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The goal of the present study was to examine relationships between individual differences in resting state func-
tional connectivity as ascertained by fMRI (rs-fcMRI) and performance on tasks of executive function (EF), broad-
ly defined as the ability to regulate thoughts and actions. Unlike most previous research that focused on the
relationship between rs-fcMRI and a single behavioral measure of EF, in the current study we examined the re-
lationship of rs-fcMRIwith individual differences in subcomponents of EF. Ninety-one adults completed a resting
state fMRI scan and three separate EF tasks outside the magnet: inhibition of prepotent responses, task set
shifting, and working memory updating. From these three measures, we derived estimates of common aspects
of EF, as well as abilities specific to workingmemory updating and task shifting. Using Independent Components
Analysis (ICA), we identified across the group of participants several networks of regions (Resting State Net-
works, RSNs) with temporally correlated time courses. We then used dual regression to explore how these
RSNs covaried with individual differences in EF. Dual regression revealed that increased higher common EF
was associatedwith connectivity of a) frontal pole with an attentional RSN, and b) Crus I and II of the cerebellum
with the right frontoparietal RSN.Moreover, higher shifting-specific abilitieswere associatedwith increased con-
nectivity of angular gyrus with a ventral attention RSN. The results of the current study suggest that the organi-
zation of the brain at rest may have important implications for individual differences in EF, and that individuals
higher in EF may have expanded resting state networks as compared to individuals with lower EF.

© 2014 Elsevier Inc. All rights reserved.
Introduction

When individuals are not engaged in an experimentally-directed
task (i.e., are in a “resting state”), distinct networks of widely separated
brain regions can be identified as sharing similar temporal patterns of
functional activity (Fox and Raichle, 2007) — a phenomenon often re-
ferred to as “resting state functional connectivity MRI” (rs-fcMRI).
These “resting state networks” [RSNs] show strong correspondence
with regions that tend to co-activate during performance of a class of
tasks (e.g., language processing tasks; Smith et al., 2009). Moreover,
the organization of such networks has been found to have behavioral
and clinical relevance. A large body of literature indicates that RSNs
are altered across a plethora of neurological and clinical populations, in-
cluding Alzheimer's disease, schizophrenia, depression, attention deficit
, Boulder, CO 80309-0345, USA.
Reineberg).
hyperactivity disorder, and others (for reviews see Greicius, 2008;
Zhang and Raichle, 2010).

More recently, research has focused on how individual differences in
abilities among neurologically normal individuals are related to the or-
ganization and extent of networks identified by rs-fcMRI. For example,
patterns of rs-MRI are associated with fluid intelligence (Cole et al.,
2012), attentional vigilance (Thompson et al., 2012), performance on
the trail making test (Seeley et al., 2007), working memory (Hampson
et al., 2006; Gordon et al., 2012), and the ability to maintain attentional
control in the face of distracting information (Kelly et al., 2008). In gen-
eral, however, there is a paucity of studies that examine the relationship
between rs-fcMRI and individual differences in executive function (EF),
the ability to engage in and guide goal-oriented behavior. Because EF is a
broad umbrella term that encompasses a wide variety of specific func-
tions and component processes (Miyake et al., 2000), our approach in
the current study is to examine the relationship betweenRSNs and indi-
vidual differences in both general and specific subcomponents of EF in a
large sample of participants. Moreover, we take a novel approach of in-
vestigating this issue by embedding our researchwithin the framework
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of a prominent and well-grounded theoretical model of EF, known as
the unity and diversity model (for a review, see Miyake and Friedman,
2012). This model, based on intercorrelated patterns of performance
across individuals on multiple measures of EF, suggests that many im-
portant aspects of EF can be reduced into at least three latent factors.
The first is a common EF factor, representing the unity aspect of the
model, on which all measured EF tasks load. This factor is thought to
represent the general capacity to maintain a task goal, or “attentional
set,” and is thought to be a common feature of all EF tasks. The second
two orthogonal factors represent the diversity aspect of the model and
are more specific processes above and beyond common EF. Statistically
speaking, these factors are residuals of the EF abilities once common EF
has been taken into account. One factor, the shifting-specific factor, cap-
tures processes relating to flexibly shifting between different task or
mental sets, while the other factor, the updating-specific factor, indexes
the process of rapidly adding or deleting information from the contents
of working memory.

