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Although it is agreed that the right lateral prefrontal cortex plays

a prominent role in inhibitory control, the exact psychological

processes it implements remain unclear, as do the precise

neural substrates of such control. Recently debated is the issue

of whether the right inferior cortex is specifically involved in

inhibition of action, or whether this region monitors the

environmental context to provide information as to which goals

are attainable under current conditions. Another issue of

debate is whether there is a common neural substrate for

inhibitory control or whether different neural systems are

involved in inhibitory control in different domains — motoric,

cognitive, and emotional. The present review examines the

current state of thought on these two important issues.
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Introduction
One of the most prominent aspects of cognitive control

has been characterized as ‘inhibition’ or inhibitory pro-

cessing. Inhibition is generally considered the ability to

override, interrupt, or abort ongoing processes, especially

when those processes are well engrained. Furthermore,

there is general agreement that inhibitory processes

involve frontal regions of the brain, more specifically

lateral regions of the right prefrontal cortex [1]. Interest

in the neural bases of inhibitory processing is high

because these processes have been found to be disrupted

in a number of psychiatric disorders, including ADHD [2]

and substance abuse disorders [3].

This review focuses on two issues that recently have

spurred debate. While there is agreement that right lateral
www.sciencedirect.com 
prefrontal regions play a prominent role in inhibitory

control, the exact nature of the specific computation or

process that is being implemented by this region, especi-

ally that of the right inferior frontal gyrus (rIFG), is being

debated (see Figure 1). The second issue revolves around

the degree to which ‘inhibition’ is a unitary construct,

which relies on a central shared brain mechanism regard-

less of the domain — motoric, cognitive, or emotional —

in which inhibition is exerted, or whether there are

separate neural mechanisms for inhibitory control in each

of these domains.

What computation is the rIFG implementing in
inhibition?
Typically, inhibitory control is indexed by asking an

individual to override, interrupt, or suppress an ongoing

cognitive, emotional or behavioral response. Classically

this ability has been measured by paradigms that assess

inhibition in the motoric domain, such as the Go/No-Go

paradigm, which induces a prepotent bias to respond, and

which must be overridden when certain specific stimuli

are present. Similarly, in the Stop-Signal paradigm, indi-

viduals make a forced-choice decision on the majority of

trials, but on a minority a specific sensory signal (e.g.,

auditory tone, perceptual cue) indicates that an ongoing

process of responding must be aborted or interrupted [4].

Approximately a decade ago, it was proposed that the rIFG

(also sometimes referred to as right ventrolateral cortex)

plays a prominent role in inhibiting motor responses by

sending a signal to the subthalamic nucleus of the basal

ganglia, which in turn suppresses thalamocortical output so

as to preclude motor responding [5�]. Since that time,

compelling work using a variety of converging methods

including that performed with patients with focal lesions,

alteration of brain activation (rTMS, tDCS), neuroimaging

and electrophysiological evidence has supported such a

viewpoint [6��]. An expansion of this viewpoint suggests

two distinct forms of motor inhibition, one invoked for

stopping all responses, and another that is more selective,

only stopping certain responses but not others [7]. It has

been proposed that the global stopping mechanisms may

be mediated by a hyperdirect pathway from the

rIFG ! STN ! Globus Pallidus ! Thalamus.

Recently, however, other evidence suggests that rIFG may

be involved not in inhibition per se, but rather monitors

information in the external environment to determine

which goals are compatible with current environmental

conditions and what actions can be implemented to
Current Opinion in Behavioral Sciences 2015, 1:17–22

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2014.07.006&domain=pdf
Marie.Banich@colorado.edu
Brendan.Depue@louisville.edu
http://www.sciencedirect.com/science/journal/23521546/1
http://dx.doi.org/10.1016/j.cobeha.2014.12.004
http://dx.doi.org/10.1016/j.cobeha.2014.07.006
http://www.sciencedirect.com/science/journal/00000000


18 Cognitive neuroscience

Figure 1
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Areas of the right lateral prefrontal cortex commonly activated as assessed by fMRI during inhibitory tasks. 1 (yellow) depicts the pars opercularis of

the right inferior frontal gyrus (rIFG); 2 (yellow) depicts the pars triangularis of the right inferior frontal gyrus (rIFG); and 3 (red) depicts the right middle

frontal gyrus (rMFG). Areas as defined by the Harvard–Oxford Cortical Structural Atlas.
meet those goals. The main evidence for this viewpoint

comes from studies indicating that the rIFG is involved

when environmental stimuli signal a change in responding,

either when a response must be aborted or withheld, or

when a different response must be made [8,9��].

