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USING MOTION PRIMITIVES TO GENERATE INITIAL GUESSES
FOR TRAJECTORIES TO SUN-EARTH L2

Natasha Bosanac*

This paper focuses on generating initial guesses for a spacecraft trajectory from
an Earth-Moon L1 Lyapunov orbit to a Sun-Earth L2 Lyapunov orbit. To achieve
this goal, a motion primitive approach to trajectory design is employed. Motion
primitives are generated as fundamental building blocks of motion in each of the
Earth-Moon and Sun-Earth circular restricted three-body problems. Sequences
of these primitives are then generated by searching a motion primitive graph that
captures their sequential composability within and between dynamical models.
These sequences are processed to extract initial guesses for a transfer.

INTRODUCTION

Robotic servicing has the potential to increase the sustainability of space operations well beyond
low Earth orbit. Mission concept development for prior and future large observatories operating in
orbits around Sun-Earth L2 have included discussions of the architecture and technologies required
to render robotic servicing feasible [1–3]. In making this determination, key considerations that
impact the trajectory of a robotic servicer spacecraft include, but are not limited to, 1) the holding
location of a servicer spacecraft before transferring to the location of an observatory, 2) whether the
observatory is serviced near Sun-Earth L2, 3) the response time and maneuver requirements for the
servicer spacecraft, and 4) whether a servicer could be reused, refueled, and/or transfer hardware
components at a depot located in the Earth-Moon system. These outstanding questions benefit from
analysis of the associated trajectory tradespace for a robotic servicer.

A wide variety of researchers within our community have used dynamical systems theory to
study segments of the tradespace of trajectories between cislunar space and orbits near Sun-Earth
L1 or L2. For instance, Farquhar, Muhonen, and Church presented complex trajectories for the
International Sun-Earth Explorer 3 (ISEE-3) spacecraft from a Sun-Earth L1 orbit to the Earth’s
geomagnetic tail [4]. Howell, Barden, and Lo generated multiple transfers from the Earth vicinity
to Sun-Earth libration point orbits and between them [5]. Folta and Webster generated transfers for
a robotic servicer from Earth-Moon L2 halo orbits and distant retrograde orbits to Sun-Earth L2
[6]. Similarly, Ojeda Romero and Howell generated geometrically diverse transfers with impulsive
maneuvers from a geosynchronous transfer orbits to periodic and quasi-periodic orbits near Sun-
Earth L1 and L2 [7]. Pascarella et al. have also generated various trajectories with impulsive and
continuous thrust maneuvers from an Earth-centered orbit to Sun-Earth L2 [8]. These papers, and
many more within the astrodynamics community, motivate continued development of procedures
for generating complex trajectories across a diverse tradespace.
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Recently, Smith and Bosanac introduced a motion primitive approach to trajectory design that
was inspired by their use in robotics [9, 10]. Motion primitives have been defined throughout the
literature as fundamental building blocks of motion [11]. As a result, sequences of these primi-
tives have supported constructing complex paths. Smith and Bosanac adapted this idea to define a
motion primitive for spacecraft trajectories as an arc that summarizes the geometry of nearby arcs
and supplies a building block for the trajectory design process [9, 10]. Expanding upon their use
in path-planning, Smith and Bosanac then constructed a motion primitive graph to generate initial
guesses from sequences of these primitives in the Earth-Moon system [10]. Through their initial
proof of concept, they demonstrated that motion primitives have the potential to support 1) rapid
and automated trajectory design and 2) efficient exploration of the trajectory trade space. Since this
first proof of concept, Miceli and Bosanac have substantially built upon this procedure to improve
the automation of the approach as well as the quality and diversity of the resulting initial guesses;
this updated procedure is used as a foundation for this paper [12]. In addition, Gillespie, Miceli,
and Bosanac have extended this idea to construct behavioral motion primitives that summarize nat-
ural and controlled arcs with a similar geometry while also encoding the associated maneuvering
behaviors [13]. The improved procedure for generating the motion primitives, as presented in both
of these papers, is used here.

This paper leverages a motion primitive approach to construct initial guesses for a planar space-
craft trajectory from an Earth-Moon L1 Lyapunov orbit to a Sun-Earth L2 Lyapunov orbit. To
support preliminary exploration of the solution space, motion primitives for natural trajectories are
independently constructed to summarize arcs along stable and unstable manifolds of L1 and L2

Lyapunov orbits in each of the Earth-Moon and Sun-Earth circular restricted three-body problems
(CR3BP). The sequential composability of each pair of primitives is then assessed to construct a
motion primitive graph. In this graph, primitives that are closely located within the configuration
space are connected in two cases: if they are generated in the same CR3BP, or if a primitive from the
Earth-Moon CR3BP passes close to a primitive from the Sun-Earth CR3BP at a sufficient distance
from the Earth. This graph is then searched to generate a sequence of primitives, from both dynam-
ical models, that predicts the existence of a nearby continuous trajectory with impulsive maneuvers.
Furthermore, distinct motion primitive sequences are used to generate geometrically distinct initial
guesses. This approach is demonstrated by generating initial guesses for planar transfers, assuming
the Earth-Moon and Sun-Earth orbit planes coincide.

