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Abstract
Extensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a consensus mapping between discrete anatomy
and psychological states, partly due to the difficulty of inferring mental states from brain activity. Despite this, there have
been few large-scale efforts to map the full range of psychological states across the entirety of LFC. Here, we used a data-
driven approach to generate a comprehensive functional-anatomical mapping of LFC from 11 406 neuroimaging studies. We
identified putatively separable LFC regions on the basis of whole-brain co-activation, revealing 14 clusters organized into 3
whole-brain networks. Next, we generated functional preference profiles by using multivariate classification to identify the
psychological states that best predicted activity within each cluster. We observed large functional differences between
networks, suggesting brain networks support distinct modes of processing. Within each network, however, we observed
relatively low functional specificity, suggesting discrete psychological states are not strongly localized to individual regions;
instead, our results are consistent with the view that individual LFC regions work as part of distributed networks to give rise
to flexible behavior. Collectively, our results provide a comprehensive synthesis of a diverse neuroimaging literature using
relatively unbiased data-driven methods.
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Introduction
Decades of research have suggested lateral frontal cortex (LFC)
plays a critical role in the execution of flexible, goal-directed
behavior (Miller and Cohen 2001), enabling the navigation of
complex, rapidly changing environments, pursuit of distant
goals in the face of various obstacles, planning for future
events, and the communication of complex ideas using lan-
guage. Although extensive work has identified putatively sepa-
rable psychological processes critical for flexible behavior
(Miyake et al. 2000), the spatial organization of such processes
across LFC remains actively debated.

Much progress has been made in understanding the LFC’s
topographical organization by identifying putatively separable
subregions on the basis of properties that constrain informa-
tion processing. For instance, discrete regions have been pro-
posed based on differences in microstructural properties; e.g.,
cytoarchitecture (Petrides 2005), and anatomical (Sallet et al.
2013; Neubert et al. 2015; Orr et al. 2015) and resting-state func-
tional connectivity (Kim et al. 2010; Goulas et al. 2012).
Although these studies have carefully characterized regional
distinctions within LFC, it is unclear to what extent the
boundaries derived from such methods correspond to the
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organization of brain activity observed during behavior
(Eickhoff et al. 2007).

A fruitful complementary approach is the application of
quantitative meta-analysis of functional MRI (fMRI) studies in
order to robustly map the functional correlates of behavioral
phenotypes across LFC. Such meta-analyses help overcome the
low power observed in individual studies and produce more
precise spatial maps of psychological states that activate LFC,
such as working memory (Wager and Smith 2003; Nee et al.
2013), inhibition (Nee et al. 2007), switching (Wager et al. 2004;
Derrfuss et al. 2005), language (Binder et al. 2009), mentalizing
(Gilbert et al. 2006), and self-referential processing (Denny et al.
2012). However, due to the manual effort required to compile
activation patterns across studies, and because most research-
ers are interested in a particular psychological domain, existing
meta-analyses are generally restricted to particular LFC subre-
gions or a subset of psychological processes.

This relatively narrow scope necessarily limits the impact of
most existing meta-analyses for 2 reasons. First, extensive evi-
dence suggests discrete cognitive processes are supported by
the coordinated activity of brain regions organized into distrib-
uted, whole-brain networks (Medaglia et al. 2015; Petersen and
Sporns 2015; Bzdok et al. 2016). Nonetheless, distinct cognitive
roles have also been attributed to individual regions within the
same network, such as “switching” to inferior frontal junction
(IFJ; Derrfuss et al. 2005) and “inhibition” to the right inferior
frontal gyrus (rIFG; Nee et al. 2007). Hence, in order to establish
the extent to which regions within the same network support
common or distinct cognitive processes, it is critical to interpret
the functional associations of individual regions across a
broader anatomical scope that spans various networks in LFC.

Second, it is notoriously difficult to infer mental function
from brain activity, the so-called problem of “reverse inference”
(Poldrack 2006). Determining the relative specificity with which a
particular task activates a given region requires the ability to
quantify the likelihood of activation in that region across a wide
range of potential tasks. This problem is particularly acute in
brain regions that activate frequently across a broad range of
tasks. Hence, the fact that LFC appears to be involved in a broad
range of tasks—putatively due to its critical role in guiding flexi-
ble behavior (Miller and Cohen 2001; Dosenbach et al. 2006;
Duncan 2010)—implies that this area may be particularly difficult
to associate with specific mental operations (Nelson et al. 2010).

Here we address these issues by creating a comprehensive
mapping between data-derived semantic topics representing
psychological states and LFC topography using Neurosynth
(Yarkoni et al. 2011), a framework for large-scale fMRI meta-
analysis composed of nearly 11 500 studies. First, we used a
data-driven method that exploits the observation that func-
tionally related regions co-activate across studies (Toro et al.
2008; Kober and Wager 2010; Wager et al. 2015; De La Vega et al.
2016; Eickhoff et al. 2016; Pauli et al. 2016) to cluster voxels into
putatively separable subregions. We applied clustering at 2 spa-
tial scales, identifying 3 distinct whole-brain networks in LFC
composed of several smaller subregions with dissociable co-
activation patterns. We then characterized the functional asso-
ciations of these resulting regions using multivariate classifica-
tion, contrasting studies that activated each region with those
that did not, resulting in functional preference profiles for each
LFC subregion. Collectively, our results provide a relatively
broad and unbiased perspective on the functional organization
of LFC, revealing distinct functional profiles for each network,
but relatively low functional specialization for each region
within those networks.

Materials and Methods
Dataset

We analyzed version 0.6 of the Neurosynth database (Yarkoni
et al. 2011), a repository of 11 406 fMRI studies and over 410 000
activation peaks that span the full range of the published neu-
roimaging literature. Each observation contains the peak acti-
vations for all contrasts reported in a study’s table as well as
the frequency of all of the words in the article abstract. A heu-
ristic but relatively accurate approach is used to detect and
convert reported coordinates to the standard MNI space. As
such, all activations and subsequent analyses are in MNI152
coordinate space.

Software and Results Availability

Analyses were performed using the core Neurosynth python
tools (https://github.com/neurosynth/neurosynth) and the
scikit-learn Python package (Pedregosa et al. 2011) was used for
all machine learning algorithms. Code and data to replicate
these analyses on any given brain region at any desired spatial
granularity are available as a set of IPython Notebooks (https://
github.com/adelavega/neurosynth-lfc). The final clustering
results and a priori LFC mask may also be obtained from this
repository.