For example, Chatham and colleagues [9��] compared

brain activation as assessed by fMRI between a classic

stop signal condition, in which a stimulus indicated that a

response should be aborted, and one in which a stimulus

indicated that an additional response should be emitted,

referred to as a Double-Go trial. The Stop or Double-Go

trials were embedded within separate blocks. As in a
Figure 2
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classic Stop Signal paradigm, these trials were a minority

(i.e., 25%) of trials as compared to standard trials in which

the subject made a forced-choice response. If rIFG plays a

specific role in inhibitory processing, then one would

predict rIFG activation on Stop but not Double-Go trials.

However, brain activation within block for each of these

conditions separately versus forced choice Go (i.e., signal)

trials showed that both engendered activity in rIFG and

that the patterns were overlapping (see Figure 2, left hand

panel). Moreover, a comparison between blocked acti-

vation for Double-Go versus Stop blocks did not reveal

any significant difference in activation for the rIFG (see

Figure 2, right hand panel). These findings are clearly at
Task Contrast
[GoSignal  –  GoNo-Signal] >

[StopSignal – StopNo-Signal ]
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 by fMRI. Left hand panel; shown here are areas activated during a Stop

e) and Stop trials (orange), respectively. Activation is determined in both
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refrontal cortex, as indicated by the region within the yellow oval. Right
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ortions of the rIFG (yellow oval).From Ref. [9��].
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odds with the idea that rIFG plays a specific role in

response inhibition.

One potential problem with such findings is that they rely

on a pattern of null results (no difference between the

Stop and Double-Go trials). However, multiple lines of

evidence from the studies performed by Chatham et al.
overcome this objection, suggesting that similar processes

are being invoked on Stop and Double-Go trials. They

used multi-voxel pattern analysis across the rIFG to

classify each subject’s pattern of responding on the

Double-Go condition. If the rIFG is implementing a

similar computational process during the Stop condition,

then the multi-voxel pattern in rIFG on Double-Go trials

should be able to reliably distinguish amongst individuals

on Stop trials, which it did. Notably, however, a classifier

trained on Double-Go trials for the motor cortex could not

reliably predict an individual’s response on Stop trials, as

the motor cortex is likely implementing different com-

putations on Double-Go versus Stop trials. Similarly, in

an ERP study, the amplitude of a component called the

Stop P3 [10], which is a fronto-central component

observed after the onset of a stimulus that signals motor

stopping, was highly correlated in amplitude for Stop and

Double-Go trials across the 38 individuals in that study,

once again suggesting that similar processes are being

invoked on both No-Go and Double Go trials. In

addition, pupillometry, a measure of mental effort and

a formal model of reaction time distributions, also was

consistent with this conclusion.

The suggestion that the common process implemented

by rIFG does not involve inhibition per se is consistent

with a recent review [11], which involved a meta-analysis

of patterns of brain activation as measured by fMRI

during the performance of a Go/No-Go task. This analysis

identified a common network of brain regions that show

greater activation on No-Go than Go trials. The authors

then categorized these studies into simple versus com-

plex based on three attributes: first, the difficulty in

identifying No-Go signals, second, the frequency of

No-Go signals among Go signals, and third, working

memory load as instantiated in whether the stimulus-

response contingency always remained the same across

trials (simple) or whether the stimulus-response contin-

gency was based on information that had to be maintained

in working memory (complex). Activation driven by the

complexity of these three processes substantially over-

lapped with the typical right lateralized system thought to

be involved in inhibition, including the rIFG. As a result

the authors argue that the neural systems involved in

inhibitory control, at least in the Go/No-Go task, actually

represent more general aspects of cognitive control.

