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CONSTRUCTING AN ATLAS OF
NATURAL SPACECRAFT TRAJECTORIES IN AN

EPHEMERIS MODEL OF CISLUNAR SPACE

Natasha Bosanac*

This paper presents a foundation for constructing an atlas of natural spacecraft
motion that begins near the Moon in a point mass ephemeris model of the Earth-
Moon system. These trajectories span up to 21 days subject to the point mass
gravitational influences of the Earth, Moon, and Sun. Groups of geometrically
distinct trajectories are automatically generated across an array of energy levels
and epochs using distributed clustering. These groups of trajectories are then hi-
erarchically visualized in a digestible manner using a dendrogram. An atlas may
eventually support trajectory analysis, design, and prediction in cislunar space.

INTRODUCTION

With the increased utilization of cislunar space, a broad summary of the solution space in a
high fidelity model is valuable. Understanding these possible motions supports designing complex
trajectories with various itineraries or predicting potential future paths for an observed object. In
low-fidelity models, researchers have leveraged traditional dynamical systems techniques to study
families of periodic orbits, homoclinic or heteroclinic connections between them, and general trans-
fers. For instance, Broucke presented and examined a diverse array of periodic orbits in the Earth-
Moon circular restricted three-body problem (CR3BP) [1]. In another example, Leiva and Briocco
studied families of periodic orbits that travel between the Earth and Moon vicinities in the Earth-
Moon CR3BP [2]. Previous researchers have also studied general trajectories using chaos indicators
and Lagrangian coherent structures in models of various fidelity. For instance, Onozaki, Yoshimura,
and Ross used Lagrangian coherent structures to identify families of transit and nontransit orbits in
the Earth-Moon-Sun system [3]. Building upon these and many more contributions, it is valuable
to systematically summarize a broader array of trajectories, including 1) spatial trajectories that do
not follow fundamental solutions, or their finite-time equivalents, and 2) trajectories that exist in
high-fidelity models or models that depend on physical parameters.

Similar goals in summarizing complex datasets or dynamical mechanisms appear across a wide
variety of fields. For instance, in disciplines such as biology, the diverse array of groups of cells
or tissues have been used to construct broad summaries often labeled as atlases; each atlas can be
useful in supporting knowledge discovery and development of new medical technologies or theories.
Examples of these atlases include the Tabula Sapiens [4], mouse cell atlases [5], and brain atlases
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[6]. In these examples, biological data is either manually grouped or clustered in an unsupervised
manner to identify detailed groups. Then, techniques such as hierarchical clustering and dimension
reduction have been used to identify broader classes of cell types or hierarchical taxonomies. Atlases
like these, which exist across a broader array of disciplines, inspire the work in this paper.

This paper leverages a clustering-based framework that has recently been introduced and refined
by Bosanac to automatically summarize a complex solution space in a chaotic multi-body gravi-
tational system [7, 8]. The current procedure, presented by Bosanac [8, 9] and used within this
paper, begins with two definitions: 1) an approach for discretely summarizing a continuous trajec-
tory using geometry information, and 2) a two-step density-based clustering process. Using these
definitions, the summarization process consists of three key steps: 1) sampling trajectories across
the phase space in a geometry-aware manner, 2) summarizing smaller partitions of trajectories, and
3) aggregating local clusters from distinct partitions to form a global cluster summary. The existing
clustering-based approach presented by Bosanac [8, 9] has been demonstrated by summarizing 21-
day trajectories that begin near the Moon across an array of energy levels in the circular restricted
three-body problem and a single energy level in a point mass ephemeris model of cislunar space.
These works have demonstrated the capability to automatically summarize a geometrically-diverse
array of spacecraft trajectories and associate them across models of distinct fidelity.

This paper focuses on creating a foundation for constructing a preliminary atlas of natural space-
craft motion that begins in the vicinity of the Moon in a point mass ephemeris model of the Earth-
Moon system. These trajectories are generated to span up to 21 days in an ephemeris model that
incorporates the point mass gravitational influences of the Earth, Moon, and Sun. Groups of geo-
metrically distinct trajectories are generated automatically using clustering across an array of energy
levels and epochs, selected to span the period of the Moon’s orbit relative to the Earth. These groups
of trajectories are then organized hierarchically in a dendrogram to support visualization and anal-
ysis, similar to cell and animal taxonomies. Selected groups within the atlas are also analyzed in
this paper. The goal of generating an atlas is to support further knowledge discovery within our
technical community in spacecraft trajectory design, analysis, and prediction.

BACKGROUND

Reference Frames

A Moon-centered inertial frame is used during trajectory generation and sampling. The origin
of this frame is located at the center of the Moon whereas the axes X̂Ŷ Ẑ are equal to the axes of
most recent realization of the International Celestial Reference Frame (ICRF) [10, 11]. These axes
are also used to access ephemerides of selected celestial bodies in the DE440 kernel [12]. In this
frame, the state of the spacecraft is expressed as X̄ = [X,Y, Z,X ′, Y ′, Z ′]T , where the notation ()′

indicates an observer fixed in the inertial frame.