LFC Mask

To select clusters from whole-brain clustering solutions in LFC, we
defined a spatial mask using various criteria (see Supplementary
Fig. 1). First, we included voxels with a greater than 30% chance of
falling in the frontal lobes according to the Montreal Neurological
Institute structural probabilistic atlas and excluded medial voxels
within 14mm of the midline. To focus on LFC, we excluded voxels
that were exclusively located on the orbital surface—ensuring to
include lateral orbitofrontal voxels—by removing voxels in the
superior and medial orbital gyri according to the AAL atlas and
voxels with a greater than 30% probability of falling in “Frontal
Operculum Cortex” in the Harvard-Oxford atlas. Finally, we also
excluded far ventral voxels of OFC (Z < −14mm) that were not
excluded using anatomical atlases.

Co-activation Clustering

Next, we clustered individual gray-matter cortical voxels across
the whole-brain based on their meta-analytic co-activation
with the whole-brain across studies in the database (Fig. 1a). In
order to avoid potentially biased or arbitrary cluster bound-
aries, we clustered the whole cortex and selected clusters for
further analysis that fell within an anatomically defined LFC
mask. Critically, we did not mask out voxels that were slightly
outside of our mask—we either included or excluded entire
clusters. This was particularly important for clusters near the
edge of our LFC mask—as functional boundaries may not con-
form to anatomical boundaries—and at coarse clustering solu-
tions—given the well-established finding that several whole-
brain networks extend into LFC (Yeo et al. 2011). For whole-
cortex clustering, we excluded voxels with less than 30% proba-
bility of falling in gray matter according to the Harvard-Oxford
anatomical atlas and those with very low activation in the
database (less than 100 studies per voxel). In general,
Neurosynth’s activation mask (derived from the standard
MNI152 template distributed with FSL) highly corresponded
with probabilistic locations of cerebral cortex, with the
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exception of portions of dorsal precentral gyrus—which
showed relatively infrequent activation.

We calculated the co-activation between each cortical voxel
and every other voxel in the brain (including subcortex) by
determining how correlated their activity was across studies.
Activation in each voxel is represented as a binary vector of
length 11 406 (the number of studies); a value of 1 indicated
that the voxel fell within 10mm of an activation focus reported
in a particular study, and a value of 0 indicated that it did not.

Next, we performed a standard data-reduction step in order
to manage the computational complexity of clustering the
entire brain. Correlating the activation of every cortical voxel
with every other voxel in the brain would result in a very large
matrix (112 358 cortical voxels × 171 534 whole-brain voxels)
that would be computationally prohibitive to cluster. Thus, we
opted to apply principal components analysis (PCA) to the
171 534 whole-brain spatial dimensions in order to compress
their variance into 100 components (the precise choice of num-
ber of components does not materially affect the reported
results). Importantly, this data-reduction step made it feasible
to cluster the entire brain rather than only voxels within our a
priori LFC mask. Next, we computed the Pearson correlation
distance (the inverse of Pearson correlation) between every
voxel in the LFC mask with each whole-brain PCA component,
resulting in a matrix that described the frequency with which
each cortical voxel co-activated with the rest of the brain.

As an additional pre-processing step, we standardized each
cortical voxel’s co-activation with other brain voxels to ensure
clustering would be driven by relative differences in whole-brain
co-activation and not the overall activation rate of each voxel.
That is, if 2 voxels co-activated with similar voxels across the
brain, we should consider them to be relatively similar even if 1
of those voxels activates more frequently (and thus has slightly
stronger correlations with all voxels). This adjustment was par-
ticularly important, as preliminary analyses indicated that

regions with very high rates of activation (e.g., pre-SMA/mid-cin-
gulate cortex [MCC]) more readily clustered into multiple clus-
ters with few voxels, reflecting base rates in activation, although
differences in their functional associations were minimal.
Indeed, preliminary analyses confirmed that standardizing the
co-activation matrix alleviated this concern. At k = 70, the mean
activation rate of each cluster showed no correlation with voxel
size when Z-scoring was used (r = 0.05), as compared to when
the raw co-activation matrix was used (r = −0.65) at k = 70.
Additionally, the range of cluster sizes was compressed, result-
ing in more evenly sized clusters; cluster sizes ranged from 352
to 4546 voxels using the raw activation, compared to a range of
560 to 2862 voxels using standardized co-activation.

We applied hierarchical clustering with Ward’s linkage to
the normalized co-activation matrix, resulting in a whole-brain
linkage matrix. Ward’s clustering was selected as this algo-
rithm is recommended as a good compromise between accu-
racy (e.g., fit to data) and reproducibility for clustering fMRI
data (Thirion et al. 2014). However, this clustering algorithm is
seldom used for whole-brain clustering because the computa-
tional time increases cubically [Θ (N3)] as a function of samples.
We employed the fastcluster algorithm (Müllner 2013)—a pack-
age of libraries that enable efficient hierarchical clustering
[Θ (N2)]—to achieve whole-brain clustering.

Since the optimality of a given clustering depends in large
part on investigators’ goals, the preferred level of analysis, and
the nature and dimensionality of the available data, identifying
the “correct” number of clusters is arguably an intractable prob-
lem (Eickhoff et al. 2015). However, in order to attempt to objec-
tively guide the choice of number, we selected viable solutions
using the silhouette score—a measure of within-cluster cohe-
sion. Crucially, as we were specifically interested in the fit of the
clustering to LFC, we only calculated the silhouette score with
respect to voxels within our LFC mask. The silhouette coefficient
was defined as (b− a)/max(a, b), where a is the mean intra-cluster

Figure 1. Methods overview. (a) We calculated co-activation across studies between every cortical voxel and the rest of the brain, including subcortex. We then

applied Ward hierarchical clustering to obtain whole-brain clustering results. We chose 2 spatial scales to focus on using the silhouette method (Kober et al. 2008;

Pauli et al. 2016) and selected clusters in LFC from the whole-brain clustering solutions. (b) We contrasted the whole-brain co-activation of each cluster with LFC at

large, identifying voxels across the brain that showed differential co-activation. (c) We generated functional preference profiles for each cluster by determining which

latent psychological topics (Blei et al. 2003) best predicted the cluster’s activation across studies in the database.
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Euclidian distance and b is the distance between a sample and
the nearest cluster of which the sample is not a part. Solutions
that minimized the average Euclidian distance between voxels
within each cluster received a greater score. Once having chosen
2 spatial scales, we extracted flat LFC clusters with a substantial
percentage of voxels within our a priori LFC mask. We varied the
percentage of voxels within our LFC mask required to include a
region across granularities with the objective maximizing cover-
age in LFC without including extraneous clusters with little pres-
ence in LFC. We arrived at 12% of voxels in a cluster within LFC
at k = 5 and 75% of voxels at k = 70.

