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DATA-DRIVEN SUMMARY OF MOTION IN AN
EPHEMERIS MODEL OF CISLUNAR SPACE

Natasha Bosanac*

Spacecraft trajectory design and prediction in cislunar space will benefit from a
comprehensive understanding of the solution space over a desired time horizon.
This solution space consists of a diverse array of motions, with distinct geometries
and itineraries. This paper uses a clustering-based framework to summarize these
trajectories in a high-fidelity ephemeris model of cislunar space. First, trajectories
are sampled across the Earth-Moon system in a geometry-based manner. Then,
distributed clustering is used to discover groups of geometrically similar trajec-
tories, each summarized by a representative member. The resulting data-driven
summary is presented and analyzed in this paper.

INTRODUCTION

Trajectory design and prediction for spacecraft operating in cislunar space will benefit from a
comprehensive understanding of the solution space over a desired time horizon. This multi-body
gravitational system produces a chaotic solution space with a diverse array of motions, exhibiting a
wide variety of geometries and itineraries. Existing dynamical systems techniques that are typically
used to analyze a chaotic solution space in a lower-fidelity model may have limited applicability
in higher-fidelity ephemeris models. For instance, some fundamental solutions, such as periodic
and quasi-periodic orbits, or their finite-time equivalents that exist in lower-fidelity models may
only be approximately retained in ephemeris models and rely on sufficient a priori knowledge of
the solution space. Furthermore, these special types of solutions may not sufficiently capture the
array of possible motions. As an alternative, simply sampling trajectories from an array of initial
conditions across the 6D phase space may produce a diverse, high-dimensional, and extremely large
amount of data. In the absence of any generalizable analytical expressions for categorizing these
trajectories, manual analysis may be cumbersome and time-consuming.

The problem of automatically extracting insights from a large and high-dimensional dataset ap-
pears across a wide variety of disciplines. In these problems, clustering algorithms have been used
to group similar data using a specified set of features and separate dissimilar data [1]. These data
can even represent moving objects, producing a trajectory clustering problem [2]. After a dataset
has been clustered, those groups may reveal fundamental modes or categories of data whereas rep-
resentative members of each group may supply a digestible summary; these insights may drive
knowledge discovery or support decision-making. Clustering has been useful in a wide variety
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of fields and applications including astronomy, medicine, studying driving routes, and air traffic
management [2–6]. In astrodynamics, clustering methods have supported identifying bounded mo-
tions near distant retrograde orbits on a Poincaré map, grouping periodic orbits by a defined set of
features, and extracting motion primitives that summarize trajectory arcs [7–9].

To automatically summarize a complex solution space in a multi-body system, Bosanac [10, 11]
as well as Bonasera and Bosanac [12] have developed a clustering-based framework. The most
recent implementation of this framework has been developed by Bosanac and is used in this pa-
per. This approach was used to summarize the geometries exhibited by natural trajectories over 21
days in the circular restricted three-body problem [11]. This approach was then used by Bosanac
and Joyner to summarize low-thrust trajectories governed by fixed thrust directions in the velocity-
normal-conormal axes relative to the Moon [13].

The approach developed by Bosanac begins by describing a continuous trajectory using a finite-
dimensional feature vector. First, each trajectory is sampled at a discrete set of states that are
evenly spaced in the total absolute curvature, i.e., the curvature integrated along the arclength of
the trajectory, along each half revolution. Each state is used to form two finite-dimensional feature
vectors that summarize each continuous trajectory: 1) a shape-based feature vector that is composed
of the local tangent unit vectors and 2) a position-based feature vector.

The feature vectors are used by a clustering algorithm to produce groupings of trajectories with a
similar geometry [13]. When the dataset is diverse, Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) [14] is initially employed to construct coarse groupings
using the shape-based feature vectors of entire trajectories. Then, a convoy detection approach is
used to refine each coarsely constructed group by identifying trajectories that remain sufficiently
close for their entire duration in each of the shape-based and then position-based feature vector
spaces. The resulting clusters capture trajectories with a similar shape and path through the config-
uration space.

Using these definitions, the clustering-based framework presented by Bosanac begins by sam-
pling the solution space to produce a sparse yet representative set of trajectories by strategically
selecting initial conditions [13]. A uniform grid of position vectors is first defined. Then, at each
position vector, velocity vectors are defined to produce maxima in the curvature. Because these
velocity vectors exist in one or more one-parameter curves, they are discretely sampled. For each
velocity vector along these curves, their associated trajectories are generated and summarized. At
each position vector, the resulting set of velocity vectors are clustered via HDBSCAN using the
shape-based feature vector. Representative members of these local groups of trajectories are added
to the larger dataset that is summarized.

