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I. Introduction
A challenge that is emerging in space situational awareness and space traffic management is analyzing the possible

future motions of an object in the presence of uncertainty within cislunar space. In a chaotic system, uncertainty in

the initial state may result in a variety of possible paths over sufficiently long time intervals. The level of uncertainty

associated with a state estimate may also increase when off-nominal conditions are present, the objects are difficult

to observe and track over time, and when characterizing an unknown object [1]. As the initial state estimate, level of

uncertainty, and model parameters all vary, the array of possible future motions can evolve in geometry and itinerary as

the paths pass through distinct regions of the Earth-Moon system. In these motivating examples, it may be valuable to

extract a clear, digestible summary of the distinct motion types that originate from a local region of the phase space.

Sets of nonlinear trajectories may be challenging to manually categorize in the absence of an analytical solution

or require automated analysis when reducing the dependency on a human-in-the-loop. In these cases, data mining

techniques may be useful for automatically extracting patterns and other information [2]. One technique, clustering,

enables extraction of a set of clusters that group similar data and separate dissimilar data [2]. These clusters can supply

an automated and digestible summary of a larger dataset that aids subsequent analysis.

Trajectory clustering, specifically, focuses on discovering patterns or groups of possible motions for a moving object

[3]. There are various approaches to summarizing the trajectories to be clustered, including 1) using a time series

representation, which may offer a high-fidelity representation of a trajectory but suffer from the curse of dimensionality;

or 2) constructing a model of the trajectory, which may reduce the dimension of the description but suffer from limited

accuracy when applied to a wide variety of paths [3]. These finite-dimensional trajectory descriptions are then input to a

selected clustering algorithm to extract groups of sufficiently similar paths.

Clustering has previously been used in astrodynamics. Early examples include Hadjighasem et al. using spectral

clustering for detecting Lagrangian vortices within nonlinear dynamical systems [4]; Nakhjiri and Villac using k-means

clustering for locating bounded motions near a distant retrograde orbit on a Poincaré map [5]; and Foslien et al.
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using data mining to identify anomalous conditions on the International Space Station’s gimbal system [6]. More

recently, Bosanac as well as Bonasera and Bosanac have developed a distributed clustering framework to summarize the

geometries of a wide array of trajectories in a multi-body system [7–9]. Smith and Bosanac also used clustering to

summarize arcs along families of periodic orbits and hyperbolic invariant manifolds that supply building blocks for

trajectory design in a multi-body system [10]. Finally, Miceli et al. used clustering to extract low lunar frozen orbits

from trajectories generated in a high-fidelity lunar gravity model [11]. These examples have demonstrated the value of

clustering for automatically extracting information from datasets in astrodynamics.

This Note presents a clustering approach to categorizing possible spacecraft trajectories generated from a local point

cloud of initial states by their geometric and temporal variations. In this proof of concept, initial states are propagated

forward in time in the Earth-Moon circular restricted three-body problem (CR3BP) to generate the associated continuous

trajectories. Each trajectory is then discretized into a set of states that are evenly distributed as a function of arclength.

Finite-dimensional feature vectors are constructed to summarize each continuous trajectory using the velocity direction

at each sample and elapsed time between samples. Then, Hierarchical Density-Based Spatial Clustering of Applications

with Noise (HDBSCAN) [12, 13] is used to cluster these feature vectors. Finally, these clusters are updated with

additional information to increase their accuracy and ensure less prevalent geometries are captured, if they exist. The

result is a set of clusters that supply a digestible summary of the array of possible motion types emanating from a local

point cloud of initial states. This process is applied to trajectory sets that begin in the local neighborhood of reference

states along periodic orbits near !1 and a distant prograde orbit (DPO).

This Note offers an original contribution to characterizing trajectories that emanate from a local region of the phase

space but exhibit diverse paths through a chaotic system. This challenge has been encountered in propagating uncertainty

along spacecraft trajectories. Many uncertainty propagation analyses focus on trajectories that closely resemble a

single nominal path. However, recent approaches have addressed calculating probability distributions that describe

non-Gaussian variations around a reference path or approximating distinct modes governing the evolution of a diverse

set of trajectories using Gaussian mixture models [14], radial basis functions [15], and the probabilistic admissible

region [16]. In contrast, the method presented in this Note focuses on using clustering to group a diverse set of paths that

begin from a local region of the phase space by their geometry. This approach can discover geometrically distinct groups

without assuming a function approximation form, incorporate trajectory characteristics, and avoid propagating additional

parameters along the trajectories. Furthermore, unlike previous applications of clustering to spacecraft trajectories

