
Functional Connectivity at Rest is Sensitive
to Individual Differences in Executive Function:

A Network Analysis

Andrew E. Reineberg1* and Marie T. Banich1,2

1Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder,
Colorado, 80309

2Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado, 80309

r r

Abstract: Graph theory provides a means to understand the nature of network characteristics and con-
nectivity between specific brain regions. Here it was used to investigate whether the network charac-
teristics of the brain at rest are associated with three dimensions thought to underlie individual
differences in executive function (EF)—common EF, shifting-specific EF, and updating-specific EF
(Miyake and Friedman [2012]). To do so, both an a priori analysis focused mainly on select frontoparie-
tal regions previously linked to individual differences in EF as well as a whole-brain analysis were
performed. The findings indicated that individual differences in each of the three dimensions of EF
were associated with specific patterns of resting-state connectivity both in a priori and other brain
regions. More specifically, higher common EF was associated with greater integrative (i.e., more hub-
like) connectivity of cuneus and supplementary motor area but less integrative function of lateral fron-
tal nodes and left temporal lobe nodes. Higher shifting-specific EF was associated with more hublike
motor-related nodes and cingulo-opercular nodes. Higher updating-specific EF was associated with
less hublike lateral and medial frontoparietal nodes. In general, these results suggested that higher
ability in each of these three dimensions of EF was not solely characterized by the connectivity charac-
teristics of frontoparietal regions. The pattern was complicated in that higher EF was associated with
the connectivity profile of nodes outside of the traditional frontoparietal network, as well as with less
hublike or centrality characteristics of some nodes within the frontoparietal network. Hum Brain Mapp
37:2959–2975, 2016. VC 2016 Wiley Periodicals, Inc.

Key words: executive function; resting-state fMRI; individual differences; network analysis; graph
theory

r r

INTRODUCTION

The goal of the present study is to examine whether dif-
ferences in the connectivity profiles of brain regions at rest
are associated with differences among individuals in their
level of executive functions (EF). EF are a set of abilities
that allow for the directed pursuit, maintenance, and modi-
fication of goals [Banich, 2009], and they are altered in a
large number of psychiatric and neurological disorders
[e.g., Barkley, 1997; Nieuwenstein et al, 2001]. It is generally
agreed that such abilities rely preferentially on frontal cor-
tex, based on both the results of individuals whose EFs are
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compromised as a result of localized brain damage [Alvarez
and Emory, 2006; Stuss and Alexander, 2000] and on neuro-
imaging studies that use univariate approaches to identify
those brain regions whose activation increases when EF
demands are increased [e.g., Banich et al., 2000a,b]. One of
the more prominent theories regarding the neural bases of
EF suggests that frontal regions work to modulate the proc-
essing in remote target brain regions so as to enable task
goals [Miller and Cohen, 2001]. Implicit in this theory is the
notion that the successful application of executive control
requires interaction between brain regions. Empirical evi-
dence supports such an idea as meta-analyses indicate that
EF tasks not only activate frontal regions, but a network of
brain regions extending to parietal regions and beyond
[Jurado and Rosselli, 2007; Wager et al., 2004]. Finally, com-
putational models that can successfully mimic performance
on EF tasks indicate that network dynamics are critical for
such executive control [e.g., Chatham et al., 2011; Herd
et al., 2006, 2014]. Given the strong evidence that EF is sup-
ported by an interaction between disparate brain networks,
it is somewhat surprising that neuroimaging studies have,
for the most part, not focused on network properties to bet-
ter understand individual variation in EF, an issue we
address in the current study.

One notable aspect of EF is that it is known to vary sub-
stantially across individuals [Miyake and Friedman, 2012].
Research on individual differences, including studies uti-
lizing behavioral genetics techniques, has provided a theo-
retical framework from which to consider how individuals
differ in their EF abilities. One prominent theory, the unity
and diversity model, derived from intercorrelated patterns
of performance across individuals on multiple measures of
EF, posits that EF can be well characterized as consisting
of at least three latent factors [Miyake and Friedman,
2012]. The first factor is a common EF, representing the
unity aspect of the model, on which all EF tasks load. This
factor is thought to represent the general capacity to
actively maintain a task goal or “attentional set.” The sec-
ond two orthogonal factors represent the diversity aspect
of the model and are more specific processes above and
beyond common EF. Statistically speaking, these factors
are residuals of the EF abilities once common EF has been
taken into account. One factor, the shifting-specific factor
(shifting), reflects abilities relating to flexibly shifting
between different tasks or mental sets, while the other fac-
tor, the updating-specific factor (updating) indexes the
process of rapidly adding or deleting information from the
current contents of working memory.

Neuroimaging studies examining brain activation while
performing a variety of EF tasks suggest that these three EF
factors are likely to be supported by overlapping yet some-
what distinct brain systems. The ability to actively maintain
a task goal is thought to rely on areas of lateral prefrontal
cortex extending from BA 10 through mid-dorsolateral pre-
frontal cortex [Banich, 2009; Braver, 2012; Herd et al., 2007;
Sakai, 2008], potentially including the anterior cingulate and

frontal operculum as well [Dosenbach et al., 2008]. Set shift-
ing, which requires changes in task, appears to engage
more posterior regions of dorsolateral prefrontal cortex
(e.g., inferior frontal junction) as well as parietal regions
[e.g., intraparietal sulcus; Derrfuss et al., 2005; Wager et al.,
2003]. Working memory updating has been suggested to
involve fronto-striatal connections and require input from
the basal ganglia [Braver et al., 1997; McNab and Klingberg,
2008; O’Reilly and Frank, 2006]. The impression that these
three EF factors rely on both overlapping and distinct brain
regions was supported by a positron emission tomography
(PET) study performed by Collette et al. [2005], who
directly investigated which brain regions consistently acti-
vate across all subjects for a variety of EF tasks similar to
those typically employed by Miyake and colleagues. Col-
lette et al [2005] observed that on average across all individ-
uals the left superior parietal gyrus and the right
intraparietal sulcus, and to a lesser degree, mid- and infe-
rior prefrontal regions activated for all EF tasks. Moreover,
left frontopolar cortex (BA 10) activity was specifically asso-
ciated with tasks designed to assess updating-specific EF,
while activity of the left intraparietal sulcus was associated
with tasks designed to assess shifting-specific EF. Taken
together, these studies demonstrate the variety of cortical
and subcortical regions implicated in these different aspects
of EF. Moreover, they provide information on the brain
regions that are likely to act as key nodes in brain for each
of these distinct EF factors, and across them more generally.
Nonetheless, as these studies focus on the average pattern
of activation across groups of individuals, they provide no
information on how connectivity of such regions might be
related to individual differences in EF, an issue we address
in the current study.

To examine this issue, we investigate connectivity pro-
files of specific brain regions during resting-state fMRI (rs-
fMRI) because rs-fMRI is purported to reflect stable
aspects of brain function for a given individual. More spe-
cifically, rs-fMRI has been used to characterize and quan-
tify low frequency fluctuations in the BOLD signal while
individuals are not engaged in an experimentally-directed
task [hence the name “resting” state: Fox and Raichle,
2007]. A growing number of studies have shown the pat-
tern of this intrinsic oscillatory behavior between regions
mimics patterns of co-activation during task-based fMRI
studies. Specifically, regions that work in concert during
the performance of tasks seem to fluctuate together during
resting-state scans [Cole et al., 2014; Smith et al., 2009].
Importantly for the purposes of the present study, these
patterns of co-activation across regions are consistent
within an individual across multiple time points that span
months to years [Choe et al., 2015; Shehzad et al., 2009],
suggesting that they can serve as a sensitive measure of
individual differences. Hence, the present study examines
whether graph theoretic measures of such static connectiv-
ity patterns, which are intrinsic to an individual, are asso-
ciated with individual differences in EF. If so, it would

r Reineberg and Banich r

r 2960 r



suggest that subtle but important individual differences in
the organization of brain networks are associated with the
ability to exert executive control.