Theoretical considerations, computational modeling, and empirical
research by our group and others suggest that these three EF factors
are likely to be supported by overlapping yet somewhat distinct brain
systems (Miyake and Friedman, 2012; Herd et al., 2013). The ability to
stably maintain a task goal is thought to rely on areas of lateral prefron-
tal cortex extending from BA 10 through mid-dorsolateral prefrontal
cortex (Banich, 2009; Braver, 2012; Herd et al., 2006; Sakai, 2008), po-
tentially including the anterior cingulate and frontal operculum as
well (Dosenbach et al., 2008). Set shifting involves changes in the
focus of attention andmay engagemore posterior regions of dorsolater-
al prefrontal cortex (e.g., inferior frontal junction) as well as parietal re-
gions (e.g., intraparietal sulcus;Wager et al., 2004;Derrfuss et al., 2005).
Working memory updating has been suggested to involve fronto-
striatal connections and requires input from the basal ganglia (Braver
et al., 1997; O'Reilly and Frank, 2006; McNab and Klingberg, 2008).
Using task-related fMRI across multiple EF tasks, Collette et al. (2005)
found that regions commonly activated across EF tasks include the left
superior parietal gyrus and the right intraparietal sulcus, and to a lesser
degree, mid- and inferior prefrontal regions. Moreover, left frontopolar
cortex (BA 10) activity was specifically associated with updating-
specific EF, while activity of the left intraparietal sulcus was associated
with shifting-specific EF.

Given the relatively limited scope of prior research on rs-fcMRI and
EF, the current study had a number of major objectives. First, wewanted
to determinewhether patterns of rs-fcMRI are associatedwith individual
differences in both common and specific factors underlying EF. Second,
given the research suggesting that these three EF factors may engage
somewhat different brain regions, we wanted to ascertain whether dif-
ferent aspects of rs-fcMRI predicted individual differences for each of
the three EF factors investigated (i.e., common EF, updating-specific EF,
shifting-specific EF). Third, wewanted to disentanglewhether individual
differences in these three aspects of EF are associated with activity in
RSNs that are composed of regions commonly activated across individ-
uals when performing EF tasks (e.g., the fronto-parietal network), and/
or whether they are influenced by activity in RSNs outside those tradi-
tionally thought to be engaged in EF (e.g., medial frontal/limbic net-
work). Finally, we wanted to investigate how individual differences in
EFmight predict alterations in either the degree to which specific subre-
gions coactivate as part of a particular RSNs (e.g., more intense connec-
tivity of DLPFC within the fronto-parietal network) or the composition
of particular RSNs (e.g., a greater spatial extent of the fronto-parietal net-
work). Our hypothesis was that rs-fcMRI would be associated with indi-
vidual differences in these three aspects of EF. However, based on the
paucity of prior research, our investigation was more exploratory with
regard to how exactly such individual differences wouldmanifest. To in-
vestigate these questions, we utilized dual regression to extract subject-
specific versions of classic RSNs and then performed statistical tests to
determinehow individual variation in these RSNspredicted EF as charac-
terized by the unity and diversity model.
Material and methods

Participants

Onehundred individuals aged 18 to 34 years (M= 22.3, SD= 9.92)
from the University of Colorado Boulder participated for payment over
two sessions. Participants were paid $25.00 per hour for the fMRI ses-
sion and $10.00 per hour for the behavioral session. Session one in-
volved the administration of behavioral tasks that measured EF ability.
Session two involved the acquisition of anatomical and functional
brain data via magnetic resonance imaging. The two sessions occurred
within an average of 31.6 days of each other. Functional brain data
from six participants were discarded due to excessive levels of move-
ment during the scanning session (greater than 3 mm in a single
dimension). Additionally, data from three participants were discarded
due to failure to comply with rules on one of more of the behavioral
tasks. All presented results are from analyses of data from the remaining
91 participants (48 females).

Procedures

In session one, three behavioral tasks were administered from the
battery of nine tasks typically used in studies that have provided evi-
dence for the unity and diversity model of EF (see Miyake et al., 2000;
updated in Miyake and Friedman, 2012): antisaccade, category
switching, and keep track. These three tasks were chosen because
they load most highly on common EF, switching-specific, and
updating-specific factors, respectively, in a prior large scale study in
which the full battery of EF tasks was administered (Friedman et al.,
2012). A variety of self-report questionnaires (e.g., emotion regulation
style, trait rumination, worry, distractibility) and genetic data were ac-
quired during session 1. Analyses of questionnaire data are outside the
scope of the current study. Analyses of genetic datawere not performed
due to lack of a replication sample.

