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Abstract

Detailed mapping of genetic and environmental influences on the functional connectome is a crucial step toward
developing intermediate phenotypes between genes and clinical diagnoses or cognitive abilities. We analyzed resting-state
functional magnetic resonance imaging data from two adult twin samples (Nos=446 and 371) to quantify genetic and
environmental influence on all pairwise functional connections between 264 brain regions (∼35 000 functional connections).
Nonshared environmental influence was high across the whole connectome. Approximately 14–22% of connections had
nominally significant genetic influence in each sample, 4.6% were significant in both samples, and 1–2% had heritability
estimates greater than 30%. Evidence of shared environmental influence was weak. Genetic influences on connections were
distinct from genetic influences on a global summary measure of the connectome, network-based estimates of connectivity,
and movement during the resting-state scan, as revealed by a novel connectome-wide bivariate genetic modeling
procedure. The brain’s genetic organization is diverse and not as one would expect based solely on structure evident
in nongenetically informative data or lower resolution data. As follow-up, we make novel classifications of functional
connections and examine highly localized connections with particularly strong genetic influence. This high-resolution
genetic taxonomy of brain connectivity will be useful in understanding genetic influences on brain disorders.
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Introduction

The functional connectome refers to intrinsically correlated

activity between brain regionswhen individuals are not engaged

in a particular task (i.e.,measured during the “resting state”; Fox

and Raichle 2007). Patterns within the functional connectome

are associated with clinical diagnoses (for reviews, see Greicius

2008; Zhang and Raichle 2010) and individual differences in cog-

nitive abilities (for a broad review of 125 studies, see Vaidya and

Gordon 2013). Recent work has showcased reliable and gener-

alizable predictive models of individual differences in behavior

that utilize many measurements of the connectome as features

(Finn et al. 2015; Rosenberg et al. 2016). These patterns of

connectivity may be candidate intermediate phenotypes

between genes and traits (i.e., endophenotypes; Hall and

Smoller 2010; Kendler and Neale 2010), if genetic influences

exist. However, prior work has only quantified genetic and

environmental influences on the connectome at the level of

large regions/networks of interest. In the current study, we

conduct a highly detailed analysis of the etiology of functional

brain connections and find a high degree of diversity in genetic

influence across the connectome.

Genetic analyses of functional connections could span sev-

eral units of analysis: from connections between a small number

of large networks with correlated activity (Yeo et al. 2011) and
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related function (Smith et al. 2009) to connections between

nearly a million individual voxels. Due to the computational

power needed to perform classic twin models at the level of

voxels or small regions, current efforts have focused on quanti-

fying genetic and environmental influence on global summary

measures of functional connectivity, resting-state networks (i.e.,

large and spatially separated groups of regions that are all

moderately correlated at rest and thus appropriate to model as

a single unit), or large regions of interest (ROIs). At the coarsest

level of detail, several studies have revealed moderate heritabil-

ity (i.e., “h2” or the proportion of phenotypic variance explained

by genetic variance; h2 =0.43–0.64) of the degree towhich an indi-

vidual’s connectome is globally efficient (i.e., maximizes infor-

mation transfer while reducing long path lengths and unnec-

essary connections; Fornito et al. 2011; van den Heuvel et al.

2013; Sinclair et al. 2015). However, while global efficiency may

be an informative phenotype, it may not be a thorough sum-

mary of the connectome, possibly summarizing only connec-

tions amongst the brains’ densely connected and metabolically

costly hub regions (Heuvel et al. 2012).

At the level of networks, therewas a substantial early interest

in the genetics of the default network, a set of regions implicated

in internalmentation functions (Andrews-Hanna 2012), perhaps

due to its involvement in a variety of clinical disorders including

schizophrenia, depression, and attention-deficit/hyperactivity

disorder (Whitfield-Gabrieli et al. 2009; Anticevic et al. 2012;

Whitfield-Gabrieli and Ford 2012; Mattfeld et al. 2014; Kaiser

et al. 2016). The default network is moderately heritable as a

whole (h2 =0.42), while connectivity of its subcomponents are

weakly-to-moderately heritable (h2 =0.10–0.42; Glahn et al. 2010).

Other work has reported moderate heritability of a precuneus-

dorsal posterior cingulate network, visual network, default

network, frontoparietal (FP) network, and dorsal attention

(DA) network (h2 =0.23–0.65), nonsignificant heritability for the

salience and sensory-somatomotor networks, and evidence of

environmental effects on functional connectivity between all

networks (Yang et al. 2016). Finally, a recent study investigated

the genetic etiology of functional connections among seven net-

works and pairwise connections between 51 brain areas, finding

moderate-to-strong heritability of seven networks (h2 =∼0.60

to ∼0.75) using a linear-mixed-effects-model approach to

account for unreliability across multiple resting-state scans

(Ge et al. 2017). At the level of the 51-region parcellation, the

authors found that heritability estimates for components of

some networks, such as the default network, were consistent,

but found evidence of heterogeneity for regions of other

networks, such as the limbic and cognitive control networks. In

summary, existing studies have provided heritability estimates

for functional connectivity at global, network, or large ROI levels

of analysis.

Although coarser levels of analysis are undoubtedly infor-

mative, they are not without caveats. First, large networks have

only vague overarching functional labels (such as “vision”) as

opposed to distinct functional labels ascribed to regions of

finely detailed parcellations (e.g., those that contain 200–500

regions). Second, the anatomical literature indicates heritability

may be overestimated for larger versus smaller pieces of

cortex (Eyler et al. 2012). Third, examining heritability at the

network level assumes that areas within the networks are

homogeneous in terms of their genetic connections to areas

in other networks. Fourth, individual differences in within-

network connectivity cannot be examined, and these individual

differences may have important implications for behavior (i.e.,

as contributors to connectivity-based predictive models or

“fingerprints” of cognitive processes (Rosenberg et al. 2016) or

psychopathology Elliott et al. (2018)). Finally, a recent attempt

to quantify the utility of parcellations of varying granularity for

connectivity-based predictive modeling has shown that fine-

grained parcellations lead to higher predictive accuracy Li and

Atluri (2018).

Important questions that can be examined at a finer level of

analysis are (1) Do within- and between-network connections

show similar levels of genetic and environmental influences? (2)

Are regions of a particular resting-state network homogeneous

in terms of their pattern of genetic and environmental influ-

ences across all connections? (3) What are useful applications of

high-resolution genetic mapping? For example, can differences

between regions’ patterns of genetic connectivity be used to

generate hypotheses about or explain differences in their func-

tions? Answering these questions speaks to recent efforts to

“carve nature at its joints” and thus has important implications

for how we conceptualize resting-state connectivity as a bio-

marker or candidate endophenotype for behaviors of interest.