In the current article we focus on analyzing such rs-fMRI
data using graph theoretic measures. Graph theory is used
to mathematically characterize the functional architecture of
the brain as a set of interconnected nodes [Sporns et al.,
2004]. Typically in a graph theoretic approach, the connec-
tions (edges) between regions (nodes) are Pearson’s r-values
for each possible pairwise relationship. Summarizing a sin-
gle node’s pattern of edges to the rest of the brain (or to the
subset of regions to which it is most highly connected) can
provide an abundance of information about the propagation
of information through a complex system like the brain,
and specifically, what a given region’s role might be in the
context of a larger system. Local graph theoretic measures
can be broadly classified into several groups: measures of
integration (including some measures of centrality), segre-
gation, or other measures of centrality that do not necessar-
ily fall into either of the previous categories [Rubinov and
Sporns, 2010]. Measures of integration, such as betweenness
centrality and participation coefficient, assess a region’s
ability to link disparate parts of the brain (i.e., act as a hub).
Measures of segregation, such as clustering coefficient,
assess the involvement of a particular region in specialized
local processing. Other measures, such as degree centrality
and eigenvector centrality, are useful for characterizing the
general importance of a given region based on the number
of connections to other regions or the number of connec-
tions to other important regions, respectively. In the
“Methods” section we discuss all graph theoretic measures
used in the current study in more detail.

Our impetus for examining the relationship between
graph theoretic measures of resting-state activation and
individual differences in these EF dimensions is motivated
by a variety of considerations. First, at least one prior study
by Cole et al. [2012] has found that increased global connec-
tivity of a left lateral prefrontal cortex region implicated in
cognitive control is associated with an individual-difference
measure, fluid intelligence. Those researchers speculated
that global connectivity of lateral prefrontal cortex might
support the ability of this region to regulate processing in
many distinct and disparate brain regions, similar to the
role that this region is thought to play in EF. Second, com-
putational modeling of individual differences in EF suggest
that connectivity of lateral prefrontal regions may influence
both common EF and switching-specific abilities [Herd
et al., 2014]. Third, at least some aspects of cognitive control
may benefit from segregation rather than integration of
information. For example, the basal ganglia has been sug-
gested to play a prominent role in working memory updat-
ing [Frank et al., 2001], and segregation of Go versus No-
Go circuits may support such a role [Hazy et al., 2006].
Likewise, during task switching, keeping information about
specific stimulus-response mappings for each task separate
might be aided by having relevant regions highly connected
and irrelevant regions less connected.

In summary, the current study examines whether individ-
ual differences in dimensions of EF are related to individual
differences in graph theoretic measures of brain organization
as derived from resting-state data, which is known to be sta-
ble within an individual. The graph theoretic approach
taken in the current study is notable for a variety of reasons.
First, unlike prior studies that have examined just a single
measure of EF (e.g., performance on an N-back working
memory task), the current study looks at three well-
validated dimensions underlying individual differences in
EF. Second, the current study uses a larger-sized sample
than prior studies, carefully examining individual differen-
ces in close to 100 individuals. Third, brain-EF relationships
are examined in an a priori manner and in an unbiased man-
ner. Prior work by our group and others provided a number
of a priori regions of interest. For example, an earlier study
from our group suggested that individual variation in brain
structure—including grey matter volume, cortical thickness
and cortical folding—is related to individual differences in
the three EF dimensions we examine here [Smolker et al.,
2015]. Moreover, in another study we observed that individ-
ual differences in brain regions contributing to or composing
specific resting-state brain networks as determined by ICA
(e.g., frontoparietal network, dorsal attention network) are
also related to individual differences in these three EF
dimensions [Reineberg et al., 2015]. While this prior study
[Reineberg et al., 2015] examined the strength and composi-
tion of more large-scale resting-state networks as a function
of EF dimensions in the same group of participants as the
present study, the focus here is on connectivity profile of
specific nodes (i.e., smaller brain regions). The current study
complements these prior anatomical and network-based
investigations by asking whether or not regions-of-interest
in the frontoparietal network have different graph theoretic
properties depending on an individual’s level of function
for each of these three dimensions of EF. Interestingly, our
prior work also revealed that regions outside the classic net-
work of regions commonly implicated in cognitive control,
such as ventromedial prefrontal cortex, as associated with
individual differences in dimensions of EF. Taking into
account these findings, we also performed an unbiased anal-
ysis searching across the whole brain for regions whose con-
nectivity is related to individual differences in each of the
three dimensions of EF. By taking such a broad perspective,
the current study provides important insights into how indi-
vidual differences in brain connectivity may be related to
individual differences in a notable aspect of cognitive func-
tion, namely EF.

METHODS

Overview

Behavioral and brain testing occurred over two sessions.
In session one, three behavioral tasks were administered
from the battery of nine tasks typically used in studies
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that have provided evidence for the unity and diversity
model of EF [see Miyake et al., 2000; updated in Miyake
and Friedman, 2012]: antisaccade, category switching, and
keep track. These three tasks were chosen as they load
most highly on common EF, switching-specific, and
updating-specific factors, respectively [Friedman et al.,
2012]. In session two, brain activation was assessed via
MRI in a Siemens TIM Trio 3T scanner during a 5.5-
minute resting state scan. During this time, participants
were instructed to relax and close their eyes. The two ses-
sions occurred within an average of 31.6 days of each
other.

Participants

One hundred individuals aged 18–34 years (M 5 21.31,
SD 5 2.83) from the University of Colorado Boulder par-
ticipated for payment over two sessions. Participants were
paid $25.00 per hour for the fMRI session and $10.00 per
hour for the behavioral session. Functional brain data from
six participants were discarded due to excessive levels of
movement during the scanning session (>3 mm in a single
dimension). Additionally, data from three other partici-
pants were discarded due to failure to comply with rules
on one of more of the behavioral tasks. All presented
results are from analyses of data from the remaining 91
participants (48 females). These participants are the same
group of individuals as reported in Reineberg et al. [2015].

Behavioral Measures

We extracted three measures—common EF, shifting-
specific, and updating-specific—in accordance with prior
research [Miyake and Friedman, 2012]. Overall group per-
formance and individual variation on each behavioral task
were in line with prior studies [see Reineberg et al., 2015
for more detail]. Common EF was calculated by taking
the average of each subject’s three tasks converted to a
Z-value (across the group of 91 participants). Shifting-
specific EF was the residual variance in the category-
switch task, once the contribution of common EF was
regressed out. Updating-specific EF was the residual var-
iance in the keep-track task, once the contribution of com-
mon EF was regressed out. Higher scores on three
composite measures correspond to greater ability in that
construct (i.e., maintain a goal, shift between task/mental
sets, or update working memory).

Brain Data

Neuroanatomical data were acquired with a T1-weighted
MP RAGE sequence [acquisition parameters: repetition time
(TR) 5 2,530 ms, echo time (TE) 5 1.64, matrix size 5 256 3

256 3 192, flip angle (FA) 5 78, slice thickness 5 1 mm) and
resting-state data were acquired with a T2*-weighted echo-
planar functional scan (acquisition parameters: number of

volumes 5 165, TR 5 2,000 ms, TE 5 29 ms, matrix size 5

64 3 64 3 33, FA 5 758, slice thickness 5 3.5 mm, field of
view (FOV) 5 240 mm]. Analysis of functional brain data
was performed via a multistep process documented in Fig-
ure 1 and in detail below.