BACKGROUND

Circular Restricted Three-Body Problem

The motion of a spacecraft in a three-body system is approximated using the CR3BP. This dy-
namical model assumes that two primary bodies gravitationally interact with a spacecraft [14]. The
gravity field of each primary body, P1 and P2, is modeled as spherically symmetric, with constant
masses [14]. However, the spacecraft is assumed to possess a negligibly small mass in comparison
[14]. To support the construction of an autonomous dynamical model, the paths followed by the
two primaries are assumed to be circular [14].

The CR3BP is often formulated using nondimensional coordinates. Length, mass, and time quan-
tities are normalized to produce a distance between the two primaries, total system mass, and pri-
mary system mean motion all equal to unity [14]. In the Earth-Moon CR3BP, the length and time
are normalized by l∗ = 384, 400 km and t∗ ≈ 3.751903 × 105 sec, respectively. However, in the
Sun-Earth CR3BP, l∗ = 1.495979× 108 km and t∗ = 5.022635× 106 sec [15].

2



A P1-P2 rotating frame is defined using the locations of the two primary bodies. The origin is
selected as their barycenter whereas the axes x̂ŷẑ are defined as follows [14]: x̂ is directed from
the center of the larger primary to the center of the smaller primary; ẑ is aligned with the orbital
angular momentum vector of the primaries; and ŷ completes the right-handed, orthogonal triad.
With these definitions, the nondimensional state vector of the spacecraft is defined in the rotating
frame as x = [rT ,vT ]T where r = [x, y, z]T and v = [ẋ, ẏ, ż]T ; the dot notation indicates a time
derivative with respect to an observer in the rotating frame.

The orientation of the rotating frame is often described relative to a general inertial frame. The
axes of the inertial frame are labeled as X̂Ŷ Ẑ. In addition, Ẑ = ẑ whereas the angle between each
of the x̂ and X̂ axes and the ŷ and Ŷ axes is equal to θ = nt where n = 1 is the nondimensional
mean motion of the primary system and t is nondimensional time. The origin of the inertial frame
may be selected as desired, e.g., at the barycenter or one of the primaries. With these definitions, the
nondimensional state vector of the spacecraft is defined in the inertial frame as X = [RT ,V T ]T

where R = [X,Y, Z]T and V = [X ′, Y ′, Z ′]T ; the prime notation indicates a time derivative with
respect to an observer in the inertial frame.

A state vector can be transformed between the rotating and inertial frames. The rotation matrices
from the inertial frame to the rotating frame [RCI ] and vice versa are defined as [16]

[RCI ] =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 [ICR] =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (1)

where the I and R superscripts indicate the inertial and rotating frames, respectively. The time
derivatives of these rotation matrices are calculated as

[RĊI ] = θ̇

− sin(θ) cos(θ) 0
− cos(θ) − sin(θ) 0

0 0 0

 [IĊR] = θ̇

− sin(θ) − cos(θ) 0
cos(θ) − sin(θ) 0

0 0 0

 (2)

Then, the position and velocity vectors are transformed from the rotating frame to the inertial frame,
without a change of origin, as [16]

R = [IĊR]r V = [ICR]v + [IĊR]r (3)

When shifting the origin of the inertial frame to a primary body, as opposed to the system barycenter,
a translation is applied to only r prior to this transformation [16].

The equations of motion for the CR3BP are written in nondimensional form in the rotating frame.
These second-order differential equations are equal to

ẍ− 2ẏ =
∂U∗

∂x
, ÿ + 2ẋ =

∂U∗

∂y
, z̈ =

∂U∗

∂z
(4)

where the pseudopotential function is defined as

U∗ =
x2 + y2

2
+

1− µ

ρ1
+

µ

ρ2
(5)

and ρ1 =
√
(x+ µ)2 + y2 + z2, and ρ2 =

√
(x− 1 + µ)2 + y2 + z2 [14]. Furthermore, µ is the

mass ratio, equal to 1.215058535056245×10−2 in the Earth-Moon CR3BP and 3.003480594542193×
10−6 in the Sun-Earth CR3BP [15]. An integral of motion exists in the rotating frame and is equal
to CJ = 2U∗ − ẋ2 − ẏ2 − ż2 [14]. This quantity is labeled the Jacobi constant.
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Patched Circular Restricted Three-Body Problems

The patched circular restricted three-body problem offers a low-fidelity approximation of the
dynamical environment when three primary bodies exert a substantial gravitational force on the
spacecraft [16]. Two CR3BPs are defined, with a common primary or barycenter of two primaries,
to govern the dynamics in distinct regions. In this paper, the Earth-Moon and Sun-Earth CR3BP are
employed, with the Earth serving as the larger primary in the Earth-Moon CR3BP and the smaller
primary in the Sun-Earth CR3BP. Furthermore, for this proof of concept, the Earth-Moon and Sun-
Earth planes are assumed to be coplanar due to the approximately 5◦ average angle between these
planes; however, future work will eliminate this assumption. Solutions are connected between the
Earth-Moon CR3BP and the Sun-Earth CR3BP only after the spacecraft reaches a nondimensional
distance from the Earth equal to 1.4 in the Earth-Moon system.