To answer these questions, we analyzed resting-state data

from two comparably aged adult twin samples: the Colorado

Longitudinal Twin Study (LTS; N=446, including 94 complete

monozygotic [MZ], 84 complete same-sex dizygotic [DZ] pairs,

and 79 singletons) and the Human Connectome Project (HCP;

N=371, including 89 complete MZ and 79 complete same-sex

and opposite-sex DZ pairs). The inclusion of both samples

allowed us to examine replicability of general patterns as

the main criterion for significance rather than relying on a

classic correction for multiple tests in a single, modestly sized

(for genetic analysis) sample, which may lead to many false

negatives given the limited power in each sample to detect

significance at a threshold stringent enough to correct for over

34 000 tests.We decomposed the functional connectome of each

individual into pairwise correlations between 264 individual

regions (referred to as connections) from a widely used and

independently derived brain parcellation (34 716 connections,

Power et al. 2011). In comparison with coarser parcellations, this

parcellation was developed to reflect functional distinctions

between small parts of cortex (Wig et al. 2011), is accompanied

bymetadata assigning each region to one of 14 function-specific

resting-state communities (e.g., visual network,default network,

etc.), and is within a window of optimum dimensionality that

maximizes reproducibility (Thirion et al. 2014).

We addressed our primary questions by applying a classic

univariate twin model to each connection (see section Materi-

als and Methods—Genetic Models) to estimate the proportion

of variance in connection with strength explained by additive

genetic influence (A or heritability; the sum of a large number

of genetic variants that additively influence a trait), shared envi-

ronmental influence (C; influences that increase sibling simi-

larity), and nonshared environmental influence (E; influences

that decrease sibling similarity; including measurement error).

The resulting high-resolution genetic and environmental maps

allowed us to investigate differences between within-network

and between-network connections (question 1) and also inves-

tigate the distribution and patterns of genetic influence for

regions of a priori resting-state networks (question 2).

Overall, we expect to find a distribution of connection

heritability, such that some connections are not heritable while

others have moderate heritability estimates, as is found in the

network-based and large regional literature (i.e., Glahn et al.

2010; Ge et al. 2017). These results should provide a new degree
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of spatial specificity that builds on this important historical

genetic imaging research and would provide a means, in future

work, to discover novel classifications of brain areas beyond

existing network parcellations or to generate hypothesis about

discriminant functions of brain areas. We investigate these

questions in the context of within- versus between-network

connectivity but do not make specific predictions regarding

the nature of those findings. Another hypothesis is based on a

very large functional neuroimagaing literature linking specific

brain areas to specific functions (e.g., discriminant functions

of medial prefrontal and posterior cingulate regions within

the default network). We expect local connections to have

genetic influence that is separable from genetic influence on

superordinate measures of connectivity (the default network as

a whole). We expect the current study to elucidate differences

in the genetic and environmental etiology of connections of

different types/functions and demonstrate possible applications

in a variety of domains.

Materials and Methods

The current study is a parallel analysis of resting-state data from

a sample of adults recruited from the Colorado LTS and adults

from a publicly available data set from the HCP.

Participant Details

Participants from the LTS sample were of 446 individuals (189

male; Mage =28.7 years, SDage =0.63 years, range=28–32 years)

after 31 participants were removed due to incidental anatom-

ical findings, excessive movement during the scanning session

based on the criteria of greater than 3-mm translation (motion in

x,y, or z plane) or 3◦ rotation (roll, pitch, or yawmotion), or failure

of the presentation on computer to display a fixation cross dur-

ing the resting scan. Of the 446 individuals, there were 94 pairs

of MZ twins, 84 pairs of DZ twins, 41 MZ twin singletons, and 49

DZ twin singletons. Singletons aremembers of twin pairs whose

cotwins either did not participate or were excluded from analy-

sis. Singletons were only informative as to connectivity means

and variances. LTS twins were recruited from the Colorado Twin

Registry based on birth records (see Rhea et al. 2006; Rhea et al.

2013 for additional information). Comparisons with normative

data on several measures suggest that the sample is cognitively,

academically, and demographically representative of the state

of Colorado. Based on self-report, the entire LTS sample is 92.6%

White, 5.0% more than one race, <1% American Indian/Alaskan

Native, <1% Pacific Islander, and 1.2% unknown/not reported.

Hispanic individuals composed 9.1% of the sample. Participants

were paid $150 for participation in the study or $25 per half

an hour for those who did not finish the entire 3-h session.

The study session involved the administration of behavioral

tasks that measured cognitive abilities as well as acquisition of

anatomical and functional brain data via magnetic resonance

imaging.

HCP participants were 371 individuals (157 male; Mage =

29.1 years, SDage =3.47 years, range=22–36 years) selected from

the most recent HCP data release because they were part of

complete pairs of twins who completed the anatomical and

functional imaging components of the study (more information

about the HCP sample and project can be found in Van Essen

et al. 2013). This subset of HCP participants were 89 MZ pairs

and 79 DZ pairs with race reported as 82.7% White, 11.3%

Black/African American, 4.5% Asian/Native Hawaiian/other

Pacific Islander, <1% American Indian/Alaskan Native, <1%

more than one race, and <1% unknown/not reported.

Method Details

Procedure

For the LTS sample, testing took place in a single 3-h session. Fol-

lowing review and obtainment of informed consent, participants

were familiarized with the imaging procedures. If both twins of

a pair participated on the same day, the twins completed the

protocol sequentially (twin order randomized) with the same

ordering of behavioral testing and imaging acquisition. The

resting-state scan always occurred first in the imaging protocol,

before tasks. All study procedures were fully approved by the

Institutional Review Board of the University of Colorado Boulder.

Testing procedures for participants in the HCP sample has been

described in prior work (Van Essen et al. 2013).

Brain Imaging

Participants from the LTS sample were scanned in a Siemens

Tim Trio 3T (n=250) or Prisma 3T (n=215) scanner (Scanner

was included as a nuisance regressor in all analyses involving

the LTS dataset.) Neuroanatomical data were acquired with

T1-weighted magnetization prepared using rapid gradient

echomagnetization prepared rapid gradient echo sequence

(acquisition parameters: repetition time (TR) = 2400 ms, echo

time (TE) = 2.07, matrix size=320 × 320 × 224, voxel size= 0.80 ×

0.80 × 0.80mm, flip angle (FA) = 8.00◦, slice thickness=0.80mm).

Resting-state data were acquired with a 6.25-min T2∗-weighted

echo-planar functional scan (acquisition parameters: number

of volumes=816, TR=460 ms, TE=27.2 ms, matrix size=82 ×

82 × 56, voxel size= 3.02 × 3.02 × 3.00 mm, FA=44.0◦, slice

thickness=3.00 mm, field of view (FOV) = 248 mm). During

the resting-state scan, participants were instructed to relax

and stare at a fixation cross while blinking as they normally

would.

Resting-state acquisition in the HCP sample is described in

detail elsewhere (Smith et al. 2013), but briefly, each participant

completed an anatomical and four 15-min resting-state scans

(eyes fixated) in the context of a large imaging and behavioral

testing battery. In the current study, we used the first two

15-min resting-state scans.