Preprocessing

Preprocessing of brain data was performed in FSL [build
506; Jenkinson et al., 2014] and Python. To allow for signal
stabilization, the first four volumes of each individual
functional scan were removed, yielding 161 volumes per
subject for analysis. The functional scans were corrected
for head motion using MCFLIRT, FSL’s motion correction
tool. Brain extraction (BET) was used to remove signal
associated with non-brain material (e.g., skull, sinuses,
etc.). Signal was extracted from masks of the lateral ven-
tricles and white matter and regressed out. FSL’s FLIRT
utility was used to perform a 6 degrees-of-freedom affine
registration of each participant’s functional scan to their
anatomical volume and a 12 degrees-of-freedom affine
registration of each participant’s anatomical scan to
MNI152 standard space. The transformation matrix from
the latter registration was applied to each participant’s

Figure 1.

Processing pipeline overview.
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functional scan. Finally, the scans were band-pass filtered
(0.001–0.08 Hz band).

Network Analyses

For each participant, we extracted the BOLD time series
from each of 264, 1 cm spherical ROIs, drawn from Power
et al. [2000], which serve as the nodes for the present anal-
ysis. We used these nodes as they are drawn from a meta-
analysis of functional activations and have a community
structure that agrees with task-based functional networks
(i.e., are organized into networks such as default mode
network and frontoparietal task control network). 1-cm
spherical ROIs were chosen as they provide the largest
possible size for a given ROI but preclude overlap with
neighboring ROIs. Within each participant, all pairwise
Pearson’s r correlations were calculated, yielding a 264 3

264 correlation matrix. All Pearson’s r-values were sub-
jected to the Fisher’s z transformation to normalize the
variance in correlation values. For each node of each con-
nectivity matrix, four graph theoretic metrics were calcu-
lated after a proportional threshold of 0.15 was applied
(i.e., only the strongest 15% of positive correlations were
maintained): eigenvector centrality, participation coeffi-
cient, betweenness centrality, and clustering coefficient. As
there is no consensus or strong precedent on which spe-
cific sparcity threshold is best, we chose a value in the
middle of a range of values commonly used in related
work. We feel the selection of this value balances using
very sparse graphs (e.g., <10% sparcity threshold, which
has been linked to high test-retest reliability of global
graph theory measures [Wang et al., 2011]) and denser
graphs [e.g., >20% sparcity threshold, which could poten-
tially reveal the cognitive-relevance of weak connections
as in Santarnecchi et al., 2008]. Additionally, global con-
nectivity was calculated in an unthresholded manner on
positive edge weights within each connectivity matrix.
This analysis process yielded 1,320 (264 regions 3 5 graph
theoretic measures) features per participant for use in fur-
ther analyses. All measures were calculated using Net-
workX package for Python [Hagberg et al., 2012].

Our selection of graph theoretic measures was based on
the desire to sample a variety of connectivity characteris-
tics. First, we chose a basic quantification of the connected-
ness of a region, global connectivity. Global connectivity is
the unthresholded, weighted degree centrality, or the aver-
age of each row/column of each participant’s positive con-
nectivity matrix. Global connectivity has previously been
linked to individual differences in intelligence and cogni-
tive control [Cole et al., 2012]. Second, we chose a measure
that weighs a given region’s important connections more
heavily than connections to less important regions, eigen-
vector centrality. Eigenvector centrality is obtained for each
participant by calculating an eigenvector for that partici-
pant’s connectivity matrix such that each component is
greater than zero [Newman, 2010]. Third, we chose a

measure that reflects how important a region is for con-
necting disparate parts of the brain, betweenness centrality
(betweenness). This measure provides an index of how fre-
quently a given region is part of the shortest path between
all other pairs of regions in the brain and is one way of
measuring the degree to which a region can be considered
a “connector hub” [van den Heuvel and Sporns, 2013].
Mathematically, betweenness is the sum of the fraction of
all other node pair’s shortest paths that pass through the
node of interest [Brandes, 2008; as implemented in Net-
workX in the current study, the resulting value is scaled
by the number of other node pairs in the graph]. Fourth,
we chose a measure that reflects how diverse a given
region’s connections are, participation coefficient. For exam-
ple, one region may be connected to only members of its
own community (e.g., regions within the visual network),
while another region may have significant connections to a
variety of communities (e.g., frontoparietal network, dorsal
attention network, cingulo-opercular network). Mathemati-
cally, participation coefficient measures the diversity of a
regions connections to a set of a priori defined functional
communities such as the visual and frontoparietal network
[Guimer�a and Amaral, 2005]. Lesions to regions with a
high participation coefficient produce more severe and
broad cognitive deficits than lesions to areas with a lower
participation coefficient [Warren et al., 2014], suggesting
that such regions play a more central role across a variety
of processes. Participation coefficient is also of interest to
the current study as we have recently found that the dor-
sal and ventral attention networks of individuals with
high EF are expanded to include regions not observed in
the networks of individuals with lower EF such as the
frontal pole and angular gyrus [Reineberg et al., 2015]. In
the current study, we measure participation coefficient
using the 14 a priori defined functional communities pro-
vided by the authors of the reference atlas from which the
nodes were obtained [Power et al., 2011]. Finally, we chose
a measure thought to reflect the degree to which a given
region is involved in specialized processing, clustering coef-
ficient. Clustering coefficient is a measure of segregation
that could reflect whether or not an area is suitably iso-
lated from the influence of other functional communities.
Mathematically, clustering coefficient quantifies the per-
centage of a region’s neighbors that are neighbors of each
other [Onnela et al., 2006].

Our a priori analyses only involved a select set of nodes
located in close proximity to statistical clusters from our
prior functional and anatomical studies of individual dif-
ferences in EF [Reineberg et al., 2015; Smolker et al., 2015]
as well as a set of nodes in close proximity to a lateral pre-
frontal cortex region described in Cole et al. [2012]. In all
cases, the 1-cm spherical nodes that were selected from
the reference atlas were either directly overlapping a clus-
ter from prior research or within 1 cm of a cluster. All 18 a
priori nodes are presented in Table I. First, we identified
one node that corresponded to frontal polar cortex, two
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nodes that corresponded to lateral occipital cortex and pre-
cuneus, and three nodes that corresponded to cerebellum.
These six nodes overlap with brain regions that previously
showed a relationship between one of the three EF dimen-
sions and functional connectivity via a complementary net-
work analysis [Reineberg et al., 2015]. Specifically, resting
state networks such as frontoparietal network were
expanded to these areas (e.g., to cerebellum) in individuals
who showed higher functioning on a given dimension of
EF [see Fig. 4 of Reineberg et al., 2015]. Second, we identi-
fied nine regions from a variety of frontal cortical areas—
ventromedial (n 5 2), paracingulate (n 5 1), orbitofrontal
(n 5 3), ventrolateral (n 5 1), and dorsolateral prefrontal
cortex (n 5 2)—that were shown to vary with the level of
performance on a given dimension of EF (i.e., regions pre-
sented in Figs. 1–3 of Smolker et al., [2015]). Finally, we
identified three left lateral prefrontal regions in close prox-
imity (<10 mm, average distance 5 7 mm) to an area that
Cole et al. [2012] showed has increased global connectivity
in individuals with high fluid intelligence. One of these
regions fell within middle frontal gyrus (MFG) and two
fell near the inferior frontal junction [see Table I of Cole
et al., 2012].