[8, 9, 11], the local proximity of the initial conditions of trajectories generated in this Note reduces both the geometric

diversity across the dataset and separation between geometrically different trajectories. These characteristics present an

interesting new application for using clustering to discover distinct motion types. In contrast to these works, this Note

also uses a slightly different trajectory summarization and description approach as well as an additional resampling step.
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II. Dynamical Model
The CR3BP is used to approximate the motion of a spacecraft of assumed negligible mass under the gravitational

influence of two massive bodies, labeled primaries [17]. In this Note, the primaries are the Earth and the Moon which

are modeled as point masses with constant mass and travel on circular orbits about their barycenter [17]. Length, mass,

and time quantities are nondimensionalized to set the distance between the Earth and Moon, the total mass of the

primaries, and the mean motion of the primary system to unity. A rotating reference frame is defined with the origin at

the Earth-Moon barycenter and axes Ĝ ĤÎ: Ĝ points from the Earth to the Moon, Î is aligned with the orbital angular

momentum vector of the primary system, and Ĥ completes the orthogonal, right-handed triad [17]. Throughout this

Note, all trajectories are visualized in this rotating frame. Given a nondimensional state vector that is defined in the

rotating frame as x = [G, H, I, §G, §H, §I]) , the equations of motion for a spacecraft in the CR3BP are written as

•G � 2 §H =
m*

mG

, •H + 2 §G =
m*

mH

, •I = m*

mI

where * =

�
G

2 + H
2�

2
+ (1 � `)

A1
+ `

A2
(1)

In these equations, ` ⇡ 1.21505842695 ⇥ 10�2 is the ratio of the Moon’s mass to the total system mass, A1 =p
(G + `)2 + H

2 + I
2, and A2 =

p
(G � 1 + `)2 + H

2 + I
2. In the rotating frame, the Jacobi constant is equal to [17]

⇠� =
⇣
G

2 + H
2
⌘
+ 2 (1 � `)

A1
+ 2`

A2
� §G2 � §H2 � §I2 (2)

At a single value of this quantity, a wide variety of motions may exist. In particular, the space community commonly

leverages five libration points, !8 where 8 2 [1, 5], and families of periodic orbits for trajectory design [17, 18].

Numerical approaches to computing periodic orbit families appear throughout the astrodynamics literature, such as in

Refs. [18] and [19]. In this Note, differential correction and continuation schemes are used to compute periodic orbits.

III. Clustering
Clustering is a data mining technique used to group similar members of a dataset and separate dissimilar members [3].

Consider # members of a dataset to be clustered. Each member is described by an "-dimensional feature vector, f8 for

8 2 [1, #], that is tailored to the desired application. Then, each pair of members is compared by calculating the distance

between their feature vectors using a selected distance measure [2]. These distances are used by a clustering algorithm,

along with any governing parameters, to construct groups of sufficiently similar members of the dataset. Various

clustering algorithms exist, with the most common approaches classified as partitioning, model-based, hierarchical, or

density-based methods [2]. Selection of a suitable algorithm is influenced by the characteristics of the data and the

application; this decision, along with the values of any governing parameters, may also influence the recovered clusters.

This Note uses HDBSCAN, a clustering algorithm that was developed by Campello et al. as a hierarchical extension
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of the well-known Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [12]. By

combining density-based and hierarchical clustering concepts, HDBSCAN supports the identification of clusters as

dense groupings of data in the selected "-dimensional feature space while also allowing clusters to possess distinct

shapes and densities [12, 13]. Furthermore, this approach does not require a priori knowledge of the number of clusters

[12, 13]. Because of these properties, this algorithm has previously been used to group spacecraft trajectories by their

geometry in the work performed by Bosanac [7, 9], Bonasera and Bosanac [8], and Miceli et al. [11].

HDBSCAN first assesses the similarity between the # members of a dataset using density information. A core distance

32>A4 is calculated for each member as the distance to its #<8=⇠>A4-nearest neighbor. The core distances of members 0

and 1 are used to calculate their mutual reachability distance as 3<A402⌘ (0, 1) = <0G{32>A4 (0), 32>A4 (1), 3 (0, 1)}

where 3 (0, 1) indicates a selected distance measure [12]. This transformation to a mutual reachability distance space

further separates members within high-density regions from those in sparse regions. Furthermore, #<8=⇠>A4 serves as a

governing parameter that defines the size of the neighborhood used to capture density information.

HDBSCAN then selects groupings from a cluster hierarchy and labels each member of the dataset by a cluster

assignment or as noise. Then, a minimum spanning tree is constructed to summarize a weighted graph representation of

the mutual reachability distances between the members of the dataset [12]. An agglomerative approach is applied to this

minimum spanning tree to create a hierarchy of possible clusters as a function of the mutual reachability distance. The

final clustering results are selected from this hierarchy to construct groups that contain at least #<8=⇠;DBC members and

maximize the cluster stability or persistence [12]. Malzer and Baum present a modification of the HDBSCAN algorithm

that merges clusters separated by a distance below a threshold n [20]; this modification mitigates the possibility of

recovering an excessive number of small clusters that correspond to locally dense regions within a large group of

sufficiently similar members. Any members not grouped are classified as noise points and may represent outliers in the

data or insufficiently sampled regions. HDBSCAN is accessed in Python using the hdbscan package which requires a

computational effort of $ (# log(#)) and is predominantly governed by #<8=⇠>A4, #<8=⇠;DBC , and n [21].