The trajectories sampled across the solution space are summarized via distributed clustering [11,
13]. First, the large dataset is partitioned into smaller subsets. This approach distributes millions
of trajectories across hundreds of smaller datasets. Each dataset is independently clustered. These
local clusters are then aggregated to form global clusters of similar trajectories that exist across
distinct partitions. The result is a set of global clusters and their representative trajectories that
summarize the geometries of a larger set of trajectories that exist across the solution space.

This paper focuses on leveraging the clustering-based framework developed by Bosanac to gen-
erate and examine a data-driven summary of the solution space for natural motion in a point mass
ephemeris model of cislunar space. Prior work by Bosanac has applied an earlier version of this
framework to a small subset of trajectories in an ephemeris model, offering only an early proof of
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concept [11]. However, the approach used in this current paper produces a higher quality summary
of the geometries of trajectories in an ephemeris model.

BACKGROUND

Reference Frames

Two reference frames are used for formulation and analysis. To formulate the equations of motion
governing the spacecraft and generate solutions, a Moon-centered inertial frame is defined with an
origin at the center of the Moon and axes X̂Ŷ Ẑ of the International Celestial Reference Frame
(ICRF) [15, 16]. To analyze the trajectory of the spacecraft, a pulsating Earth-Moon rotating frame
is employed. This definition uses the Earth-Moon barycenter as the origin and axes defined as
follows: x̂ points from the center of the Earth to the center of the Moon, ẑ is aligned with the orbital
angular momentum vector of the Earth-Moon system, and ŷ completes the right-handed triad. These
axes pulsate over time as they are scaled to ensure that the distance between the Earth and Moon is
always equal to unity, even as the two celestial bodies travel on non-circular paths.

The state of the Moon relative to the Earth is used to express the axes of the Earth-Moon rotating
frame in terms of the axes of the Moon-centered inertial frame. At an epoch t, the state vector
of the Moon relative to the Earth, expressed in the axes of the ICRF, is defined as X̄E,L(t) =
[R̄E,L(t), R̄

′
E,L(t)]

T , where the notation (.)
′

indicates an observer in the inertial frame and the
subscripts L and E indicate the Moon and Earth, respectively. Then, the axes are calculated at t as

x̂ =
R̄E,L

||R̄E,L||
ẑ =

R̄E,L × V̄E,L

||R̄E,L × V̄E,L||
ŷ = ẑ × x̂ (1)

to produce three column vectors. Their first time derivatives are equal to

˙̂x(t) =
V̄E,L

||R̄E,L||
− x̂

x̂ · V̄E,L

||R̄E,L||
˙̂z(t) ≈ 0 ˙̂y(t) = ẑ × ˙̂x (2)

The assumption in the second expression is also used in GMAT [17]. The second time derivatives
of these axes are calculated as

¨̂x(t) =
ĀE,L

||R̄E,L||
−

V̄E,L(V̄E,L · x̂)
||R̄E,L||2

−
˙̂x(V̄E,L · x̂)
||R̄E,L||

− x̂

(
ĀE,L · x̂
||R̄E,L||

+
V̄E,L · ˙̂x
||R̄E,L||

−
(V̄E,L(t) · x̂)2

||R̄E,L(t)||2

)
(3)

¨̂y(t) = ẑ × ¨̂x ¨̂z(t) ≈ 0 (4)

Finally, the third time derivatives of these axes are equal to

...
x̂ (t) =

J̄E,L

||R̄E,L||
− 2

ĀE,L(V̄E,L · x̂)
||R̄E,L||2

−
V̄E,L(V̄E,L · ˙̂x)

||R̄E,L||2
−

V̄E,L(ĀE,L · x̂)
||R̄E,L||2

+ 2
V̄E,L(V̄E,L · x̂)2

||R̄E,L||3

−
¨̂x(V̄E,L · x̂)
||R̄E,L||

− 2
˙̂x(V̄E,L · ˙̂x)
||R̄E,L||

−
˙̂x(ĀE,L · x̂)
||R̄E,L||

+
˙̂x(V̄E,L · x̂)2

||R̄E,L||2
−

x̂(V̄E,L · ¨̂x)
||R̄E,L||

− 2
¨̂x(ĀE,L · ˙̂x)
||R̄E,L||

− 3
x̂(V̄E,L · ˙̂x)(V̄E,L · x̂)

||R̄E,L||2
−

˙̂x(ĀE,L · x̂)
||R̄E,L||

−
x̂(J̄E,L · x̂)
||R̄E,L||

− 3
x̂(V̄E,L · x̂)(ĀE,L · x̂)

||R̄E,L||2

+
˙̂x(V̄E,L · x̂)2

||R̄E,L||2
− 2

x̂(V̄E,L · x̂)3

||R̄E,L||3
(5)
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...
ŷ (t) = ẑ ×

...
x̂

...
ẑ (t) ≈ 0 (6)

These expressions include the second time derivative (acceleration, ĀE,L = ¨̄RE,L) and third time
derivative (jerk, J̄E,L =

...
R̄E,L) of the position vector of the Moon relative to the Earth. In this paper,

these higher-order time derivatives are calculated using central finite differences of the velocity
vector.