For each of these 18 a priori regions we calculated each
of the 5 graph theoretic measures described above for a
total of 90 features. In contrast, the exploratory analysis
utilized all 1,320 features (264 nodes by 5 measures) to
determine which graph theoretic properties of the resting
brain were most strongly related to individual differences
in each of the three EF dimensions.

Statistics

A priori Analysis

For the analysis of a priori regions of interest, we calcu-
lated the statistical relationship between each of 18 regions
of interest and each of the three dimensions of EF—com-
mon EF, shifting-specific EF, and updating-specific EF. To
do so, we ran linear models regressing each dimension of
EF on each graph theoretic feature from the regions of
interest (one model per feature) while controlling for age
and possible motion-related confounds—mean translation
(average motion in the x, y, and z plane during the resting-
state scan) and mean rotation (average roll, pitch, and yaw
movement during the resting-state scan). To account for
sampling error, we performed 1,000 permutations of each
regression model, sampling from the 91 participants with
replacement. To determine which graph theoretic features
had significant linear relationships with each dimension of
EF, we calculated a p-value associated with the mean of
each feature’s bootstrapped t-statistics. We report graph
theoretic features with bootstrap p-value< 0.05. Results of
these multiple regression models are reported in section “A
Priori Analysis” under the Section “Results” and Table II.

Exploratory Analysis

For the exploratory analysis, we calculated the statistical
relationship between each graph theoretic feature and each
of the three EF dimensions of interest. To do so, we ran
linear models regressing each EF dimension on each graph

TABLE I. A priori regions of interest

Index
Reference

atlas Index Label X Y Z

1 197 Frontal pole 234 55 4
2 74 Lateral occipital cortex 241 275 26
3 87 Precuneus 239 275 44
4 243 Cerebellum—lobule VI 216 265 220
5 183 Cerebellum—crus I/lobule VI 218 276 224
6 244 Cerebellum—lobule VI 232 255 225
7 5 vmPFC 8 41 224
8 76 vmPFC 8 48 215
9 109 Paracingulate gyrus 23 44 29
10 3 Orbitofrontal cortex 24 32 218
11 180 Orbitofrontal cortex 24 45 215
12 181 Orbitofrontal cortex 34 54 213
13 200 vlPFC 43 49 22
14 188 dlPFC 242 38 21
15 220 Frontal pole 239 51 17
16 187 Inferior frontal junction 241 6 33
17 201 dlPFC 242 25 30
18 176 Inferior frontal junction 247 11 23

Table lists all a priori regions of interest, index number from the current study, index number from the 264 node reference atlas [Power
et al., 2011], anatomical label, and MNI coordinates. Regions 1–3 were on interest due to proximity to regions taken from Reineberg
et al. [2015]. Regions 4–15 were of interest due to proximity to regions from Smolker et al. [2015]. Regions 16–18 were of interest due to
proximity to regions from Cole et al. [2012].
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theoretic feature while controlling for age and possible
motion-related confounds—mean translation and mean
rotation. To account for sampling error, we performed the
same bootstrapping procedure described above. We report
graph theoretic features with bootstrap p-value <0.005
(p< 0.015/3, or p corrected for performing three sets of
analyses, one for each dependent variable of interest).
Results are presented in Section “Whole Brain Analysis”
under the Section “Results” and Table III.

Finally, as a exploration of the amount of variance that
might be potentially explained by the full set of features
(N 5 1320) identified in the exploratory analysis, we
included all measures for a given EF dimension (n 5 9 for
common EF, n 5 11 for shifting, and n 5 7 for updating) in
a multiple regression model (i.e., one model for each EF
dimension). Although these models run the risk of over-

fitting the data, they provide a benchmark for comparison
in future studies. We compared the percentage of variance
explained by the combined set of appropriate features for
a given EF measure to a set of graph theoretic features of
the same size drawn randomly from all features. We dis-
cuss the overall amount of variance explained in each EF
measure in Section “Whole Brain Analysis” under the Sec-
tion “Results.” All statistics were calculated using Scikit-
learn [Pedregosa and Varoquaux, 2015] and statsmodels
modules for the Python programming language.

RESULTS

We first performed analyses to ensure that our sample
was representative relative to prior studies. As reported

Figure 2.

Group average connectivity matrix. Group connectivity matrix calculated from the average of 91

participants’ individual connectivity matrices. Red indicates positive Pearson’s r-values and blue

indicates negative Pearson’s r-values. CO, cingulo-opercular; DA, dorsal attention; FP, frontoparie-

tal; SSM, sensory/somatomotor; VA, ventral attention. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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previously [Reineberg et al., 2015], behavioral performance
for this group of participants on the EF tasks and pairwise
correlations between the three EF tasks was in line with

previous studies examining individual differences in EF
using similar behavioral tasks. We then examined whether
the connectivity pattern for the resting-state fMRI data

Figure 3.

A priori regions of interest with connectivity profiles related to EF. Colored spheres indicate the location

of a priori regions of interest with significant relationships to one of three EF measures. Red, common

EF; green, shifting-specific EF; blue, updating-specific EF; multiple colors, combination of EF measures.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE II. Results from analysis of a priori regions of interest

Index EF Measure t-value P-value X Y Z Label

3 Common EF Eigenvector centrality 22.3256 0.0223 239 275 44 Precuneus
3 Common EF Clustering coefficient 22.5386 0.0128 239 275 44 Precuneus
9 Common EF Global connectivity 22.3074 0.0233 23 44 29 Paracingulate gyrus
9 Common EF Eigenvector centrality 22.1353 0.0355 23 44 29 Paracingulate gyrus
15 Common EF Betweenness centrality 22.0344 0.0449 239 51 17 Frontal pole
4 Shifting Global connectivity 22.6478 0.0096 216 265 220 Cerebellum—lobule VI
9 Shifting Clustering coefficient 22.5633 0.0120 23 44 29 Paracingulate gyrus
11 Shifting Global connectivity 22.3837 0.0192 24 45 215 Orbitofrontal cortex
11 Shifting Eigenvector centrality 22.7150 0.0079 24 45 215 Orbitofrontal cortex
13 Shifting Clustering coefficient 22.0620 0.0421 43 49 22 vlPFC
14 Shifting Clustering coefficient 2.2049 0.0300 242 38 21 dlPFC
14 Shifting Participation coefficient 22.3971 0.0186 242 38 21 dlPFC
16 Shifting Global connectivity 2.0810 0.0403 241 6 33 Inferior frontal junction
6 Updating Global connectivity 22.0289 0.0454 232 255 225 Cerebellum—lobule VI
15 Updating Betweenness centrality 22.0176 0.0466 239 51 17 Frontal pole
17 Updating Participation coefficient 22.5777 0.0116 242 25 30 dlPFC
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between areas for these 91 participants is in line with prior
reports [e.g., Power et al., 2011]. Figure 2 shows the commu-
nity structure of the group average connectivity matrix across
all 91 participants. The modules, positioned along the diago-
nal of the matrix are qualitatively similar to those found in
group connectivity matrices from prior research using the
same reference atlas (e.g., when compared with the connec-
tivity matrix provided in Fig. 3 of Cole et al. [2014]).