A pulsating Earth-Moon rotating frame is used for trajectory description and visualization. The
origin of this frame is located at the Earth-Moon barycenter. The axes are defined consistent with
their traditional use in the lower-fidelity circular restricted three-body problem as follows: x̂ is
directed from the center of the Earth to the center of the Moon, ẑ is parallel to the orbital angular
momentum vector of the Moon’s orbit relative to the Earth, and ŷ completes the right-handed triad.
These axes are scaled to maintain a distance of unity between the centers of the Earth and Moon. In
this frame, the nondimensional state of the spacecraft is expressed as x̄ = [x, y, z, ẋ, ẏ, ż]T , where
the notation ˙( ) indicates an observer fixed in this pulsating, rotating frame.
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To support the framework presented in this paper, states are transformed between the two frames.
The transformation matrices rely on the position vector R̄E,L(t) of the Moon relative to the Earth at
a specified epoch t in the axes of the ICRF and its time derivatives; in this definition, the subscripts L
and E identify the Moon and Earth, respectively. The axes of the rotating frame are then expressed
in terms of R̄E,L(t) as the following three column vectors:

x̂ =
R̄E,L

||R̄E,L||
ẑ =

R̄E,L × V̄E,L

||R̄E,L × V̄E,L||
ŷ = ẑ × x̂ (1)

The first time derivatives of these axes are calculated as

dx̂(t)

dt
=

R̄′
E,L

||R̄E,L||
− x̂

x̂ · R̄′
E,L

||R̄E,L||
dẑ(t)

dt
≈ 0

dŷ(t)

dt
= ẑ × dx̂(t)

dt
(2)

where the second approximation is also used in GMAT [13]. The second time derivatives of these
axes are calculated as

d2x̂(t)

dt2
=

R̄′′
E,L

||R̄E,L||
−

R̄′
E,L(R̄

′
E,L · x̂)

||R̄E,L||2
− dx̂(t)

dt

(R̄′
E,L · x̂)

||R̄E,L||

− x̂

(
R̄′′

E,L · x̂
||R̄E,L||

+
R̄′

E,L

||R̄E,L||
· dx̂(t)

dt
−

(R̄′
E,L(t) · x̂)2

||R̄E,L(t)||2

)
(3)

d2ŷ(t)

dt2
= ẑ × d2x̂(t)

dt2
d2ẑ(t)

dt2
≈ 0 (4)

Finally, the third time derivatives of these axes are equal to

d3x̂(t)

dt3
=

R̄′′′
E,L

||R̄E,L||
− 2

R̄′′
E,L(R̄

′
E,L · x̂)

||R̄E,L||2
−

R̄′
E,L

||R̄E,L||2

(
R̄′

E,L · dx̂(t)
dt

)
−

R̄′
E,L(R̄

′′
E,L · x̂)

||R̄E,L||2

+ 2
R̄′

E,L(R̄
′
E,L · x̂)2

||R̄E,L||3
− d2x̂(t)

dt2
(R̄′

E,L · x̂)
||R̄E,L||

− 2
dx̂(t)

dt

(
R̄′

E,L

||R̄E,L||
· dx̂(t)

dt

)
− dx̂(t)

dt

(R̄′′
E,L · x̂)

||R̄E,L||

+
dx̂(t)

dt

(R̄′
E,L · x̂)2

||R̄E,L||2
−x̂

(R̄′
E,L)

||R̄E,L||
·d

2x̂(t)

dt2
−2

d2x̂(t)

dt2
R̄′′

E,L

||R̄E,L||
·dx̂(t)

dt
−3

x̂(R̄′
E,L · x̂)

||R̄E,L||2

(
R̄′

E,L · dx̂(t)
dt

)
−dx̂(t)

dt

(R̄′′
E,L · x̂)

||R̄E,L||
−
x̂(R̄′′′

E,L · x̂)
||R̄E,L||

−3
x̂(R̄′

E,L · x̂)(R̄′′
E,L · x̂)

||R̄E,L||2
+
dx̂(t)

dt

(R̄′
E,L · x̂)2

||R̄E,L||2
−2

x̂(R̄′
E,L · x̂)3

||R̄E,L||3
(5)

d3ŷ(t)

dt3
= ẑ ×

...
x̂

d3ẑ(t)

dt3
≈ 0 (6)

In these expression, first-order, forward finite differences of the velocity vector are used to approxi-
mate the second and third time derivatives of the Moon relative to the Earth in the inertial frame.

The expressions for the axes of the rotating frame and their time derivatives are used to transform
the state vector of the spacecraft between the rotating and inertial frames. An inertial position vector
for the spacecraft at an epoch t is transformed to the rotating frame as

r̄B,sc(t) =
[
RC(t)I

]
R̄L,sc(t) + r̄B,L (7)
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where the rotation matrix [RC(t)I ] equals

[
RC(t)I

]
=

x̂T (t)ŷT (t)

ẑT (t)

 (8)

and the subscript B indicates the Earth-Moon barycenter. The first, second, and third time deriva-
tives of the position vector are also expressed in the rotating frame as

v̄B,sc(t) = ˙̄rB,sc(t) =
[
RĊ(t)I

]
R̄L,sc(t) +

[
RC(t)I

]
V̄L,sc(t) (9)

āB,sc(t) = ¨̄rB,sc(t) =
[
RC̈(t)I

]
R̄L,sc(t) + 2

[
RĊ(t)I

]
V̄L,sc(t) +

[
RC(t)I

]
ĀL,sc (10)

...
r̄ B,sc(t) =

[
R

...
C (t)I

]
R̄L,sc(t) + 3

[
RC̈(t)I

]
V̄L,sc(t) + 3

[
RĊ(t)I

]
¨̄RL,sc(t) +

[
RC(t)I

] ...
R̄L,sc

(11)
In these expressions, the time derivatives of the rotation matrix are calculated using row vectors
equal to the transpose of the corresponding time derivatives of x̂(t), ŷT (t), ẑ(t) as defined in the
previous paragraph.