In session two, participants were scanned in a Siemens Tim Trio 3T
scanner. During a 5.5 minute resting state scan, participants were
instructed to relax and close their eyes.

Session 1: behavioral tasks

Antisaccade task (adapted from Roberts, Hager, & Heron, 1994)
This task measures a person's ability to inhibit an automatic process

(an eyemovement). Participants were instructed to focus on a centrally
located fixation cross (lasting 1.5–3.5 s). When the fixation cross disap-
peared, an initial box cue flashed 10 cm either to the right or to the left
of fixation. The cue disappeared after a fixed interval (233, 200, or
183 ms), after which the target (a digit, 1 through 9) appeared for
150 ms before being masked with gray cross-hatching. Participants
named the number they saw aloud and the experimenter typed in
their response, triggering the next trial to begin. For some trials, the
cue was helpful in that it indicated the location at which the target ap-
peared (prosaccade trials). In other trials – antisaccade trials – the cue
appeared on the opposite side of the screen as the target. The task
beganwith a block of 18 prosaccade trials in which the cue disappeared
after 183 ms to establish that participants could perform the easy
prosaccade trials within the most stringent time demands. Participants
were then given three blocks of 36 antisaccade trials (with 233, 200, or
183 ms cue durations, respectively). Participants typically vary in their
ability to identify the target on antisaccade trials because it is difficult
to inhibit the automatic tendency to look towards an object, in this
case the cue. The dependent measure was average accuracy for the
three blocks of antisaccade trials.

Category switch task (adapted from Mayr and Kliegl, 2000)
This taskmeasures a person's ability to quickly and accurately switch

between different modes of categorization. Participants were asked to
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Fig. 1. The data processing pipeline for resting state data in the current study.
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categorize words (e.g., alligator, knob, coat, lion) either with regard to
animacy (living/non-living) or size (smaller/larger than a soccer ball)
depending on a cue that appeared above the word (heart or crossed ar-
rows). After two pure blocks of 32 trials each that involved categorizing
items along a single dimension (e.g., just on animacy), participants com-
pleted two blocks of 64 trials each that contained a mixture of trials in
which some trials required judgments regarding animacy and others re-
quired judgments regarding size. The trials in these blocks were pre-
sented in a fixed pseudorandom order such that the subtasks occurred
equally often, and 50% of the trials involved a switch from one subtask
to the other. Participants were given unlimited time to respond on
each trial, but were instructed to respond as swiftly and accurately as
possible. The dependent measure was the switch cost: the difference
between average reaction time for correct switch trials and correct re-
peat trials during the mixed blocks for each subject. Trials following er-
rors were eliminated because it was not clear that the correct set was
achieved (precluding categorization of whether the subsequent trial
was either a switch or repeat trial). Reaction times identified as
within-subject outliers by the Wilcox–Kessleman trimming procedure
(Wilcox and Keselman, 2003) were also removed before averaging.

Keep track task (adapted from Yntema, 1963)
This task measures the ability to update working memory. A stream

of words is presented, one at a time. Thewords belong to six categories:
relatives, countries, colors, animals, metals, and distances, with six
words in each category. Participants were asked to keep track of the
most recently presentedwords from two tofive given categories and re-
port them verbally at the end of the trial. Sixteen trials were adminis-
tered, with each trial containing a stream of 15–25 words. After two
practice trials with two categories to remember, there were four blocks,
each with one two-, three-, four-, and five-category trials, for a total of
16 trials. The order of the trials within each blockwas fixed in a pseudo-
random order. Each trial began with the list of categories, which
remained at the bottomof the screen until thefinal recall. Eachword ap-
peared for 2000ms, followed by the nextword. The dependentmeasure
was each participant's accuracy in recalling the target words.