To support analysis, the state of the spacecraft is transformed from the Moon-centered inertial
frame to the pulsating Earth-Moon rotating frame. Consider a spacecraft state vector that is ex-
pressed in the Moon-centered inertial frame as X̄ = [X,Y, Z, Ẋ, Ẏ , Ż]T = [R̄L,sc, R̄

′
L,sc]

T . In
the Earth-Moon rotating frame, the spacecraft state vector is denoted as x̄ = [x, y, z, ẋ, ẏ, ż]T =
[r̄TL,sc, ˙̄r

T
L,sc]

T , where the notation ˙(.) indicates a time derivative with an observer in the rotating
frame and the subscript sc indicates the spacecraft. At an epoch t, the position vector is transformed
from the inertial frame to the Earth-Moon rotating frame via the following expression:

r̄B,sc(t) =
[
RC(t)I

]
R̄L,sc(t) + r̄B,L (7)

where the rotation matrix [RC(t)I ] equals

[
RC(t)I

]
=

x̂T (t)ŷT (t)

ẑT (t)

 (8)

where the subscript B indicates the Earth-Moon barycenter. Time derivatives of this position vector
are transformed from the inertial to rotating frame via the following transformations:

v̄B,sc(t) = ˙̄rB,sc(t) =
[
RĊ(t)I

]
R̄L,sc(t) +

[
RC(t)I

]
V̄L,sc(t) (9)

āB,sc(t) = ¨̄rB,sc(t) =
[
RC̈(t)I

]
R̄L,sc(t) + 2

[
RĊ(t)I

]
V̄L,sc(t) +

[
RC(t)I

]
ĀL,sc (10)

...
r̄ B,sc(t) =

[
R

...
C (t)I

]
R̄L,sc(t) + 3

[
RC̈(t)I

]
V̄L,sc(t) + 3

[
RĊ(t)I

]
¨̄RL,sc(t) +

[
RC(t)I

] ...
R̄L,sc

(11)
where the time derivatives of the rotation matrix are formed using the time derivatives of the axes
of the rotating frame expressed in terms of inertial coordinates.

Ephemeris Model

A point mass ephemeris model is used to model the natural motion of a spacecraft within cis-
lunar space. This dynamical model captures the point mass gravitational influences of the Moon,
Earth, and Sun on a spacecraft with a comparatively negligible mass. The states of these celestial
bodies are calculated using the DE440 lunar and planetary ephemerides along with the associated
Spacecraft, Planet, Instrument, C-matrix, Events (SPICE) toolkit provided by NASA’s Navigation
and Ancilliary Information Facility [18, 19].

The path of the spacecraft is generated by numerically integrating the equations of motion from
a specified initial condition and epoch. Mathematically, the equations of motion governing the
spacecraft are written as

¨̄RL,sc = −GML

(
R̄L,sc

R3
L,sc

)
+G

∑
i=E,S

Mi

(
R̄sc,i

R3
sc,i

−
R̄L,i

R3
L,i

)
(12)
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where the subscript S indicates the Sun, G is the universal gravitational parameter, and Mi is the
mass of body i [20]. Because the position vectors R̄i,j describing the position of body j relative to
i are time dependent, an initial epoch must also be associated with every solution in the point mass
ephemeris model.

Curvature

The curvature along a trajectory captures the local geometry of the path. To define the concept
of curvature, consider a nonlinear and continuous trajectory over the time interval t ∈ [t0, tf ] in a
selected dynamical model. At any point along this trajectory, the state is described by the position
vector r̄(t) = [x(t), y(t), z(t)]T and velocity vector ˙̄r(t) = [ẋ(t), ẏ(t), ż(t)]T , whereas the accel-
eration vector ¨̄r(t) = [ẍ(t), ÿ(t), z̈(t)]T captures the dynamics. The distance traversed along this
trajectory is defined as the arclength s and is equal to [21]

s =

∫ tf

t0

ds =

∫ tf

t0

√
ẋ2 + ẏ2 + ż2dt (13)

At a selected location along the trajectory, the curvature κ(t) reflects the rate at which the tangent
vector orientation changes as a function of arc length [22]. As a result, this quantity reflects the
extent to which the trajectory instantaneously deviates from a straight line. The nonnegative value
of κ(t) is calculated directly from the velocity and acceleration vectors as

κ(t) =
|| ˙̄r(t)× ¨̄r(t)||

|| ˙̄r(t)||3
(14)

and possesses a singularity when || ˙̄r|| = 0. The total absolute curvature is then defined as the
integral of curvature along the arclength of the trajectory, essentially capturing the angle swept out
by the trajectory relative to an evolving center of curvature and within the evolving osculating plane
[22]. Mathematically, the total absolute curvature is equal to

κtot(t0, tf ) =

∫ tf

t0

κ(s)ds =

∫ tf

t0

κ(s)
√
ẋ2 + ẏ2 + ż2dt (15)

Due to its definition, κtot monotonically increases by 2π with each revolution completed along the
trajectory.

