sample states along with trajectory summaries. Range samples are taken when values of
100 : 100 : 1000 km are reached from the target spacecraft, while arclength samples are collected
at values 100 : 200 : 1000 km and 3000 : 1000 : 20000 km along the chaser trajectory. Two sets of
samples are taken when ∂κ

∂t = 0 at maximum and both minimum and maximum curvature events.
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Table 3. Sample and clustering statistics for chaser spacecraft trajectories near a target in an L1 halo
orbit at apolune using range-based, arclength-based, and curvature-based sampling approaches

Sampling Approach Range Arclength Max. Curvature Max. + Min. Curv.

Min. # of Samples 10 5 0 1

Max. # of Samples 24 21 9 18

Median # of Samples 10 7 2 4

Noise (%) 45.1 25.5 17.1 22.8

# of Clusters 329 286 238 351

Max. Cluster Size 1418 1041 1219 1110

Median Cluster Size 8 10 9 8

Computational Time (s) 139.1 71.0 37.0 54.0

Storage Size (MB) 16.5 11.0 4.9 8.3

Each of these sampling approaches has strengths and drawbacks when implemented individu-
ally. Range-based sampling aligns with how actual chaser vehicles, such as Orion, switch between
operational procedures based on distance from a target.28 However, behavior where a trajectory
remains at the same approximate range while traveling about the target results in an undersampling
of these regions. This is consistent with the high percentage of discarded trajectories. Arclength-
based sampling produces higher-quality clusters, but defining specific sample values for a wide
range of different geometries is challenging. Regions of maximum curvature often correspond to
locations where the chaser spacecraft reaches a local minimum or maximum distance from the target
spacecraft. These are geometrically significant locations that are also of interest for rendezvous and
proximity operations. However, this criterion produces a lower number of samples and, for some
trajectories, no samples at all. Augmenting this approach by adding minimum curvature events re-
sults in a higher number of samples, but these regions are often less significant for describing the
geometry of the trajectory.

A hybrid sampling methodology incorporates both maximum curvature events and samples at
intervals of equal arclength between them to leverage the advantages of both approaches; this ap-
proach was previously developed by Gillespie, Miceli, and Bosanac.13 This approach simplifies the
task of defining specific arclength values into a single variable that specifies the number of equal
interval samples, NAL. Several values of NAL are evaluated using the same conditions from the
previous example for comparison, summarized in Table 4. Although the number of samples, com-
putational time, and storage size predictably increase with larger values of NL, the total number of
clusters as well as the maximum and median cluster size remain consistent. The percentage of tra-
jectories discarded as noise increases slightly with additional arclength samples. From these results,
increasing the value of NAL does not fundamentally alter cluster assignments but does provide the
clustering process additional data to remove outliers.
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Table 4. Sample and clustering statistics for chaser spacecraft trajectories near a target in an L1 halo
orbit at apolune using a hybrid maximum curvature/arclength interval approach for several NAL.

Max. Curv. + NAL Arc Length Sample 1 2 3 4

Min. # of Samples 1 2 3 4

Max. # of Samples 18 27 36 45

Median # of Samples 4 6 8 10

Noise % 22.8 27.9 29.5 30.5

# of Clusters 247 248 247 252

Max. Cluster Size 1177 1178 1145 1138

Median Cluster Size 9 8 8 8

Computational Time 89.1 109.4 129.7 156.9

Storage Size 7.9 11.7 15.6 19.3

Table 5. Sample and clustering statistics for chaser spacecraft trajectories near a target in an L1 halo
orbit at apolune for several values of ∥dv̄c∥.

Initial Relative Speed ∥dv̄c∥ (m/s) 0.5 1 2 5

Min. # of Samples 3 2 2 2

Max. # of Samples 39 27 36 21

Median # of Samples 9 6 6 3

Noise % 23.5 27.9 27.0 30.6

# of Clusters 195 248 391 628

Max. Cluster Size 1452 1178 925 1172

Median Cluster Size 8 8 10 8

Finally, the hybrid sampling approach employing both maximum curvature events and NAL = 2
samples of equal arc length between them is tested using the same scenario with multiple initial
chaser speeds ∥dv̄c∥ to evaluate the performance for a more diverse set of geometries. Larger initial
values of ∥dv̄c∥ are correlated with a lower number of samples as the chaser spacecraft tends to
exit the region surrounding the target the target more rapidly. These trajectories are also observed to
traverse paths with less curvature, resulting in fewer maximum curvature events. However, the num-
ber of clusters identified increases significantly for larger values of ∥dv̄c∥. While chaser trajectories
travel along straighter paths away from the target and visually resemble one another, additional re-
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gions in the design space become reachable by the chaser to create a larger range of spatial diversity.