The idea that inhibitory processing is not a unique and

separable aspect of cognitive control that is localized to

rIFG is consistent with a variety of other evidence.
www.sciencedirect.com 
Analysis of deficits observed in patients with focal pre-

frontal lesions either suggests that inhibitory deficits are

not localized to a specific region [12] or that lesions to

right lateral cortex disrupt monitoring [13], which would

be needed for analyzing contextual factors that affect

which goals can be implemented under current con-

ditions. In addition, analyses of patterns of performance

across different individuals suggest that executive func-

tion (EF) abilities vary on three main dimensions: general

EF, which is common across all EF tasks and has been

hypothesized to represent the ability to hold a goal on-

line, and two more specific functions: working memory

updating, and task switching. Notably tasks of inhibitory

control, such as the anti-saccade task, load on the common

EF factor without distinct and unique variance for inhi-

bition per se [14].

As can be seen from the discussion above, there is no

current consensus as to what specific role rIFG plays in

cognitive control, with suggestions ranging from those

discussed above such as inhibitory control over motor

output [6��] and providing contextual information for goal

selection and maintenance [9��], to others such as detect-

ing behaviorally relevant stimuli [15]. Future work should

help to refine our understanding of this issue.

Is there a central or common neural system
for inhibitory control?
It has been suggested that the critical role of lateral

prefrontal regions in what is typically perceived to be

inhibitory function is instead to maintain goals and then

modulate activity of other brain regions [16], consistent

with some of the evidence discussed above. As such, one

might expect that there would be a central neural system

involved in inhibitory control. To evaluate such a pro-

spect, it is informative to consider the neural bases of

inhibitory control in other domains beside the motoric

domain.

Research suggests that right lateral prefrontal regions also

play a prominent role when the retrieval of information

from episodic memory must be inhibited. Anderson and

colleagues [17] devised a mental analog of the Go/No-Go

task, called the Think/No-Think task, in which individ-

uals learn associations between cue-target item pairs. In

the critical phase of the task, participants are shown just

the cue. For some cues, participants are signaled to

remember the associated item. For other cues, partici-

pants are signaled to inhibit thinking about the associated

item. Behavioral results indicate that the more chances an

individual has to remember an item associated with a cue,

the better the recall compared to items in which no

retrieval from memory has been prompted. Likewise,

the more chances an individual has to inhibit retrieval,

the poorer the recall compared to items in which no

retrieval from memory has been prompted. Hence, the

Think/No-Think task focuses on inhibition of retrieval
Current Opinion in Behavioral Sciences 2015, 1:17–22
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Figure 3
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Evidence for a role of rIFG in inhibiting retrieval from episodic memory. (a) Behavioral results of the Think/No-Think paradigm indicating individuals with

ADHD have no deficit in elaborating recall (Think condition; green), whereas inhibiting memory retrieval is impaired (No-Think condition; red), as

compared to controls who show both significant elaboration (Think condition; green) and inhibition (No-Think condition; red). (b) Areas of activation for

the contrast of No-Think versus Think trials as assessed by fMRI for ADHD versus control individuals. Notice that ADHD individuals show less

activation in the rMFG, an area that has been shown to downregulate the hippocampus to preclude retrieval of information from memory.

From Ref. [23].
from memory, akin to the inhibition of a motor response

in the Go/No-Go task.

Neuroimaging work has shown that the right lateral

prefrontal cortex plays a prominent role in inhibiting

memory retrieval by down-regulating activity in the

hippocampus [18��] as well as sensory regions (e.g., ven-

tral visual processing areas) that support the originally

encoded memory (e.g., of a visual scene) [18��,19�]. The

region so identified, right middle frontal gyrus (rMFG), is

a bit more superior to that identified in motor inhibition.

Similarly, when individuals are directed to encode and

then forget certain items or lists in the directed forgetting

paradigm, right hemisphere regions, including lateral

prefrontal cortex, become more active (e.g., [20,21] and

see [22] for review of neural mechanisms involving inhibi-

tory effects on memory including those at encoding). The

rMFG is implicated as being especially important based

on a number of findings. For example, activation of rMFG
Current Opinion in Behavioral Sciences 2015, 1:17–22 
predicts the degree to which individuals are successful at

inhibition of memory retrieval, and those individuals with

a more negative correlation between activation of the

rMFG and the hippocampus are better at suppressing

memory retrieval [18��]. In addition, although young

adults with ADHD are no worse at retrieving memories

(i.e., have equivalent performance on Think trials), they

have a specific deficit in the inhibition of memory (i.e.,

have a poorer ability to inhibit retrieval on No Think

trials) (Figure 3a). Importantly, the only brain region in

which they show reduced activity as measured by fMRI

compared to controls on No-Think trials is the rMFG [23]

(Figure 3b), implicating this region as playing a central

role in inhibiting memory retrieval.