Clustering

This paper leverages two well-known clustering algorithms: the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm developed by Ester et al. [23] and the Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm developed by
Campello, Moulavi, and Sander [14]. Both of these algorithms rely on discovering groups of data
that lie in sufficiently dense regions within a feature vector space. However, DBSCAN is useful
when the desired density threshold is known whereas HDBSCAN is useful when clustering a diverse
dataset into groups with potentially distinct diversity, shape, and membership size.

DBSCAN DBSCAN discovers groups within a dataset as members with sufficient proximity and
density. This clustering algorithm relies on the definition of a core point, which corresponds to a
member with at least mpts neighbors within a neighborhood of radius ϵ in a specified feature vector
space [23]. Two core points with overlapping ϵ-sized neighborhoods that contain at least mpts
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neighbors are designated as density-connected [23]. A cluster is then formed via a set of core
points where any two members can be reached through density-connected sequences of core points
[23]. Clusters also contain border points, which are members of a dataset that lie in the mpts-
neighborhood of a core point but their own mpts-neighborhoods have a larger radius than ϵ [23].
Noise points do not lie within the mpts-neighborhood of any core points and, therefore, are not
assigned to any clusters [23]. Accordingly, DBSCAN requires specifying the values of mpts and ϵ
to return a set of clusters and noise points.

HDBSCAN Although HDBSCAN uses a notion of density in discovering clusters, it transforms
the dataset from the original feature vector space to a mutual reachability distance space. First, the
i-th member of a dataset is assigned a core distance dcore(f̄i), which corresponds to the distance to
its mpts-nearest neighbor [14]. This information is used to define the mutual reachability distance
between the i-th and j-th members as

dreach(f̄i, f̄j) = max(dcore(f̄i), dcore(f̄j), d(f̄i, f̄j)) (16)

where d(f̄i, f̄j) is the distance between the feature vectors of the two members [14]. Accordingly,
the mutual reachability distance between two members of a dataset captures both their separation in
the feature vector space and the density via the size of their mpts-neighborhoods.

HDBSCAN generates a hierarchy of all possible groupings of members in the mutual reachabil-
ity distance space and selects the most stable set of clusters. To generate this hierarchy, a graph is
constructed to reflect each member at its nodes and their mutual reachability distances as the edges.
A minimum spanning tree is then constructed to summarize this graph [14]. Then, the cluster hi-
erarchy is calculated by successively removing the edges with the highest weights and identifying
the connected components [14]. Then, the clusters that maximize the stability, calculated using an
excess of mass approach, are selected from the hierarchy if they possess at least mclmin members
[14]. Malzer and Baum have presented a modification that incorporates a minimum neighborhood
size, ϵmerge, for two members to be located in separate clusters [24]. Through this approach, HDB-
SCAN returns a set of cluster and a set of noise points. Because these clusters do not include border
points, these members can be identified and relabeled in a post-processing step after clustering [25].

TECHNICAL APPROACH

Generating a Dataset

Generating Trajectories Trajectories that begin within the vicinity of the Moon are propagated
from a fixed initial epoch and for a sufficient time interval to enable a diverse array of geometries to
emerge. First, a constant initial epoch of January 1, 2025, 00:00.000 UTC is selected for all trajec-
tories in this paper. Then, given a specified initial state, each trajectory is generated for a duration
of up to 21 days in the point-mass ephemeris model via numerical integration in the Moon-centered
inertial frame. However, the following early termination conditions are also employed: 1) impact
with a spherical approximation of the Earth or Moon; and 2) reaching a maximum nondimensional
distance from the Moon equal to 0.25, i.e., a quarter of the distance between the Earth and Moon.
Due to this general definition of the duration of a trajectory, the entire dataset may exhibit a wide
array of geometries.