To study the connectivity between trajectories generated in each of the Earth-Moon and Sun-
Earth CR3BP, a spacecraft state vector must be transformed between distinct rotating frames and
normalization schemes. Specifically, the nondimensional position and velocity vectors of the space-
craft in the Earth-Moon rotating frame, labeled as rEM

EMB,sc and vEM
EMB,sc, are transformed to the

Sun-Earth rotating frame, labeled as rSESEB,sc and vSE
SEB,sc. In these vector labels, the superscripts

‘EM’ and ‘SE’ indicate the two primaries used to define the rotating frame and normalized: ‘E’ is
the Earth, ‘M’ is the Moon, and ‘S’ is the Sun. The subscripts, however, identify the basepoint and
target of the vector: ‘EMB’ is the Earth-Moon barycenter, ‘SEB’ is the Sun-Earth barycenter, and
‘sc’ is the spacecraft. At a given epoch t, this transformation consists of the following steps [16]:

1. Translate rEM
EMB,sc from using an origin at the barycenter of the Earth-Moon system to the

Earth by adding µ to the x-component, producing rEM
E,sc. The velocity vectors are unchanged,

i.e., vEM
E,sc = vEM

EMB,sc as the Earth is fixed in the rotating frame.
2. Transform rEM

E,sc and vEM
E,sc from the Earth-Moon rotating frame to the inertial frame centered

at the Earth using Equation 3 to produce REM
E,sc and V EM

E,sc

3. Dimensionalize the position and velocity vectors in the inertial frame as well as the time using
the characteristic quantities from the Earth-Moon CR3BP.

4. Nondimensionalize the position and velocity vectors in the inertial frame as well as the time
using the characteristic quantities from the Sun-Earth CR3BP.

5. Transform RSE
E,sc and V SE

E,sc from the inertial frame centered at the Earth to the Sun-Earth
rotating frame by substituting [RCI ] into Equation 3 to produce rSEE,sc and vSE

E,sc.
6. Translate the position vector from using an origin at the Earth to the barycenter of the Sun-

Earth system, by subtracting 1− µ from the x-component to produce rSESEB,sc and vSE
SEB,sc.

This transformation is influenced by the relative angle between the x̂ axes in each of the Earth-
Moon and Sun-Earth rotating frames, which is periodic over an interval labeled the synodic period
and equal to 29.487 days when calculated using the characteristic quantities in this paper.

Curvature

Differential geometry is useful in studying curved paths, such as the solutions to a nonlinear,
continuous time-system. A trajectory that is generated from a specified initial state vector over a
time interval t ∈ [t0, tf ] traverses a distance equal to the arclength s that is calculated as [17]

s =

∫ tf

t0

ds =

∫ tf

t0

√
ẋ2 + ẏ2 + ż2dt (6)
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Furthermore, the curvature κ(t) at a single state along the trajectory captures the deviation from a
straight line in the osculating plane [18]. The unsigned curvature is calculated as

κ(t) =
||ṙ(t)× r̈(t)||

||ṙ(t)||3
(7)

where ṙ = v is the velocity vector and r̈ = [ẍ, ÿ, z̈]T is the acceleration vector [18]. This expression
possesses a singularity when the speed equals zero.

Density-Based Clustering

Clustering algorithms focus on discovering groupings formed by members of a dataset in a spec-
ified feature vector space [19]. Of the various approaches in the literature, density-based clustering
algorithms construct clusters as members of the dataset that exist in regions of sufficiently high
density. The current procedure for extracting motion primitives from trajectories generated in the
CR3BP relies on the use of the following two density-based clustering algorithms [13]: Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), developed by Ester et al. [20]; and
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), developed
by Campello, Moulavi, and Sander [21].

DBSCAN discovers clusters as members that exist in high-density local neighborhoods of other
members. This clustering algorithm relies on the definition of an mpts-neighborhood as the local
neighborhood of a current member that encompasses mpts members in the selected feature vector
space [20]. A core point is a member of a dataset with an mpts-neighborhood that possesses a radius
that is less than or equal to a specified value ϵ. A border point lies in the mpts-neighborhood of a
core point but its own mpts-neighborhood possesses a radius that is larger than ϵ. A noise point does
not exist in the mpts-neighborhood of any core points. Using these definitions, a cluster is formed
by 1) core points that lie within the ϵ-sized neighborhood of other core points and 2) their associated
border points [20]. Thus, DBSCAN uniquely assigns each member to either a specific cluster or as
noise. This algorithm is implemented using the dbscan function in MATLAB [22].