Preprocessing and Connectome Extraction

All processing of LTS brain data was performed in a standard

install of FMRIB Software Library (FSL) build 509 (Jenkinson

et al. 2012). To account for signal stabilization, the first 10 vol-

umes of each individual functional scan were removed, yield-

ing 806 volumes per subject for additional analysis. The func-

tional scans were corrected for head motion using MCFLIRT

(FMRIB’s linear image registration tool for motion correction).

Brain extraction was used to remove signal associated with

nonbrainmaterial (e.g., skull, sinuses, etc.). FMRIB’s linear image

registration tool (FLIRT) was used to perform a boundary-based

registration of each participant’s functional scan to his or her

anatomical volume and a 6-degree-of-freedom affine registra-

tion to MNI152 standard space. To account for motion and

other noise signals known to pollute resting-state analyses, LTS

scans were subjected to AROMA (ICA-based Automatic Removal

Of Motion Artifacts), an automated independent components

analysis-based, single-subject denoising procedure (Pruim et al.

2014). Signal extracted from masks of the lateral ventricles,

white matter, and whole brain volume was regressed out, along

with a set of six motion regressors and associated first and
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Figure 1. Bivariate models. (a) Bivariate correlated ACE model. rA, genetic correlation; rC, shared environmental correlation; rE, nonshared environmental correlation.

(b) Bivariate Cholesky decomposition. Additive genetic (A), shared environmental (C), and nonshared environmental (E) latent variables (left side) predicting network

connectivity (via paths x1, y1, and z1) and functional connectivity (via paths x2, y2, and z2). Functional connectivity has residual A, C, and E influences (right side). The

variance explained by each influence is obtained by squaring the paths (e.g., x3 , y3, and z3). The univariate model of network connectivity is equivalent to left side of

the figure (i.e., removing the local connectivity measure). The models include variables for both twins, but for simplicity, only one twin is shown.

second derivatives. Finally, the scans were band-pass filtered

(0.001–0.080 Hz band).

Preprocessing for HCP data is described elsewhere (Glasser

et al. 2013). Briefly, HCP scans were subjected to minimal pre-

processing and FIX, a semiautomated single-subject denoising

procedure (Salimi-Khorshidi et al. 2014). Additionally, we

regressed out the mean grey ordinate time series from each

scan as a proxy for the global signal (as suggested by Burgess

et al. 2016). HCP scans were band-pass filtered (0.001–0.080-Hz

band).

For each participant, we extracted the blood-oxygen-level-

dependent time series from each of 264 1-cm spherical ROIs,

drawn from Power et al. (2011), which serve as the nodes for

the present analysis. This analysis was performed in volume

space to maximize similarity between the two samples. We

used these nodes, as they are drawn from a meta-analysis of

functional activations and have a community structure that

agrees with task-based functional networks (i.e., are organized

into networks such as default mode network and FP task control

network). We chose 1-cm spherical ROIs because they provide

the largest possible size for a given ROI but preclude overlap

with neighboring ROIs. Within each participant, all pairwise

Pearson’s correlations were calculated, yielding a 264 × 264 cor-

relation matrix. All correlations were subjected to the Fisher’s z-

transformation to normalize the variance in correlation values.

All genetic analyses used the per-participant z-correlations after

regressing out several nuisance variables: scanner, gender, and

summary measures of movement during the resting-state scan

(averagemotion in the x,y, and z planes and average of roll, pitch,

and yaw) for the LTS sample and gender and summarymeasures

of movement during the resting-state scan (average motion in

the x, y, and z planes and average of roll, pitch, and yaw) for

the HCP sample. The gender regressor is particularly important

for the HCP sample given the presence of opposite-sex DZ

pairs. Bivariate analyses utilized a global summary measure of

each participant’s connectivity matrix, which was calculated

as the reciprocal of the average shortest path length between

all 264 regions as calculated on a proportionally thresholded

(15%) connectivity matrix using the Python package Networkx

(Hagberg et al. 2008). Calculation andmanipulation of connectiv-

itymatrices aswell as plottingwas also done in Python using the

Pandas (McKinney 2010), Seaborn (http://seaborn.pydata.org/),

and Matplotlib packages (Hunter 2007).

Statistical Analysis

Genetic Models

All genetic analyses conducted were run as structural equa-

tion models in R through the OpenMx (Boker et al. 2011) and

UMX packages Bates, Maes, and Neale (2019). As all measures

were continuous, these models utilized maximum likelihood

estimation (Bentler and Weeks 1980). Univariate genetic models

were run on each connection. A univariate model decomposes

total phenotypic variation in a connection into additive genetic

(A), shared environmental (C), and nonshared environmental

(E) components. MZ twins share all of their genes, whereas DZ

twins share on average 50% of their genes by descent, and both

types are reared together. Genetic influences (A) are indicated

when the MZ twin correlation is higher than the DZ correlation;

shared environmental influences (C) are indicated when the

DZ correlation is greater than half the MZ correlation; and

nonshared environmental influences (E), which include mea-

surement error, are indicated when the MZ correlation is less

than unity.

Statistical analysis of differences between within- and

between-network connectivity heritability estimates was

performed using the statsmodels package for Python. For tests

of network-wide differences in within- and between- network

connectivity heritability, we report two statistical significance

criteria: Bonferroni correction for 14 network comparisons and

nominal significance (P< 0.05) in both samples. Only tests of

regional differences between within- and between-network

connectivity heritability that were significant in both samples

(P< 0.05) are reported. We additionally report which results

withstood a correction for 264 regional tests (P< 0.00018).

For the association between connections and either net-

work connectivity, global efficiency, or movement, we utilized

bivariate correlated ACE models (Fig. 1a) derived from bivariate
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Cholesky decompositions (Fig. 1b). The Cholesky decomposition

is a common form of bivariate twin analysis and can be used to

calculate the genetic correlation and correlation predicted from

A, C, and E overlaps (Neale and Cardon 1992). In this Cholesky

decomposition, the first set of A, C, and E latent variables pre-

dicting network connectivity are allowed to predict the local

connection (via paths x2, y2, and z2), and the local connection

also has residual A, C, and E variances (obtained by squaring

paths x3, y3, and z3). Given our interest in genetic variance of

connections not shared with superordinate measures of con-

nectivity or motion, the residual A values are of particular inter-

est. The matrix of residual A variances (i.e., squared x3 paths)

enables us to ascertain whether the finely detailed genetic map

of the connectome is simply a redescription of network connec-

tivity (or global efficiency andmovement, in thosemodels). That

is, it depicts where there are genetic influences on local con-

nections that are independent of the genetic influences on net-

work connectivity. If residual genetic influence is present across

the connectome, this analysis supports high-resolution analysis

approaches as independent and complementary to analyses

that utilize network-derived connectivity measures.