Ephemeris Model

The motion of the spacecraft within cislunar space is modeled using a point mass ephemeris
model of the Moon, Earth, and Sun. In this model, the spacecraft is assumed to possess a neg-
ligible mass in comparison to these three celestial bodies. Furthermore, the state vectors of the
Moon, Earth, and Sun are accessed in the axes of the ICRF using the DE440 lunar and planetary
ephemerides along with the associated Spacecraft, Planet, Instrument, C-matrix, Events (SPICE)
toolkit provided by NASA’s Navigation and Ancilliary Information Facility [12, 14].

The equations of motion are expressed in the Moon-centered inertial axes. The second-order,
vector differential equation is written as

¨̄RL,sc = −GML

(
R̄L,sc

R3
L,sc

)
+G

∑
i=E,S

Mi

(
R̄sc,i

R3
sc,i

−
R̄L,i

R3
L,i

)
(12)

where the subscript S identifies the Sun, G is the universal gravitational constant, and Mi is the
mass of body i [15]. The quantities in this equation are nondimensionalized using the instantaneous
values of the characteristic quantities from the lower-fidelity Earth-Moon circular restricted three-
body problem [16]: length quantities are nondimensionalized to produce an instantaneous distance
of unity between the centers of the Earth and Moon, time quantities are normalized to produce an
instantaneous mean motion of the Earth-Moon system that is equal to unity, and mass quantities are
nondimensionalized to ensure that the sum of the masses of the Earth and Moon are equal to unity.

Curvature

Differential geometry supplies foundational concepts that are useful for shape interrogation of
nonlinear trajectories [17]. At an instant of time t, the spacecraft possesses a position vector
r̄(t) = [x(t), y(t), z(t)]T , velocity vector ˙̄r(t) = [ẋ(t), ẏ(t), ż(t)]T , and acceleration vector ¨̄r(t) =
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[ẍ(t), ÿ(t), z̈(t)]T in the pulsating, rotating frame. Over an interval t ∈ [t0, tf ], the arclength s
describes the distance traversed along a trajectory and is equal to [18]

s =

∫ tf

t0

ds =

∫ tf

t0

|| ˙̄r(t)||dt (13)

In addition, the curvature κ(t) at a single state along the trajectory captures the instantaneous devi-
ation from a straight line and, therefore, the rate of change of the orientation of the tangent vector
as a function of arc length [17]. For a spatial trajectory, the unsigned curvature is calculated as [17]

κ(t) =
|| ˙̄r(t)× ¨̄r(t)||

|| ˙̄r(t)||3
(14)

but possesses a singularity when the speed is exactly equal to zero. Integrating this quantity as a
function of arclength produces the total absolute curvature [17], equal to

κtot(t0, tf ) =

∫ tf

t0

κ(s)ds =

∫ tf

t0

κ(s)
√
ẋ2 + ẏ2 + ż2dt (15)

This quantity reflects the angle swept out by the trajectory within its evolving osculating plane,
monotonically increasing by 2π with each revolution.

Clustering

The goal of clustering algorithms is to automatically group similar objects [19]. This similarity is
assessed using a set of characteristics that are encoded into a finite-dimensional feature vector f̄ and
a specified distance measure for comparing the feature vectors of two objects. Although a variety
of clustering algorithms exist, this paper follows the procedure presented by Bosanac [8, 9] to use
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm developed
by Ester et al. [20] and the Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) algorithm developed by Campello, Moulavi, and Sander [21] in a two-step
process. These two density-based clustering algorithms are used because they select clusters based
on sufficiently dense groupings of data within the feature vector space and, therefore, do not require
a priori knowledge of the expected number of clusters.

DBSCAN DBSCAN organizes members of a dataset into a cluster if their neighborhoods are
density-connected [20]. To define this clustering process, DBSCAN relies on categorizing members
into one of the following three classes [20]:

• Core points possess at least mpts neighbors that lie within a radius of ϵ in the feature vector
space; this region is labeled its mpts-neighborhood. Through this definition, core points lie in
sufficiently dense regions of the feature vector space.

• Border points lie in the mpts-neighborhood of a core point but do not lie in sufficiently dense
regions of the feature vector space.

• Noise points do not lie in the mpts-neighborhood of any core points and lie in insufficiently
dense regions of the feature vector space.

Using these definitions, two core points are density-connected if they exist within a distance of ϵ in
the feature vector space [20]. A single cluster is first defined by the chain of core points that are
density-connected to each other. Then, the border points of these core points are added to the cluster.
This process labels each member of a dataset as either belonging to a specific cluster or as noise
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[20]. These cluster or noise assignments are influenced by the values of the governing parameters
mpts and ϵ. Accordingly, DBSCAN is useful for clustering when both parameters can be specified
or calculated heuristically to be constant across an entire dataset.