A Priori Analysis

Individual differences in the three EF dimensions were
associated with differences in the graph theoretic proper-
ties of 10 of 18 a priori regions-of-interest (see Fig. 3 for
location of all regions). For relationships between EF
dimension and graph theoretic measures, all t-statistics are
presented in Table II and are the mean t-statistic from
1,000 permuted multiple regression models controlling for
age and movement during the resting-state scan.

a. Higher common EF was associated with decreased
eigenvector centrality and decreased clustering coeffi-

cient of a portion of the precuneus (a priori Region 3),
decreased global connectivity and decreased eigen-
vector centrality of a pregenual region of the paracin-
gulate gyrus region (a priori Region 9), and decreased
betweenness centrality of a dorsolateral frontal pole
region (a priori Region 15). In sum, higher common
EF is associated with less hublike and less central
regions involved in cognitive control (precuneus, dor-
solateral frontal polar regions), and emotion-related
prefrontal areas (pregenual cortex).

b. Higher shifting was associated with decreased global
connectivity of a region of Lobule VI of the cerebel-
lum (a priori Region 4), decreased clustering coeffi-
cient of a pregenual region of the paracingulate
gyrus region (a priori Region 9), decreased global con-
nectivity and decreased eigenvector centrality of an
orbitofrontal region of the frontal pole (BA 10/47) (a
priori Region 11), decreased clustering coefficient of a
ventrolateral (i.e. inferior frontal gyrus) frontal pole
region (a priori Region 13), increased clustering coeffi-
cient and decreased participation coefficient of a mid-
dorsolateral region (i.e., middle frontal gyrus, MFG;

TABLE III. Exploratory relationships between EF and graph metrics

Index
Reference

index EF Measure t-value P-value X Y Z Label

1 166 Common EF Betweenness centrality 2.9155 0.0045 216 277 34 Cuneal cortex
2 114 Common EF Clustering coefficient 23.2420 0.0017 220 64 19 Frontal pole
3 250 Common EF Clustering coefficient 23.0780 0.0028 250 27 239 Inferior temporal gyrus
4 252 Common EF Eigenvector centrality 4.1500 0.0001 252 263 5 Lateral occipital cortex
5 175 Common EF Eigenvector centrality 22.9309 0.0043 48 25 27 Middle frontal gyrus
5 175 Common EF Global connectivity 23.3353 0.0012 48 25 27 Middle frontal gyrus
6 83 Common EF Global connectivity 22.9351 0.0042 268 223 216 Middle temporal gyrus
7 47 Common EF Betweenness centrality 2.9690 0.0038 23 2 53 Supplementary motor area
8 248 Common EF Global connectivity 23.0872 0.0027 231 210 236 Temporal fusiform cortex
9 133 Shifting Clustering coefficient 23.2772 0.0015 22 235 31 Cingulate gyrus
9 133 Shifting Participation coefficient 2.9554 0.0040 22 235 31 Cingulate gyrus
10 212 Shifting Betweenness centrality 23.4529 0.0008 211 26 25 Cingulate gyrus
11 217 Shifting Betweenness centrality 22.9106 0.0045 10 22 27 Cingulate gyrus
12 242 Shifting Betweenness centrality 3.1189 0.0024 249 25 21 Frontal operculum cortex
13 209 Shifting Betweenness centrality 22.8984 0.0047 36 22 3 Insular cortex
14 86 Shifting Betweenness centrality 3.5551 0.0006 244 265 35 Lateral occipital cortex
15 9 Shifting Global connectivity 22.8956 0.0047 65 224 219 Middle temporal gyrus
16 165 Shifting Clustering coefficient 23.1289 0.0024 26 279 216 Occipital fusiform gyrus
17 20 Shifting Participation coefficient 3.9972 0.0001 254 223 43 Postcentral gyrus
18 36 Shifting Participation coefficient 4.9259 < 0.0001 42 220 55 Postcentral gyrus
19 113 Updating Betweenness centrality 22.9548 0.0040 23 42 16 Cingulate gyrus
20 218 Updating Betweenness centrality 22.8861 0.0049 31 56 14 Frontal pole
3 250 Updating Clustering coefficient 23.0971 0.0026 250 27 239 Inferior temporal gyrus
21 164 Updating Clustering coefficient 23.2544 0.0016 242 274 0 Lateral occipital cortex
22 46 Updating Eigenvector centrality 23.0854 0.0027 66 28 25 Postcentral gyrus
23 35 Updating Betweenness centrality 23.1441 0.0023 213 217 75 Precentral gyrus
7 47 Updating Clustering coefficient 23.1843 0.0020 23 2 53 Supplementary motor area

Table lists regions with strongest relationships to each of three EF dimensions, index from current study, anatomical label from a query
of the Harvard–Oxford atlas, index from reference atlas [Power et al., 2011], relationship with EF measures, and specific graph theoretic
measure.
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a priori Region 14), and increased global connectivity
of a posterior MFG region near the inferior frontal
junction (a priori Region 16). In sum, higher shifting
EF is associated with less locally focused connectivity
(as represented by a decreased clustering coefficient)
in pregenual and ventrolateral regions, but increased
locally focused connectivity in midlateral frontal
polar regions. It is also associated with less central
attributes of orbitofrontal regions, decreased global
connectivity of the cerebellum and orbitofrontal
regions, and increased global connectivity of the infe-
rior frontal junction.

c. Higher updating was associated with decreased global
connectivity of a region of Lobule VI of the cerebellum
(a priori Region 6), decreased betweenness centrality of
dorsolateral frontal pole region (a priori Region 15),
and decreased participation coefficient of a dorsolat-
eral (MFG) region of prefrontal cortex (a priori Region
17). In summary, higher updating is associated with
less hublike frontopolar and dorsolateral prefrontal
regions, and less global connectivity of the cerebellum.

No relationships were found for a priori nodes 1, 2, 5, 7,
8, 10, 12, and 18.

Whole Brain Analysis

All statistics are presented in Table III and are the mean
t-statistic from 1,000 permuted multiple regression models
controlling for age and movement during the resting-state
scan. See Figure 4 for location of all regions.

a. The regions associated with higher common EF generally
fell into two broad categories: frontoparietal regions,
and regions of the left temporal lobe. With regards to
the frontoparietal network, results revealed that higher
EF was associated with decreased clustering coefficient
of a dorsal frontal pole region (Region 2), decreased
global connectivity and decreased eigenvector centrality
of a dorsolateral prefrontal cortex region (i.e., MFG;
Region 5) and increased betweenness centrality of a
region of the supplementary motor area (BA 6) (Region
7). In sum, higher common EF was associated with
decreased centrality of lateral prefrontal regions and
more hublike medial aspects of the frontoparietal net-
work and cuneus. With regards to temporal regions,
higher common EF was associated with decreased clus-
tering coefficient of a lateral (Region 3) and decreased
global connectivity of a medial (Region 8) portion of the
anterior inferior temporal gyrus, decreased global

Figure 4.