IV. Data-Driven Categorization Process
This section presents a clustering-based approach for automatically categorizing a diverse array of trajectories

generated from a set of initial states that begin near a reference state. Each of the generated clusters supplies a ‘motion

type’ that captures a set of trajectories with similar geometric and temporal variations. As a result, the collection of

clusters supplies a digestible summary of the set of trajectories. The data-driven categorization process consists of five

steps that are depicted in the flowchart in Fig. 1 and described in detail within this section. Furthermore, each step of

the technical approach is demonstrated for planar trajectories generated from a set of initial states in the vicinity of

a reference state along an !1 Lyapunov orbit in the Earth-Moon CR3BP. The computational times for each step are

determined using a computer with an AMD Ryzen 5 5600G with Radeon Graphics 4.20 GHz processor.
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Fig. 1 High-level overview of the data-driven categorization process.

A. Generating Input Data

The data-driven categorization process takes an input of a set of initial states that lie in the local neighborhood

of a reference state. Throughout this Note, this set is labeled as a local point cloud of initial states, encompassing a

hyperellipsoid in six-dimensional space that is centered on the selected reference state. This local point cloud could

physically represent a snapshot of the state space where an object is reasonably expected to exist at a selected epoch

within, for example, 1) a 3-f uncertainty region around a state estimate or 2) a pre-specified corridor for targeting

a reference state. These motivating examples often involve associating probabilities to each initial state. However,

this Note relies on sampling initial conditions within the boundary of the local point cloud to identify the dominant

geometries of the associated trajectories regardless of their likelihood of occurrence. Future work that applies this

data-driven categorization process to trajectory prediction problems could incorporate probabilities during sampling,

categorization, or after generating a digestible summary of possible motions.

The scheme used to sample initial states within the local point cloud balances supplying a sufficiently dense set of

samples with reducing the total number of samples for computational feasibility. Although uniformly sampling each of

the six dimensions of the phase space within a specified region around a reference state is conceptually straightforward,

this approach was observed to suffer from sparse coverage when generating a reasonable number of samples [22]. To

reduce the number of samples while sufficiently covering the local region of the phase space, position and velocity

vectors are first independently sampled in this Note using a grid-based approach that supplies dense and uniform

sampling only in their associated three-dimensional subspaces. Samples are defined using a square, uniformly-spaced

grid and only those =�⇠ position vectors or =�⇠ velocity vectors that lie within the specified boundaries of the local point

cloud are retained. Then, the pseudorandom number generator in MATLAB’s randperm function is used to identify two

distinct sequences of unique integers between 1 and =�⇠ [23]. The 8th integer in each list identifies the specific position

and velocity vectors that are combined to form the 8th of =�⇠ six-dimensional state vectors.

To demonstrate the sampling approach used in this Note, consider a local point cloud of initial states that

exist near a single reference state along an !1 Lyapunov orbit with a period of 12.269 days and ⇠� = 3.1542
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in the Earth-Moon CR3BP. This nondimensional reference state is specified in the rotating frame as x%$ =

[0.816988444235, 0, 0, 0, 0.195756600373, 0]) , occurring at the leftmost crossing of the G-axis. Planar states that lie

within 10.5 km in position components and 10.5 m/s in velocity components of the reference state are sampled using the

method described in the previous paragraph. This local point cloud size corresponds to the 3-f uncertainties estimated

by Bradley et al. [24] for cislunar navigation using optical (angles only) measurements. Although Fedeler et al. [25]

note that uncertainty levels may vary for different types of motions, the proof of concept in this Note uses the same

local point cloud size for each of the selected scenarios. In this !1 Lyapunov scenario, 1,006 states are sampled, which

typically requires on the order of 10�2 seconds on the specified computer. Across this set of initial states, the Jacobi

constant varies on the order of 10�3 nondimensional units.

B. Step 1: Propagate Continuous Trajectories

Each of the input initial states is propagated in a selected dynamical model for a specified duration. In this Note,

all initial conditions are propagated forward in time for at least 17.3 days in the Earth-Moon CR3BP; this duration

exceeds the periods of the selected orbits and allows distinct geometries to emerge, if they exist. However, propagation

is terminated early upon impact with a spherical approximation of either of the primaries, defined using their equatorial

radii of 1,738.0 km and 6,378.1363 km for the Moon and Earth, respectively [26]. Following this procedure, Fig. 2

displays a 200-member subset of the continuous trajectories generated from the 1,006 initial conditions used in this

scenario with the !1 Lyapunov orbit shown in blue. Generating the full set of continuous trajectories, T , typically

requires on the order of 0.1 seconds in C++ on the specified computer. These initial conditions occur near the red circle

with the Moon and Earth appearing as gray circles scaled to possess the radius of the respective body, and red diamonds

locating !1 and !2. Figure 2 demonstrates that paths either impact the Moon, remain in the vicinity of the Moon, or

depart through one of the !1 or !2 gateways, producing a variety of distinct geometries.