Because the goal of this paper is to summarize trajectories by their geometry in the pulsating,
Earth-Moon rotating frame, the total absolute curvature is calculated in the same frame during tra-
jectory generation. At each step of the numerical integration process, the dimensional position,
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velocity, and acceleration vectors are transformed from the Moon-centered inertial frame to the
Earth-Moon pulsating rotating frame via Eq. 7 - 10. This process also requires calculating the ro-
tation matrix between the two frames as well as its first and second time derivatives, which depend
on the instantaneous state vector of the Moon relative to the Earth. The position, velocity, and ac-
celeration vectors are then nondimensionalized using the instantaneous values of the characteristic
quantities typically used for normalization in the circular restricted three-body problem (CR3BP).
This information is used to evaluate the curvature via Eq. 14 at each instant of time and, therefore,
calculate the total absolute curvature κ(t0, tf ) along each trajectory in the rotating frame. Accord-
ingly, total absolute curvature is appended to the state vector during numerical integration. These
frame transformations, required to calculate the total absolute curvature, result in extra matrix oper-
ations and calls to SPICE functions. These additional steps increase the computational time required
to generate each trajectory, even in a fast implementation within C++.

Sampling Trajectories Each continuous trajectory is sampled at a set of discrete states that cap-
tures its geometry and supports generating a finite-dimensional description. To achieve these goals,
states are sampled using the total absolute curvature of a trajectory, calculated in the pulsating,
Earth-Moon rotating frame. Consider a trajectory with a total absolute curvature of κtot(t0, tf ) that
completes up to r = ⌈κtot(t0, tf )/π⌉ half-revolutions within the evolving osculating plane. This
trajectory is first sampled at its initial condition. Then, for the first r − 1 half-revolutions, states
are evenly sampled at every integer multiple of π/Na in the total curvature. Then, during the r-th
half-revolution, Na states are evenly sampled in the remaining total absolute curvature, i.e., at every
integer multiple of (κtot(t0, tf ) − (r − 1)π)/Na. In this paper, Na = 3 to balance limiting the
number of sampled states with sufficiently capturing the geometry of the trajectory. This approach
discretizes each trajectory into a total of Nar + 1 states.

This sampling approach adapts to the geometry of each trajectory. Specifically, more samples
are placed in regions of high geometric importance, i.e., when the curvature changes. Furthermore,
the number of samples is determined by the number of revolutions completed by each trajectory,
avoiding over- and under-sampling of trajectories. Finally, this approach can be automated without
any further information due to the dependence of curvature on only time derivatives of the position
vector. Together, these characteristics ensure an effective and automated geometry-aware sampling
of each trajectory across a diverse dataset.

Describing Trajectories A continuous trajectory is described by two finite-dimensional feature
vectors that are constructed using information at a discrete set of sampled states. To support a high-
quality clustering result, a shape-based feature vector f̄s and a position-based feature vector f̄p are
used at distinct steps of the clustering process. For a trajectory that is described by Nf states, the
shape-based feature vector is defined as

f̄s =
[
T̂1, T̂2, ..., T̂Nf−1, T̂Nf

]
(17)

where T̂j = v̄j/vj is calculated in the pulsating, Earth-Moon rotating frame at the j-th sampled
state along the trajectory. This 3Nf -dimensional vector possesses elements that are always within
the range [−1, 1], regardless of the region in which the spacecraft is located. Of course, there is
a singularity when vj = 0. Nevertheless, this feature vector supports identification of paths with
a similar shape in the rotating frame. The position-based feature vector then supports separating
trajectories with a similar shape that do not exist nearby in configuration space. This feature vector
is defined as

f̄p =
[
r̄1, r̄2, ..., r̄Nf−1, r̄Nf

]
(18)
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where r̄j is the nondimensional, position vector in the pulsating, Earth-Moon rotating frame at the
j-th sampled state along the trajectory. The result is a 3Nf -dimensional vector.

Clustering a Set of Trajectories

Coarse Shape-Based Clustering A diverse array of trajectories is first clustered to construct a
coarse set of groups of trajectories with a sufficiently similar shape. These coarse grouping are gen-
erated using the shape-based feature vectors f̄s of each entire trajectory. Furthermore, HDSBCAN
is leveraged at this step to discover an unknown number of clusters with potentially distinct shapes,
sizes, and densities. Each cluster includes a set of trajectories with shape-based feature vectors
that create sufficiently dense groupings in the 3Ns-dimensional space. This step produces a set of
coarse, shape-based clusters shape-based clusters C = {C1, C2, ..., Cn} and a set of unlabeled, noise
points Nc. At this step, noise points that lie in the mpts-neighborhood of any labeled trajectories in
the shape-based feature vector space are assigned to the nearest cluster. Any remaining unlabeled
trajectories are discarded at this stage.

During the coarse shape-based clustering step, the parameters governing HDBSCAN must be
selected. First, mclmin is selected to be small to prioritize discovering localized variations between
trajectories, albeit at the expense of producing a larger number of clusters that are more sensitive
to small density changes. Then, mpts = mclmin − 1 is selected to define each neighborhood
to span the minimum size of a cluster. In addition, all feature vectors are compared using the
Euclidean distance to support fast clustering [26]. Finally, ϵmerge = 2

√
Ns sin(α/2) to support

grouping together trajectories with Ns velocity unit vectors that are each an angle of α apart. This
heuristic results in a generous grouping of trajectories that may potentially be similar, but can also
result in trajectories with a few significantly different velocity unit vectors being grouped together
incorrectly. Accordingly, cluster refinement is used to generate high-quality clusters from within
each coarse, shape-based group.