Clustering Analysis

We clustered patterns of heritability estimates (rows/columns

of Fig. 2a). Ward clustering was implemented in Python using

the Fastcluster package (Müllner 2013). Ward clustering is com-

monly applied in brain-imaging contexts and is known to be

accurate and reliable (Thirion et al. 2014). We applied clustering

to the 264 × 264 matrix of A estimates to find 2–20 clusters of

regions. To estimate the stability of each clustering solution, we

calculated the silhouette score for each sample and averaged all

scores for each clustering solution (Fig. 3a). The silhouette score

compares the distance between a region and other members of

its cluster to the distance between that region and the nearest

neighboring cluster in similarity space. In the current analysis,

similarity was defined as the Euclidean distance between two

regions’ vectors of heritability estimates. The silhouette analysis

revealed several “stable” solutions in which the average silhou-

ette score reached a local maximum, as seen in the peaks of

Fig. 2a at solutions of k=3, 7, and 18. We describe the clustering

results at the coarsest levels in themain body because they are a

demonstration of novel genetic communities without the added

complexity of describing many clusters.

Data and Software Availability

Sample genetic model and A, C, and E estimates for all pairwise

connections are available for download at: https://github.com/

AReineberg/genetic_connectome.

Results

Group Average Connectomes

Visual comparison of mean phenotypic connectivity matrices

for each sample to one another and tomatrices reported in prior

work using independent samples (e.g., Fig. 3 of Cole et al. 2014;

Fig. 2 of Reineberg and Banich 2016) reveals striking similarity,

especially in the prominence of resting-state networks along the

diagonals (Supplementary Fig. S1 (LTS) and Supplementary Fig.

S2 (HCP)).

Figure 2. Connection-wise estimates of additive genetic (A) and shared environ-

mental (C) influences. Matrices contain estimates from univariate twin models

with the spatial location of each cell (estimate) corresponding to the functional

connection between two regions. Assignment to a priori networks is represented

by colored bars along x- and y-axes. Different estimates are displayed in upper

and lower triangles. (a) LTS sample A and C estimates are in the lower and

upper triangles, respectively. (b) HCP sample A and C estimates are in the lower

and upper triangles, respectively. CO, cingulo-opercular; DA, dorsal attention; FP,

frontoparietal; SSM, sensory/somatomotor; VA, ventral attention.

Univariate Twin Models

Connection-wise estimates of additive genetic influence for the

LTS and HCP samples are shown in Figure 2a,b (lower triangles).

In the LTS sample, additive genetic influence was moderate

and bimodally distributed across the connectome such that

16 350 of 34 716 unique connections were estimated as having

zero heritability while a separate, positively skewed distribution

described the heritability of 18 366 connections (M=0.114,

SD=0.079, skew=0.769, min=0.001, max=0.485; distribution

presented in Supplementary Fig. S3): 5021 connections (14.5% of

all connections) had significant (P< 0.05) heritability based on

a 1 degree-of-freedom chi-square difference test comparing an

AE model to an E model, and 408 (1.2% of total connections)

had heritability greater than 30% (30% threshold chosen
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Figure 3. Connections with significant heritability estimate in both LTS and HCP samples. Black cells indicate functional connections between two regions with

nominally significant (P<0.05) heritability in both samples. Assignment to a priori networks is represented by colored bars along x- and y-axes.

arbitrarily to represent cutoff to be considered a moderately

heritable trait). Similarly, for the HCP sample, 14 302 of 34 716

unique connections were estimated as having zero heritability

while a separate, positively skewed distribution described

the heritability of 20 414 connections (M=0.131, SD=0.085,

skew=0.631, min=0.001, max=0.519, distribution presented

in Supplementary Fig. S3): 7626 connections (22.0% of all

connections) had significant (P< 0.05) heritability based on a

1-degree-of-freedom chi-square difference test comparing an

AE model to an E model, and 809 (2.3% of total connections)

had heritability greater than 30%. Of 5021 (LTS) and 7626

(HCP) connections with statistically significant heritability, 1612

connection (4.6% of all connections) were overlapping (i.e., the

same connections had significant heritability in both samples).

Connections with significant heritability in both samples are

visualized in Figure 3.

Shared environmental influences generally explained less

variance than genetic influences, as shown in Figure 2a,b (upper

triangles). In the LTS sample, shared environmental influence

was weak to moderate and bimodally distributed across the

connectome such that 21.023 of 34 716 unique connections

were estimated as having zero shared environmental influence

while a separate, positively skewed distribution described

the shared environmental influence of 13 693 connections

(M=0.083, SD=0.058, skew=0.785, min=0.001, max=0.339,

distribution presented in Supplementary Fig. S3). Similarly,

for the HCP sample, 20 655 of 34 716 unique connections were

estimated as having zero shared environmental influence while

a separate, positively skewed distribution described the shared

environmental influence of 14 061 connections (M=0.099,

SD=0.067, skew=0.726, min=0.001, max=0.439, distribution

presented in Supplementary Fig. S3). Although C estimates were

low, there is a suggestion of moderate shared environmental

influence in several pieces of the connectome (e.g., within

visual connections and visual-to-sensory/somatomotor (SSM)

connections) as can be seen in Figure 2a,b (upper triangles). In

the current study, no significance testing was done to formalize

areas of enriched shared environmental influence.
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In both samples, nonshared environmental influences were

high across the entire connectome (MLTS =0.907, SDLTS =0.082;

MHCP =0.883, SDHCP =0.090) and negatively skewed (SkewLTS =

−0.757, SkewHCP =−0.546). Connection-wise estimates of non-

shared environmental influences are shown in the lower and

upper triangles of Supplementary Figure S4 for the HCP and

LTS samples, respectively. Note that E estimates include mea-

surement error. Reliability of connections was tested for the

HCP sample and found to be high (M=0.825, SD=0.059; see

Supporting Information—Reliability), suggesting that the high E

estimates across the connectome are unlikely to solely reflect

random measurement error.

In general, both samples had very similar patterns of heri-

tability. To be sure any differences in estimates were due to true

differences between the two samples, we compared 6 minutes

to 30 minutes of data within the HCP sample. This analysis

leads us to believe the differences between the LTS and HCP

samples are related to sample differences rather than to data

quantity. When comparing 6 to 30 min of HCP data, heritability

estimates changed in magnitude (mean h2
6 min =0.090, mean

h2
30 min =0.131) but remained similar in pattern (i.e., were corre-

lated with one another), see Supporting Information—6 versus

30 min of Resting Data for more information about this analysis.

Within- and Between-Network Connections

To examine whether high-resolution mapping of genetic

influence reveals differences in within- versus between-

network connections, (question 1), we investigated heritability

estimates for connections of those types. As stated previously,

1612 of 34 716 connections had significant (P< 0.05) additive

genetic influence in both samples. Of those 1612 connection,

364 were within-network connections (from a total of 3748

within-network connections; i.e., 9.71%) and 1248were between-

network connections (from a total of 30 968 between-network

connections; i.e., 4.03%). This difference in proportion of

significantly heritable connections was statistically significant

(χ2(1) = 243.77, P< 0.001), suggesting that within-network con-

nections are over-represented in the heritable connections that

replicated across samples.