HDBSCAN HDBSCAN was developed as a hierarchical extension of DBSCAN, eliminating the
specification of a single value of ϵ prior to clustering [21]. First, the core distance dcore(f̄i) of the
ith member of a dataset is calculated as the distance to its mpts-nearest neighbor [21]. Then, the
mutual reachability distance is defined between the i-th and j-th members as

dreach(f̄i, f̄j) = max(dcore(f̄i), dcore(f̄j), d(f̄i, f̄j)) (16)

where d(f̄i, f̄j) is the distance between the feature vectors of the two members [21]. This trans-
formation to a mutual reachability distance further separates members that also lie in lower-density
regions. HDBSCAN then constructs a graph with nodes corresponding to members of the dataset
and edges weighted by their mutual reachability distance [21]. This graph is summarized by a min-
imum spanning tree that is used to construct a cluster hierarchy by gradually removing the edges
with the highest weights and identifying the connected components [21]. From this hierarchy of all
possible clustering assignments as a function of mutual reachability distance, the selected clusters
possess at least mclmin members and maximize stability using an excess of mass definition [21]. As
presented by Malzer and Baum [22], a scalar quantity ϵmerge can also be used to constrain the min-
imum value of the mutual reachability distance between two members that are assigned to distinct
clusters. Following this procedure, HDBSCAN assigns each member of a dataset to a cluster or as
noise. Although HDBSCAN does not leverage the concept of border points, noise points that meet
the definition of a border from DBSCAN can be assigned to the cluster of the associated core point
in a post-processing step [23]. In contrast to DBSCAN, HDBSCAN is useful when the value of ϵ is
not known a priori or may vary across the expected clusters.

TECHNICAL APPROACH

This section presents a brief overview of the technical approach used to generate a clustering-
based summary of a geometrically diverse array of trajectories. First, two general definitions are
presented for 1) generating a dataset of trajectories across the solution space and 2) the two-step
clustering process for generating groups of geometrically similar trajectories. These definitions are
then used in the clustering-based framework for automatically summarizing the solution space. This
general procedure follows the approach developed by Bosanac [8, 9], with some new modifications
to accommodate the use of a high-fidelity ephemeris model. A new step to hierarchically visualize
the clusters is also presented.

Generating a Dataset

Generating Trajectories The trajectories of interest are generated to begin near the Moon at a
specified initial epoch. Each trajectory is propagated from an initial condition in the point mass
ephemeris model for up to 21 days [8]; this duration is selected to enable sufficiently diverse ge-
ometries to emerge. However, this propagation terminates early upon impact with the Earth or
Moon, each modeled as spheres with a radius equal to their equatorial radii of 6,378.1363 km and
1738.2 km, respectively [13].

Each trajectory is generated numerically along with information about its curvature. The aug-
mented state used during propagation consists of 1) the state vector of the spacecraft in the Moon-
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centered inertial frame and 2) the elapsed total curvature in the Moon-centered inertial frame. Al-
though trajectories are described by their state information in the rotating frame prior to clustering,
calculating the total curvature in the inertial frame reduces the required computational time as frame
transformations and additional SPICE calls to ephemerides are not required at each time step. This
augmented state is propagated using the first-order differential equations capturing the equations of
motion in Eq. 12 and the integrand of Eq. 15. Integration is performed using the GNU Scientific
Library in C++ with an 8/9th order Runge-Kutta method [24]. Events, such as satisfaction of the
termination criteria or those used to sample the trajectory, are detected during numerical integration
using Brent’s root-finding method for computational efficiency [25].

Sampling Trajectories A nonlinear, continuous trajectory is sampled geometrically to produce a
sequence of states [8, 9]; these states are directly used to construct a finite-dimensional description
for clustering. In a Moon-centered inertial frame, a trajectory with a total curvature of κtot(t0, tf )
completes r = ⌈κtot(t0, tf )/π⌉ half-revolutions within its osculating plane. States are sampled
along this trajectory as follows [8, 9]:

• The first sample is placed at the initial condition
• Along the first r−1 half-revolutions, Na states are sampled at every integer multiple of pi/Na

in the total curvature
• Along the final half-revolution or less, Na states are evenly distributed in the elapsed total

curvature along this half-revolution, including the final state

Sampling in the total absolute curvature produces a sequence of Ns = Nar + 1 states that captures
the geometry of the trajectory in the inertial frame. States are located closer together at segments of
the trajectory where the shape is changing most significantly in the inertial frame, but more evenly
spaced when the trajectory resembles a circle, for example. The value of Na must be selected
to balance increasing the fidelity of capturing trajectory geometry via larger values of Na with
reducing the computational requirements via smaller values of Na. In this paper, Na = 3 is selected
to balance both objectives, consistent with the approach previously presented by Bosanac [8, 9].
Although this approach does not sample states using the geometry of the trajectory in the rotating
frame, it supports fast computation and tends to distribute fewer states near lower speed segments
in the rotating frame where the trajectory is changing direction.

Describing Trajectories The states sampled along each trajectory are used to generate two finite-
dimensional vectors that are used during clustering [8, 9]. First, a shape-based feature vector f̄s is
defined using unit vectors T̂i that are tangent to the path in the Earth-Moon pulsating rotating frame
at the ith sample. This feature vector is calculated as

f̄s =
[
T̂1, T̂2, ..., T̂Nf−1, T̂Nf

]
(17)

This vector possesses a dimension of 3Nf and possesses a singularity when the speed is exactly
zero. Using the tangent or velocity unit vector instead of the velocity vector limits disparities in the
order of magnitude of the elements as trajectories pass through regions of distinct sensitivity. Next,
a position-based feature vector f̄p is defined using the position vectors r̄i at the ith sample in the
Earth-Moon pulsating rotating frame. This feature vector is calculated as

f̄p =
[
r̄1, r̄2, ..., r̄Nf−1, r̄Nf

]
(18)

to produce a 3Nf -dimensional vector.
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Clustering a Set of Trajectories

The two-step clustering procedure developed by Bosanac is used to group trajectories by their
geometric similarity [8, 9]. The first step involves coarsely generating initial groups based on the
shape of the trajectories for their entire duration. Then, each coarse group is refined to produce
clusters of trajectories with a consistently similar path and shape through the configuration space.