EF scores
We extracted three factors – common EF, shifting-specific, and

updating-specific – in accordance with prior research. The lack of an
inhibition-specific factor reflects a recent update to the unity and diver-
sity framework that highlighted the complete overlap of common EF
and inhibition-specific variance in behavioral tasks in several samples
of adults and adolescents (Miyake and Friedman, 2012). Common EF
was calculated by taking the average of each subject's three tasks con-
verted to a Z-value (across the group of 91 participants). Shifting-
specificwas the residual variance in the category switch task, regressing
out common EF. Updating-specific was the residual variance in the keep
track task, regressing out common EF. This procedure left shifting- and
updating-specific orthogonal to Common EF; however, the shifting-
and updating-specific residuals were significantly negatively correlated
(r=− .61, p b 0.05). This method of calculating EF component scores is
similar to that performed in a recent related study from our laboratory
demonstrating that individual differences in these EF component scores
predict individual differences in gray matter volume and gyrification
index of prefrontal regions as well as fractional anisotropy of specific
neural tracts that connect prefrontal regions with posterior brain areas
(Smolker et al., 2014). Shapiro–Wilk's tests confirmed that all three EF
measures were normally distributed. Higher scores on three composite
measures correspond to greater ability in that construct (i.e. maintain a
goal, shift between task/mental sets, or update working memory).

Session 2: brain imaging

Neuroanatomical data were acquired with T1-weighted MP RAGE
sequence (acquisition parameters: repetition time (TR) = 2530 ms,
echo time (TE) = 1.64, matrix size = 256 × 256 × 192, flip angle
(FA)=7 deg., slice thickness=1mm). Resting state data was acquired
with a T2*-weighted echo-planar functional scan (acquisition parame-
ters: number of volumes = 165, TR = 2000 ms, TE = 29 ms, matrix
size = 64 × 64 × 33, FA = 75 deg., slice thickness = 3.5 mm, field of
view (FOV) = 240 mm).

Analysis of brain data was performed via a multi-step process (see
Fig. 1 for summary). First, Independent Components Analysis (ICA)
was used to identify networks of brain regions whose activity was cor-
related across the group of participants. From these so-identified ICA
components, we selected those that were significantly correlated with
those of a reference study with a larger number of individuals (Yeo
et al., 2011) and discarded those that were irrelevant to the current in-
vestigation (e.g., atypical RSNs and artifactual components; see below
for procedure). For the relevant networks, dual regression was used to
derive subject-specificmaps of the group-identifiedRSNs. Finally, statis-
tical analyses were performed to identify differences in the subject-
specific RSN maps that predicted EF ability.

Preprocessing

All processing of brain data was performed in a standard install of
FSL build 5.06 (Jenkinson et al., 2012). To account for signal stabilization,
the first four volumes of each individual functional scan were removed,
yielding 161 volumes per subject for additional analysis. The functional
scans were corrected for headmotion usingMCFLIRT, FSL's motion cor-
rection tool. Brain extraction (BET) was used to remove signal associat-
ed with non-brain material (e.g., skull, and sinuses). FSL's FLIRT utility
was used to perform a boundary-based registration of each participant's
functional scan to his or her anatomical volume and a 6° of freedom af-
fine registration to MNI152 standard space. Finally, the scans were con-
verted to 4 mm voxel size, smoothed (5 mm FWHM), and high-pass
filtered (.01 Hz threshold).

Independent components analysis

To decompose the functional brain data into various independent
spatiotemporal components, Independent Components Analysis (ICA)
was performed on the preprocessed functional scans using Melodic
ICAversion 3.14 (Beckmannand Smith, 2004). A dimensionality estima-
tion using the Laplace approximation to the Bayesian evidence of the
model order was performed (Beckmann and Smith, 2004). This
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procedure yielded 29 spatiotemporal components. While one common
approach for identifying “classical” resting-state networks from a pool
of ICA components is to have an expert subjectively label ICA compo-
nents as signal (e.g., right frontoparietal network, and default network)
or noise (edge effects, movement, etc.), we opted to use a different RSN
identification procedure to select RSNs for further analysis. We statisti-
cally compared the spatialmap of each ICA component to a set of 7 pop-
ular RSNs from analysis of resting-state data from approximately 1000
participants (Yeo et al., 2011). We used FLS's “fslcc” tool to calculate
Pearson's r for each pairwise relationship and kept only those ICA
components that yielded a significant spatial correlation (Pearson's
r N .207) with one of the RSNs from Yeo et al. (2011). This procedure
identified and helped label 15 RSNs, and identified 14 ICA components
that did not significantly correlate with a reference network. ICA com-
ponents that did not significantly correlate with a reference network
were eliminated from further analysis. Further inspection confirmed
that the eliminated components were likely artifactual (e.g., edge
effects) or were predominantly high frequency signal according to a
power frequency distribution curve (i.e., physiological noise such as
heartbeat-induced movement).