Fig. 2 A 200-member subset of planar trajectories propagated for 17.3 days from the sampled initial conditions
in the Earth-Moon CR3BP.
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C. Step 2: Summarize Trajectories

To enable categorization via clustering, each continuous trajectory is discretized into a sequence of ? states at equal

intervals in arclength. When numerically integrating a state from C1 to C2, the arclength, 30A2! , is defined as the distance

traversed along the trajectory [27]. In this Note, this quantity is calculated along a trajectory in the rotating frame as

30A2! =
π C2

C1

|v | 3C (3)

where v = [ §G, §H, §I]) is the nondimensional velocity vector. Then, ? states, including the final state but excluding the

initial state, are sampled at intervals of 30A2!/? along the arclength of the trajectory. The initial state is excluded

because all initial states lie within a local neighborhood and, therefore, do not meaningfully contribute to identifying

geometric differences between trajectories. Although there are various possible approaches for discretizing a continuous

path, this Note employs an equal arclength distribution to 1) limit the influence of variations in the speed along a

trajectory, and 2) ensure sample locations smoothly vary as the geometry gradually evolves. However, a limitation of

this approach is that the samples may not be placed in geometrically meaningful locations, such as apses, or sufficiently

capture smaller revolutions along a trajectory that traverses a large distance when ? is too small.

The number of states, ?, used to discretize each trajectory is selected heuristically using a curve-based approach.

The curvature, ^(x), reflects the deviation from a straight line at a state x along a trajectory and is equal to [27]

^(x) =

q
( •I §H � •H §I)2 + ( •G §I � •I §G)2 + ( •H §G � •G §H)2

�
§G2 + §H2 + §I2�3/2 (4)

Local maxima in the curvature supply geometrically meaningful locations along a trajectory and typically occur near

periapses and apoapses measured relative to primaries or equilibrium points. However, unlike apses, maxima in the

curvature do not require specification of a reference point as one or more trajectories exhibit turning points in distinct

regions of the Earth-Moon system. To identify the number of local maxima in the curvature along a single trajectory,

?CA0 9 , the curvature is calculated at each state along the trajectory in the rotating frame via Eq. 4 and then the local peaks

in the time history of ^(x) are identified. The largest number of local maxima in the curvature along each trajectory in

the dataset defines the value of ?<0G . Then, each trajectory in the dataset is sampled using ? = 2(?<0G + 1) states that

are equally-distributed in arclength. This value of ? is selected to ensure there are at least twice as many samples as the

number of significant geometric locations, including the final state, along the trajectory. As a result, this value of ?

has been observed to sufficiently summarize all trajectories in the datasets examined in this Note. Furthermore, each

trajectory in the dataset is summarized by the same number of samples, reducing the complexity of clustering.

To demonstrate the trajectory discretization process, consider a single, planar trajectory generated in Step 1. Figure

3a) displays this trajectory along with blue stars at the locations of maximum curvature and a black star at the final
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state. Repeating this calculation for each of the 1,006 trajectories generated for 17.3 days in Step 1 produces ?<0G = 7,

consistent with the number of curvature maxima that occur along the trajectory in Fig. 3a). This trajectory is then

discretized into ? = 16 states that are spaced equally in arclength. Figure 3b) shows the resulting discretization with the

sampled states, indicated by black stars, sufficiently capturing the shape of the path within the configuration space.

The ? sampled states are used to form two finite-dimensional feature vectors that, together, capture the spatiotemporal

evolution of a trajectory. Although position-based feature vectors are a viable option for encoding the spatial evolution

of a trajectory, different regions of a multi-body system possess distinct sensitivities to the same distance between two

sampled position vectors. This challenge can result in lower quality clusters generated from sequences of position

vectors, including excessive grouping, incorrect grouping, or excessive differentiation. Furthermore, it is difficult to

intuitively and automatically select suitable tolerances for two trajectories to be considered sufficiently similar. To

address this challenge, Bosanac has demonstrated using velocity unit vectors to cluster spacecraft trajectories by their

shape [28]. Applying this concept to this Note, all trajectories begin from a single local neighborhood in the phase

space. Therefore, two trajectories with a similar shape and time evolution are expected to follow similar paths through

the configuration space. Accordingly, the following two separate feature vectors are used in this Note: 1) fÊ captures

the shape of the path via the velocity direction at sampled states and 2) f�g captures the temporal evolution via the

elapsed time between subsequent states. Mathematically, these feature vectors are calculated as

fÊ =
⇥
§̂G1, §̂H1, §̂I1, · · · , §̂G? , §̂H? , §̂I?

⇤
f�g =

⇥
�g1, · · · ,�g?

⇤
(5)

where §̂G8 , §̂H8 , §̂I8 are the components of the velocity unit vector at sampled state 8 in the rotating frame. In addition, �g8

is the nondimensional time elapsed from the previous state, x8�1, for 8 > 1 or the initial time, g0 = 0, when 8 = 1, to

the current state, x8 . Through these definitions, fÊ is a 3?-dimensional vector for spatial motion whereas f�g is a

?-dimensional vector. For planar trajectories, the I-component of the velocity unit vector at each state is removed

from fÊ to avoid including redundant information. In the selected scenario, summarizing the full set of trajectories

Fig. 3 a) Locations of local maximum curvature along a trajectory. b) The locations of ? states spaced equally
in arclength along the trajectory.
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typically requires around four seconds on the specified computer with $ (#) complexity for each step. The process for

summarizing trajectories is outlined in the flowchart provided in Fig. 4.