Likewise right prefrontal regions are implicated in the

inhibition of emotional responses or reactions. The ability

to inhibit emotional responses is generally measured by a

paradigm in which individuals view an emotional scene or
www.sciencedirect.com
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are asked to retrieve an emotional memory (typically

negative in valence) and then are either told to not think

about the item or to distance themselves from the

emotion it conveys. Such inhibition over emotional infor-

mation generally involves activation of a wide variety of

right prefrontal regions including the right superior,

middle and inferior gyri (see [24] for meta-analysis and

review). Moreover, suppression of emotional responses

specifically engages right dorsolateral and ventrolateral

(i.e., inferior) regions as compared to re-appraisal of

emotion (e.g., reframing one’s thoughts about a graphic

picture of a surgical procedure as indicating that someone

will be cured of an ailment, rather than focusing on the

degree of injury) [25].

At face value, many of these same regions are those

implicated in the inhibition of a motoric response. More-

over, additional evidence hints at a common mechanism

of inhibitory control across domains. For example,

decreased activity in rIFG in individuals with ADHD

during inhibition of memory retrieval is associated with

poorer performance on a motoric test of inhibitory func-

tion, the stop-signal task [23]. As yet another example,

suppressing emotional reactivity impairs performance on

a subsequent task of cognitive control, the Stroop task,

and leads to decreased activity in right lateral prefrontal

cortex during performance of the Stroop task [26].

Finally, behavioral data suggest that these aspects of

inhibitory function may be somewhat shared yet also

dissociable [27].

As such, a central question remains as to whether there is

a central and common right hemisphere system that is

involved in inhibitory control regardless of the domain in

which such control is exhibited, or whether there are

indeed fractionations within the right hemisphere with

regards to regions that play a role in inhibitory function

over motoric, cognitive, and emotional domains respect-

ively. If inhibitory control really is a by-product of top-

down mechanisms that actively maintain goals and modu-

late the activity of other brain regions to meet those goals,

one would suspect a high degree of overlap across

domains. To the degree that there are special systems

for inhibitory control in particular domains (e.g., rIFG for

inhibition of motor responses), then the critical regions

would be predicted to be distinct.

Why does the right hemisphere play a
predominant role in inhibitory function?
One of the striking aspects of the studies reviewed above is

the clear lateralization of function, with right prefrontal

regions differentially engaged as compared to left prefron-

tal regions across most aspects of inhibitory control. As of

yet, the underlying reason for this rather dramatic degree of

lateralization remains unclear. At least some evidence

suggests that the right hemisphere plays an important role

in surveillance of the external environment, especially as
www.sciencedirect.com 
relating to potential threat [28]. Hence, it is particularly

sensitive to the surrounding environmental context. In

addition, evidence suggests that inferior right prefrontal

regions may play a role in interrupting goal-oriented beha-

vior when salient stimuli capture attention, leading to a re-

orienting of behavior [29]. Finally, the right hemisphere

has also been implicated in avoidance as compared to

approach behaviors, including motivations [30]. The con-

fluence in the right hemisphere of subsystems sensitive to

environmental context, that can evaluate whether context

accords (or does not) with current goals and can re-orient

behavior, along with a tendency toward control of avoid-

ance behaviors and motivation may help to explain the

predominant role of the right hemisphere in inhibitory

function. Clearly, more work is needed to determine the

degree to which these three aspects of right-lateralized

function are related to the right hemisphere predominance

in inhibitory control.

Conclusions
Currently, there is clear evidence that the right hemi-

sphere plays a critical role in inhibitory function. How-

ever, there remain questions as to the functional

neuroanatomy of such inhibitory control, as well as the

degree to which specific regions of the right hemisphere

are involved in specific aspects of inhibitory control,

depending on the domain in which that control is exhib-

ited — motoric, cognitive, or emotion. Ascertaining the

answer to these questions is of practical important due to

the large number of psychiatric and neurological disorders

in which inhibitory control is compromised. Understand-

ing the underlying neurobiology of inhibitory control may

lead to more effective and focused interventions.
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