Dual regression

Dual regression is a method that uses unthresholded group-level in-
dependent component maps to generate both subject-specific com-
ponent time courses and subject-specific spatial maps as output
(Beckmann et al., 2009). Here we focus on subject-specific spatial
maps to examine how EF influences the composition of the networks.
Dual regression can be broken down into two steps: First, for each sub-
ject, the group-average set of spatial maps is regressed (as spatial re-
gressors in a multiple regression) on the subject's 4D spatio-temporal
dataset (i.e., brain volumes across time). This process results in a set of
subject-specific time series, one per group-level component. Next,
those time series are regressed (as temporal regressors, again in a mul-
tiple regression) into the same 4D dataset, resulting in a set of subject-
specific components, one per group-level component. Subject-specific
components are whole brain images. Some subjects express a given
RSN that is very similar to the group level RSN while others have varia-
tions of the group level RSN (e.g., have an expanded RSN or high
connectivity of a particular region of a given RSN). Statistical analyses
(discussed below) are performed on these whole brain subject-
specific RSNs to determine areas that covary with behavioral covariates
of interest, in our case, level of EF.

In the present study, the associations between EF measures and
subject-specific RSNs were analyzed using Randomise, FSL's nonpara-
metric permutation testing tool (Jenkinson et al., 2012), with 5000 per-
mutations and threshold free cluster enhancement (TFCE) to correct for
multiple comparisons. Permutation testing was performed while con-
trolling for between-subject differences in transient movement
throughout the scanning session in accordance with Van Dijk et al.
(2012). Two summary motion regressors were created for each subject
and entered into Randomise as control variables: average motion in the
x, y, and z planes (mean translation) and average roll, pitch, and yaw
(mean rotation) across the resting state run. The permutation testing
procedure was run for each set of subject-specific RSNs (one for each
group-level RSN of interest), thus the resulting statistical images reveal
how variation in RSNs predict differences in EF. For example, the per-
mutation testing procedure could reveal that individuals with an ex-
panded RSN (i.e., expanded to areas outside the areas included in the
group-level RSN) have greater EF.

To account for the possibility that performance of EF tasks in session
one could affect resting-state functional connectivity in session two, we
performed an additional series of dual regression analyses adding time
between session one and two as a covariate in addition to EF andmotion
variables. We found no difference in the observed effects of EF after the
addition of this covariate and nomain effects of time between sessions.
For the sake of simplicity, only results from models that included EF,
mean translation, and mean rotation are reported below.

Results

Behavioral data

We performed a check to ensure the data was suitable for the pro-
posed analyses. As anticipated, there were no floor or ceiling effects
and scores varied considerably across the group of participants. Average
results onmeasures of interestwere slightly higher than performance in
a large (n = 735+) population sample of young adults (mean age of
22.8 compared to 20.8 in the current study; Friedman et al., in
preparation): The mean antisaccade accuracy was 75.5% (SD = 31.4),
the mean category-switch cost was 174.3 ms (SD = 123.9 ms), and
the mean keep-track accuracy was 76.1% (SD= 8.33).

Independent components analysis

The 15 RSNs of interest in the present study were, with one excep-
tion, subsets of the large seven major RSNs identified by Yeo et al.
(2011): visual, somatomotor, dorsal attention, limbic, ventral attention,
default, and frontoparietal networks (see Fig. 2). For all but Yeo's ventral
attention and limbic network, there was more than a single RSN that
correlated significantly with themasks fromYeo et al. (2011). Addition-
ally, five of the 15 RSNs from the current study significantly correlated
withmore than onenetwork (e.g., to both the ventral attention network
and the frontoparietal network of Yeo et al. (2011)). In Fig. 2, we show
the independent component (IC) numbers from our Melodic output
under the label of the reference networks from Yeo et al. (2011). In
Fig. 2, our independent components are thresholded at a level consis-
tent with previous research (z = 5, compared to 3 b z b 9 (Rytty et al.,
2013), 4 standard deviations above the mean (Allen et al., 2011), and
p (signal N noise) N .5 (FSL default)). This threshold was also used for
determining the parent network of any region later identified in the
Dual Regression analyses. Any IC that significantly correlated with
more than one template network is grouped in Fig. 2 with the template
network with which it is most strongly correlated. The three networks
that correlated with Yeo's visual network were composed of regions
extending from occipital pole through cuneal cortex and lingual gyrus
(ICs 1, 12, and 18). The three networks that correlated with Yeo's
somatomotor network were composed of the superior pre- and post-
central gyrus (IC 6), primary auditory cortex and superior temporal
gyrus (IC 11), and post-central gyrus (IC 24). There was a single net-
work that extended through orbitofrontal and ventromedial prefrontal
cortex that correlated with Yeo's limbic network (IC 28). The three net-
works that correlated with the Yeo's dorsal attention network were
composed of dorsolateral frontal, parietal, and occipital regions (ICs
14, 17 and 26). The single network that correlatedwith Yeo's ventral at-
tention network was composed of a conglomerate of medial and lateral
frontal regions (IC 4). The two networks that correlated with Yeo's de-
fault networkwere composed ofmedial prefrontal cortex, posterior cin-
gulate cortex, and precuneus (ICs 10 and 15). Finally, there were two
networks that correlated with Yeo's frontoparietal networks: classic
right and left frontoparietal networks (ICs 5 and 9, respectively). In
Fig. 3, we show ICs from the current study (plotted in multiple colors)
next to template networks of Yeo et al. (2011) (plotted in red).