D. Step 3: Construct Initial Summary of Motion Types

With a selected set of input parameters, HDBSCAN is used to automatically group trajectories by their spatiotemporal

variations, producing an initial summary of motion types. This clustering process is summarized in the flowchart

provided in Fig. 5. First, trajectories are clustered using their velocity direction feature vectors, fÊ , to discover groups

of geometrically similar trajectories. Although the trajectories are generated from a set of initial states that lie within a

local region of the phase space, their geometric variations over sufficiently long time horizons are expected to result

in dense groupings of the data within the higher-dimensional feature space associated with fÊ . Each dense grouping

corresponds to a cluster that should be identified by HDBSCAN. Then, each cluster is refined by clustering only its

members via their time-based feature vectors f�g . This cluster refinement step supports outlier removal and allows

groups to be further separated, as needed, based on additional temporal variations. After this initial two-step clustering

process, each trajectory is either assigned to a group or labeled as noise.

Although fÊ and f�g could be weighted and combined to construct a single 4?-dimensional feature vector,

simultaneously clustering a dataset with distinct features can result in a higher likelihood of inaccurate groupings.

Specifically, the same difference between two weighted but distinct feature types could result in two trajectories being

assigned to the same cluster despite substantial differences in their geometric and/or temporal variations. However,

independently using the two feature vectors has been observed in this work to improve the cluster accuracy while also

eliminating the need to strategically weight the distinct features.

The parameters governing HDBSCAN are manually defined to be consistent across all scenarios in this Note.

However, automated and adaptive parameter selection is a valuable avenue of future work. Manual selection of the

minimum cluster size and neighborhood size begins with setting #<8=⇠>A4 � 1 = #<8=⇠;DBC to measure density across

the same-sized neighborhood as the minimum acceptable cluster size. Then, a small value of #<8=⇠;DBC is selected

to prioritize local density estimates and variations between nearby members of the data. In addition, the Euclidean

distance is selected to assess the difference between two feature vectors to support fast clustering. Finally, the minimum

Fig. 4 Overview of the trajectory summarization process in Step 2.
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Fig. 5 Overview of the process for generating an initial motion type summary in Step 3.

threshold for cluster differentiation in the velocity-based feature space is heuristically selected as nÊ = 2p? sin
� U

2
�
.

This heuristic, as presented by Bosanac, reflects the Euclidean distance between a set of ? unit vectors separated by an

angle equal to U [28]. For cluster refinement in the time-based feature space, n�g = #<8=⇠>A4 max(: , nC⌘A4B⌘) where :

is the maximum core distance from each trajectory to its nearest neighbor and nC⌘A4B⌘ is a user-selected small minimum

threshold. Similar to the heuristic presented by Bosanac, this quantity estimates a reasonable #<8=⇠>A4-neighborhood

radius that adapts to the trajectories within the cluster to be refined and is not biased by significant outliers [28].

After a set of clusters has been generated, border point association is performed to label noise points that lie in the

local neighborhood of a cluster member. This post-processing step is suggested by Campello et al. in an early paper on

HDBSCAN [13]. Specifically, any noise points in the trajectory set, T , that lie within the #<8=⇠>A4-neighborhood of a

labeled member in the mutual reachability distance space are considered border points of their closest cluster [13].

Applying this clustering process to the trajectories generated from the local point cloud of initial states near the

selected reference state along a 12.269-day !1 Lyapunov orbit results in successful separation of spatiotemporally

distinct trajectories. The 1,006 trajectories are grouped into 13 clusters using #<8=⇠>A4 = 4 and #<8=⇠;DBC = 5 for

clustering in both fÊ and f�g , nÊ is calculated using U = 5 degrees, and n�g is calculated using nC⌘A4B⌘ = 10�3p
?. On

the specified computer, this step requires on the order of one second to complete. The initial summary is presented in

Fig. 6 with each subfigure displaying one cluster of trajectories in the Earth-Moon rotating frame. The !1 Lyapunov

orbit is depicted with a black dashed line in cluster 11. The horizontal and vertical axes represent the G- and H-position

coordinates, respectively, in the Earth-Moon rotating frame in nondimensional units. In addition, the final state of each

trajectory is denoted with a blue dot whereas color indicates the elapsed time along each trajectory. Black arrows denote

the direction of motion. Twelve trajectories are categorized by HDBSCAN as noise points and are not depicted in this

summary. This noise rate, approximately 1.2%, is considered acceptable because these noise points either 1) resemble

existing clusters but do not lie within the #<8=⇠>A4-neighborhood of cluster members, or 2) do not exist near enough

trajectories with similar variations in shape and time to create a separate cluster of at least #<8=⇠;DBC members.