The percentage of relative motion trajectories discarded as noise is considerably high for this
approach. One potential explanation may be the choice of initial conditions used to generate relative
motion trajectories. Many maximum curvature events are observed near the target, which may
present challenges for the clustering algorithm to group trajectories based on samples. Additionally,
the increased degree of geometric diversity observed near apolune is a potential factor complicating
the process of grouping trajectories.

Summarizing Relative Motion to/from Various Orbits

The selected sampling approach is used to generate motion primitives that summarize relative
motion trajectories near several periodic orbits. The initial relative speed of the chaser spacecraft is
set as ∥dv̄c∥ = 1 m/s for all cases in this section. Clustering results for departing relative motion
trajectories near the example orbits at apolune and perilune are summarized in Table 6. The values
are similar, but not exact, for both sets of relative trajectories at these locations as a result of the
symmetry of the periodic orbits. For all non-circular orbits, more clusters and a higher percentage
of noise are observed at apolune compared to perilune. This is consistent with the larger degree of
geometric diversity seen at these locations. The relative motion clusters displayed in the following
figures are all taken from a target state near apolune as a result.

Table 6. Summary of clustering results for departing relative motion trajectories at perilune (P) and
apolune (A) for example periodic orbits.

Orbit # of Clusters (P) Noise (%) (P) # of Clusters (A) Noise (A)

L2 Lyapunov Orbit 132 13.6 197 14.8

L1 Halo Orbit 156 18.3 248 27.9

L1 Vertical Orbit 179 22.6 262 19.3

L2 Axial Orbit 178 24.3 272 19.3

L2 Southern NRHO 200 12.5 317 51.7

Distant Prograde Orbit 229 26.9 235 27.3

Low Prograde Orbit 481 48.2 489 49.1

Distant Retrograde Orbit 362 30.5 365 30.7

Selected clusters of trajectories and their primitives for a target in an L2 Lyapunov orbit near
apolune are depicted in Figure 4. Many of these relative motion paths follow nearly straight lines
with a low degree of curvature, as seen in the center column. This behavior is expected for a periodic
orbit with highly unstable in-plane modes. Trajectories also remain mostly within the x− y plane,
with only moderate deviations observed in the clusters in the right column. This is consistent with
the out-of-plane orbit stability characteristics. Relative motion paths exit or enter the target region
from multiple directions in the x− y plane, presenting a variety of options for trajectory design.
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Figure 4. Clusters of departing (red) and approaching (blue) relative motion tra-
jectories for a chaser spacecraft near a target spacecraft in an L2 Lyapunov orbit at
apolune.

Figure 5. Clusters of departing (red) and approaching (blue) relative motion trajec-
tories for a chaser spacecraft near a target spacecraft in an L1 halo orbit at apolune.

Figure 5 depicts clusters of geometrically similar relative trajectories departing or arriving at an
L1 halo orbit for a target state at apolune. The leftmost clusters are the largest grouping of departure
and approach clusters, with each one containing approximately 8% of all initial chaser conditions.
Accordingly, the clustering approach can identify the common modes of behavior and summarize
them with a motion primitive. Loops observed in the right two columns represent local minima and
maxima of range with respect to the target identified by the curvature-based sampling approach.

Clusters of relative motion trajectories and their associated primitives for an L1 vertical orbit and
an L2 axial orbit are displayed in Figure 6 and Figure 7 respectively. For the vertical orbit, faster
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Figure 6. Clusters of departing (red) and approaching (blue) relative motion trajecto-
ries for a chaser spacecraft near a target spacecraft in an L1 vertical orbit at apolune.

Figure 7. Clusters of departing (red) and approaching (blue) relative motion trajec-
tories for a chaser spacecraft near a target spacecraft in an L2 axial orbit at apolune.

approach trajectories are seen on the bottom left, with slower approaches in the center column as
indicated by their respective shades. Although a more circuitous route might be associated with
a slower velocity, the initial speeds associated with trajectories on the bottom right appear to be
significantly faster. Departing trajectories for the axial orbit in Figure 7 demonstrate significantly
different in-plane and out-of-plane behavior. While the top right cluster consists of relative motion
mostly confined to the x− y plane, the top middle trajectories travel along a nearly vertical path.