HDBSCAN extends DBSCAN by removing the dependence on a specified value of ϵ. To achieve
this goal, the core distance of each member of the dataset is defined as the radius of its mpts-
neighborhood. This information is used to calculate a mutual reachability distance between each
pair of points that further separates members that exist in low-density regions. This quantity is
defined between the ith and jth members of the dataset as

dreach(fi,fj) = max(dcore(fi), dcore(fj), d(fi,fj)) (8)

where d(fi,fj) is the distance between their feature vectors, calculated using a specified distance
measure [21]. HDBSCAN uses these distances to define the edge weights of a graph where each
node corresponds to a member of the dataset [21]. A minimum spanning tree of this graph is then
used to generate a hierarchy of all possible clustering results as a function of the mutual reachability
distance. Clusters are selected from this hierarchy by locating grouping that maximize the stability
of the result, assessed using an excess of mass definition [21]. Modifications to this cluster selection
process include applying a minimum threshold ϵmerge to the splitting of members into multiple
clusters, as presented by Malzer and Baum [23]. Through this procedure, HDBSCAN uniquely
assigns each member to either a specific cluster or as noise. Due to the use of a cluster hierarchy,
irregularly shaped clusters can be extracted with distinct densities. This algorithm is implemented
using the hdbscan library in Python [24].
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TECHNICAL APPROACH

A motion primitive approach is used to generate initial guesses for planar trajectories in the
patched Earth-Moon and Sun-Earth CR3BP. The most recent version of the primitive extraction
process, presented by Gillespie, Miceli, and Bosanac [13], is used to form a motion primitive library.
These primitives summarize arcs along the hyperbolic invariant manifolds of selected L1 and L2

Lyapunov orbits in each of the Earth-Moon and Sun-Earth planar CR3BP. Then, the recently updated
version of this primitive-based trajectory design framework, developed by Miceli and Bosanac [12],
is employed. Accordingly, a brief overview of this existing process is presented in this section; more
details appear in each of the original papers. Furthermore, minor modifications are presented in this
paper to accommodate the use of primitives generated in two distinct CR3BPs and a time-dependent
assessment of their sequential composability.

Step 1: Generate Motion Primitive Library

Motion primitives are used to summarize arcs from stable and unstable manifolds of selected pe-
riodic orbits [13]. First, each periodic orbit is discretized into 500 states, equally spaced in arclength
along the periodic orbit. Then, these states are perturbed along the planar stable and unstable modes
of the periodic orbit, calculated from the monodromy matrix [16]. Each state that lies in the stable
or unstable eigenspace is then propagated backward or forward in time, respectively for a duration
that is equal to ∆tprop = ∆tpertdoub +∆tdes [13]. In this expression, ∆tpertdoub is the perturbation
doubling time [25] whereas ∆tdes is a specified, desired duration; ∆tdes is selected as 3 months in
the Earth-Moon system and 12 months in the Sun-Earth system. However, propagation terminates
early if the spacecraft impacts a spherical approximation of the Sun, Earth, or Moon; their radii are
equal to 695, 700 km, 6, 378.137 km, and 1, 738 km, respectively [26].

Arcs that are summarized using motion primitives are sampled from the hyperbolic invariant
manifolds in a geometry-based manner [13]. As each trajectory is generated to lie in the stable or
unstable manifold, the maxima in curvature are located [13]. These states correspond to geometri-
cally meaningful locations along a trajectory, where the shape is rapidly changing. For trajectories
that possess at least three curvature maxima, each arc begins at either a maximum in curvature or
the initial condition [13]. Then, the arc is defined to span four additional maxima in curvature [13].
However, if the trajectory impacts the Earth or Moon, the trajectory ends at the termination condi-
tion. If a trajectory possesses fewer than three curvature maxima, the window used to define the arc
is shortened accordingly. Through this approach, every arc begins at a consistently defined location
and overlaps with the previous arc, if one exists.

Each continuous arc is discretized in a geometry-based manner to produce a sequence of states
[13]. First, the arc is coarsely sampled at the initial state, intermediate maxima in curvature, and
the final state; this first step produces up to five samples. Between subsequent coarse samples, two
additional samples are equally distributed in the arclength along that segment [13]. Accordingly, a
trajectory with three intermediate maxima between the initial and final states is sampled using 13
geometrically distributed states.

The sampled states are used to construct two feature vectors that capture the geometry of the
trajectory in the rotating frame used in the CR3BP when generating the path [27]. First, a shape-
based feature vector is defined as

fs = [v̂1, v̂2, ..., v̂n]
T (9)

where n is the number of sampled states and v̂i is the velocity unit vector at the ith sample in the
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rotating frame. In addition, a position-based feature vector is defined using the position vectors in
the rotating frame at each of the samples as

fp = [r1, r2, ..., rn]
T (10)

Each feature vector is 3n-dimensional.

Arcs extracted from the same stable or unstable half-manifold and sampled using the same
number of states are coarsely clustered in the shape-based feature vector space, calculated over
their entire duration, using HDBSCAN [13, 27]. At this step, mpts = 4, mminclust = 5, and
ϵmerge = 2 sin(5◦/2) [27]. Repeating this process for trajectories described by a distinct number of
sampled states produces a set of coarse clusters C and noise. Any arcs labeled as noise are discarded
from further consideration.