Cluster Refinement A coarsely constructed group may be refined in a two-step process to iden-
tify high-quality clusters of trajectories that consistently follow a similar path through their entire
duration. To implement this refinement step, the concept of a ‘convoy’ from trajectory clustering
is employed. This term describes a set of moving objects that remain density-connected at each
sampled state along their trajectories [2]. Implementation of this concept has involved clustering
subsets of feature vectors, evaluated at the i-th state along all trajectories, and repeating this process
n times for all n states along a trajectory [2]. Any trajectories that are consistently grouped together
satisfy the density-connectedness criterion at every sampled state and, therefore, form a convoy or
cluster of sufficiently similar paths.

The convoy detection approach motivates the cluster refinement process. Consider a set of
coarsely grouped trajectories that all complete up to r revolutions, with a total curvature between
(r − 1)π and rπ. Each trajectory is segmented into half revolutions, i.e., the i-th segment encom-
passes the (i− 1)Na +1-th to iNa-th sampled states (or iNa +1-th when i = r to capture the final
state along the trajectory). A feature vector is then calculated for these sampled states. Next, the
feature vectors for the i-th segment along all trajectories in the coarsely constructed set are clustered
via DBSCAN using a specified neighborhood size that is selected as described in later paragraphs.
This process is repeated for all r segments along the trajectory to produce r clustering results. Any
trajectories that are consistently grouped together within these r clustering results produce one or
more refined clusters. Any trajectories that are considered noise along any segment are unlabeled
and discarded.
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The cluster refinement process is applied in two steps. First, the coarsely constructed set of clus-
ters are refined using the shape-based feature vector. This step ensures that trajectories appearing in
the same cluster consistently possess a similar time evolution of the velocity unit vector and limits
the impact of the curse of dimensionality in discovering high quality clusters. Then, each refined
shape-based cluster is once again refined using the position-based feature vector. This step ensures
that each cluster groups only trajectories with a similar shape and path through configuration space
for their entire durations.

When using DBSCAN for cluster refinement, three governing parameters must be selected. First,
the value of mpts is selected to match the value used in the coarse clustering process. In addi-
tion, the Euclidean distance is once again used to compare two feature vectors. The value of ϵ is
selected heuristically to approximate the size of the mpts neighborhood of a trajectory that is suf-
ficiently similar to other trajectories. Specifically, when DBSCAN is used for cluster refinement,
ϵmerge = mptsmax(e, ϵthreshold) where e is the median value of the distance from each trajectory
to its nearest neighbor and ϵthreshold is a reasonably small minimum threshold. Through this expres-
sion, ϵmerge is approximated as mpts multiplied by this median distance between nearest neighbors
to provide a reasonable estimate and limit bias from any outliers in the group.

Cluster Representatives Each cluster is summarized using a single representative trajectory. This
trajectory is selected as the medoid, which captures the member of the cluster that is most similar
to all other members. This medoid of cluster Ck, composed of Pk members, is calculated as

Tmed,k = argminTi∈Ck

 Pk∑
j=1,i ̸=j

d(f̄i, f̄j)

 (19)

where d(f̄i, f̄j) is the Euclidean distance between the feature vectors of the i-th and j-th trajectories
and Ti is the i-th trajectory.

Data-Driven Summarization Process

Step 1: Sample the Solution Space The first step of initial condition sampling involves selecting
the position vectors. A uniform grid is defined in the configuration space of the Earth-Moon pulsat-
ing, rotating frame with a fixed grid spacing ∆pos = 0.004. This grid is defined within the following
ranges: x ∈ [−0.834, 1.156], y ∈ [−0.2, 0.2], z ∈ [−0.2, 0.2]. At each position vector, the concept
of the Jacobi constant from the CR3BP is leveraged to select viable initial conditions. Although the
Jacobi constant is not a constant of motion in an ephemeris model, it supports consistently sampling
the phase space. Given a selected value of Jacobi constant, CJ,des, only the position vectors that
produce real-valued speeds in the rotating frame are retained.