Trajectories are generated to approach or depart apolune on an L2 southern near-rectilinear halo
orbit (NRHO), similar to the baseline orbit for the Lunar Gateway.1 Selected clusters of these
relative trajectories are displayed in Figure 8. Due to the orientation of the NRHO, significantly less
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Figure 8. Clusters of departing (red) and approaching (blue) relative motion trajecto-
ries for a chaser spacecraft near a target spacecraft in an L2 southern near-rectilinear
halo (NRHO) orbit at apolune.

Figure 9. Clusters of departing (red) and approaching (blue) relative motion tra-
jectories for a chaser spacecraft near a target spacecraft in a distant prograde orbit
(DPO).

motion in the x direction is observed compared to the other orbits. These relative motions exhibit
the widest variety of geometric diversity as a result of the nearly stable character of the NRHO.
One of the significant risks for relative motion in this orbit is the risk of recontact with the target
following departure.25 Examples of this behavior appear in the two left departure trajectories, both
of which feature close passes to the target. With the addition of uncertainty from ephemeris effects,
these motion types may risk a potential collision. Trajectories like those observed on the top right
could potentially reduce this risk. However, if trajectory design requirements made close passes on
approach desirable, the bottom left two clusters may represent appropriate choices.
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Figure 10. Clusters of departing (red) and approaching (blue) relative motion trajec-
tories for a chaser spacecraft near a target spacecraft in a low prograde orbit (LoPO).

Figure 11. Clusters of departing (red) and approaching (blue) relative motion tra-
jectories for a chaser spacecraft near a target spacecraft in distant retrograde orbit
(DRO).

Relative motion trajectories near targets in planar periodic orbits centered about the Moon exhibit
interesting behavior. Clusters for a distant prograde orbit (DPO) are shown in Figure 9. Many
trajectories directly depart or approach the target region with a relatively high speed, as seen in the
left column. Other classes of trajectories linger in the target region for significantly longer, with
chaser spacecraft in the right column performing multiple loops with close passes by the target.
Clusters of relative motion paths near a low prograde orbit (LoPO) are showcased in Figure 10.
All of these trajectories resemble the spiral patterns observed with the DRO, with the number of
rotations gradually increasing to exceedingly high values. The right column also features clusters
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of trajectories with motion bounded near the target, which may also be associated with a quasi-
periodic orbit (QPO). Finally, selected clusters near a distant retrograde orbit (DRO) are seen in
Figure 11. As with the DPO, some trajectories rapidly depart or approach the target. The majority
of the remaining trajectories gradually spiral out or in, with clusters representing various degrees of
revolution and associated curvature events. However, some paths remain bounded near the target in
trajectories that resemble a QPO, as seen in the right column.

Across each case, the relative motion primitives presented in this paper provide a summary of
chaser spacecraft trajectories for a target spacecraft located along a periodic orbit. This behavior
varies significantly depending on the type of periodic orbit, the target spacecraft’s specific loca-
tion along this periodic orbit, and the initial relative position and velocity of the chaser spacecraft.
Although invariant manifolds can be used to predict behavior departing and approaching periodic
orbits in the CR3BP, the diversity of geometry observed in these trajectories is more extensive. The
application of relative motion primitives can be used to identify the most common modes of this
behavior, select for desired initial or final conditions, or choose desired loitering characteristics near
a target spacecraft. A more succinct summary of the complex relative paths in these environments
could have multiple applications for rendezvous trajectory design, and is a focus of ongoing work.

CONCLUSION

This paper adapts motion primitives for astrodynamics applications to summarize relative trajec-
tories near periodic orbits in cislunar space. These relative motion primitives capture geometrically
distinct paths for a chaser spacecraft in the vicinity of a target spacecraft. First, target states are
generated along periodic orbits in the vicinity of libration points L1 and L2 as well as the Moon.
Chaser states are then generated to span the configuration space of relative positions and velocities
around each target state. These conditions are then propagated forward and backward in time to
produce departing and approaching sets of relative motion trajectories, taking samples at specified
conditions using several criteria. The samples are arranged into feature vectors that are then used
to cluster both sets of trajectories into geometrically similar groupings, and a representative motion
primitive is extracted from each cluster. Through this approach, a library of chaser spacecraft tra-
jectories is generated to summarize relative motion near selected target states along several periodic
orbits. Future work includes aggregating relative motion clusters from multiple target states to iden-
tify regions of similar behavior along periodic orbits. A broader goal is to combine relative motion
primitives with far-range motion primitives to design comprehensive rendezvous trajectories.
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