Coarse Shape-Based Clustering Initial, coarse clustering is performed in the shape-based fea-
ture vector space using HDBSCAN [8, 9]. First, each trajectory is described by its Ns-dimensional
shape-based feature vector, f̄s, calculated for its entire duration. Then, these feature vectors of tra-
jectories that complete the same number of half-revolutions are input to HDBSCAN for clustering.
This particular algorithm and approach is useful when the number of expected clusters is not known
a priori and those clusters may possess distinct densities across the dataset. The result is a set of
coarse groupings C = {C1, C2, ..., Cn} and a set of unlabeled, noise points Nc. The trajectories that
are designated as noise are discarded from further analysis.

When using HDBSCAN to coarsely cluster the trajectories, the governing parameters are selected
as predefined constant values [8, 9]. The minimum cluster size is selected as mclmin=5 to prioritize
discovering localized variations between trajectories but with at least a few neighbors. Then, the
neighborhood sizes are selected using mpts = mclmin − 1 = 4 to span the minimum cluster
membership. In addition, the minimum threshold for separating clusters in f̄s is selected using
the sum of distances between a sequence of Ns unit vectors that are separated by an angle of 5
degrees, i.e., ϵmerge = 2

√
Ns sin(5/2). Finally, the distance metric used through clustering is

selected as the Euclidean distance for increased computational speed and to only compare states at
similar locations within their sequences.

Because the shape-based feature vectors are higher-dimensional, the same distance between two
trajectories could correspond to geometric differences at the start or end of the trajectories, for ex-
ample. Although those trajectories might be geometrically different, the clustering algorithm only
assigns groups based on the scalar distance between the trajectories for their entire duration. Alter-
natively, the same distance between two trajectories may result in substantial differences in geom-
etry depending on the region of the system. Accordingly, the coarse groupings may contain trajec-
tories with noticeable geometric differences. Furthermore, two trajectories with a similar shape but
distinct path through the configuration space may also be contained within the same coarse group.
Thus, cluster refinement is a valuable part of the trajectory clustering process to ensure high-quality
groupings as the trajectories pass through various regions of the system.

Cluster Refinement A refined set of clusters is constructed to ensure that each group consists
only of trajectories that possess a similar path and shape through the configuration space for their
entire duration. This process, previously developed by Bosanac [8, 9], is modeled after a convoy
detection scheme that groups moving objects together if their sampled configurations are density
connected throughout the entire trajectory. First, consider a set of N trajectories in a single coarse
grouping from the first step of the clustering process. The ith state along each of these trajectories
is then used to form N three-dimensional position-based feature vectors. These N feature vectors
are clustered using DBSCAN to identify groups of trajectories that are density-connected at their
ith sample in f̄p. A graph is then formed to capture this grouping decision. In this graph, each
trajectory is represented by a node. Then, trajectories in each group that are clustered together
and possess position-based feature vectors at the ith sample that lie within the ϵ- neighborhood of
another trajectory define an undirected, unweighted edge between their corresponding nodes. This
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process is repeated in the shape-based feature vector space at the ith sample. Next, this process is
repeated for all samples along the trajectories to produce 2Ns clustering results. Groups of at least
nminclust trajectories that are consistently connected in all 2Ns graphs form a refined cluster. Any
trajectories that are not assigned to a cluster are then discarded from further consideration.

During the cluster refinement process, DBSCAN’s governing parameters are selected adaptively
using heuristics [8, 9]. The size of the neighborhood used to capture density is selected to match
the associated parameter in HDBSCAN, i.e., mpts = 4. Then, the neighborhood radius used to
determine when two samples are density-connected in the selected feature vector space is selected
using the following heuristic: ϵ = mptsmax(e, ϵthreshold) where e is the median value of the
distance between the sample along a trajectory and its nearest neighbor. This heuristic for e adapts to
the data from each coarse grouping, without being biased by the presence of outliers. Furthermore,
when this value is recalculated at each sampled state along a trajectory, e adapts to a trajectory
that passes through regions of distinct sensitivity in a system. In the heuristic for ϵ, ϵthreshold is a
minimum threshold for separating trajectories, selected as 4 × 10−3 in the position-based feature
vector space to be consistent with the grid size and 2 sin(5/2) in the shape-based feature vector
space. Similar to the previous step, the Euclidean distance is used to assess similarity between the
three-dimensional feature vectors.

Cluster Representative A refined cluster of trajectories is summarized by a representative mem-
ber [8, 9]. This member is extracted as the medoid of the cluster [7], i.e., the member that is most
similar to all other members in a selected feature vector space [19]. In this paper, this calculation
is performed using the position-based feature vector evaluated along the entire duration of each
trajectory. For a cluster Ck that is composed of Pk members, the medoid is located as

Tmed,k = argminTi∈Ck

 Pk∑
j=1,i ̸=j

d(f̄i, f̄j)

 (19)

where d(f̄i, f̄j) is the Euclidean distance between the feature vectors of the i-th and j-th trajectories
and Ti is the i-th trajectory.