Dual regression

Common EF
Individual differences in common EF were associated with varia-

tion of two RSNs. First, we observed that increased connectivity of
Crus I and II of the cerebellum within the right frontoparietal
network (IC 5) was associated with greater common EF ability
(Fig. 4a; p(corrected) = 0.037). Second, we observed that expansion
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Fig. 2. Resting-state networks from the current study thresholded at z N 5. The RSNs are grouped into seven categories based on relation to reference networks — visual, somatomotor,
limbic, dorsal attention, ventral attention, default, and frontoparietal. Independent components that significantly overlappedwithmore than one template are groupedwith the template
they correlatemost strongly. In addition to thepictured groupings, independent components 11 and 14 significantly overlappedwith the ventral attention template network; independent
component 9 also significantly overlapped with the default template network; and independent components 4 and 26 significantly overlappedwith the frontoparietal template network.
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of IC14, a dorsal attentional RSN, to two regions – the left frontopolar
cortex (Fig. 4b; p(corrected) = 0.028) and right cerebellar regions
(Fig. 4c; p(corrected) = 0.035) – was associated with greater common
EF. The frontopolar region is part of ICs 4 and 9.

Shifting-specific
Greater shifting-specific EF was associated with increased coupling

of the left angular gyrus with IC 11, a network that correlated signifi-
cantly with both the somatomotor and ventral attention template net-
works. (Fig. 4d; p(corrected) = 0.007). The left angular gyrus is not part
of IC 11 from the group level ICA analysis.
Discussion

Our findings indicate that aspects of the functional architecture of
the resting brain are associatedwith variation among individuals in dif-
ferent aspects of EF.While an abundance of studies has identified sets of
regions that consistently coactivate together during periods of rest, we
have shown that the composition of these networks varies based on in-
dividual differences in EF. More specifically, higher common EF is asso-
ciated with intensity differences within the right frontoparietal RSN,
and the expansion of an attention RSN to the frontopolar cortex and cer-
ebellum. Better shifting-specific ability was associated with expansion
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Fig. 3.Resting state networks from the current study compared to reference networks (Yeo et al., 2011). Reference networks are plotted on the left in red. RSNs from the current studywere
spatially combined into a single image and plotted in contrasting colors.
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of a somatomotor/attention network to the angular gyrus. No relation-
ships were observed between rs-fcMRI and updating-specific ability.

Common EF

Higher common EF was associated with differences in the right
frontoparietal RSN. Specifically, increased coupling between the right
frontoparietal RSN and Crus I and II of the cerebellum predicted higher
common EF. Such a result is consistent with task-based research show-
ing that frontal and parietal regions emerge as important in both region-
of-interest (Alvarez and Emory, 2006; Buckner, 2013) and network-
based analyses (Zhang and Li, 2012) of executive function tasks. This
result is also in line with work that shows a strong connection between
Crus I/II and frontoparietal regions both functionally (Buckner et al.,
2011) and anatomically (Kelly and Strick, 2003). Additionally, Crus I
and II have been shown to activate in task-based fMRI studies of work-
ing memory and EF, and greater activation and functional connectivity
of these regions is associated with better performance (Bernard et al.,
2013; Salmi et al., 2010; Stoodley and Schmahmann, 2009). This result
supplements these task-based findings by demonstrating that the de-
gree to which Crus I and II couples with the frontoparietal network at
rest predicts differences in EF. The exact role of cerebellar regions in
the service of EF is still debated. Two prominent theories stemming
from the motor control literature suggest that the cerebellum is crucial
for timing of cognitive events and/or provides a means for predicting
the outcome of implemented plans (Ivry and Keele, 1989; Ramnani,
2006). While our study cannot speak directly to these theories, we
have shown that a key difference between individuals with high versus
low Common EFmay be the degree to which the cerebellum is involved
in a network of regions broadly implicated in higher-order cognitive
operations.