Arcs in each coarse group are input to a cluster refinement process originally developed by
Bosanac [13, 27]. For each coarse group, the ith sampled state along each arc is used to calculate
two three-dimensional feature vectors, fs and fp. DBSCAN is used to independently cluster the
sampled states in each of these two feature vector spaces, producing two clustering results. At this
step, mpts = 4 and ϵ = (mpts+1)max(max(emed, emaxk), ϵthresh), where emed is the median dis-
tance from each member to its nearest neighbor, emaxk is the mminclust-largest distance from each
member to its nearest neighbor and ϵthresh is a specified threshold; in fs, ϵthreshold = 2 sin(5◦/2)
whereas in fp, ϵthreshold = 10−3 in the Earth-Moon system and ϵthreshold = 10−4 in the Sun-Earth
system. This process is repeated across all n samples to produce 2n clustering results. Any trajec-
tories that are consistently clustered together and possess at least mminclust = 5 members form a
refined cluster. The result of this step is a set of clusters R and noise. Any arcs labeled as noise are
discarded from further consideration.

Each cluster is used to generate a motion primitive and its region of existence [13, 28]. The motion
primitive is extracted as the medoid of the cluster in the position-based feature vector space, equal
to the trajectory that follows the most similar path in the configuration space to all other trajectories.
The region of existence is then the volume of the phase space spanned by all members of the cluster.
Similar to the approach used by Smith and Bosanac [10] as well as Miceli and Bosanac [12], this
region of existence is approximated using up to 40 trajectories that are equally distributed across
the associated cluster. If a global cluster is composed of more than 40 members, a subset of 20
representative trajectories are identified by applying k-medoids clustering [29] in the position-based
feature vector space of the entire trajectory using Matlab’s built-in function [22].

The clusters that are localized to each half-manifold are aggregated to produce a smaller set of
global clusters. First, the motion primitive of each cluster is compared to the primitives of all
other clusters that are generated to approach or depart the same periodic orbit or a neighboring
periodic orbit. Then, the nearest neighboring representatives in each of the position and velocity
feature vector spaces are identified. Each pair of local clusters is then input to the cluster refinement
process. If any members are grouped together, the local clusters are merged. Each global cluster
contains one or more merged local clusters. Upon merging, the motion primitive and region of
existence are updated.

This procedure is used to generate motion primitives that summarize arcs from the stable and
unstable manifolds of selected L1 and L2 Lyapunov orbits in the Earth-Moon and Sun-Earth CR3BP.
Selected motion primitives, generated in the Earth-Moon CR3BP and Sun-Earth CR3BP are plotted
in Figures 1 and 2, respectively, to summarize groups of geometrically similar arcs that approach or
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depart a) an L1 Lyapunov orbit or b) an L2 Lyapunov orbit. In these figures, the motion primitive is
depicted with a thick blue curve whereas representative members of each cluster are plotted with thin
blue curves. The initial state along each trajectory is indicated by a blue circle marker. Finally, the
primaries are depicted with gray circle markers whereas L1 and L2 are plotted using gray diamonds.
Within each subfigure, the motion primitive summarizes a set of geometrically similar trajectories.
Furthermore, distinct motion primitives capture distinct geometries. For each of these four cases,
the selected orbits as well as the number of clusters and assigned arcs are summarized in Table 1.

Step 2: Construct Motion Primitive Graph

A high-level, motion primitive graph is constructed to summarize the sequential composability
of motion primitives in the library. Similar to the formulation presented by Miceli and Bosanac
[12], nodes are defined as segments of motion primitives whereas directed edges are added between
nodes where the associated segments exist sufficiently nearby in the phase space. These edges are
then weighted to convey the ease of traversability, defined as a function of the change in velocity.
However, this graph is modified to accommodate the use of primitives from two distinct dynamical
models and to slightly increase the fidelity of the sequential composability assessment.

Nodes are defined as segments of each primitive and its region of existence [12]. Recall that
each trajectory that lies within the region of existence of a motion primitive is already sampled
geometrically as described in the previous subsection. Thus, the segments of all members of the
region of existence between the ith and (i + 1)th sampled states are represented by the ith node
associated with a single primitive. Primitives in the generated library are described by up to 13
sampled states, including the initial and final states, that segment the trajectories into up to 12
sections. Therefore, each primitive contributes up to 12 nodes to the graph. Furthermore, a motion
primitive graph that is constructed using N motion primitives possesses up to 12N nodes, before
the inclusion of any nodes representing additional boundary conditions.

Directed edges are added between sequential nodes sampled from the same primitive and its re-
gion of existence [12]. A directed edge with a zero edge weight is added from the node representing
the ith segment to the node of the (i + 1)th segment along a single primitive, for i < Ns where

Earth-Moon
L1 Lyapunov

Earth-Moon
L2 Lyapunov

Sun-Earth L1

Lyapunov
Sun-Earth L2

Lyapunov

CJ [3.003998,
3.188089]

[3.006767,
3.172112]

[3.0007867,
3.0008907]

[3.0007891,
3.0008867]

Period (days) [11.692,
18.480]

[14.649,
19.203]

[175.067,
179.701]

[177.562,
181.730]

Number of clus-
tered trajectories

70,836 24,945 5,999 5,345

Number of motion
primitives

5,452 3,482 628 607

Table 1. Summary of motion primitives used to summarize arcs that approach or depart selected
libration point orbits in the Earth-Moon or Sun-Earth CR3BP

.
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a)

b)

Figure 1. Selected motion primitives generated in the Earth-Moon CR3BP to ap-
proach or depart a) an L1 Lyapunov orbit or b) an L2 Lyapunov orbit.