Each initial condition is constrained to produce a maximum in the curvature in the Earth-Moon
pulsating rotating frame. This condition supports identifying states in the rotating frame that are
analogous to apses relative to meaningful reference points. Given a speed and initial position
vector, each possible velocity vector is described by two spherical coordinates: an in-plane an-
gle θxy ∈ [0, 360◦] measured from the x-axis and an out-of-plane angle θz ∈ [−90◦, 90◦]. Using
these definitions, the velocity vector is equal to

v̄ = ẋx̂+ ẏŷ + żẑ = v cos(θxy) cos(θz)x̂+ v sin(θxy) cos(θz)ŷ + v sin(θz)ẑ (20)

Each out-of-plane angle is sampled in increments of 2◦. Then, the value of θxy is varied in in-
crements of 1◦ and the associated velocity vectors are used to calculate the time derivative of the
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curvature, κ̇(t0). This calculation requires calculating the second and third time derivatives of the
position vector in the rotating frame, thereby requiring transformations to/from the inertial frame
and an evaluation of the equations of motion. Any two neighboring angles that produce values of
κ̇(t0) with opposite signs are used to identify an initial guess for a velocity vector that produces a
maximum in the curvature. The x and y components of the velocity vector are iteratively updated
using the fsolve toolbox in MATLAB to satisfy the following two conditions [27]:

dκ(x̄)

dt
= 0,

ẋ2 + ẏ2 + ż2

v2
− 1 = 0 (21)

This process is repeated for every initial guess at every selected value of θz . The result is a set of
one parameter curves formed by the velocity vector at each position and each speed.

At each position vector and speed, the array of discretely sampled velocity vectors that produce
maxima in the curvature are summarized using localized, coarse clustering. Each initial state vec-
tor is transformed to the inertial frame at the selected initial epoch and propagated as described in
the Background section. The feature vectors in Equations 17 and 18 are then calculated for each
trajectory to reflect the shape and position evolution in the Earth-Moon rotating frame. The shape-
based feature vectors are coarsely clustered using the approach described in the previous section
with mclmin = 3, mpts = 2, and ϵmerge = 0. The result is a set of clusters summarizing the ge-
ometries of trajectories that emanate from the same position vector with a fixed speed at a curvature
maximum. The representative members of each trajectory supply the initial conditions, trajectories,
and feature vectors that are added to the dataset to be clusters. This process is repeated for all viable
position vectors in the uniform grid.

Step 2: Cluster Individual Partitions of Trajectories All the trajectories contained within the
large dataset are segmented to produce smaller partitions. Trajectories that complete the same num-
ber of half-revolutions in the Earth-Moon pulsating rotating frame are collected and then evenly
distributed across N partitions of up to 10,000 members; this upper limit corresponds to a reason-
able maximum dataset size to support fast clustering. Then, each partition contains only trajectories
that have the same feature vector dimension and begin in a similar region of the configuration space.
However, these trajectories may exhibit a diverse array of geometries.

Each partition is independently clustered. First, the trajectories in the i-th partition are coarsely
clustered using the approach outlined in the previous section with mclmin = 5, mpts = 4, and
ϵmerge = 2 sin(10◦/2)

√
Ns. Then, those clusters are refined following the procedure described

earlier with mclmin = 5, mpts = 4, and the heuristically selected value of ϵmerge. The result is a
set of ci local clusters of trajectories with a similar shape and path through the configuration space,
Li = {Li,1,Li,2, ...,Li,ci}. Any trajectories designated as noise at this stage are discarded.

Step 3: Aggregate Clusters to Form Global Summary Local clusters that correspond to suffi-
ciently similar trajectories are merged across partitions to identify global clusters. This approach es-
sentially implements distributed clustering: aggregating local clustering results to produce a global
summary of a large dataset. This approach is implemented in two steps: 2) identification of candi-
date neighboring clusters and 2) assessment of each candidate pair to determine whether two local
clusters should be merged.

To ensure computational efficiency, candidate neighboring clusters are identified using the rep-
resentatives of local clusters. Specifically, for the i-th local cluster in a partition, its representative
trajectory is compared to the representatives of all other clusters including trajectories with a total
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absolute curvature of between (r− 1)π and rπ. Then, the k nearest neighbors in each of the shape-
based and position-based feature vector spaces are identified. Accordingly, up to 2k unique local
clusters form the set of candidate neighbors to the i-th local clusters. In this paper, k = 4 is selected
to balance computational efficiency with identifying several candidates.

Each pair of candidate neighboring clusters is examined to determine whether they should be
merged. This merging decision process is performed by simultaneously clustering the feature vec-
tors of their members using the refinement process outlined in the previous section with mclmin = 5,
mpts = 4, and the heuristically selected value of ϵmerge. If trajectories from each local cluster ap-
pear grouped together in each of the shape-based and position-based feature vector spaces, they are
considered to follow sufficiently similar paths for their entire duration. As a result, these clusters are
merged together. If either cluster possesses more than 10,000 members, the clusters are partitioned
into smaller subsets and every combination of pairs from each candidate cluster are examined. Then,
if any pair of partitions is considered to have sufficiently similar members, the entire clusters are
merged together.