Additionally, Common EFwas associatedwith variation in a network
supporting attention to the external environment (IC 14). Individuals
with greater common EF showed increased coupling of frontopolar re-
gion with this attentional RSN, which is composed of lateral frontal
and superior parietal/occipital regions. An attention network similar to



Common EF

Shifting-specific EF

= RSN/IC background = dual regression 
overlay

a. IC 5 b. IC 14

d. IC 11

)4,55,62-()04-,07-,73-(

(-58,-58,36)(21,-42,-40)

c. IC 14

Fig. 4. Dual regression analyses reveal that RSNs vary with common and switching-specific components of EF. The input RSN for dual regression is plotted in warm colors as background
image. The dual regression result is plotted as an overlay in blue. Blue regions are regions that covarywith individual differences in EF. For all results within the input RSN (4a), increased
intensity of the highlighted region (thresholded at p(corrected) b .05) corresponds to higher EF construct scores. For outside-group-network results (4b, c), expansion of the input RSN to the
highlighted region corresponds to higher EF construct scores. Next to each dual regression result is a scatterplot of parameter estimates extracted from the voxels identified in the dual
regression analysis for each participant's independent component plotted against each participant's EF score. For size of significant clusters identified in the dual regression analysis,
see Table 1.
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IC 14 has previously been linked to performance on the antisaccade task
(Schaeffer et al., 2013), which is a task that loads strongly on the Com-
mon EF construct (Miyake and Friedman, 2012). Notably though, the
Table 1
Summarizes each dual regression result. Center of mass is provided for each cluster for the
purposes of anatomical localization. EF = executive function. IC = independent compo-
nent. TFCE = threshold-free cluster enhancement.

Center of mass p-Value Cluster size

Executive function IC X Y Z (TFCE-corrected) 4 mm3 (2 mm3)

Common EF 5 −37 −70 −40 0.037 3 (24)
Common EF 14 −26 55 4 0.028 3 (24)
Common EF 14 21 −42 −40 0.035 3 (24)
Shifting-specific 11 −58 −58 36 0.007 31 (248)
frontopolar region identified in the dual regression analysis has not
been characterized as part of the dorsal attention network and is not
contained within the dorsal attention RSN that was identified at the
group level of the current study. Rather, this frontopolar region is part
of two frontoparietal RSNs — ICs 4 and 9. Importantly, this frontopolar
region has previously been linked to maintenance of goals and abstract
task sets (Ramnani and Owen, 2004; Vincent et al., 2008; Christoff et al.,
2009; Dosenbach et al., 2008; Orr and Banich, 2014). As such, co-
activation of regions implicated in the maintenance of abstract repre-
sentation and/or goals with the attentional machinery to implement
those goals, characterizes individuals with high levels of common EF.

In summary, alterations in resting state networks associated with
high common EF can be characterized as expanded compared to those
with low common EF, encompassing both higher-order areas involved
in setting abstract goals (i.e., frontopolar cortex) and lower-level
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regions that could aid in implementing those goals more automatically
(i.e., cerebellum).

Shifting-specific

Higher shifting-specific EF was associated with variation in a
somatomotor/attentional RSN (IC 11), suggesting it is involved in senso-
ry aspects of spatial processing. Specifically, individuals with higher
EF had greater recruitment of the angular gyrus, which lies outside IC.
Lateral parietal regions are frequently implicated in executive processes,
and are especially important for shifting-specific aspects of EF (Collette
et al., 2005; Esterman et al., 2009), perhaps due to their ability to inte-
grate multimodal information. Additionally, this particular region of
the angular gyrus is characterized by a distinct pattern of anatomical
connectivity to a variety of regions implicated in higher order cognitive
process, such as ventrolateral prefrontal cortex, among others (Uddin
et al., 2010). Shifting-specific tasks depend not only on active abilities
to move from one task set to the other, but also on the passive linking
between lower order centers of control and appropriate targets
(e.g., motor regions). It may be that individuals with higher shifting-
specific EF effectively utilize parietal regions to control the stimulus–
response mappings that are required to perform different tasks.