Data-Driven Summarization Process

Step 1: Sample the Solution Space The initial position vectors of all trajectories to be sampled
are defined using a uniform grid in the Earth-Moon pulsating, rotating frame [8, 9]. This grid
is defined with the following nondimensional position components: x ∈ [−0.834, 1.156], y ∈
[−0.2, 0.2], z ∈ [−0.2, 0.2] with a step size of ∆pos = 0.004. Accordingly, these initial position
vectors all lie in the vicinity of the Moon and extend just beyond the L1 and L2 gateways.

Within a single dataset, the initial conditions are constrained to produce a specified value of the
Jacobi constant CJ,des in the Earth-Moon CR3BP and initial epoch. First, the speed in the rotating
frame vrot is calculated as [szbehely]

vrot =
√
CJ,des − 2U∗ (20)

Although this quantity is not a constant of motion in an ephemeris model, the use of the Jacobi
constant to calculate the speed simply supports consistently discretizing and sampling the phase
space. If a position vector produces an imaginary speed at the selected value of the Jacobi constant,
it is discarded. Next, each dataset is also generated at a single initial epoch. The following initial
epochs are evenly spaced across one period of the Moon’s orbit, i.e., 27.32 days.
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The velocity vector of each initial condition is selected to produce a maximum in the curvature in
the Moon-centered inertial frame at a single, specified epoch. Accordingly, the initial condition is a
geometrically meaningful initial state that plays an analogous role to an apse relative to a specified
reference point. This maximum in the curvature is calculated in the inertial frame to ensure con-
sistency with the sampling procedure and computational speed. To select these initial conditions,
the families of velocity vectors that produce maxima in the curvature at a single position vector
are numerically and discretely approximated. Then, their associated trajectories are generated and
coarsely clustered to produce a set of representative velocity vectors that summarizes the broader
array of paths.

The velocity vector is parameterized by two angles in the rotating frame: 1) an in-plane angle
θxy ∈ [0, 360◦] measured from the x-axis and 2) an out-of-plane angle θz ∈ [−90◦, 90◦] measured
from the xy-plane. The velocity vector is expressed in terms of these angles as

v̄ = ẋx̂+ ẏŷ + żẑ = vrot cos(θxy) cos(θz)x̂+ vrot sin(θxy) cos(θz)ŷ + vrot sin(θz)ẑ (21)

Note that these velocity vectors are parameterized in the rotating frame for convenience and consis-
tency but are used to calculate maxima in the curvature along a trajectory in the inertial frame.

Next, initial guesses for the velocity vectors that produce maxima in the curvature in the Moon-
centered inertial frame are calculated. At each value of θz , sampled in 1 degree increments, θxy is
sampled in 1 degree increments and the time derivative of the curvature κ̇(t0) is calculated in the
Moon-centered inertial frame. If two neighboring values of θxy produce a values of κ̇(t0) with an
opposite sign, their average is stored as an initial guess for a velocity vector that may produce a
maximum in the curvature at the current value of θz .

These initial guesses are then used to calculate the velocity vectors with the desired speed in the
rotating frame and produce maxima in the curvature in the inertial frame. The values of ẋ and ẏ
must satisfy the following conditions:

dκ(X̄)

dt
= 0,

ẋ2 + ẏ2 + ż2

v2
− 1 = 0 (22)

The value of ż does not change, ensuring that the out-of-plane angle is equal to θz in the rotating
frame. The first condition requires that the state vector be transformed into the inertial frame.
The two variables, ẋ and ẏ are iteratively updated from their initial guess using the fsolve toolbox
in Matlab. If a solution is generated, the value of κ̈ is calculated. If this quantity is negative,
a maximum in curvature has been calculated. Repeating this process for all initial guesses at all
values of θz produces one or more one-parameter families of velocity vectors in the rotating frame.

Because state vectors and other quantities are calculated in the inertial and rotating frames, the
implementation must be efficient to support reasonable computational times. To achieve this goal,
the initial epoch is fixed when generating segments of the dataset. Thus, the transformation matrix
between the rotating and inertial frames and its time derivatives only need to be calculated once be-
fore generating a large number of velocity vectors for initial guesses that produce curvature maxima
at a fixed initial position. Furthermore, the position vector can be transformed only once between
the inertial and rotating frames. This efficiency is valuable as the transformation between rotating
and inertial frames requires the use of SPICE functions to access ephemerides of the Moon relative
to the Earth and matrix computations as described in the background.

Trajectories are generated from each velocity vector that produces a maximum in the curvature
in the inertial frame at the discretely sampled values of ż. Once these trajectories are generated
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numerically as described earlier, they are sampled based on their total curvature in the inertial frame
and described by the position vectors and velocity unit vectors at those sampled states in the rotating
frame. The shape-based feature vectors along trajectories completing the same number of half-
revolutions in the inertial frame are then input to HDBSCAN for coarse clustering. At this step,
mclmin = 3, mpts = 2, and ϵmerge = 0 are selected as the governing parameters due to the
localized nature of the dataset. This clustering step generates groups of trajectories that emanate
from the same position vector at the same initial epoch. Each cluster is then summarized by a
representative trajectory, equal to its medoid, as described earlier. The initial velocity vectors of the
representative trajectories of all clusters form the velocity vectors sampled at this position vector.
Furthermore, the associated trajectories are added to the dataset for clustering throughout the rest of
the procedure.