To understand the anatomical correspondence of the result-
ing clusters, we consulted a variety of anatomical and
cytoarchitechtonic atlases. To locate each cluster anatomically,
we used the probabilistic Harvard-Oxford atlas (H-O) that is
packaged with FSL. We also visually compared the location of
our clusters to the Petrides’ (2005) and Jülich micro-anatomical
atlases included in FSL (Eickhoff et al. 2007). Regions were
assigned names in accordance to Brodmann areas (BAs) when-
ever clusters were sufficiently small to correspond to a single
area (e.g., “cluster 9/46 v”). Clusters were given functional
names when they spanned multiple cytoarchitechtonic areas
(e.g., IFJ) or multiple clusters spanned a single cytoarchitech-
tonic area (e.g., PMd and PMv). Note that although names were
assigned to ease the discussion of these regions, we do not
make strong claims of correspondence between functionally
and anatomically defined regions, as we observed several dis-
crepancies throughout LFC.

Co-activation Profiles

Next, we analyzed the differences in whole-brain co-activation
between the resulting clusters (Fig. 1b) in order to understand
the patterns of co-activation that differentiates these clusters.
To highlight differences between clusters, we contrasted the
co-activation of each cluster to the mean co-activation of the
entire LFC. To do so, we performed a meta-analytic contrast
between studies that activated a given cluster, and studies that
activated a LFC mask composed of all clusters. The resulting
images identify voxels with a greater probability of co-
activating with the cluster of interest than with LFC on average.
For example, voxels in blue in Figure 5b indicate voxels that are

active more frequently in studies in which cluster “9” is active
than in studies in which other LFC on average is active. We cal-
culated P-values for each voxel using a 2-way chi-square test
between the 2 sets of studies and thresholded the co-activation
images using the False Discovery Rate (FDR) (q < 0.01). The
resulting images were binarized for display purposes and visu-
alized using the pysurfer Python library (https://pysurfer.
github.io/).

Topic Modeling

Although term-based meta-analysis maps in Neurosynth
closely resemble the results of manual meta-analyses of the
same concepts, there is a high degree of redundancy between
terms (e.g., “episodes” and “episodic”), as well as potential
ambiguity as to the meaning of an individual word out of con-
text (e.g., “memory” can indicate working memory or episodic
memory). To remedy this problem, we employed a reduced
semantic representation of the latent conceptual structure
underlying the neuroimaging literature: a set of 60 topics
derived using latent dirichlet allocation topic modeling (Blei
et al. 2003). This procedure was identical to that used in a previ-
ous study (Poldrack et al. 2012), except for the use of a smaller
number of topics and a larger, more recent version of the
Neurosynth database. The generative topic model derives 60
independent topics from the co-occurrence of all words in the
abstracts of fMRI studies in the database. Each topic loads onto
individual words to a varying extent, facilitating the interpreta-
tion of topics; for example, a working memory topic loads high-
est on the words “memory, WM, load”, while an episodic
memory topic loads on “memory, retrieval, events”. Note that
both topics highly load on the word “memory”, but the mean-
ing of this word is disambiguated because it is contextualized
by other words that strongly load onto that topic. Although the
set of topics included 25 topics representing non-psychological
phenomena—such as the nature of the subject population (e.g.,
gender, special populations) and methods (e.g., words such as
“images”, “voxels”)—these topics were not explicitly excluded
as they were rarely the strongest loading topics for any region.
For all of our results, we focus on a set of 16 topics that strongly
loaded onto LFC clusters (Table 1). These topics were obtained
by determining the 2 strongest loading topics for each region.

Table 1 Topics most strongly associated with lateral frontal regions; Eight strongest loading words for each topic are listed in descending
order of association strength

Topic name Top words

Action Action actions motor goal mirror planning imitation execution
Attention Attention attentional visual spatial search location orienting target
Conflict Conflict interference incongruent stroop congruent selection competition color
Emotion Emotional emotion regulation affective pictures emotions arousal affect
Gaze Eye gaze eyes movements saccades target saccade visual
Inhibition Inhibition inhibitory stop motor sustained nogo transient suppression
Memory Memory retrieval encoding recognition episodic items recall words
Mentalizing Social empathy moral person judgments mentalizing mental mind
Motor Motor movement movements sensorimotor finger somatosensory sensory force
Novelty Target targets novelty oddball distractor distractors deception mismatch
Pain Pain stimulation somatosensory painful intensity sensory chronic noxious
Reward Reward sleep anticipation monetary rewards motivation incentive loss
Semantics Semantic words word lexical verbs abstract meaning verb
Speech Speech auditory sounds sound perception voice acoustic listening
Switching Switching rule executive switch rules flexibility shifting aggression
WM Memory working wm load verbal maintenance delay encoding
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Meta-analytic Functional Preference Profiles

We generated functional preference profiles by determining
which psychological topics best predicted each cluster’s activity
across fMRI studies (Fig. 1c). First, we selected 2 sets of studies:
studies that activated a given cluster—defined as activating at
least 5% of voxels in the cluster—and studies that did not—
defined as activating no voxels in the cluster. For each cluster,
we trained a naive Bayes classifier to discriminate these 2 sets
of studies based on the loading of psychological topics onto
individual studies. We chose naive Bayes because 1) we have
previously had success applying this algorithm to Neurosynth
data (Yarkoni et al. 2011); 2) these algorithms perform well on
many types of data, 3) they require almost no tuning of para-
meters to achieve a high level of performance; and 4) they pro-
duce highly interpretable solutions, in contrast to many other
machine learning approaches (e.g., support vector machines or
decision tree forests).

We trained models to predict whether or not fMRI studies
activated each cluster, given the semantic content of the stud-
ies. In other words, if we know which psychological topics are
mentioned in a study how well can we predict whether the
study activates a specific region? We used 4-fold cross-valida-
tion for testing and calculated the mean score across all folds
as the final measure of performance. We scored our models
using the area under the curve of the receiver operating charac-
teristic (AUC-ROC)—a summary metric of classification perfor-
mance that takes into account both sensitivity and specificity.
AUC-ROC was chosen because this measure is not detrimen-
tally affected by unbalanced data (Jeni et al. 2013), which was
important because each region varied in the ratio of studies
that activated it to the studies that did not.

To generate functional preference profiles, we extracted
from the naive Bayes models the log odds ratio (LOR) of a topic
being present in active studies versus inactive studies. The LOR
was defined, for each region, as the log of the ratio between the
probability of a given topic in active studies and the probability

of the topic in inactive studies, for each region. LOR values
above 0 indicate that a psychological topic is predictive of acti-
vation of a given region. To determine the statistical signifi-
cance of these associations, we permuted the class labels and
extracted the LOR for each topic 1000 times. This resulted in a
null distribution of LOR for each topic and each cluster. Using
this null distribution, we calculated P-values for each pairwise
relationship between psychological concepts and regions, and
reported associations significant after controlling for multiple
comparisons using FDR with q < 0.01. Finally, to determine if
certain topics showed greater preference for one cluster versus
another, we conducted exploratory, post hoc comparisons by
determining if the 95% confidence intervals (CIs) of the LOR of a
specific topic for a one region overlapped with the 95% CI of the
same topic in another region. We generated CIs using boot-
strapping, sampling with replacement and recalculating log
odds ratios for each region 1000 times. A full reference figure of
the loadings between topic and regions, including CIs, is avail-
able in Supplementary Figure 4. A full reference of the CIs of
each associations is available in the online repository, along
with code to generate such CIs for any given region.