First, we considered average heritability across all con-

nections considered to be within the same a priori network

versus all between-network connections. In both samples,

within-network connectivity was more heritable than between

network connectivity (Supplementary Table S1a; whole connec-

tome results). This effect was present even when controlling for

the estimated test–retest reliability of each connection in the

HCP sample (see Supporting Information—Reliability).

We also quantified differences in heritability for within- and

between-network connections for each a priori network individ-

ually. In both samples,within-network connections tended to be

more heritable on average than between-network connections.

In both samples, the default, sensory-somatomotor hand,

and visual networks had significantly higher heritability for

within- than between-network connections (Supplementary

Table S1b) after accounting for 14 tests (one per a priori

network). In the HCP sample, the uncategorized network had

significantly higher heritability for between- than within-

network connections. Although within-network connections

tended to be more heritable on average than between-network

connections, the distributions of between-network connections

tended to be more positively skewed, perhaps suggesting there

are a minimal number of highly heritable between-network

connections. We also tested for differences in shared environ-

mental and nonshared environmental influence for within-

versus between-network connectivity. There was significantly

higher shared environmental influence on within- versus

between-network connections for the visual network in both

samples (Supplementary Table S1b). In the LTS sample, there

was significantly higher shared environmental influence on

within- versus between-network connections for the sensory-

somatomotor hand network. In the HCP sample, there was

significantly higher shared environmental influence on within-

versus between-network connections for the default and

sensory-somatomotor networks and significantly higher shared

environmental influence on between- versus within-network

connections for the ventral attention (VA) network. There

was significantly lower nonshared environmental influence

on within- versus between-network connections for the FP,

default, sensory-somatomotor hand, sensory-somatomotor

mouth, and visual networks in both samples and significantly

higher nonshared environmental influence on within- versus

between-network connections for the uncategorized network of

regions in both sample (Supplementary Table S1c). In the LTS

sample, there was significantly lower nonshared environmental

influence on within- versus between-network connections for

the DA network.

Finally, we quantified differences in heritability for within-

and between-network connections at the level of regions (each

of the 264 regions of the parcellation). Of regions that had

significantly different heritability for within- than between-

network connections in the LTS (n=83) and HCP (n=85) samples,

39 regions showed the effect in both samples, in the same

direction (see Supplementary Table S2). Regions from the

sensory-somatomotor (4), default (20), visual (11), and FP (1)

networks had significantly higher average heritability for

within- versus between-network connections. Three uncate-

gorized regions had significantly higher average heritability for

between- versus within-network connections.

Clustering Reveals Large Genetic Communities

Given the heterogeneity in genetic influence described above,

we explored whether the best way to describe genetic commu-

nities in the connectome was in terms of a priori functional

networks. Regions of any given resting-state community have

a variety of different patterns of heritable connectivity across

the connectome. Variation in the patterns of genetic influence

for the different regions of each network can be explored with

clustering analysis, which groups regions based on similar pat-

terns of heritable connectivity. Ward clustering is a hierarchical

procedure that groups together rows of the additive genetic

influence matrix (Fig. 2) that have similar patterns of heritable

connectivity with all other regions. This analysis could reveal

that the 264 regions cluster together in a manner similar to a

priori networks, or in a novel way (e.g., a cluster of regions with

highly heritable connectivity to some default and FP network

regions, but minimally heritable connectivity to other regions).

We analyzed average silhouette scores for clustering solutions

(i.e., k-values) from 2 to 20, as shown in Figure 4a for the LTS

sample (see Supplementary Fig. S5a for HCP sample version),

and discovered stable solutions at k-values of 3, 7, and 18 in the

LTS sample and k-values of 3, 7, and 18 in the HCP sample.

We explored the k=3 clustering solution first. This level

provides the highest level overview of patterns of genetic influ-

ence across the connectome. The three clusters from the k=3
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Figure 4.Ward three-cluster solution.Row-wise clustering of LTS additive genetic

(A) estimates reveals several stable clustering solutions of regions with similar

patterns of connectivity heritability. Superclusters (k=3) are described in detail.

(a) Silhouette analysis reveals stable clustering solutions at k-values of 3, 7, and

18. (b) Clustered version of LTS A estimates for k=3 solution.

stable solution will be referred to as superclusters throughout

the remainder of the manuscript. The three-cluster solution for

the LTS sample is shown in Figure 4b (see Supplementary Fig.

S5b for HCP version). Figure 5 provides an overview of both the

spatial location of the regions in each LTS supercluster (a–c)

and also the composition of those superclusters in terms of

the region assignments to a priori networks (rightmost column).

Supplementary Figure S6 provides the same information for the

HCP sample.

Overall, regions clustered at a level superordinate to a priori

notions of resting-state community structure. Supercluster 1

was composed of 80 regions from all a priori networks with no

distinct pattern of heritable connectivity. Generally, heritability

was low for all connections in these 80 regions. Supercluster 2

regions had especially heritable connectivity to visual regions

as well as moderately heritable connectivity to other regions.

Supercluster 2was composed of 43 regions froma variety of pure

sensory (e.g., visual) and DA networks. Supercluster 3 regions

had especially heritable connectivity to default, FP, salience, DA,

and VA regions. Supercluster 3was composed of 141 regions that

can best be summarized as the majority of the default network

as well many frontoparietal regions, among others. The k=3

solution of the LTS samplemaps closely on to the k=3 solution of

the HCP sample (see Supporting Information—Clustering) with

only one notable difference: supercluster 2 in the HCP sample

contained many SSM regions that were part of supercluster 1 in

the LTS sample.

Higher order clustering solutions from the LTS sample give

insight into how these large genetic communities break down

into more specific patterns of genetic influence. Supplemen-

tary Figure S7 shows the composition of subclusters from the

18-cluster solution. Some of the subclusters of the 18-cluster

solution remain large and highly heterogeneous (i.e., composed

of regions from many different a priori resting-state communi-

ties). Others are smaller and relatively pure, such as subclusters

2, 3, 6, 7, 8, 14, 15, 17, and 18, which contain one to three types of

regions. Of note is that regions from most a priori resting-state

communities split into several different clusters, supporting the

conclusion that a priori networks contain several sets of regions

that have unique patterns of heritable connectivity across the

connectome. For example, default network regions can be found

in 10 of the 18 subclusters. Future work could explore this and

other higher dimensionality clustering solutions (as we limited

our clustering analysis to between 2 and 20 clusters) to possibly

reveal novel communities of brain regions.