Ns is the number of segments [12]. This edge encodes natural traversal of the primitive or any
geometrically similar trajectory.

Using the procedure presented by Miceli and Bosanac [12] as a foundation, the region of existence
associated with each primitive is coarsely approximated as a collection of circular neighborhoods
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a)

b)

Figure 2. Selected motion primitives generated in the Sun-Earth CR3BP to approach
or depart a) an L1 Lyapunov orbit or b) an L2 Lyapunov orbit.

around each sampled state. The representative trajectories that span the global cluster associated
with a primitive are then further discretized to place up to 4 additional samples that are equally
spaced in arclength along each segment, along with the initial state; this additional discretization
step slightly increases the fidelity of the sequential composability assessment presented by Miceli
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and Bosanac [12]. Then, neighborhoods are constructed around each sampled state in the configu-
ration space. For the kth sampled state within the ith segment of any trajectory in the cluster, the
neighborhood radius in the configuration space is approximated as the maximum of 1) the mean dis-
tance to the 2nd-nearest neighboring position vector along any other trajectories or 2) a predefined
threshold, calculated as 5× 10−3 in the Earth-Moon CR3BP or 5× 10−4 in the Sun-Earth CR3BP.
This slight modification to the definition presented by Miceli and Bosanac [12] supplies a larger
neighborhood radius while reducing the bias of low mean distances between members of tightly-
packed clusters. This process is repeated for all segments, coarsely approximating each region of
existence via sets of circles.

Bidirectional edges are added between the nodes associated with segments of primitives within
the same system if they are sequentially composable [12]. If these coarse approximations of the
regions of existence of primitives 1 and 2 overlap in the configuration space at their ith and kth
segments, respectively, with a change in the velocity direction that is less than 45◦, they are con-
sidered sequentially composable [12]. In this case, a bidirectional edge is added between the nodes
representing the ith segment along primitive 1 and the kth segment along primitive 2. This edge is
weighted by the following scalar quantity, also used by Bodin, Bosanac, and Gillespie [30]:

w1,i,2,k =
||v1,l,i − v2,m,k||

||v1,l,i||+ ||v2,m,k||)
(11)

where the subscripts in variables such as v1,l,i indicate that the velocity vector is located along a
state along segment i of trajectory l within the region of existence of primitive 1. Furthermore,
trajectories l and m are selected from each region of existence to minimize the edge weight. The
second term conveys the maneuver magnitude; as noted by Bruchko and Bosanac [31], normalizing
this quantity by the sum of speeds reduces bias in the edge weights when the speed is high before
or after the connection.

Directed edges are also added between primitives that are generated from different systems if
they are sequentially composable. In this case, the sequential composability criteria are expanded
to include the following conditions:

• The composable state along a motion primitive generated in the Earth-Moon CR3BP must
reach a distance of at least r1 = 1.5 from the Earth (the larger primary in this system).

• The motion primitive generated in the Sun-Earth CR3BP must pass closer to the Earth than
any state along the motion primitive generated in the Earth-Moon CR3BP.

• The neighborhoods of the states along the primitive from the Earth-Moon CR3BP, after trans-
formation to the Sun-Earth rotating frame, must overlap with the neighborhoods of the states
along the primitive from the Sun-Earth CR3BP for any relative angle between the Earth-Moon
and Sun-Earth rotating frames. This calculation is performed in the Sun-Earth rotating frame
using quantities nondimensionalized in the Sun-Earth CR3BP.

Through this modification to the sequential composability assessment, the connection between the
primitives generated in two different models must occur in the exterior region of the Earth-Moon
system. Furthermore, the edge is directed from the node along a primitive generated in the Earth-
Moon CR3BP to the node along a primitive generated in the Sun-Earth CR3BP. Accordingly, the
trajectories are constrained to not return to the Earth-Moon system after departure in this preliminary
implementation. The weight of each edge is then calculated using the same scalar quantity as in
Equation 11, but using nondimensional coordinates in the Sun-Earth rotating frame. The edge
weight is calculated using the lowest state discontinuity for any relative angle.
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As presented by Miceli and Bosanac [12], path constraints can also be incorporated into the
motion primitive graph. In this paper, the traversable nodes, i.e., those with edges that are connected
to other nodes, are constrained to reflect the dominance of each CR3BP in distinct regions of the
Sun-Earth-Moon system. First, a feasible segment along a primitive that is generated in the Sun-
Earth CR3BP must possess at least one sampled trajectory that does not pass below a distance of 1.3
nondimensional units from the Earth when calculated using characteristic quantities from the Earth-
Moon CR3BP. This constraint reflects that the Earth-Moon CR3BP is considered the dominant
dynamical model below this distance, with some margin added. Similarly, a feasible segment along
a primitive that is generated in the Earth-Moon CR3BP must possess at least one sampled trajectory
that does not remain beyond a distance of 2.4 nondimensional units from the Earth when calculated
using characteristic quantities from the Sun-Earth CR3BP; this value is selected using the Earth’s
sphere of influence. If all sampled trajectories along a segment of a region of existence associated
with a primitive violate either criterion, the node is not connected to any other nodes in the graph.