Regions from the exploratory analysis with connectivity profiles related to EF. Colored spheres indicate

the location of regions with most significant relationships to each of three EF measures. Red, common

EF; green, shifting-specific EF; blue, updating-specific EF; multiple colors, combination of EF measures.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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connectivity of a middle temporal gyrus region (Region
6), and increased eigenvector centrality of the posterior
temporal cortex at its junction with lateral occipital cor-
tex (Region 4). In sum, higher common EF is associated
with less globally connected left anterior temporal
regions and a more hublike left posterior temporal cor-
tex. Additionally, higher common EF was associated
with increased betweenness centrality of a portion of
the cuneus (Region 1).

b. Higher shifting specific EF was associated with the con-
nectivity characteristics of sets of bilateral nodes within
the cingulo-opercular network as well as some somato-
motor areas. In particular, higher shifting specific EF
was associated with increased betweenness centrality of
cingulo-opercular cortex in the left hemisphere (Region
12), and decreased betweenness centrality of an analo-
gous region in the right hemisphere (Region 13);
decreased betweenness centrality of a rostral anterior
cingulate gyrus region both in the left hemisphere
(Region 10), and the right (Region 11); and an increased
participation coefficient in both the left postcentral
gyrus region (Region 17) and the right postcentral gyrus
region (Region 18). In sum, higher shifting-specific EF
was associated with differential “hubness” of right and
left fronto-opercular-insular regions, a less hublike ros-
tral anterior cingulate cortex and a more hublike post-
central gyrus. In addition, higher shifting specific EF
was associated with greater participation coefficient and
decreased clustering coefficient of a posterior cingulate
gyrus region (Region 9), increased betweenness central-
ity of a lateral occipital cortex region (Region 14),
decreased global connectivity of a middle temporal
gyrus region (Region 15), and decreased clustering coef-
ficient of a region of the occipital fusiform gyrus
(Region 16).

c. Higher updating specific EF was associated with graph
theoretic properties of some frontal and parietal nodes,
including decreased betweenness centrality of a frontal
pole region (Region 20), decreased eigenvector central-
ity of a ventral postcentral gyrus region (Region 22),
decreased betweenness centrality of a dorsal precentral
gyrus region (Region 23), decreased clustering coeffi-
cient of a supplementary motor area region (Region 7),
and decreased betweenness centrality of a supragenual
region of the anterior cingulate gyrus (Region 19). In
sum, higher updating specific EF was associated with
less hublike lateral and medial prefrontal nodes as well
as a precentral gyrus region. Higher shifting-specific EF
was also associated with decreased clustering coefficient
of a lateral occipital cortex region (Region 21) and an
inferior temporal gyrus region (Region 3).

To explore the combined ability of each set of explora-
tory features to explain variance in each of the three EF
dimensions, we conducted a multiple regression analysis
regressing each of the three EF dimensions on the sets of

regressors discussed in the three paragraphs above. For
common EF, the nine exploratory features explained 42.9%
of the variance in EF ability (F(9, 81) 5 6.77, P< 0.001). We
permuted 1000 null models regressing common EF on ran-
domly selected sets of 9 graph theoretic features. On aver-
age, these models explained 20.7% of variance in common
EF. For shifting-specific EF, the 11 exploratory features
explained 54.8% of the variance in EF ability (F(11,

79) 5 8.72, P< 0.001). We permuted 1,000 null models
regressing shifting-specific EF on randomly selected sets of
nine graph theoretic features. On average, these models
explained 22.8% of variance in shifting-specific EF. For
updating-specific EF, the seven exploratory features
explained 34.1% of the variance in EF ability (F(7, 83) 5 6.14,
P< 0.001). We permuted 1,000 null models regressing
updating-specific EF on randomly selected sets of seven
graph theoretic features. On average, these models
explained 14.4% of variance in updating-specific EF. Even
considering the likely overfitting of these models, the
graph theoretic measures of brain systems accounted for a
non-trivial amount of variance related to individual differ-
ences in each of these aspects of EF.

DISCUSSION

The main finding of the current study is that individual
differences in three different dimensions of EF—common
EF, shifting-specific EF, and updating specific EF—are
associated with distinct aspects of regional functional con-
nectivity, both with regards to regions involved and the
nature of their connectivity as assessed by different graph
theoretic measures. While some of the identified regions
fall within the frontoparietal network, which is typically
conceptualized as a brain network that is critical for EF,
other regions fall within networks less typically associated
with EF. Importantly, exploratory analyses suggest that
the graph theoretic measures identified could account for
a significant amount of the variance across individuals in
each of the different aspects of EF. Below we discuss the
implications of these finding for each of the three EF
dimensions.

Common EF

Our results indicated that individual differences in com-
mon EF are associated with differential patterns of connec-
tivity for numerous nodes in our analysis. In general, the
pattern observed is that individuals with higher common
EF have nodes with less central attributes (i.e., lower
eigenvector centrality or other measures of relative
“importance”) than individuals with lower common EF.
Higher common EF was associated with lower eigenvector
centrality, which reflects how much a node connects to
other important nodes within the brain, in a priori regions
3 and 9 as well as exploratory region 5—precuneus, para-
cingulate gyrus, and MFG, respectively. Higher common
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EF was associated with lower global connectivity, which
measures connectivity of any strength across the whole
brain, in a priori region 9 as well as exploratory regions 8,
6, and 8. Hence, individuals with higher common EF do
not appear to have a brain organization in which a portion
of the frontoparietal network acts as a highly centralized
hub of brain activity. Rather variation in common EF
seems to be associated with the connectivity characterizes
of a widely distributed set of brain regions.

This general pattern, and more specifically lower global
connectivity in a node within right lateral prefrontal cortex
(exploratory region 5) situated squarely within dorsolateral
prefrontal cortex (DLPFC), appears to directly conflict with
the suggestion of Cole et al. [2012] that high global connec-
tivity of the homologous region in the left hemisphere
allows it to flexibly modulate activity across the whole
brain. The reason for the discrepancy in these findings is
not clear. It may be that these differences reflect aspects of
hemispheric asymmetries that are associated with individ-
ual differences in common EF. Additionally, the reversal
in the direction of this particular relationship could either
highlight the utility of our multidimensional approach to
EF (i.e., less susceptibility to measurement error) or per-
haps suggests that the finding of Cole et al. [2012] is
driven by some aspect of intelligence and working mem-
ory (the primary measure of their study) that is not cap-
tured by our common EF measure.

Regarding how well hubs integrate information across
disparate brain regions, as assessed by betweenness cen-
trality, there were some notable findings. In particular,
two midline nodes in the frontoparietal network, one in
the supplementary motor area and another in the cuneus,
showed increased betweenness centrality with higher com-
mon EF. In addition, higher common EF was associated
with increased eigenvector centrality of a region at the
juncture of the occipital and temporal lobes. Notable is the
identified cuneus region because this node is only slightly
posterior and inferior to a superior parietal region (218,
269, 51) that emerged in a task-based PET conjunction
analysis of eight EF tasks [Collette et al., 2005] chosen for
their correspondence to the three facets of EF used in the
current study. Based on the location of this node in supe-
rior cuneal cortex and caudal precuneus, this region is
likely involved in higher-level attentional processing,
which may play a role in supporting common EF.

Regarding measures of segregation, we found higher
common EF was associated with decreased clustering coef-
ficient for nodes in the precuneus, frontal pole, and inferior
temporal gyrus. This finding suggests that the functioning
of these nodes is not as isolated from that of other brain
regions for individuals with higher compared with lower
common EF. This effect for one of the frontopolar nodes
identified in our whole brain analysis (exploratory Node 2)
is notable as it is close to the frontal pole region) that
emerged in our prior ICA-based analysis as associated with
common EF ability (x 5 226, y 5 55, z 5 4) [Reineberg et al.,

2015]. In particular, in that study we found that individuals
with higher common EF had dorsal attention networks that
extended to this region. This node falls within regions that
have been suggested to enable control at the highest level
of abstraction [Badre, 2008; Koechlin et al., 2003], Hence, we
would speculate that decreased local processing at this
node may enhance the reach or influence of such abstract
control in individuals with higher common EF. According
to a recent parcellation of the frontal pole performed by our
lab [Orr et al., 2015], such frontopolar regions have connec-
tions that are mainly limited to prefrontal areas. In addition,
our parcellation suggests a gradient of function from moni-
toring/regulation in more medial aspects to cognitive repre-
sentations in more lateral aspects. Connectivity also
suggests a second gradient representing actions and plans
in more dorsal aspects and stimuli/emotions in more ven-
tral aspects. Based on the anatomical connectivity of the
frontal pole region identified in the current study, the
region we have identified as associated with common EF
appears to be involved in cognitive representations of
actions and plans.