Applications

The goal of the following sections is to demonstrate the utility

of high-resolution genetic estimates while simultaneously val-

idating our approach. First, we explore the difference between

high- and low-resolution genetic estimates in magnitude and

spatial specificity. Second,we conduct several bivariate analyses

that demonstrate genetic separability of local connectivity and

more superordinate measures derived from the connectome—a

network-level connection and a global summary measure of the

connectome. Future bivariatemodels could be applied to clinical

and cognitive measures, but here we chose superordinate con-

nectivity measures to validate the high-resolution approach.

Revealing Particularly Heritable Connections between
Two Resting-State Networks

We performed a series of follow-up analyses in both samples on

an example set of between-network connections to explore het-

erogeneity of genetic influence in a more focused system. Prior

work has found that themost heritable default network connec-

tion is the connection to the SSM network (Yang et al. 2016). We

extracted many connections between default network regions

and SSM regions for a more detailed investigation (n=2030, all

pairwise connections between 35 SSM and 58 default network

regions). Figure 6a shows distribution of nonzero heritability

estimates for LTS default-to-SSM connections (h2
max LTS =0.385,

h2
max HCP =0.396; see Supplementary Fig. S8a for HCP version).

The fine-grained analysis revealed that a subset of default

to SSM connections had moderate genetic influence, whereas

many had minimal to no genetic influence. Figure 6b shows

the most heritable of the default to SSM connections in the

LTS sample (see Supplementary Fig. S8b for HCP version). We

found the most heritable connections are between superior,

medial frontal cortex and the sensory/motor strips; hub region-

s/precuneus of the default network and the sensory/motor

strips; as well as connections between the middle temporal

lobes and the sensory/motor strips. A recent meta-analysis

of thousands of functional MRI studies revealed that the

function of many of these superior, medial regions is related

to “conflict,” “working memory,” and “inhibition” (de le Vega

et al. 2016). The hubs of the default network have an important

role in the valuation of motivationally salient and personally

significant information (Andrews-Hanna 2012): Precuneus is a
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Figure 5.Ward three-cluster summary. Spatial location of regions from LTS superclusters 1–3 of k=3 solution. (a) Supercluster 1 regions were widely distributed across

the brain. (b) Supercluster 3 regions were located primarily in sensory and somatomotor areas. (c) Supercluster 2 regions were located across lateral prefrontal, lateral

parietal, mid and anterior temporal, midline frontal, and cingulate areas. n, number of regions.

highly sensory integrated component of the default network,

and the middle temporal gyrus is part of a default network

subsystem responsible for introspection about mental states.

Here, we have identified particularly strong heritability for

connectivity between these places and SSM regions. Futurework

could explore other network connections of interest in the same

way to reveal other novel characterizations of between-network

connections.

In summary, across 2000+ connections between the default

and SSM, we found many connections are not heritable, but

some show moderate heritability in line with prior work.

Studies that utilize network-derived estimates should note

they may be averaging many connections with heterogeneous

genetic influence, which could result in a network-derived

heritability estimate that is an underestimate of the max-

imum heritability between smaller functional units or an

overestimate biased heavily by a small number of heritable

connections.

ROI-based Local Connectivity Estimates are Genetically
Separable from Network-Derived Estimates

Variation in heritability estimates does not imply separate

genetic influences (i.e., sets of genes responsible for the

difference in heritability). For example, the network estimates

quantified in historical work could be driven by the same or dif-

ferent genetic variants as the connections in the current report.

Here,we performed a bivariate genetic analysis (models pictured

in Fig. 1 and described in section Methods—Genetic Models)

between the many default-to-SSM connections described above

and the network-derived connectivity estimate for these two

networks as a whole. For this analysis, we quantified connec-

tivity for the default-to-SSM network connection as a whole

using network templates from a popular network parcellation

(Yeo et al. 2011). While the univariate models described above

quantify genetic influences on local connections alone, these

bivariate analyses quantify the degree to which local func-

tional connectivity is genetically separable from the network-

derived estimate of connectivity between the default and SSM

networks.

First, we found connectivity between default network

and SSM network as a whole was moderately-to-strongly

heritable (h2
LTS =0.324; h2

HCP =0.476). Second, local and net-

work connectivity does have strong genetic correlation (“rA”;

pictured in Fig. 7a for LTS and Supplementary Fig. S9a for HCP;

M|rA|LTS =0.790, SD|rA|LTS =0.324, minLTS =−1.000, maxLTS =1.000;

M|rA|HCP =0.790, SD|rA|HCP =0.324, minHCP =−1.000, maxHCP =

1.000), as would be expected given the network-derived

connectivity estimate includes the same time series data as

the more focused 2030 connections. However, we find residual

genetic influence not accounted for by the network-derived

estimate, with an overall pattern very similar to the univariate

A estimates. For the LTS sample, 659 of 2030 connection

had nonzero residual additive genetic influence (pictured in

Fig. 7b; MLTS =0.090, SDLTS =0.066, maxLTS =0.326). For the HCP

sample, 19 085 connections had approximately zero residual

additive genetic influencewhile a separate distribution of 15 631

connections had nonzero residual additive genetic variance

(MHCP =0.104, SDHCP =0.071, maxHCP =0.360). Together, these

analyses demonstrate that the local connections have unique

genetic influences, although there is certainly a substantial,

common genetic component captured when utilizing network-

derived connectivity estimates.

Genetic correlations between individual connections and

higher level measures of individual differences in connectivity

may be of interest to those interested in graph theoretic

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz225/5618752 by guest on 03 M

arch 2020

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data


10 Cerebral Cortex, 2019, Vol. 00, No. 00

Figure 6. Default-to-SSM connections and heritability. (a) Distribution of nonzero heritability estimates for default-to-SSM connections. (b) Top 10% heritable

connections between default (red) and SSM (blue) regions projected onto the brain. The most heritable connections between the default and SSM network are between

the sensory/motor strips and superior, medial frontal, posterior cingulate, precuneus, and middle temporal regions of the default network.

analysis of the brain. Graph theory analysis offersmany possible

summary measures of connectivity and seeks to summarize

the brain in the context of complex network dynamics—for

example, the degree to information can be shared amongst

distributed brain systems (i.e., integration as measured by

global efficiency; for review, see Rubinov and Sporns 2010).

In Supporting Information—Bivariate Analysis, we describe an

analysis in which we quantify the degree to which connections

are genetically separable from global efficiency. We find local

connections have residual genetic influence not accounted for

by genetic influences on global efficiency (Supplementary Fig.

S10).