Results
Hierarchical Clustering of LFC

We identified spatially dissociable regions on the basis of
shared co-activation profiles with the rest of the brain (Toro
et al. 2008; Kober and Wager 2010; Wager et al. 2015; De La Vega
et al. 2016; Pauli et al. 2016), an approach that exploits the like-
lihood of a voxel co-activating with other voxels across studies
in the meta-analytic database. To identify whole-brain net-
works spanning beyond LFC, we applied hierarchical clustering
to the whole cortex and selected clusters within LFC mask for
further analysis (Fig. 2b). In order to map structure to function
across various spatial scales, we extracted 4–100 whole-brain
clusters and evaluated their quality using the silhouette score,

Figure 2. Whole-cortex co-activation-based hierarchical clustering reveals 3 networks in lateral cluster that fractionate into constituent subregions. (a) The silhouette

score, a measure of intra-cluster cohesion, was used to select 2 spatial scales: 5 and 70 whole-brain clusters. (b) Whole-brain hierarchical clustering dendrogram.

Color-coded branches correspond to 3 of 5 whole-brain networks in LFC and color-coded nodes correspond to 14 LFC regions from 70 whole-brain clusters. (c) Clusters

at k = 5 revealed 3 clusters in LFC resembling large-scale brain networks: “fronto–parietal” (red), “default” (purple), and “somatosensory-motor” (green). (d) Clusters at

k = 70 revealed 14 clusters with 75% of their voxels in LFC.
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a measure of intra-cluster cohesion (Kober et al. 2008; Pauli
et al. 2016) (Fig. 2a). Given the intractable nature of choosing
the “correct” number of clusters (Eickhoff et al. 2015) and the
lack of a single dominant solution in our data, we focused on 2
well spaced granularities, 5 and 70 whole-brain clusters, avoid-
ing low quality solutions (i.e., 7–38 clusters). Importantly, we do
not argue that the solutions we selected are in any way privi-
leged, nor did we aim to match the scale of previous parcella-
tions; rather, we simply chose 2 spatial scales for subsequent
analysis with distinct vantage points into the hierarchical orga-
nization of LFC.

To understand the large-scale network organization of LFC,
we focus on the 5-cluster solution as this scale exhibited the
greatest silhouette score of coarse network-level solutions.
Three of these whole-brain network clusters were present in
LFC (Fig. 2c) and showed moderate correspondence to previ-
ously described large-scale networks (Yeo et al. 2011).

The largest of the 3 clusters, which we refer to as the “fron-
to–parietal” network (FPN), spanned half of LFC, primarily in
prefrontal cortex, and resembled Yeo et al.’s (2011) description
of the FPN (dice coefficient (d) = 0.56; see Supplementary Fig. 3).
Additionally, this cluster spanned medial-frontal and anterior
insular aspects of the “ventral attention” network (d = 0.21). A
second cluster, which we refer to as the “default” network,
closely matched extensive descriptions of the “default” or “task
negative” network (d = 0.62) (Andrews-Hanna 2012). The final
cluster, which we refer to as the “sensorimotor” network, was
located in posterior LFC and showed moderate overlap with
Yeo’s “somatosensory-motor” network (d = 0.36) and, to a lesser
extent, the “dorsal attention network” (d = 0.31).

Having identified large-scale networks in LFC, we sough to
identify more functionally specific subregions within each net-
work with potentially dissociable functional profiles. Although
the silhouette values indicated that inter-cluster cohesion con-
tinuously increases with number of clusters, we chose to focus
on a spatial scale that balanced clustering quality with psycho-
logical interpretability. Thus, we chose to focus on the 70-
cluster solution, as this was the coarsest scale to result in a set
of largely spatially contiguous LFC clusters. From these 70
whole-brain clusters, we identified 14 clusters within our LFC
mask (Fig. 2d), hierarchically organized into the coarser large-
scale networks (see Supplementary Fig. 2 for whole-brain clus-
ter results).

To provide direct insight into the functions of the 14 LFC
fine-grained clusters, we applied 2 approaches. First, we deter-
mined which voxels across the brain differentially co-activated
with each cluster, revealing distinct patterns of whole-brain
co-activation. Second, we used semantic data from Neurosynth
to determine which latent psychological topics predict the acti-
vation of each cluster, resulting in a meta-analytic psychologi-
cal preference profile for each subregion. Next, we step through
these results separately for each network.

Fronto–parietal Network
The majority of LFC belonged to the frontal extent of the FPN,
which further spanned portions of lateral parietal cortex (LPC),
anterior insula, pre-SMA, MCC, and the precuneus. Within LFC,
we identified 10 finer-grained subregions within the FPN. For
purely illustrative purposes, we used the hierarchical clustering
dendrogram (Fig. 2b) to identify a granularity in which these
clusters formed 3 sets; at k = 24 whole-brain clusters, these 10
LFC clusters organized into 3 groups: dorsal, mid and rostral
regions. Across these 3 groupings, all clusters showed robust

associations with executive functions, although we observed
subtle variations in psychological preferences.

In dorsal LPFC, we identified 2 adjacent bilateral clusters
(Fig. 3a). The most posterior of the 2 (“6/8”) was located anterior
to the premotor cortex and extended from lateral superior fron-
tal gyrus to the intermediate frontal sulcus of middle frontal
gyrus, spanning BAs 6 and 8. This cluster overlapped with func-
tional descriptions of the frontal eye fields (FEF)—a region
important for volitional eye saccades (Paus 1996). Immediately
anterior, we identified a cluster (“9/46c”) spanning caudal BA
9/46 from the intermediate frontal sulcus into caudal portions
of BA 9/46 v. Notably, although cluster “9/46c” arguably extends
well into “mid” LPFC, this cluster did not group with other mid-
LPFC clusters until much coarser granularities, suggesting these
clusters may exhibit distinct functional signatures despite their
spatial proximity.