Updating-specific

One unexpected aspect of our findings was a lack of a relationship
between individual differences in updating-specific ability and any rs-
fcMRI network or region. On the basis of both theoretical and empirical
findings regarding the neural substrates of updating (Frank et al., 2001),
one might have predicted a priori that connectivity between the DLPFC
and basal ganglia might influence individual differences in updating
ability. However, we did not find such an effect. Our null results
may arise because of the qualitative differences between processes
supporting updating-specific EF as compared to common EF and
shifting-specific EF. Updating requires the contents of workingmemory
to bemanipulated, and as suchmay rely more on a more circumscribed
brain region, notably DLPFC, without connectivity to other regions
playing as much of a role. In contrast, when switching between tasks,
new task sets and stimulus–response mappings need to be loaded to
perform the task, and hence switching may rely on a more distributed
network (e.g., frontopolar regions for selecting the task set, and parietal
regions for stimulus–response mappings). Of course one must be cir-
cumspect when discussing potential reasons for a null result.

General discussion

One notable aspect of our results was that different RSNs were asso-
ciatedwith different aspects of EF. As such, ourfindings support the idea
that EF represents a family of abilities. More importantly, however, it
suggests that these different abilities may preferentially recruit distinct
neural substrates, at least with respect to individual differences in EF.

Although our findings clearly demonstrate a relationship between
individual differences in EF and rs-fcMRI, our study cannot speak direct-
ly to the source of that relationship. On the one hand, a dominant theme
emerging from prior literature is that patterns of rs-fcMRI reflect the in-
trinsic functional organization of the brain (Fox and Raichle, 2007),
sculpted by a history of coherent neuronal firing and anatomical wiring
between distributed brain regions (Wig et al., 2011). Indeed, patterns of
rs-fcMRI are stable across time within individuals (Guo et al., 2012;
Shehzad et al., 2009), relate to a variety of genetic factors (Glahn et al.,
2010), and persist to somedegree under various stages of consciousness
and anesthesia (Boly et al., 2008; Greicius et al., 2008). From this per-
spective, the findings of the present study may potentially reflect an
individual's biological heritage, such as genetic influences on EF that
might influence the structural and/or functional connectivity of the
brain (see Friedman et al., 2008 for evidence of genetic influences on
EF). However, this does not preclude environmental influences also
working to sculpt brain activity, such as the amount of training/school-
ing during childhood with regard to activities or tasks that require EF
(Diamond, 2012), SES (Hackman and Farah, 2009), or other such fac-
tors. The relationship between behavior-related RSN variability and
specific individual traits, whether they have genetic and/or experiential
causes, is an important direction for future work.

It is also possible that aspects of an individual's state at the time of
scanning may influence the patterns we observed. Several recent find-
ings suggest that patterns of functional connectivitymay be partially in-
fluenced by the participant's mental/task state (Andrews-Hanna et al.,
2010; Doucet et al., 2012; Shirer et al., 2012), and can be modified on
a rapid time scale (Lewis et al., 2009; Tambini et al., 2010; Stevens
et al., 2010). Future research should also explore the possibility that
behavior-related RSN variability is caused by differences in the cognitive
processes of high versus low EF individuals during resting-state scans
(e.g., high EF individuals plan their day, while low EF individuals
daydream).

Although we believe our findings establish a strong groundwork for
further exploration of neuropsychological correlates of executive func-
tion as assessed during resting state, it will be important for future stud-
ies to replicate our findings and examine their possible dysfunction in
psychiatric and neurological disorders. In addition to replication and ex-
tension, future studies should consider genetic and behavioral variation
that could account for differences between high and low EF individuals'
resting-state functional connectivity.

Conclusion

In a large group of individuals, we demonstrate that the resting state
architecture of the brain is associated with individual differences in dif-
ferent aspects of a theoretically motivated framework of EF— the unity
and diversitymodel. The results are notable for providing a fine-grained
picture of the relationships with specific regions within and outside
of well-known RSNs. In the case of common EF, individuals higher
in EF had greater recruitment of cerebellar regions within a group-
identified frontoparietal RSN, and increased coupling of a frontopolar
region to an attention RSN. Those individuals higher in shifting-
specific EF had increased coupling of the angular gyrus and a
somatomotor/attention network. The current study significantly ex-
pands our knowledge of neural influences on EF, showing that variabil-
ity in EF across individuals may be sculpted by patterns of resting-state
functional connectivity within and between large-scale cognitive brain
networks.
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