Investigating Genetic Correlation of In-scanner
Movement and Connectivity

Prior work has found in-scanner movement, as measured

by mean frame displacement, is heritable (h2 =0.313–0.427;

Hodgson et al. 2017). In all analyses reported above, we

controlled for movement via single subject denoising and
summary movement covariates, so the results do not reflect

covariance with movement (i.e., are equivalent to a “specific

heritability” estimate as described in the bivariate analyses

presented previously). However, we wondered whether or not

some connections (before regressing out summary movement

covariates) might be genetically related to movement. We
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Figure 7.Default-to-SSM connections—bivariate analysis. (a) Genetic correlation

between network-derived estimate of default to SSM connectivity and many

default to SSM connections. (b) Residual additive genetic influence on many

default to SSM connections after accounting for genetic variance shared with

a network-derived estimate of default to SSM connectivity.

utilized bivariate genetic models (Fig. 1 and Methods—Genetic

Models) to quantify where in the connectome there is an

overlapping genetic influence between connectivity (without

summary movement covariates) and in-scanner movement

(i.e., genetic correlations or “rA”). In an initial univariate

analysis, we found translation (average motion in the x, y, and

z planes) and rotation (average roll, pitch, and yaw movements)

were weakly-to-moderately heritable (h2
translation LTS =0.368,

h2
rotation LTS =0.118; h2

translation HCP =0.221, h2
rotation HCP =0.212),

suggesting the analysis was viable to pursue.

Genetic correlations between rotation movement and con-

nections were strong (M|rA| = 0.722, SD|rA| = 0.355, min=−1.000,

max=1.000). Genetic correlations between translation move-

ment and connections were also strong (M|rA| = 0.648, SD|rA| =

0.388, min=−1.000, max=1.000). The matrix of genetic corre-

lations is presented in Supplementary Figure S11 for the LTS

sample and Supplementary Figure S12 for the HCP sample. Inter-

estingly, there are strong positive genetic correlations, either

indicating that there may be common genes that are associated

with increased level of movement and higher connectivity

strengths or vice-versa, or reflecting thatmovementmay induce

artifactual connectivity differences in these places. Within-

network connections seem to have the weakest absolute genetic

correlations between movement and connectivity strength,

with the exception of within-SSM network connections.Within-

sensory somatomotor connections are also notable in that the

direction of the genetic correlations is mostly positive for the

LTS sample but mostly negative for the HCP sample. Future

work could investigate possible causes of this and other results

that go in opposite direction between the two samples analyzed

here. Negative genetic correlations were also present, indicating

there may be common genes that are associated with decreased

level of movement and higher connectivity strengths or vice-

versa. Visual network connections may be enriched for negative

genetic correlations; however, the pattern is complex and best

suited for detailed analysis in future work. Future work could

map movement-connectivity genetic correlations onto existing

models of movement-related susceptibility for connections of

different type and distance.

In summary, had we not residualized connectivity with

regard to movement in the main analyses of the current study,

we would have obtained heritability estimates across the entire

connectome that were driven partially by genetic influence

on rotation movement. However, because we controlled for

movement prior to genetic analysis, our results described above

are equivalent to the residual genetic influence on connections

after accounting for genetic influence onmotion in the bivariate

analyses.

Discussion

Across all analyses, we found converging evidence of etiological

heterogeneity in the functional connectome. High-resolution

mapping reveals a distribution of genetic and environmental

influence that may be missed by approaches that summarize

functional connectivity at the level of larger ROIs, networks, and

global summary measures of the connectome.More specifically,

we found differences in genetic influences for connections of

different type (i.e., higher heritability of connections between

regions of the same functional network versus between regions

of different functional networks). This pattern was present

across the whole connectome and especially for the default,

SSM, and visual networks. This result provides preliminary

evidence that the organization of the brain into networks

based on function may be driven by genetic influences on

connections between regions involved in the same processes.

Prior work has established specific patterns of gene expression

within functional networks (Richiardi and Altmann 2015), a

possible mechanism linking these observations of genetic

influence to specific functions. Importantly, we showed how

high-resolution heritability estimates might be used to define

novel communities of regions based on their pattern of

genetic influences, as well as how to isolate pieces of the

connectome with particularly high genetic influence (i.e., which

may be candidate endophenotypes). Finally, we showed that

genetic influences on connections are separable from genetic

influences on network connectivity, a global summary measure

of the connectome, and in-scanner movement during the

resting-state scan (a frequently discussed source of nuisance

signals in functional imaging studies).

Although a number of our analyses were summarized by a

priori functional networks, the broad range of genetic estimates

across the connectome led us to question whether alternative

groupings could better describe patterns of heritability in the

connectome. A clustering procedure revealed a novel finding:

Regions grouped together based on patterns of heritable con-

nectivity at a level that was superordinate to that of classic

resting-state communities. In both samples, we found stable

superclusters of regions. Most notably, a set of “cognitive” and

“visual” or “SSM” regions had characteristic patterns of highly

heritable connections to regions of higher-level (e.g., default

network) and lower-level (e.g., visual) functions, for the cognitive
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and visual or SSM clusters respectively. Although the descrip-

tion of these superclusters as higher and lower-level is likely

an oversimplification, it is a worthwhile descriptive tool until

future work dissects the role of these sets of brain regions. In

both samples, we found evidence of a supercluster of regions

with very consistent low-to-moderate heritability to all regions

(i.e., no distinct features) and high nonshared environmental

influence. Analyses of connection-wise reliability (very high in

all connections in theHCP sample) suggest that these nonshared

environmental influence estimates do not simply reflect ran-

dom measurement error. Thus, future work should seek a more

thorough understanding of the environmental factors influenc-

ing this nondescript set of regions.

Stable clustering solutions were also found at levels of gran-

ularity similar to classic resting-state communities, but, inter-

estingly, these genetic clusters were quite dissimilar to the a

priori networks. Notably, in our example 18-cluster analysis,

regions from the default network broke into several subclusters,

whichwere differentiated on heritability of connectivity to other

default network regions and to regions of other networks such as

the FP network. Future work should dissect these finer-grained

parcels inmore detail, especially the degree to which they repre-

sent novel or previously described communities. Finer-grained,

stable clustering solutions could be explored in more detail too

as those may reveal small communities with highly charac-

teristic patterns of heritable connectivity that may not align

with known clusters of regions based on community detection

performed on phenotypic functional connectivity.

Our use of bivariate genetic models represents a substantial

development in neuroimaging genetics.We found that local con-

nections showed genetic influences independent from genetic

influences on network connectivity, in-scanner movement,

and a global summary measure of the brain. Residual genetic

influence justifies analysis at the level of small regions and

is an important commentary on an ongoing debate about the

proper level of analysis of connectivity, suggesting all levels may

be complementary. A practical application of this evidence of

residual genetic influence would be to the study of multivariate

functional connectivity signals as a predictor of individual

differences in some cognitive ability or clinical variation

(i.e., connectivity-based predictive modeling,“fingerprinting,”

or “connectotyping”). Our results suggest influence on a

whole-connectome signal will be diverse and not accurately

represented in network-based or global summary measures of

the connectome. Specifically, our results show network-derived

estimates mostly over-estimate heritability of different pieces

of a predictivemodel by assigning the network-derivedmeasure

to all connections of the same type, which we have shown here

to have a distribution of genetic influence and to be genetically

separable from the network-derived measure of connectivity.