Anterior and ventral to dorsal LPFC, we identified 4 clusters
spanning common definitions of “mid” lateral prefrontal cortex
(Fig. 3b). The organization of clusters in this region, however,
varied by hemisphere. Most dorsally, we identified a mostly
left-lateralized cluster (“9/46 v”), extending from the intermedi-
ate frontal sulcus into the fundus of the inferior frontal sulcus,
primarily in BA 9/46 v. Next, we identified a cluster, which we
refer to as right IFG (“IFG [R]”), spanning the majority of area
BA 45 in the right hemisphere. Notably, only right IFG was
part of the fronto–parietal network, consistent with the obser-
vation that this region is consistently observed during goal-
directed cognition. Posterior to these 2 clusters, we identified
a bilateral cluster consistent with the IFJ (e.g., MNI coordi-
nates: 48, 4, 33) (Muhle-Karbe et al. 2016), located in the fun-
dus of caudal inferior frontal sulcus, extending into
precentral, inferior frontal and middle frontal gyri. Finally,
ventral to this cluster, but only in the right hemisphere, we
identified a fourth cluster (“44 [R]”) located in posterior IFG,
spanning BA 44 and abutting BA 6.

In “rostral” LPFC, we identified 3 bilateral clusters spanning
BA 10 (Fig. 3c). These 3 clusters were organized along a ventral-
dorsal axis—consistent with prior DTI and meta-analytic par-
cellations (Orr et al. 2015; Ray et al. 2015)—and were exclusively
in LFC, consistent with cytoarchitechtonic evidence of a lateral-
medial distinction of the frontal pole (Bludau et al. 2014).
Notably, although cluster “9/46dr” extended into Broadman
area 9/46, this cytoarchitechtonic area divided into 2 distinct
clusters (clusters “9/46dr” and “9/46 v”), consistent with an
independent meta-analytic co-activation clustering study
(Cieslik et al. 2013). Finally, the most rostral 2 clusters (“10 v”
and “10d”) were exclusively located in BA 10, separated along a
dorsal/ventral axis.

Meta-analytic Co-activation

To better understand functional differences between these
regions, we directly contrasted the co-activation of each cluster
with that of LFC as whole in order to identify voxels across the
brain that differentially co-activated with each cluster (Fig. 3;
right panel). We observed that most differential co-activation
occurred within other cortical association cortex areas such as
LPC, pre-SMA and MCC, and the insula. Across LPC, each LFC
cluster co-activated most strongly with distinct areas across a
gradient extending from tempo-parietal junction to the lateral
parieto-occipital sulcus. For example, clusters “9/46c” and all
fronto-polar clusters showed greater co-activation with parietal
cortex ventral to the intraparietal sulcus. In contrast, cluster “6/
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8” and all 4 “mid” LPFC clusters showed greater co-activation
within and dorsal to the intraparietal sulcus.

Similarly in medial PFC, all clusters except right IFG and “9/
46dr” co-activated most strongly with slightly different portions
of pre-SMA and MCC. Generally, more anterior clusters co-
activated more strongly with more anterior portions of pre-
SMA/MCC. For instance, “10d” co-activated most strongly with
a anterior MCC while “44 [R]” co-activated most strongly with
the SMA. Finally, in the insula, several LFC subregions exhibited
differential co-activation with distinct sub-divisions of the
insula. For example, cluster “44 [R]” co-activated most strongly
with the posterior insula—an important region for pain and
sensorimotor processing (Chang et al. 2013)—whereas IFJ co-
activated most strongly with the dorsal anterior insula, a subre-
gion implicated in goal-directed cognition. In contrast, area 10 v
showed greater co-activation with ventral anterior insula, an
area implicated in affect (Chang et al. 2013).

This observation that the bulk of co-activation differences
between LFC subregions of the fronto–parietal network
occurred within other cortical association areas is consistent
with the hypothesis that association cortex is composed of par-
allel interdigitated networks (Yeo et al. 2011). That is, these

findings suggest subregions of the FPN do not participate with
categorically distinct sets of regions across the brain, and
instead perform subtly different roles within a distributed
network.

Meta-analytic Functional Preference

Next, we used a data-driven approach that surveyed a broad
range of fMRI studies to quantify the degree to which distinct
psychological states might be preferentially associated with dif-
ferent LFC clusters (Fig. 1c). We trained naïve Bayes classifiers
to predict the presence or absence of activation in each LFC
cluster using a set of 60 psychological topics derived by apply-
ing a standard topic modeling approach to the abstracts of arti-
cles in the Neurosynth database (Poldrack et al. 2012). We used
the fitted model coefficients to quantify the strength of associa-
tion between each psychological topic and the presence of acti-
vation in the corresponding LFC cluster (measured as the LOR
of the probability of each topic in studies that activated a given
cluster relative to the probability of the same topic in studies
that did not activate the cluster). Values greater than 0 indicate
that the presence of that topic in a study positively predicts

Figure 3. Anatomical location and meta-analytic contrast of lateral frontal clusters of the fronto–parietal network. Left: (a) Two clusters located in dorsal frontal cor-

tex. (b) Four clusters located in mid-lateral prefrontal cortex. (c) Three clusters located in rostral lateral prefrontal cortex. Clusters were assigned labels corresponding

to cytoarchitechtonic areas (Petrides 2005) whenever possible. In cases where the region spanned multiple cytoarchitechtonic areas, broader anatomical (e.g., IFJ)

labels were assigned. Right: Meta-analytic co-activation contrast of fronto–parietal LFC. Colored voxels indicate significantly greater co-activation with the seed region

of the same color than other lateral frontal regions in the fronto–parietal network. Images are presented using neurological convention and are corrected using FDR

(q = 0.01).
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activity in a given region. We report the results of 16 psycholog-
ical topics that loaded strongly onto LFC regions (Table 1) and
restrict interpretation to significant associations using FDR (q <
0.01). In addition, whenever we comparatively discuss sets of
regions, we discussed differences if the 95% CI of a given topic
did not overlap between 2 regions (Supplementary Fig. 4). As
the latter comparisons are post hoc and exploratory, caution in
interpretation is warranted.

Consistent with a distributed role for the fronto–parietal
network in goal-directed cognition, all 9 clusters were signifi-
cantly associated with working memory, all clusters except
“10d” and “10 v” were associated with conflict, and 7 clusters
were associated with switching (Fig. 4). The present results are
inconsistent with focal anatomical locations for high-level
executive processes; instead, these results suggest that distrib-
uted activation across fronto–parietal network supports goal-
directed cognition in the face of interference and conflict (Nee
and Brown 2012). Despite the relatively low modularity we
observed across the fronto–parietal network, multivariate asso-
ciations between individual subregions and psychological
states suggest preferential functional correlates can be identi-
fied for each cluster.

Dorsal Fronto–Parietal LFC

Consistent with its co-location with the frontal eye fields, “6/8”
was the only cluster significantly associated with saccadic eye
movements (i.e., “gaze”) in the fronto–parietal network, and
was also associated with “attention”. This pattern suggests that
BA “6/8” may be important for directing attention to relevant
external stimuli to support downstream information proces-
sing. However, cluster “6/8” was also significantly associated
with a “working-memory” topic, consistent with a recent lesion
study implicating the FEF in a causal role in working memory
(Mackey et al. 2016). These results suggest this area is not
merely involved in low-level saccadic eye movements, but
plays an important role in higher-level cognition.