Shifting-Specific EF

Connectivity patterns of several somatomotor regions
were among the most related to individual differences in
shifting-specific EF. Specifically, we found higher shifting-
specific EF was associated with increased participation coef-
ficient in left and right primary sensory cortices (explora-
tory regions 17 and 18). Shifting-specific EF is described as
the ability to fluidly transition between different representa-
tions of task set. This ability involves both the mechanism
of transitioning between task sets and maintaining repre-
sentations of task sets that are often multimodal in nature
(i.e., may contain a variety of sensory information and also
mappings between the sensory stimuli and appropriate
motor responses). While parietal regions are often thought
of as being involved in shifts of attention, somatosensory
regions are more likely to be involved in the stimulus-
response mappings that vary among tasks, a more concrete
and less abstract level of planning. It may be that increased
connectivity in regions associated with stimulus-response
mapping allows individual with higher switching-specific
EF to link stimuli and responses for a given task more eas-
ily or allow for more robust or distinct stimulus-response
representations for each task set. Future work is necessary
to determine the specific role of somatomotor connectivity
in shifting-specific EF.

Another node related to motoric function that was asso-
ciated with shifting-specific EF was observed in the cere-
bellum (a priori region 4), which resides within lobule VI.
As demonstrated by Bernard et al. [2012], this region has
strong connectivity to motoric regions (dorsal premotor
cortex) as well as regions within the frontoparietal net-
work including the dorsolateral prefrontal cortex, the infe-
rior frontal gyrus and the inferior parietal lobule [see
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Bernard et al., 2012; Fig. 3]. Greater shifting-specific EF
was associated with less global connectivity of this node,
perhaps indicating greater specific connectivity to these
frontoparietal regions.

In addition, shifting-specific EF was also associated with
the connectivity of nodes within the cingulo-opercular net-
work, a characteristic also not observed for common EF.
Higher shifting-specific EF was associated with decreased
betweenness centrality of nodes in the rostral portion of the
dorsal anterior cingulate cortex (exploratory regions 10 and
11). A recent meta-analysis of functional terms significantly
associated with this region [as found within Neurosynth
database; Yarkoni et al., 2011] by our group [De La Vega
et al., 2016] includes “shifting” (as well as inhibition and
conflict). Associations between shifting-specific EF and
betweenness centrality were also observed for anterior oper-
cular regions (exploratory regions 12 and 13), but with the
direction varying by hemisphere (higher shifting-specific EF
associated with increased betweenness centrality in the left
hemisphere, but decreased betweenness centrality in the
right hemisphere). At least some research suggests that the
cingulo-opercular network is associated with task sets (e.g.,
Petersen and Posner [2011]) although it remains unclear
whether its role is to maintain task sets or to implement the
selection process associated with motoric aspects of task
sets (e.g., see Banich et al. [2000a,b] for a discussion of the
role of lateral prefrontal cortex in maintaining task sets and
Milham and Banich [2005] for discussion of the role of cin-
gulate regions in late-stage response selection). Hence, var-
iations in betweenness centrality, which reflects the degree
to which a node connects disparate brain regions, may
influence the ability to impose the task sets required to shift
between tasks.

Finally, a number of lateral prefrontal nodes from our a
priori analysis and exploratory whole-brain analysis were
associated with shifting-specific EF. The location of these
nodes ranged from frontopolar regions to ventrolateral
regions to mid-dorsolateral regions. One a priori region of
interest (a priori Region 11) for shifting-specific EF came
from Smolker et al. [2015] who found decreased volume
and gyrification of an orbitofrontal/ventrolateral prefrontal
cortex region in individuals with high shifting-specific EF.
We found an association for a ventral orbitofrontal node
(BA 10/47) within that region such that decreased global
connectivity and eigenvector centrality was associated with
increased shifting-specific EF. Traditionally, this region has
been associated with reward processing and valuation [Ses-
cousse et al., 2010], however, some task-based studies of
task-set shifting have found involvement of lateral orbito-
frontal regions as well [Hampshire and Owen, 2006]. In
addition, we found individuals with high shifting-specific
EF had a decreased clustering coefficient in a node within
the vlPFC portion of this a priori right hemisphere region.
This region has been clearly implicated in set shifting in
functional neuroimaging studies [Goel and Vartanian, 2005;
Hampshire and Owen, 2006; Konishi et al., 1998; Monchi

et al., 2001], with a suggested specific role in the dimen-
sional change aspect of shifting rather than stimulus-
response mapping or other shifting-related processes
[Hampshire and Owen, 2006]. Our study suggests that
shifting-specific EF is supported by a less encapsulated role
of this region; however, we did not find complementary
evidence of high integration of this area being associated
with high shifting-specific. Future work is required to clar-
ify the potential link between decreased clustering coeffi-
cient in vlPFC and dimensional change ability.

We also observed a relationship for regions of left dorso-
lateral prefrontal cortex. One node falls within a mid-
dorsolateral prefrontal region (i.e., BA 46), which is classi-
cally considered to be associated with working memory
[Petrides, 2000]. Higher shifting specific EF was associated
with an increased clustering coefficient, indicating enhanced
local processing, and reduced participation, which is associ-
ated with connections to a wider diversity of modules. As
such, it appears that this region has a more focal organiza-
tion in individuals with higher shifting-specific EF. We spec-
ulate that such an organization may allow for less
interference of task-sets and responses. This was an priori
region of interest due to a study that found lateral prefrontal
cortex was more globally connected in individuals with
high fluid intelligence [Cole et al., 2012]. We were especially
interested in this finding for two reasons. First, there is
strong co-linearity between general intelligence and common
EF, updating-specific EF, and to a lesser extent, shifting-
specific EF [Friedman et al., 2008]. Second, the 3-back task
used in that study, like all EF tasks, suffers from a task
impurity limitation in that both common EF and updating-
specific EF explain some of the variability in performance
on the task [Miyake and Friedman, 2012]. Using our multi-
component approach, however, we were able to disentangle
the relationships between connectivity of lateral prefrontal
cortex and each of these EF dimensions separately. We
found an association with updating specific EF but not with
common EF.

We also found associations with a node within a more
posterior section of the left dorsolateral prefrontal cortex
that is situated near the inferior frontal junction. This
region has been implicated in meta-analyses as being
involved in switching [Derrfuss et al., 2005]. While there
are a variety of theories with regards to the function of
this region, at least one prominent idea is that it is
involved in linking goal-related information to action-
related information [De Baene et al., 2012]. For this node
greater shifting-specific EF was associated with increased
global connectivity, which may allow for better integration
of these two types of information (i.e., goal-related, action-
related).