The motion primitive library constructed in Step 1 is used to form a motion primitive graph with
a higher-level structure that reflects the desired trajectory itineraries. This graph structure consists
of two blocks, as depicted conceptually in Figure 3. The left block contains only nodes associated
with segments along N primitives generated in the Earth-Moon CR3BP and the right block contains
only nodes associated with segments along M primitives generated in the Sun-Earth CR3BP. In this
figure, the label Pi next to a row of nodes, represented by circles, indicates that they represent
segments associated with the ith primitive. The nodes within a single block can be connected via
weighted, directed edges to nodes within the same block if they satisfy the path constraints and
either 1) correspond to sequential segments of the same primitive as depicted by black arrows, or
2) correspond to sequentially composable segments along distinct primitives, as indicated by purple
arrows. However, weighted, directed edges can only be added from nodes in the left block to nodes
in the right block, as depicted by red arrows, if their segments are sequentially composable for any
initial epoch in the Sun-Earth rotating frame. This motion primitive graph structure encodes an
itinerary where the spacecraft travels within the Earth-Moon system and then departs to the exterior
region to insert into a path that directly approaches an orbit in the Sun-Earth CR3BP. Although this
graph definition supports the current proof of concept, ongoing work is focused on reducing the size
and complexity of the motion primitive graph.

Motion primitives from stable 
and unstable manifolds of Earth-
Moon L1 and L2 Lyapunov orbits

Motion primitives from stable 
and unstable manifolds of Sun-
Earth L1 and L2 Lyapunov orbits

P1

P2

PN

PN+1

PN+2

PN+M

…

…

…

…

…

…

…

…

Figure 3. Conceptual depiction of high-level structure of motion primitive graph
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Step 3: Search Motion Primitive Graph

The motion primitive graph is searched to produce paths, each composed of nodes and edges, that
are transformed to primitive sequences. First, Dijkstra’s algorithm is used to generate a single path
through the graph. This solution is then converted to the associated primitive sequence, with each
primitive sampled to retain only the segments associated with the nodes that appear in the sequence.
In this paper, the initial epoch is assumed to be unconstrained; this assumption substantially reduces
the complexity of the search process as edges between primitives from distinct dynamical models
are fixed at each iteration of the graph search. Ongoing work includes incorporating a fixed initial
epoch into the graph search process.

Dijkstra’s algorithm is employed to generate a sequence of nodes and edges that connect a start
node to an end node. This algorithm, developed by Edsger Dijkstra [32], begins by defining a
priority queue that consists of the start node with a zero cost. Then, the lowest cost entry in the
priority code produces a path from the start node, ns. The final node along this path is designated
as the current node, ni. Each previously unvisited neighboring node is identified using the edges
of the graph. The cumulative cost to reach neighbor ni+1 is then calculated as g(ns, ni+1) =
g(ns, ni) + g(ni, ni+1) where g(ns, ni) is the current cumulative cost from the start node ns to
node ni. This neighboring node is also marked as having been visited. The cost and the path from
the start node to the neighbor ni+1 are then added to the priority queue. This process is repeated for
all neighbors of the current node. Then, the priority queue is sorted by the value of g and the lowest
cost path is selected for further exploration from its last node. This process continues until the end
node is reached or the priority queue is empty. If successful, the output of this process is the path
that minimizes the cumulative edge weights.

To support exploring a tradespace, k solutions are generated. Following the work of Bruchko and
Bosanac [31] and then Miceli and Bosanac [12], Yen’s algorithm is used to compute these addi-
tional solutions. Yen’s algorithm is a k-shortest paths algorithm that relies on the use of modified
subgraphs to generate suboptimal solutions [33]. Once the first path has been computed via Dijk-
stra’s algorithm, the edge between nodes ni and ni+1 in the solution is removed from the graph to
produce a subgraph. The portion of the path from the start node ns to the current node ni is labeled
the spur path. Then, Dijkstra’s algorithm is used to generate a path through the graph from node ni

to the end node ne. This path is concatenated to the spur path. Then, the combined path is added
to a list along with its total cost. This process is repeated for all edges between subsequent nodes
along the most recently computed path, removing only one edge from the graph at each iteration.
The next best path from those currently identified is used to repeat the process. However, at this
step, if the current node is identified as ni, all edges that connect ni to any subsequent nodes along
previously explored solutions are removed from the subgraph. This entire process is repeated until
k solutions have been generated.