In contrast, cluster “9/46c” showed a much less distinctive
functional signature, with relatively weak associations to other
psychological processes outside of core EF processes and
“memory”. This relatively diffuse pattern suggests BA “9/46c”
may be involved in domain-general processes that span across
distinct psychological states in our topic model.

Mid-Fronto–Parietal LFC

Clusters “9/46 v” and “IFJ” showed similar functional profiles,
exhibiting robust associations with several executive functions
(e.g., “working memory”, “conflict”, “switching”) in addition to
“semantics”. Cluster “9/46 v” showed a particularly strong asso-
ciation with executive functions—exhibiting the strongest rela-
tionship across LFC with “conflict”; these results are consistent
with a hypothesized role for mid-DLPFC as a seat of high-level
executive processes (Petrides 2005).

These results are also consistent with the hypothesis that
IFJ is involved in task-set switching (Derrfuss et al. 2005); how-
ever, given that several other LFC clusters were similarly asso-
ciated with switching, it is unlikely IFJ is focally responsible for
this phenomenon. Yet, IFJ showed a stronger association with
low- and high-level motor function (i.e., “motor”, “action”) than
other fronto–parietal LFC clusters, suggesting that IFJ is impor-
tant for motoric aspects of cognitive control (De Baene et al.
2012). In contrast, cluster “44 [R]” exhibited weaker associations
with executive functions and robust associations with motor

function and “pain”, suggesting area this area is more involved
in sensorimotor processing than high-level cognitive control.

Finally, “IFG [R]” showed a functional signature distinct to
other mid-LPFC clusters, with much weaker associations with
conflict, working memory and switching; instead, “IFG [R]” was
associated with “inhibition”—consistent with extensive studies
linking this region to inhibitory processes (Nee et al. 2013). “IFG
[R]” was also associated with “emotion”, consistent with the

Figure 4. Meta-analytic functional preference profiles for lateral frontal regions

in the fronto–parietal network. Each cluster was profiled to determine which

psychological topics best predicted its activation. Each of the 3 functional

groups we identified showed distinct functional profiles, although appreciable

variation was observed for each individual cluster. Strength of association is

measured in LOR, and permutation-based significance corrected using FDR of

q = 0.01 is indicated next to each psychological concept by color-coded dots cor-

responding to each region. Negative associations are indicated by the gray

circle.
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hypothesis that this region is crucial for effective emotion regu-
lation and reappraisal (Wager et al. 2008; Woo et al. 2014).
However, the relationship between “inhibition” and “IFG [R]”
was not particularly strong or significantly greater than other
fronto–parietal regions, suggesting “IFG [R]” may play a more
domain-general role such as context monitoring (Chatham
et al. 2012).

Rostral Fronto–Parietal LFC

Although “rostral” fronto–parietal clusters exhibited significant
associations with various executive processes, these 3 clusters
were characterized by weaker associations with motor function
(“action”), language and “conflict”. Rather, clusters “9/46dr” and
“10d” were robustly associated with “inhibition” and cluster
“10d” with “novelty”. This pattern of results suggests fronto-
polar LFC regions may be important for high-level monitoring
and guiding of cognitive control, removed from low-level motor
implementations.

Finally, the most ventral fronto-polar region, cluster “10 v”,
showed a more distinct pattern, exhibiting weaker associations
with all executive processes but a significant association with
“reward” (at a lower threshold, q < 0.05). This pattern is

consistent with its location near orbitofrontal cluster, and pro-
vides support for hypotheses that suggest that the ventral fron-
tal pole may be important for representing the value of
appetitive stimuli in order to effectively guide goal-directed
behavior (Orr et al. 2015).

Default Network
Anatomical Correspondence

We identified 3 distinct default network clusters in LFC, consis-
tent with previous descriptions of the default network and
large-scale rs-fMRI parcellations (Fig. 5a) (Yeo et al. 2011). The
first 2 clusters were positioned adjacent to each other in ven-
trolateral prefrontal cortex. The more anterior of the 2 (“47/12”)
spanned lateral orbitofrontal cortex and IFG orbitalis bilaterally,
while a more posterior and dorsal cluster spanned inferior fron-
tal gyrus exclusively in the left hemisphere (“IFG [L]”). Finally,
we identified a third cluster in dorsal LPFC consistent with BA 9
(Petrides 2005), extending from superior frontal gyrus to dorsal
middle frontal gyrus across the superior frontal sulcus. This
cluster has long been noted for its lack of anatomical input
from lateral and medial parietal cortex (Petrides and Pandya
1984; Cavada and Goldman-Rakic 1989). Thus, despite these

Figure 5. Lateral frontal regions of the default network. (a) Individual clusters projected onto an inflated surface. (b) Differences in co-activation between the 3 regions.

Colored voxels activated more frequently in studies in the seed cluster of the same color was also active. (c) Functional preference profiles for each cluster, revealing

distinct psychological signatures for each subregion. Strength of association is measured in LOR, and permutation-based significance is indicated next to each topic

by color-coded dots corresponding to each region. Negative associations are indicated by the gray circle.
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cluster’s close proximity to fronto–parietal clusters, we
expected them to exhibit very distinct functional profiles.

Meta-analytic Co-activation

Consistent with the grouping of these clusters with the default
network, clusters “47/12” and “9” co-activated much more
strongly than the rest of LFC with other default network
regions, such as dorsal medial PFC (mPFC), middle temporal
gyrus and angular gyrus (Fig. 5b). Cluster “9” showed particu-
larly robust co-activation with key hubs of the default network,
such as anterior mPFC and posterior cingulate cortex (PCC),
firmly placing this region in the default network despite its
proximity to mid-DLPFC. In contrast, “IFG [L]” showed a rela-
tively distinct pattern, showing co-activation with portions of
the fronto–parietal network—such as mid-DLPFC and pre-SMA.
This pattern is consistent with the fact that left IFG’s contralat-
eral homolog clustered with the fronto–parietal network and
suggests this region may not be entirely dissociable from fron-
to–parietal clusters. Moreover, left IFG also showed stronger co-
activation with posterior superior temporal sulcus—a key
region implicated in semantic processing (Binder et al. 2009)

suggesting left IFG may also show a preference towards lan-
guage topics.

Meta-analytic Functional Preference

In contrast to clusters in the frontal-parietal network, clusters
“47/12” and “9” showed no association with any executive pro-
cesses—particularly notable for cluster “9” due to its spatial
proximity to mid-fronto–parietal clusters (Fig. 5c). Instead, clus-
ters “47/12” and “9” were significantly associated with “menta-
lizing”, consistent with the hypothesis that these regions, as
part of the dorsal medial subsystem of the default network,
play an important role in conceptual processing and mentaliz-
ing (Andrews-Hanna et al. 2014).