Step 2: Cluster Individual Partitions of Trajectories To support computational efficiency, the
trajectories sampled from across the solution space in Step 1 are assigned to smaller partitions. First,
trajectories that complete the same number of half-revolutions in the Moon-centered inertial frame
and, as a result, are sampled by the same number of state vectors, are isolated. These trajectories
are sorted by their initial value of x in the Earth-Moon pulsating rotating frame and then segmented
into evenly sized partitions composed of no more than 10,000 members. This upper bound on the
number of trajectories per partition is observed to produce fast clustering and analysis. Furthermore,
sorting the trajectories ensures that trajectories that begin in a similar region of the solution space
appear in the same partition.

Each partition is clustered independently to produce a set of local clusters. Following the two-
step clustering procedure outlined earlier, the trajectories are grouped by their geometry. The ith
partition is summarized by ci local clusters, labeled as Li = {Li

1,Li
2, . . . ,Li

ci}, and noise. Recall
that any trajectories that are designated as noise are discarded from further consideration.

Step 3: Aggregate Clusters to Form Global Summary Local clusters that contain geometrically
similar trajectories but exist across distinct partitions are merged. This aggregation procedure, which
is typically performed in distributed clustering, is implemented using pairwise decisions for compu-
tational ease and accuracy. First, candidate pairs of local clusters for merging are coarsely identified
using the feature vectors of their representative trajectories. Then, trajectories within these candi-
date pairs are clustered in a single step to determine whether the local clusters should be merged.

Due to the large number of trajectories sampled across the solution space and local clusters across
all partitions, pairs of local clusters that may serve as candidates for merging are identified coarsely.
First, the representative trajectory of the ith local cluster is compared to the representative trajec-
tories of all other local clusters that complete the same number of half revolutions in the inertial
frame. The k-nearest neighboring local clusters in each of the position-based and shape-based fea-
ture vector spaces then define the pairs of candidates for merging. In this paper, k = 2 to reduce the
computational effort associated with cluster aggregation.

Each candidate pair of local clusters is assessed to determine whether they should be merged. Tra-
jectories from each of the two local clusters are clustered together using the refinement procedure,
modeled after a convoy detection scheme, as outlined earlier. If any trajectories from two distinct
local clusters are grouped together, they are deemed geometrically similar. Accordingly, this pair
of local clusters is marked for merging. For large clusters, particularly those composed of trajecto-
ries that complete a large number of revolutions around the Moon and remain tightly bounded, this
process is implemented in a piecewise manner for computational efficiency. If a cluster possesses
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more than 2,000 members, it is segmented into evenly sized subsets with fewer than 2,000 members.
Then, each subset from the first local cluster is combined with each subset from the second local
cluster. If trajectories in any combination of these smaller subsets are merged together, the entire
clusters are merged.

The pairwise cluster aggregation decisions are used to generate global clusters across the entire
dataset. This step is performed using a graph representation. Each node is defined as a local cluster
within any partition. Then, undirected and unweighted edges are added between two nodes if their
local clusters are marked for merging. A connected component in this graph defines the entire set
of local clusters that are merged to form a single, global cluster. This cluster aggregation procedure
results in a set of P global clusters G = [G1,G2, ...,GP ]. At this step, a global cluster could be
formed from one or more local clusters.

In this paper, aggregation is performed in two steps. First, local clusters are aggregated across
a dataset generated with a single combination of CJ,des and initial epoch. The aggregated clusters
from each dataset are then further aggregated across distinct datasets to produce a single set of
global clusters as one or both parameters vary.

To support visualization and analysis, a dendrogram representation of each cluster of geomet-
rically distinct motion types is useful. This dendrogram is constructed using the cluster repre-
sentatives of each global cluster that captures trajectories completing a specified number of half-
revolutions in the inertial frame and described in the position-based feature vector space. At the
base of each dendrogram or tree, the leaves correspond to each global cluster representative. Mov-
ing from the bottom of the dendrogram to the top, the branch associated with each leaf connects to
the branch of its nearest neighboring global cluster representative at a height that is equal to their
distance in the position-based feature vector space. This branching or merging process continues
towards the top of the dendrogram until all global clusters are joined at a single tree root. Across
the tree, longer branches indicate that the corresponding global cluster representatives possess a
larger distance in the position-based feature vector space. Furthermore, groups of similar global
clusters should be located in similar regions of the dendrogram, consistent with possessing a rel-
atively small distance between their representatives. Through this graphical representation, each
dendrogram coarsely summarizes the relationships between every global cluster corresponding to
trajectories that complete the same number of half-revolutions in the inertial frame.

RESULTS

Ten datasets are generated with various combinations of the Jacobi constant used to define the
initial state and initial epochs. In this paper, the Jacobi constants lie within the range CJ,des ∈
[3.16, 3.19] and the initial epochs are selected as one of the following four values: January 9, 2025,
00:00.000 UTC, when the Moon is close to perigee; January 15, 2025, 19:55:12.0000 UTC; Jan-
uary 22, 2025, 15:50:24.0000 UTC, when the Moon is close to apogee; and January 29, 2025,
11:45:36.0000 UTC. The exact combinations of these values that are used to construct each dataset
are listed in Table 1 along with the number of trajectories that appear in the final global cluster
summary and the number of global clusters.