Figure 6 reveals that each cluster contains trajectories that are geometrically similar. For instance, clusters 1-4

10



Fig. 6 Initial summary of trajectories generated from a local point cloud of initial states along the selected !1
Lyapunov orbit in the Earth-Moon CR3BP.

capture trajectories that briefly resemble three-quarters of an !1 Lyapunov orbit before departing for the vicinity of the

Earth. Clusters 7-8, however, contain trajectories that resemble half an !1 Lyapunov orbit before revolving around the

Moon once with a low perilune. These trajectories are separated into two clusters because there is a distinct split in the

velocity direction along the trajectories.

E. Step 4: Update Summary with Additional Samples

To increase sampling near cluster boundaries or in sparse regions between clusters, additional initial states are

sampled from within the local point cloud and used to update the summary produced in the previous step. To

contextualize the formulation of this process, spatiotemporal variations between the trajectories in distinct clusters from

Step 3 are observed to be correlated to variations in the velocity components of the initial state. To demonstrate this

observation, Fig. 7a) displays the velocity components of each initial condition colored by the assigned cluster with

white diamonds locating points designated as noise by HDBSCAN. Examining the connection between the clustering

results and the structure of the local neighborhood of the reference trajectory is an interesting avenue of future work.

Nevertheless, in this example, the majority of noise points lie between cluster boundaries. Therefore, expanding the

trajectory set with additional samples between these boundaries may aid in grouping noise points along with increasing

the accuracy of cluster boundaries.

The inter-cluster sampling scheme is inspired by a Voronoi diagram which divides a 6-dimensional space into

cells such that each cell consists of one point and cell boundaries lie at the midpoint between two points [29]. In this

Note, every velocity vector from the original local point cloud of initial states is treated as if it lies in its own cell in
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velocity space. This approach enables the sampling of additional initial velocities without relying on explicit boundary

construction. Then, cluster labels for the trajectories generated from the velocity vectors of two initial states that lie in

adjacent cells are compared. If the cluster labels are different, a new velocity vector is sampled at the midpoint between

the original two velocity vectors. To complete the construction of a six-dimensional state vector, the position vector of

this new initial state is recovered by placing a sample at the midpoint between the position components corresponding

to the two original velocity samples. This process is summarized in the flowchart provided in Fig. 8. Inter-cluster

sampling for the !1 Lyapunov orbit scenario used throughout this section produces an additional 536 planar initial

conditions which fall between cluster boundaries, shown in black in Fig. 7b).

The trajectories associated with the expanded set of initial conditions are clustered with HDBSCAN to construct a

new summary. First, the new trajectories are summarized with the method presented in Step 2. Then, all trajectories are

clustered using the same method and governing parameters presented in Step 3 followed by border point association.

The result is an updated set of clusters and noise points.

This step sometimes results in some of the clusters from the initial summary being joined as two or more separated

groups gain sufficient new samples between them to identify a continuous variation between members of the two groups.

As an example, consider the expanded dataset generated from initial states near the leftmost G-axis crossing of the

12.269-day !1 Lyapunov orbit in the Earth-Moon CR3BP. In this case, clusters 9-13 of Fig. 6 are joined to produce a

single group of trajectories that briefly resemble the !1 Lyapunov orbit for approximately one quarter of a revolution

before impacting the Moon, performing a close approach to the Moon with a low perilune, or departing through the !2

gateway. Although the trajectories terminate in different regions, their shape continuously varies within the cluster and

over this time horizon. Alternative sampling schemes and feature vector definitions may enable HDBSCAN to separate

Fig. 7 Velocity components of initial conditions a) after initial clustering and b) with 536 new samples (black
circles) after inter-cluster sampling.
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Fig. 8 Overview of the inter-cluster sampling process in Step 4.

this large cluster of trajectories as their distribution in the higher-dimensional feature vector space evolves, thereby

producing a more detailed summary with a higher number of smaller clusters. For this scenario, this step requires

around eight seconds on the specified computer with a computational complexity of $ (#2).

F. Step 5: Append Summary with Finer Clusters

The final step of the data-driven categorization process involves grouping the remaining noise points to capture finer

clusters that may consist of fewer members. Specifically, there may be some trajectories that are designated as noise,

but are similar to fewer than (#<8=⇠;DBC � 1) members. Accordingly, this final step leverages the clustering method

presented in Step 3 to identify smaller groups of noise points that correspond to insufficiently sampled or low-density

regions in the larger dataset. In this case, the HDBSCAN input parameters are manually selected with smaller values of

#<8=⇠>A4 and #<8=⇠;DBC to construct locally-dense groups with n�g = nÊ = 0 due to the small number of trajectories in

this dataset. Then, these new, smaller clusters are appended to the summary of the expanded dataset produced in Step 4.

After this step, some trajectories may still be designated as noise.

Applying this final step to the remaining unlabeled trajectories after Step 4 in the 12.269-day !1 Lyapunov orbit

scenario in the Earth-Moon CR3BP allows the discovery of finer groupings from amongst the unlabeled trajectories.

Selecting #<8=⇠>A4 = 1 and #<8=⇠;DBC = 2 results in eight small clusters that are appended to the cluster summary

generated in Step 4, producing a total of 21 clusters; selecting #<8=⇠>A4 = 1 removes the notion of density when

calculating the mutual reachability distance. This step produces a larger number of more detailed clusters from the

reduced dataset. Using the same representation as Fig. 6, Fig. 9 displays the 21 motion types that capture the array of

geometries exhibited by 1,542 trajectories as well as the remaining six trajectories that are designated noise. This final

step in the data-driven process typically requires on the order of 10�2 seconds on the specified computer. The total

runtime for the example used throughout this section is 25.25 seconds.