Step 4: Generate Initial Guess from Primitive Sequence

A primitive sequence computed in the previous step is used to generate an initial guess for a planar
transfer between an L1 Lyapunov orbit in the Earth-Moon CR3BP to a Sun-Earth L2 Lyapunov
orbit. This process follows the formulation developed by Miceli and Bosanac [12] that relies on
constructing a localized graph. The result is a set of arcs, sampled from the region of existence of
each primitive, that supplies a discontinuous initial guess for a transfer while retaining the geometry
of the original primitive sequence. Although this paper does not correct or optimize these initial
guesses, this step will be included in future work.

13



The localized graph defines the nodes as the traversed segments of the representative trajectories
within the region of existence of each primitive in the sequence [12]. First, each of the representative
trajectories spanning the region of existence of a primitive is segmented using the same procedure
as described in Step 2. However, at this step, the segment of each trajectory between the ith and
(i + 1)th sampled states contributes a node to the graph. Accordingly, a region of existence that is
coarsely represented by 20 trajectories that are each discretized into 12 segments would contribute
240 nodes if the entire primitive is traversed. However, if only segments 2 to 5 were traversed in
the original primitive sequence generated in Step 3, this region of existence would contribute only
80 nodes. Thus, a primitive sequence composed of A primitives that are partially or fully traversed
would be represented by a localized graph of up to 480A nodes.

Edges are added between the nodes of the localized graph in a manner that reflects the primitive
sequence. First, directed, zero-weight edges are added between sequential segments along the same
trajectory. Then, edges are added from the end of the last traversed segment of each trajectory
associated with one primitive to the start of the traversed segment of every trajectory associated
with the subsequent primitive, if their segments are sequentially composable. The edge between
node i and node j is assigned the following edge weight:

wi,j = ||ri − rj ||+ 0.01

(
1− cos

(
vi · vj

||vi||||vj ||

))
(12)

when the position and velocity vectors are associated with the combination of discretely sampled
states along each segment that minimize this edge weight. In this definition, the first term incen-
tivizes reducing the position discontinuity during refinement whereas the second term includes, to a
lesser extent, the change in the velocity direction through an impulsive maneuver. If the two nodes
correspond to the segments of trajectories that are generated in distinct dynamical models, two mod-
ifications are employed: 1) the position and velocity vectors of the trajectory from the Earth-Moon
CR3BP are transformed to the Sun-Earth rotating frame, and 2) the epoch that produces the lowest
edge weight is used in this calculation.

The localized graph is searched using Dijsktra’s algorithm to generate an initial guess. The search
process produces a sequence of arcs along trajectories sampled from within the region of existence
of the primitives in the identified sequence. These arcs form the initial guess for a trajectory.

RESULTS

A motion primitive graph is generated and searched to produce initial guesses from primitives
associated with libration point orbits in the Earth-Moon CR3BP to primitives associated with li-
bration point orbits in the Sun-Earth CR3BP. For computational efficiency in this proof of concept,
this motion primitive graph is formed using 216 selected members of the motion primitive library.
The resulting graph consists of 2,529 nodes and 315,683 edges. A few different initial and final
primitives are selected to define the boundary conditions for the graph search.

Three examples of geometrically distinct initial guesses between various initial and final primi-
tives are depicted in Figures 4-5. The lefthand side of each figure depicts part of the initial guess in
the Earth-Moon rotating frame, zoomed into the vicinity of the Moon, whereas the righthand side
of each figure depicts part of the initial guess in the Sun-Earth rotating frame. In this rightmost sub-
figure, the arcs generated in the Earth-Moon CR3BP are plotted in red whereas the arcs generated
in the Sun-Earth CR3BP are plotted in blue. Across all subfigures, the start of each arc is indicated
by a circle with the arrows indicating direction of motion and the Earth and Moon are indicated, but
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a)

b)

c)

d)

Figure 4. Examples of initial guesses for trajectories from an arc departing an Earth-
Moon L1 Lyapunov orbit to an arc approaching a Sun-Earth L2 Lyapunov orbit.
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a)

b)

c)

Figure 5. Examples of initial guesses for trajectories from an arc departing an Earth-
Moon L1 Lyapunov orbit to an arc approaching a Sun-Earth L2 Lyapunov orbit.

not to scale. In these three examples, the transfers are geometrically distinct and visually appear
to produce paths with relatively low position discontinuities. Analysis of the energy changes and
required maneuver magnitudes is an avenue for future work. Furthermore, the inclusion of all mem-
bers of the motion primitive library is expected to drastically expand the number of geometrically
diverse initial guesses.

CONCLUSIONS

This paper leveraged a motion primitive approach to generate planar initial guesses for spacecraft
trajectories from an Earth-Moon L1 Lyapunov orbit to a Sun-Earth L2 Lyapunov orbit. This paper
leveraged an approach previously developed by Miceli and Bosanac [12], with minor modifications
to incorporate the use of primitives from two different dynamical models. Ongoing work is focused
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on generating a wider array of the initial guesses using the entire motion primitive library and
correcting the initial guesses to produce continuous, maneuver-enabled transfers.
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