Regarding movement, we showed evidence of both overlap-

ping and distinct genetic influences for in-scanner movement

and connections in an analysis using connectivity estimates

that did not control for individual variation in movement. This

analysis supports the strong emphasis in the resting-state liter-

ature on adequately controlling for nuisance signals associated

with in-scanner movement.

Although we opted to utilize bivariate genetic models for the

purpose of clarifying the specificity of genetic effectswith regard

to nuisance signal and broader measures of connectivity, future

work could apply the same bivariate analysis to the relation-

ship between local connections and clinical symptomatology

and/or cognitive abilities. Such an application could identify

novel brain-based candidate endophenotypes or focus interven-

tion studies to novel locations. A similar approach has been

used in the neuroanatomical/clinical endophenotyping litera-

ture in which bivariate genetic models have been used to iden-

tify the genetically influenced neurobiological underpinning of

disorders such as major depressive disorder (Glahn et al. 2012)

and the genetically influenced neurobiological underpinnings of

schizophrenia that are shared with other psychiatric disorders

(Lee et al. 2016).

Our approach is not without caveats. There may be concerns

regarding the magnitude of effects both when comparing the

LTS sample to the HCP sample and when comparing our results

to previous genetic neuroimaging research. Notably, there were

more nonzero estimates andmore estimates over 30% heritabil-

ity in the HCP sample. Sample differences could reflect reliabil-

ity differences in the measurement of resting-state functional

connectivity. Specifically, a scan time of 30 min [HCP] versus

6 min [LTS] is known to produce more reliable results (Gordon

et al. 2017), although we did find that 6 min of HCP resting data

produced patterns of heritability estimates very similar to those

produced using 30 min of data. Our results support the common

recommendation to collect as much data as possible within the

constraints of a scanning session.

In addition, these sample sizes, while large for phenotypic

analysis, are relatively small for heritability analysis, leading to

uncertainty in the estimates and a decrease in replicability. The

issue of power is increasingly solved in the genetics literature

with consortium analyses in which data from many indepen-

dent studies are harmonized and combined in a single analysis

(particularly for analysis involving genomic data). Resting-state

consortia are a desirable step for the future of the genetic neu-

roimaging literature to obtain the most accurate estimates, but

future consortia-level analyses should be aware that decisions

to increase sample size come at the cost of accepting inferior

quality data that could be shorter in duration than desired.

Moreover, future consortia should carefully consider atwhat lev-

els of granularity resting-state data should be examined.Though

broader levels may increase heritability, our results show that

they do not capture all of the genetic effects within networks.

Future work investigating how these local and global genetic

effects relate to behaviors of interest (e.g., cognitive abilities or

psychopathology symptoms) could inform decisions about the

optimal levels for analysis.

Regarding differences between imaging modalities, our

results are in line with other resting-state studies in providing

estimates that are lower than estimates typically provided by

studies of anatomical genetics. We do not feel this difference

precludes resting-state phenotypes from being considered as

potential endophenotypes. Additionally, we do not wish to

leave the impression that local connectivity is not a viable

phenotype for genetic analysis. In the current study, we found

400–800 connections with greater than 30% heritability and 1612

connections with significant heritability in 2 separate samples.

When a brain phenotype has genetic influence, it may be shared

with a condition or ability of interest. Future work will likely be

able to directly compare the utility of resting versus anatomical

phenotypes for the purposes of endophenotyping, and an

important question to investigate is whether the same genetic

influences operate on anatomical and resting measures. If not,

then considering both simultaneously may increase genetic

insights and/or prediction.

There are several changes to experimenter degrees of free-

dom in the imaging analysis context that could reveal additional
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heritability for high-resolution estimates when compared to

anatomical estimates: (1) A different parcellation than the one

used in the current study may more closely map on to the

genetic structure of the connectome. (2) utilizing connectivity

analysis techniques that boost reliability by quantify only stable

variation in connectivity after accounting for transient compo-

nents (as in Ge et al. 2017), and (3) increases in sample size from

consortia-level analysis.

We observed other sample-specific results. Notably, shared

environmental influence was nominally lower across the entire

connectome in the LTS sample than in the HCP sample, and

particularly in connections such as those bridging sensory

and visual areas. Although it is not unusual to find a lack

of shared environmental influence (e.g., in the anatomical

MRI (Eyler et al. 2011) and cognitive literatures (Friedman

et al. 2008)), sample differences could be due to demographic

differences in the two samples (e.g., the LTS sample is less

racially diverse and sampled from higher socioeconomic status

communities than the HCP sample). Socioeconomic status

differences could certainly explain sample differences in

the current study given prior work showing elevated shared

environmental influence on variation in IQ for individuals

near or below the poverty line (Turkheimer et al. 2003). Effects

of SES in a subset of the HCP sample have been partially

explored previously and shown to influence brain connectivity

(Smith et al. 2015).

As a final caveat regarding modeling of genetic influences, a

small literature suggests classic twin modeling procedures may

bias estimates (upward in the case of A and downward in the

case of E) when compared to models that do not impose bound-

ary constraints on parameters (Carey 2005). Future work should

compare these approaches and report notable differences, if any,

in the genetic profile of affected connections.

Overall, we demonstrate the utility of fine-grained A, C, and

E estimates by showing that the genetic organization of the

brain is diverse and not as one would expect based solely off

the classic functional organization of the phenotypic connec-

tome.Our analysis sits on a continuum of dimensionality reduc-

tions that spans multiple levels of brain organization (i.e., from

global summary measures to voxels), so, obviously one must

ask if genetic neuroimaging studies should continue to assess

the etiology of finer grained parcellations in the future. Our

demonstration of residual genetic variance for local connec-

tions in the bivariate analyses certainly demonstrates the added

value of a fine-grained approach in addition to a single sum-

mary measure of the connectome. But, our results also suggest

a trade-off between reliability and interpretability/application:

large networks maximize heritability estimates (Ge et al. 2017)

but are of imprecise function and cannot be used to dissect

the etiology of highly dimensional signals that are most useful

for predictive modeling. Parcellations in the range of 200–500

might be recommended for region-based approaches in the

future because there are numerous well-vetted atlases (Power

et al. 2011; Craddock et al. 2012; Gordon et al. 2016) designed to

differentiate homogeneous functional brain units while maxi-

mizing reliability (which could become an issue in voxel-based

approaches). There is still room for determining the best func-

tional parcellation scheme among these possible alternatives,

with genetic etiology as one possible mechanism for evaluat-

ing the quality/usefulness of the parcellations. In conclusion,

our approach has important implications for investigations of

neuroimaging-based biomarkers by (1) quantifyingwhich pieces

of the connectome are heritable and thus can be investigated as

a potential endophenotype or marker of genetic risk, (2) serving

as a model for future studies seeking a greater understanding

of a broad literature of traits, and (3) establishing the founda-

tion of a taxonomy of functional connections based on genetic

influence.
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