Analyzing Fig. 9 reveals that each cluster successfully captures trajectories with a similar geometry whereas distinct

clusters separate trajectories with distinct geometries. For instance, clusters 20-21 produced in Step 5 are noticeably

different from the trajectories in the larger clusters. Other small clusters added in this step resemble existing larger

clusters but either possess a sufficiently different shape or temporal evolution, or exist in a more localized region of

high density. The remaining six trajectories that are designated as noise resemble the members of clusters 5, 8, 14,

13



Fig. 9 Final summary of trajectories generated for up to 17.3 days from a local point cloud of initial states along
the selected !1 Lyapunov orbit.

and 21 in the summary but do not lie in sufficiently dense regions to be joined with those groups. Accordingly, the

presented data-driven process automatically summarizes the generated set of trajectories via detailed groups from

localized regions of high density. This summary can extract key motion types, reduce the complexity of manually

analyzing a set of trajectories, or potentially enable automation in support of path-planning or orbit prediction tasks.

G. Summary of Governing Parameters and Decisions

A set of parameters and decisions are required to govern the data-driven categorization of a set of trajectories that

begin from a local region of the phase space. Table 1 summarizes these parameters and decisions and lists their influence

on the resulting summary. Alternative parameters or decisions can be made throughout the trajectory summarization

and clustering process to better fit a desired application or increase the level of differentiation between trajectories.

Although the CR3BP is used to demonstrate the proof of concept in this Note, it is expected that the clustering-based

method presented in this Section would be useful for categorizing trajectories generated in higher-fidelity models of

a three-body system with little modification. For this proof of concept, the CR3BP offers a sufficiently diverse and

complex solution space while supporting fast trajectory generation without reliance on additional parameters, such as an

initial epoch or spacecraft properties, required by higher fidelity models. Furthermore, the presented approach does not

include assumptions based on the selected system or dynamical model fidelity.
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Table 1 Parameters and decisions governing the data-driven categorization process

Parameter/Decision Step(s) Influence on categorization process
Step size between initial conditions 0 Influences the number of initial condition samples.

Cloud boundaries 0 Determines the size of the region of initial states centered
on the reference state.

Integration time 1
Allows distinct geometries to emerge, if they exist. Can
increase the required number of samples for sufficient
representation of solution geometry.

Discrete sample selection 2
Defines placement of discrete samples along continuous
trajectories. Influences fidelity and characteristics of the
solution geometry that are captured by the selected states.

Number of discrete states, ? 2 Influences fidelity of discrete representation of trajectories
and dimension of feature vector.

Feature selection 2
Influences similarity assessment across all trajectories
within the set and characteristics that will be reflected in
the resulting clusters.

Clustering algorithm 3, 5 Influences the recovered clusters.

#<8=⇠>A4 3, 5 Governs core distance calculation that is used to estimate
density across the dataset.

#<8=⇠;DBC 3, 5 Specifies minimum number of members in a single cluster.

n 3, 5 Defines minimum desired resolution for separating two
types of trajectories.

V. Results
The data-driven categorization process described in the previous section is used to summarize sets of trajectories

generated from local point clouds of initial conditions near three additional reference states in the Earth-Moon CR3BP.

These reference states are selected to produce sets of trajectories with different characteristics or itineraries to support

exploring both the generalizability and limitations of the presented data-driven categorization process. For all scenarios,

the same HDBSCAN input parameters used for the !1 Lyapunov orbit scenario in the previous section are used:

#<8=⇠>A4 = 4, #<8=⇠;DBC = 5, U = 5 degrees, and nC⌘A4B⌘ = 10�3p
? in Step 4; and #<8=⇠>A4 = 1, #<8=⇠;DBC = 2,

n = 0 in Step 5. Table 2 summarizes the reference states in each scenario.

Table 2 Reference states for each selected scenario

Case Reference Orbit ⇠� x%$ = [r%$, v%$]) [nd]

1 11.994-day !1
northern halo 3.1486

r%$ = [0.824125682194, 0, 0.0566946270474]
v%$ = [0, 0.167128773665, 0]

2 7.9615-day !1
NRHO 2.9947

r%$ = [0.988454510548, -0.00114952066778, 0.00705658766736]
v%$ = [-0.0150237631700, -1.82248741510, -0.148294929894]

3 10.915-day DPO 3.1700
r%$ = [1.02454653948, 0.0541769443650, 0]
v%$ = [-0.380916147888, -0.110095105627, 0]
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A. Summarized Motions Near !1 Halo Orbits

1. !1 Northern Halo Orbit

For this case, a reference state is selected at the leftmost crossing of the GI-plane along the !1 northern halo orbit

depicted with a dashed black curve in cluster 7 of Fig. 10. The local point cloud of initial states are centered on this

reference state. The associated trajectories are generated for 17.3 days and described by ? = 12 states. The data-driven

categorization process identifies 15 clusters composed of 1,677 trajectories as displayed in Fig. 10. This figure uses a

similar configuration as Fig. 9. However, in this spatial scenario, each subfigure shows an individual cluster projected

onto the GH�, GI�, and HI�planes for clarity. There are seven noise points that do not appear in the summary.