Updating-Specific EF

As in our previous work [Reineberg et al., 2015], we
found fewer significant relationships between measures of
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functional connectivity and updating-specific EF than for
common EF or shifting-specific EF. One might have
expected that connectivity of the DLPFC would be impor-
tant for updating-specific EF as this region has also been
implicated as important for the manipulation of informa-
tion in working memory by a number of task-based fMRI
studies and meta-analyses of working memory processes
[Barbey et al., 2013; Wager and Smith, 2003]. In fact, we
found higher updating-specific EF ability was associated
with decreased participation coefficient in DLPFC (a priori
region 17). This result could indicate that the cognitive
functions of DLPFC depend, in part, on a more circum-
scribed connectivity pattern rather than broad connectivity
to many functional communities in the brain. In fact, both
empirical research and computational modeling [Frank
et al., 2001; Hazy et al., 2007], suggest that the updating of
working memory relies heavily on the specific functional,
connectivity between the DLPFC and the basal ganglia. If
so, higher updating-specific EF may be associated with
less broad-based connectivity of the DLPFC.

The remaining set of results for updating-specific EF
was fairly complex. In general, updating-specific EF was
associated with less hublike and less central properties in
a variety of nodes spanning laterally from frontopolar to
dorsolateral to premotor cortex, and medially from sub- to
supragenual portions of anterior cingulate cortex. Better
updating-specific EF was associated with reduced betwe-
enness centrality, which reflects how much a node con-
nects disparate parts of the graph, in dorsolateral frontal
pole (a priori region 15) as well as supragenual anterior
cingulate cortex, frontal pole, and premotor cortex (explor-
atory regions 19, 20, and 23). In addition, higher updating-
specific EF was associated with reduced eigenvector cen-
trality of primary sensory cortex (exploratory region 22).
Higher updating-specific EF was also associated with
lower global connectivity in a left cerebellar lobule VI
region (a priori region 6).

Individual differences in updating-specific EF also seem
to rely on reduced segregated connectivity in some areas,
as we found an association between reduced clustering
coefficient in the inferior temporal gyrus, supplementary
motor area, and lateral occipital gyrus (exploratory regions
3, 7, and 21). This decreased segregation was not accompa-
nied by increased centrality or more hublike connectivity
in these regions. Take together, higher updating-specific
EF seems to rely on the connectivity of a diverse set of
regions spanning those responsible for both higher-level
and lower-level cognitive functions.

General Discussion

One of the more perplexing aspects of EF is that it
seems to rely rather generally on the frontoparietal net-
work across many tasks and individuals, with little or no
specificity to the regions involved. Explorations using an
individual differences approach, such as in the present

study, begin to provide insight into how variations in
brain function within the regions of this critical network
might be associated with both the nature and the level of
executive control. In our prior work, we have demon-
strated that individual differences in each of the aspects of
EF explored here—common EF, shifting-specific EF, and
updating-specific EF—are associated with unique patterns
of gray matter volume and white matter characteristics
[Smolker et al., 2015] as well as with the strength and spa-
tial composition of resting-state networks as determined
by ICA [Reineberg et al., 2015]. Here we expand that pic-
ture by showing that, in addition to variation in the size
or composition of resting-state networks, EF ability may
be linked to complex measures of the connectivity profile
of a number of brain regions.

As mentioned above, the frontoparietal network appears
to modulate processing in other brain regions so as to
exert control [Miller and Cohen, 2001]. Hence, how con-
nected these frontoparietal regions are to the rest of the
brain may modulate how accessible different regions are
to control by frontal regions, and such accessibility may in
turn influence individual differences in dimensions of EF.
Nonetheless, an important aspect of the current results is
the finding that it is not just connectivity of nodes within
the frontoparietal network, but also nodes outside of it
that influences individual differences in EF. For example,
connectivity of temporal lobe regions as well as sensori-
motor regions also appears to influence dimensions of EF.
These findings require a reconceptualization of the neural
systems underlying EF and suggest that they may be more
broad-based than is typically conceptualized.

Finally, our results provide an interesting perspective on
the unity and diversity model of individual differences in
EF, providing converging evidence for its validity. For the
most part, the nodes whose connectedness is related to
individual differences in EF were distinct for the three
major facets of EF: common EF, switching-specific EF, and
updating-specific EF. Such anatomical specificity suggests
that indeed these constructs are tapping into distinct net-
works, which support each of these three dimensions of EF.

Limitations

The current study is not without limitations. Limitations
of the current study are similar to those of other investiga-
tions of individual differences in cognitive abilities as a
function of rs-fMRI. Notably, we cannot disentangle
whether differences in rs-fMRI are due to sculpted history
of neural activity or differences in the quality of cognition
or unconstrained thoughts between high and low ability
individuals. On the one hand, a dominant theme emerging
from prior literature is that fluctuations in rs-MRI reflect
the intrinsic functional organization of the brain [Fox and
Raichle, 2007], sculpted by a history of coherent neuronal
firing and anatomical wiring between distributed brain
regions [Wig et al., 2011]. Lending support to this
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hypothesis is observed stability across multiple time points
within individuals [Guo et al., 2012; Shehzad et al., 2009]
and under various stages of consciousness and anesthesia
[Boly et al., 2008; Greicius et al., 2008]. On the other hand,
an individual’s state at the time of scanning may influence
the patterns we observed. Several recent findings suggest
that patterns of functional connectivity may be partially
influenced by the participant’s mental/task state
[Andrews-Hanna et al., 2010; Doucet et al., 2012; Shirer
et al., 2012], and can be modified on a rapid time scale
[Lewis et al., 2009; Stevens et al., 2010; Tambini et al.,
2010].

Our studies to date have been limited to relatively static
aspects of brain organization—white matter integrity and
connectivity, grey matter volume, thickness and gyrifica-
tion [Smolker et al., 2015], and patterns of organization
and connectivity during resting state [Reineberg et al.,
2015; the current study]. Whether the same regions impli-
cated in these studies as associated with individual differ-
ences in EF are also implicated in more dynamic aspects
of brain function (such as variations in connectivity during
different EF tasks) remains an open question.

Although we believe our findings establish a strong
groundwork for further exploration of neuropsychological
correlates of EF as assessed during resting state, it will be
important for future studies to replicate our findings. For
example, while in our exploratory analysis we found that
the strongest associations between graph theory metrics
for a given brain region and a particular EF dimension
accounted for approximately 35%–55% of the variance in
that EF, there is always the likelihood of such regression
models overfitting the data. Nonetheless, the amount of
variance accounted for is still likely to be relatively robust
given the statistical approaches (e.g., bootstrapping) that
were taken. It will also be important to determine the pos-
sible implications of the current findings for reduced EF in
psychiatric and neurological disorders, that is, whether the
relationships we have identified are reduced or altered in
such populations. In addition to replication and extension,
future studies might want to consider genetic and/or
behavioral variation that might account for differences in
resting-state functional connectivity between high and low
EF individuals.

CONCLUSION

Here we have provided evidence that the connectivity
pattern of the intrinsic fluctuations in the BOLD signal
explains a substantial portion of variance in individual dif-
ferences in dimensions of EF. We have built upon an exist-
ing theoretical model of EF by showing separable patterns
of brain connectivity influence individual differences in
each of three dimensions of EF—common EF, shifting-
specific EF, and updating-specific EF. The results are nota-
ble for providing a fine-grained picture of both the regions
involved and their connectivity, as assessed by different

graph theoretic measures. While prior work has estab-
lished how a given region contributes to online EF in the
form of group mean effects in typical task-based fMRI, we
have shown that variability in the degree to which specific
regions (or nodes) are integrated or segregated, as
assessed by their resting-state connectivity profile, under-
lies individual variability in dimensions of EF. The current
study significantly expands our knowledge of neural influ-
ences on individual difference in EF and can serve an
important hypothesis-generating role for future large-scale
studies of inter-individual variability in EF as it related to
patterns of brain activation either at rest, or during task,
as we are currently exploring.
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