Distinct from other default network clusters, “45 [L]” showed
a significant association with various executive functions—fur-
ther highlighting the distributed nature of executive processes
across frontal regions. However, area “45 [L]” was not associ-
ated with inhibition, suggesting inhibition is right-lateralized to
some degree (Aron et al. 2014). Furthermore, consistent with
this region’s co-location with Broca’s area and co-activation
with the superior temporal sulcus, cluster “45 [L]” was

Figure 6. Meta-analysis of somatosensory clusters. (a) Clusters projected onto an inflated surface. (b) Differences in co-activation between each cluster and the rest of

LFC. Colored voxels activated more frequently in studies in which the seed cluster of the same color was also active. (c) Functional preference profiles reveal distinct

psychological signatures. Strength of association is measured in LOR, and permutation-based significance (q < 0.05) is indicated next to each topic by color-coded

dots corresponding to each cluster. Negative associations are indicated by the gray circle.
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significantly associated with “semantics” and “speech”.
Importantly, although it well-known Broca’s area is important
for motor function in language, we did not find any association
between cluster “45 [L]” and motor topics; these results suggest
Broca’s area is involved in the generation of speech motor
plans, but not motor function more generally (Flinker et al.
2015). Moreover, “45 [L]” was notable for its robust association
with “semantic” function—more so than any other region—
consistent with the hypothesis that left IFG is a part of the
brain’s “semantic” system (Binder et al. 2009).

Finally, consistent with the default network’s well-
characterized involvement in memory (Andrews-Hanna et al.
2014), all 3 LFC default clusters were robustly associated with
“memory” and “emotion”. This is consistent with a long line of
evidence supporting the role of these regions in autobiographi-
cal, internally oriented cognition. Moreover, the left IFG is pur-
ported to play a key role in controlled memory retrieval (Badre
and Wagner 2007; Snyder et al. 2011)—a hypothesis supported
by the joint association between executive processes and mem-
ory in this region. However, it is also notable that “memory”
was associated with many other clusters in the fronto–parietal
network, suggesting memory processes are widely distributed
across LFC.

Somatosensory-motor Network
We identified 2 LFC clusters in the somatosensory-motor net-
work: dorsal and ventral lateral premotor cortex—“PMd” and
“PMv”, respectively (Fig. 6a). Both clusters were located in dor-
sal BA 6 (Eickhoff et al. 2007), although “PMd” was slightly more
anterior. As a result of its more posterior location, “PMv”
included several voxels in primary motor cortex, although the
cluster was primarily located in premotor cortex.

Meta-analytic Co-activation

Both PMd and PMv showed greater co-activation with nearby
voxels in the primary motor and somatosensory cortices, as well
as SMA—regions important for the control of movement (Fig. 6b).
PMd, however, additionally showed greater co-activation with

various regions implicated in executive function, such as LPC
and the anterior insula—suggesting dorsal premotor cortex may
engage a broader functional network in support of the cognitive
control of motor actions.

Meta-analytic Functional Preference

The functional preference profiles of both premotor clusters
suggest their primary functional role is in core aspects of motor
function (Fig. 6c). However, both of these the 2 clusters were
also associated with higher-level motor planning (i.e., “action”)
and working memory, suggesting these regions are important
for higher-level motoric control. Moreover, consistent with
PMd’s stronger co-activation with regions previously associated
with executive function, PMd was significantly associated with
“conflict” and “attention” (although not significantly more so
than PMv). Thus, although these 2 premotor clusters were most
strongly associated with motor function, their function is not
exclusively limited to low-level processes, and may require the
recruitment of higher-level psychological processes for the exe-
cution of motor plans.

Functional Distance Between Clusters
Finally, to examine the overall difference between regions, we
computed the mean correlation distance between clusters on
the basis meta-analytic co-activation (Fig. 7a) and functional
preference profiles (Fig. 7b). Supporting the network organiza-
tion of these clusters, the distance between clusters in the
same network was much shorter (co-activation: r = 0.58, func-
tional profiles, r = 0.5) than the distance between clusters in dif-
ferent networks (co-activation: r = 0.7, functional profiles, r =
0.7) across both modalities. However, the distance between
clusters in the same network was in certain cases relatively
high. For example, clusters “45 [L]” and “9” in the default net-
work (r = 0.77) and “44 [R]” and “10 v” in the fronto–parietal net-
work (r = 0.93) exhibited large functional distances, despite
belonging to the same network. Thus, although large-scale net-
works likely represent a fundamental organizational structure
in the brain—and distinct networks tend to support

Figure 7. Co-activation and functional distance between LFC clusters. Pearson’s correlation distance between the 14 LFC clusters on the basis of meta-analytic (a) co-

activation and (b) functional preference profiles. Although clusters within each network showed generally shorter distances to clusters in the same network than

between networks, relatively high functional heterogeneity within each network was observed. The high similarities between these 2 distance matrices (r = 0.86, P <

0.001), suggests that the differences between regions observed in meta-analytic co-activation are generally accompanied by differences in functional preference

profiles. Correlation distances range from 0 to 2, with 2 indicating perfect anti-correlation.
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categorically different types psychological processes—our
results suggest these networks are relatively heterogeneous.
Finally, we also observed that the differences between regions
based on meta-analytic co-activation were highly similar to
those based on functional preference profiles (Pearson’s corre-
lation r = 0.86), suggesting that clusters that show distinct
meta-analytic co-activation generally exhibit distinct func-
tional preference profiles.

Discussion
In the present study, we applied data-driven methods to the
largest meta-analytic database available to systematically map
psychological states discrete clusters in LFC. Using co-
activation-based hierarchical clustering, we identified 14 spa-
tially distinct LFC clusters and used multivariate classification
to generate dissociable psychological profiles for each.
Importantly, we conducted our analyses broadly both with
respect to anatomy—by focusing on the entirety of LFC—and
function—by surveying a wide, representative range of psycho-
logical states—resulting in a relatively unbiased and compre-
hensive functional-anatomical mapping of LFC at various
spatial scales.