To calculate the global clusters from all the merging decisions, a graph is used. Each local cluster
forms the nodes of the graph whereas edges are added between a pair of local clusters that should
be merged. Each connected component of this graph forms a set of one or more local clusters that
should be merged to form a global cluster. The result of this process is a set of P global clusters
G = [G1,G2, ...,GP ].

RESULTS

A global cluster summary is generated for natural motion in the point mass ephemeris model for
trajectories that begin with a Jacobi constant of CJ = 3.16 in the lunar vicinity. The dataset consists
of a total of 1,145,990 trajectories distributed over 123 partitions. Across all of these partitions, a
total of 3,965 local clusters are generated. Following aggregation, there are 1,388 global clusters
composed of 1,044,174 trajectories; 101,816 members of the full dataset are discarded as noise,
typically due to lying in insufficiently dense regions of a feature vector space. Some global clusters
are composed of as many as 34,995 members whereas others consist of as few as 5 members. In
some cases, the smaller clusters may resemble other motions but may be too localized to be merged
with other clusters.

To aid analysis of the motion types summarizing the selected clusters in the ephemeris model, a
comparison to selected motions from the CR3BP is also performed. Specifically, the same process is
applied to natural trajectories in the Earth-Moon CR3BP at a Jacobi constant of 3.16. These trajecto-
ries are grouped into 822 global clusters, composed of 586,365 members. Then, the global clusters
from each of the ephemeris model and CR3BP are aggregated together following the procedure in
Step 3 of the Data-Driven Summarization Approach, but with k = 2.

Selected global clusters from the ephemeris model as well as their associated motions in the
lower-fidelity CR3BP are visualized. Specifically, representative members of selected clusters are
displayed in Figures 1-5, categorized based on their motion types. In each figure, the representative
members of trajectories in the ephemeris model are plotted in blue in three-dimensional space with
their initial conditions highlighted by a blue circle marker; red colored representatives, in some
figures, indicate trajectories from the CR3BP with a similar geometry. For both paths, transparent
markers display selected initial conditions of other members of the cluster. A projection of the path
of any representatives from the ephemeris model onto the xy-plane is drawn just below in gray to
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provide perspective on a three-dimensional trajectory that is displayed via a two-dimensional figure.
In addition, the Moon is located using a gray circle marker; this object is not scaled due to the use
of a pulsating, rotating frame that would result in a time-varying radius in this view. Furthermore,
the locations of L1 and L2 from the CR3BP are depicted as diamonds.

Figure 1. Selected representative trajectories associated with clusters that impact the
Moon in ephemeris model (blue) and CR3BP (red) for comparison.
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Analysis of Figures 1-5 reveals that the data-driven summary captures natural trajectories in the
ephemeris model with a wide variety of geometries. Many of these geometries tend to be predicted
by similar motions in the low-fidelity CR3BP. The subfigures which only display blue represen-
tatives indicate the trajectory was not associated with a similar motion from the CR3BP. These

Figure 2. Selected representative trajectories associated with clusters that impact the
Moon in ephemeris model (blue) and CR3BP (red) for comparison.
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geometries are expected to be isolated due to: 1) representing a unique geometry in the ephemeris
model, 2) lying sufficiently far from the similar motion in the CR3BP to not satisfy the density
connectedness requirements during clustering based aggregation, 3) possessing a slightly different
value of κtot that results in a different integer value for r compared to a similar motion from the

Figure 3. Selected representative trajectories associated with clusters that depart
through the L1 gateway in ephemeris model (blue) and CR3BP (red) for comparison.
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CR3BP, 4) existing in a localized region of the phase space, 5) a similar motion may exist in the
discarded points that were designated as noise during clustering, or 6) resembling a motion from
the CR3BP at a slightly different energy level.

Figure 4. Selected representative trajectories associated with clusters that depart
through the L2 gateway in ephemeris model (blue) and CR3BP (red) for comparison.
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CONCLUSIONS

This paper leveraged a data-driven framework to generate a high-resolution summary of natural
trajectories in an Earth-Moon-Sun point mass ephemeris model. Each trajectory is generated from

Figure 5. Selected representative trajectories associated with clusters that remain
in the Moon’s vicinity for 21 days in ephemeris model (blue) and CR3BP (red) for
comparison.
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a maximum in the curvature in the rotating frame at a fixed initial epoch on January 1, 2025 UTC
for 21 days, or until impact with a primary. Then, each continuous trajectory is sampled using the
geometry of the path to produce a discrete set of states. Each state is used to form finite-dimensional
feature vectors that capture the shape of the trajectory and its path through the configuration space.
Then, these trajectories are grouped using a distributed clustering approach that relies on HDB-
SCAN and DBSCAN. Each cluster captures a set of trajectories with a distinct geometry. Together,
the clusters summarize the array of possible motions within this dataset in the point mass ephemeris
model. Some of these clusters were presented, along with a comparison to the low-fidelity CR3BP.
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