Figure 10 reveals that solutions either impact the Moon, remain near the reference orbit, revolve around the Moon

with different geometries, or depart to the Earth vicinity. These key motion types are separated across distinct clusters.

In some cases, such as cluster 3, a single motion type captures a continuous evolution of a large set of trajectories over

the selected time interval. However, propagating these trajectories for a longer time may result in additional geometric

differentiation and, potentially, multiple clusters. Alternatively, the trajectories in clusters 4-7 perform one revolution

about the Moon. However, due to the selected small values of #<8=⇠>A4 and #<8=⇠;DBC and slight variations in shape,

time, and region of termination, these trajectories are separated into distinct clusters.

2. !1 Near Rectilinear Halo Orbit

For the selected !1 near rectilinear halo orbit (NRHO) in the Earth-Moon CR3BP, the reference state is placed near

perilune. Then, trajectories are generated from the local point cloud of initial states near this reference state, propagated

for 17.3 days and sampled using ? = 10 states spaced equally in arclength. Applying the data-driven categorization

Fig. 10 Fifteen types of 17.3-day trajectories that begin near the selected reference state along a !1 northern
halo orbit at ⇠� = 3.1486 in the Earth-Moon CR3BP.
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process to the resulting 3,498 trajectories produces a summary with three distinct motion types and zero ungrouped

trajectories. These clusters, along with the selected NRHO, are plotted in Fig. 11 using the same configuration and

spatial representation as Fig. 10. In this figure, the second and third clusters separate motions that impact the Moon

from those that quickly depart the vicinity of the NRHO with substantially different geometries. The first cluster in Fig.

11 captures trajectories that remain close to the NRHO for the majority of the 17.3 days before finally departing. On

either side of the cluster, the trajectories end in different regions of the solution space: either in the Moon vicinity or the

Earth vicinity. However, across the cluster, the trajectories continuously evolve between these two behaviors, consistent

with the use of a velocity-based feature vector and governing parameters that focus on local assessments of similarity.

B. Summarized Motions Near a Distant Prograde Orbit

Trajectories are propagated from a local point cloud of initial states near a reference state that lies between perilune

and apolune along a DPO at a Jacobi constant of 3.1700 in the Earth-Moon CR3BP. In this example, 1,506 trajectories

are generated for 26.05 days to allow distinct geometries to emerge and described by ? = 24 states. All but nine of the

trajectories are summarized in the 18 clusters depicted in Fig. 12, with the same representation as Fig. 9.

Across the 18 clusters in Fig. 9, trajectories in each cluster possess a similar geometry and distinct geometries

appear in different clusters. For instance, clusters 1-2 capture trajectories that resemble the reference DPO. Clusters

4-9, however, summarize trajectories that depart through the !2 gateway. These trajectories are likely separated into

different clusters due to the evolution of the sampled states as they reach distinct locations in the exterior region. Cluster

3 then captures a transition between these two itineraries. Next, clusters 10-11 capture trajectories that perform a few

revolutions around the Moon with two different geometries. Finally, clusters 12-18 contain trajectories with a similar

geometry that are distributed across multiple clusters due to localized variations in the 1) path near the first apolune, 2)

second perilune passage, and 3) location of the final state. This additional geometric differentiation supplies a more

detailed summary of the key motion types.

Fig. 11 Three types of 17.3-day trajectories that begin near perilune along the selected !1 near rectilinear halo
orbit at ⇠� = 2.9947 in the Earth-Moon CR3BP.
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Fig. 12 Distinct types of 26.05-day trajectories beginning near a reference state between perilune and apolune
along a DPO at ⇠� = 3.1700 in the Earth-Moon CR3BP.

VI. Conclusion
In this Note, a clustering-based framework was developed to summarize the types of possible motions generated

from a local point cloud of initial conditions within a chaotic multi-body gravitational system. Through application to

multiple scenarios in the Earth-Moon CR3BP, this approach was demonstrated to automatically generate groups of

trajectories with distinct spatiotemporal evolutions, when these differences exist. In each case, these clusters summarized

over 1,000 trajectories via several key motion types. However, some limitations emerged, such as one large cluster

including trajectories that continuously evolve across the set to exhibit multiple geometries or one motion type being

split into multiple smaller clusters due to variations in the final state impacting sample placement. Alternative feature

vectors, sampling schemes, and clustering algorithms may address these limitations in future work. In addition, future

application to a wider variety of dynamical models, celestial systems, and initial state sets may support characterizing the

quality of the generated summaries and assessing the generalizability of a clustering-based framework. The automatic

generation of these summaries may eventually reduce the burden on an analyst or support automation when identifying

potential spacecraft motions for space situational awareness or collision-free path-planning.
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