At a coarse spatial scales, we observed that subregions of
LFC organized into 3 functionally distinct whole-brain networks
(fronto–parietal, default and sensorimotor), consistent with the
view that the brain is organized into distributed networks
(Power et al. 2011; Yeo et al. 2011; Petersen and Sporns 2015).
Functional differences between networks were robust even
between regions in close spatial proximity. For example,
although all regions in the fronto–parietal network exhibited
strong associations with executive functions such as “conflict”
and “working memory”, cluster “9” of the default network
showed no associations with any executive functions despite
being positioned immediately adjacent to cluster “9/46” of the
fronto–parietal network. In contrast, despite being relatively
distant, clusters “9” and “47/12” of the default network were
preferentially recruited by internally oriented processes such as
“mentalizing”, “emotion” and all 3 default clusters were associ-
ated with “memory”—a pattern consistent with a hypothesized
role of the default network in self-generated conceptual proces-
sing (Andrews-Hanna et al. 2014). Similarly, clusters in the sen-
sorimotor network were strongly associated with motor
function topics (e.g., “gaze”, “motor”, “action”) and much more
weakly associated with other types of cognitive processes.

Within each network, we observed a complex many-to-
many mapping between individual regions and discrete psy-
chological states, in contrast to more modular models of brain
organization (Fodor 1983; Bertolero et al. 2015). For example, we
observed that “working memory” was associated with a wide
range of regions extending from posterior LFC to the lateral
frontal pole. This finding is consistent with the hypothesis that
working memory is supported by distributed reactivation of
representations (Miller and Cohen 2001; Postle 2016), rather
than active maintenance in domain-specific buffers in DLPFC
(Baddeley 2003). Similarly, although task-set switching has
been hypothesized to preferentially recruit the IFJ (Derrfuss
et al. 2005; Muhle-Karbe et al. 2016), we observed that “switch-
ing” was associated with various fronto–parietal regions
extending as far anterior as the frontal pole. Collectively, this
pattern of results suggests complex cognitive processes may be
supported by the coordinated activity of regions across distrib-
uted networks (Medaglia et al. 2015), rather than within iso-
lated, spatially disjoint brain regions. Indeed, recent research

suggests large-scale networks may support a wide range of dis-
tinct processes via the reconfiguration of underlying brain net-
work units (Bzdok et al. 2016).

Importantly, although we observed relatively low functional
specialization within individual regions, the present findings
do not negate the idea that local neuron populations may be
functionally specific. On the contrary, extensive neurophysio-
logical data suggests association cortex contains overlapping
neuron populations with distinct—and often highly specific—
functional profiles (Tye and Deisseroth 2012; Kvitsiani et al.
2013; Xiu et al. 2014). However, due the relatively coarse spatial
scale of fMRI measurements (which is further reduced by meta-
analytic aggregation) the relatively low modularity of these
clusters should not be surprising; rather, the present results are
consistent with the view that regions of the scale identified
here likely span various distinct neuron populations. Moreover,
it is possible subtle shifts in function between nearby regions
in the same network arise from gradual spatial variation in the
distribution of neuron populations, rather than abrupt categori-
cal shifts in function between regions.

Indeed, in the present study we observed substantial func-
tional heterogeneity within each network and dissociable psy-
chological profiles for regions within the same network. That
is, although psychological states are not modularized into indi-
vidual regions, the multivariate psychological profiles we gen-
erated for each region can be used to ascribe dissociable roles
for each region within the broader network. For instance,
although all fronto–parietal regions were associated with vari-
ous core executive functions, only IFJ showed additionally
robust associations with high- and low-level motor function.
Thus, it is plausible that IFJ may play an important role in bias-
ing motoric representations in support of high-level goals
represented in a distributed fashion throughout the network. In
contrast, area 9/46 v in mid-DLPFC was the region most
strongly recruited by core executive processes, but showed no
associations with “lower-level” processes such as attention and
motor function, suggesting this region may be more important
for the maintenance of abstract representations in low-level
domain-specific regions regions (Badre 2008).

Although the present results provide a comprehensive view
into the functional organization of LFC, several challenges
remain. As with any attempt to model the mapping between
functional and brain structure, several simplifying assumptions
were made in order to generate a parsimonious solution. First,
the hierarchical clustering algorithm we used forces voxels to
be grouped into discrete non-overlapping regions—an assump-
tion that ignores the vast diversity overlapping neuronal popu-
lations within each region (Tye and Deisseroth 2012; Kvitsiani
et al. 2013; Xiu et al. 2014) and does not explicitly model net-
work dynamics (see Bzdok et al. 2016). Second, similarly to
many multivariate models in this domain, we modeled the
relationship between psychological topics and activity in
regions using linear correlations—an assumption that ignores
possible non-linear relationships.

More broadly, a difficult challenge in cognitive neuroscience
is developing the appropriate psychological constructs that dis-
tinguish activity in related brain regions. Appropriately model-
ing the differences between nuanced psychological concepts is
particularly difficult for large-scale meta-analyses, as there is
no established ontology of psychological constructs, unlike in
fields such as genetics (Ashburner et al. 2000). In the present
study, we used a data-driven set of topics derived from the
abstracts of fMRI papers to represent major psychological phe-
nomena. Although these topics are a major improvement on
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more simple term-based features, due to their data-driven
nature they are likely to imperfectly capture psychological
dimensions that are hypothesized to be important for differen-
tiating regions. For example, in our set of 60 topics, only a sin-
gle topic represented long-term memory function, and likely
combined memory retrieval and autobiographical memory pro-
cesses. Although the Neurosynth framework allows researchers
to develop custom meta-analyses that can be used to test a
priori predictions, the myriad of combinations in which studies
can be combined is not conducive to determining the psycho-
logical dimensions that best differentiate brain activity.

The classification-based approach we employed is a step in
the direction of quantifying the extent to which a given set of
psychological features explains variability in brain activity. A
promising future direction is to use classification-based
approaches and feature engineering to find the psychological
dimensions that best differentiate patterns in activity between
related regions, such as regions within a network. In combina-
tion with the adoption of standardized cognitive ontologies,
such as the Cognitive Atlas (Poldrack et al. 2011), such large-
scale approaches should help the development of novel theo-
ries of functional brain organization. Moreover, given the lim-
ited quality of the summarized coordinate-based data in
Neurosynth (Salimi-Khorshidi et al. 2009) the widespread shar-
ing of richer statistical images in databases such as NeuroVault
(Gorgolewski et al. 2015) will greatly improve the fidelity of
future meta-analyses.

In the present study, we used relatively unbiased data-
driven methods to comprehensively map psychological states
to individual regions in LFC. These regions were organized
within large-scale whole-brain networks and shared functional
properties with other regions in the same network. Moreover,
we found that various specific psychological processes that
have been previously hypothesized to map onto individual
brain regions were widely distributed throughout LFC. Yet, we
identified dissociable functional profiles for each subregion,
suggesting that LFC supports a wide variety of psychological
states through a mixture of network-level dynamics and mod-
erate degree of functional specialization. Collectively, our
results represent a comprehensive synthesis of a large body of
fMRI studies that can serve as a launching point for generating
novel theories or identifying clinically relevant topographical
distinctions in LFC (Bludau et al. 2015).
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Supplementary data is available at Cerebral Cortex online.
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