To support visualization and analysis, a dendrogram representation of the global clusters of ge-
ometrically distinct motion types is constructed. This dendrogram is constructed using the cluster
representatives of each global cluster described in the position-based feature vector space across the
first seven datasets listed in Table 1, composed of trajectories that begin from initial conditions with
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Table 1. Generated trajectories and summary across various energy levels and epochs in the point
mass ephemeris model

CJ,des Initial epoch (UTC) Number of trajectories in
clusters

Number of global
clusters

3.16 01/09/2025 00:00:00 1,757,699 1,239
3.165 01/09/2025 00:00:00 1,510,277 2,044
3.17 01/09/2025 00:00:00 1,311,936 1,718
3.175 01/09/2025 00:00:00 1,154,180 1,151
3.18 01/09/2025 00:00:00 1,030,481 930
3.185 01/09/2025 00:00:00 935,345 690
3.19 01/09/2025 00:00:00 841,367 719
3.16 01/15/25 19:55:12 1,668,494 3,141
3.16 01/22/2025 15:50:24 1,604,275 3,203
3.16 01/29/2025 11:45:36 1,675,383 2,799

Jacobi constants in the range CJ,des ∈ [3.16, 3.19] and a single initial epoch. Figures 1-7 display the
dendrograms for trajectories that complete one, two, three, four, six, eight, and ten half-revolutions
in the inertial frame. In each figure, the dendrogram appears in the central part of the figure. Then,
selected regions of the dendrogram are highlighted. From left to right, selected members of a global
cluster that lies within these regions are plotted below the dendrogram in the rotating frame. In each
figure, trajectories are colored on a blue to red scale by the Jacobi constant of their initial conditions:
blue indicating CJ,des = 3.19 and red indicating CJ,des = 3.16. The large circle marker locates
the initial condition whereas the Moon is plotted with a gray circle and the L1 and L2 equilibrium
points from the circular restricted three-body problem drawn with red diamonds. The dendrograms
in Figures 1-7 reflect the subtle and obvious geometric differences between trajectories in distinct
global clusters.Numarcs = 1

Figure 1. Dendrogram of global cluster representatives that complete up to half a
revolution in the inertial frame.

Figure 1, for example, displays trajectories the complete up to one half-revolution in the inertial
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Numarcs = 2

Figure 2. Dendrogram of global cluster representatives that complete up to two half-
revolutions in the inertial frame.

Numarcs = 3

Figure 3. Dendrogram of global cluster representatives that complete up to three
half-revolutions in the inertial frame.

frame. In the leftmost branches that are highlighted in green, trajectories revolve around L2 before
departing to the exterior region. Trajectories in the orange and purple highlighted regions directly
depart the L2 gateway with a similar geometry, consistent with their connecting branches possessing
a shorter length. The trajectories in the yellow highlighted region impact the Moon quickly and
possess a longer branch before connecting to the branches derived from other global clusters.

Similarly, Figure 3 displays trajectories the complete up to three half-revolutions in the inertial
frame. In this example, the trajectories in global clusters within the green and magenta highlighted
regions of the dendrogram revolve around the Moon prior to impact. In the middle blue highlighted
region, trajectories revolve around the Moon before departing through the L2 gateway. However, in
the majority of the dendrogram, trajectories pass through the L1 gateway before revolving around
the Moon. These global clusters are connected by smaller branches, consistent with their high
similarity. However, their connection to the global clusters of trajectories that revolve around the
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Numarcs = 4

Figure 4. Dendrogram of global cluster representatives that complete up to four half-
revolutions in the inertial frame.

Numarcs = 6

Figure 5. Dendrogram of global cluster representatives that complete up to six half-
revolutions in the inertial frame.

Moon before impact or pass through the L2 gateway are much longer, consistent with the substantial
difference in their itinerary.

As the number of half-revolutions completed by trajectories in a global cluster increases, the
dendrogram possesses shorter branch lengths. For instance, in Figures 6 and 7, the trajectories all
revolve around the Moon. In this case, their itineraries are similar. However, the paths followed by
geometrically distinct trajectories possess more subtle variations in geometry. In this case, classes
or groupings of branches in the dendrogram are still visible.

CONCLUSIONS

This paper uses a distributed clustering framework to summarize natural trajectories for a space-
craft in a point mass ephemeris model of the Earth-Moon-Sun system. Each trajectory is generated
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Numarcs = 8

Figure 6. Dendrogram of global cluster representatives that complete up to eight
half-revolutions in the inertial frame.

Numarcs = 10

Figure 7. Dendrogram of global cluster representatives that complete up to ten half-
revolutions in the inertial frame.

for up to 21 days, or until impact with a primary. Then, each trajectory is sampled according to
its geometry in the inertial frame. Next, the trajectory is summarized by its shape and path in the
configuration space, evaluated at these samples, but described in the rotating frame. This summary
captured trajectories across a range of energy levels and initial epochs; at each combination of these
values, the trajectories are summarized by 690-3,203 global clusters, each containing trajectories
with a distinct geometry in the rotating frame. To visualize and analyze these global clusters, a
dendrogram representation is employed. In these dendrograms, classes of trajectories with similar
itineraries, but smaller variations in geometry, emerge through groups of branches.
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