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The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated
with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been
few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied
a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which
psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic
coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2– 4 smaller subregions each. Multivariate
classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a
tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated
preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social process-
ing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological
function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in
future studies.

Key words: cognitive control; medial frontal cortex; meta-analysis; pain

Introduction
The medial frontal cortex (MFC) is purported to play a key role in
a number of psychological processes, including motor function,
cognitive control, emotion, pain, and social cognition. However,

the precise correspondence of psychological states onto discrete
medial frontal anatomy remains elusive. Several recent attempts
to define distinct functional subregions of MFC have been based
on morphology (Palomero-Gallagher et al., 2013; Vogt, 2016), in
vivo structural connectivity (Johansen-Berg et al., 2004; Beck-
mann et al., 2009; Sallet et al., 2013; Neubert et al., 2014), and
functional connectivity (Andrews-Hanna et al., 2010). Although
such studies map key properties that constrain information pro-
cessing in MFC, it is unclear whether these boundaries corre-
spond to patterns of brain activity observed during behavioral
performance (Eickhoff et al., 2007; Amunts and Zilles, 2015; Mat-
tar et al., 2015). Moreover, as these methods do not measure the
brain’s response to various psychological challenges, they cannot
directly identify the (potentially separable) functional associates
of MFC subregions.
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Significance Statement

Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive
control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topolog-
ically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively
map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This
approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2– 4
smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological
states, suggesting subregions of medial frontal cortex are functionally heterogeneous.
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To this end, task-based fMRI has suggested that distinct foci of
MFC activation may be associated with specific psychological ma-
nipulations. For example, the supplementary motor area (SMA) and
pre-SMA have been associated with the planning and initiation of
movements (Roland et al., 1980; Kennerley et al., 2004; Leek and
Johnston, 2009), whereas midcingulate cortex (MCC) has been im-
plicated in various aspects of cognitive control (Botvinick et al., 1999;
Milham et al., 2001; Holroyd et al., 2004; Brown and Braver, 2005;
Shenhav et al., 2013), fear (Vogt and Vogt, 2003; Milad et al., 2007;
Etkin et al., 2011), and pain processing (Rolls et al., 2003; Wager et
al., 2013; Vogt, 2016). Further, anterior, medial prefrontal cortex
(mPFC), and the rostral anterior cingulate cortex (rACC) have been
associated with affective processes, including emotion (Etkin et al.,
2011; Lindquist et al., 2012), autonomic function (Critchley et al.,
2003), and valuation (Hare et al., 2009), as well as internally oriented
processes, such as mentalizing (Baumgartner et al., 2012) and auto-
biographical memory (Spreng and Grady, 2010).

Despite the large number of neuroimaging studies, there have
been few large-scale efforts to comprehensively map the full range of
psychological functions onto medial frontal anatomy. Most meta-
analyses are restricted to a subset of empirical findings relevant to
candidate cognitive states hypothesized to be important (e.g., nega-
tive affect, pain, cognitive control) (Shackman et al., 2011) or a spe-
cific anatomical region of interest (e.g., Palomero-Gallagher et al.,
2015). This relatively narrow scope limits the ability to address the
specificity of activation of psychological states across the MFC more
broadly. That is, without considering a wide representative range of
psychological states, it is difficult to determine whether particular
psychological processes preferentially recruit specific subdivisions of
MFC. This limitation, widely known as the reverse inference prob-
lem (Poldrack, 2006), is particularly acute for portions of MFC,
which commonly activate in a large proportion of fMRI studies,
raising questions about whether these regions are selectively in-
volved in specific mental functions (Nelson et al., 2010; Yarkoni et
al., 2011).

Here we address these issues by creating a comprehensive
mapping between psychological states and MFC anatomy using
Neurosynth (Yarkoni et al., 2011), a framework for large-scale
fMRI meta-analysis composed of nearly 10,000 studies. We first
clustered MFC voxels into functionally separable regions at sev-
eral spatial scales based on their coactivation across studies with
the rest of the brain (Kober et al., 2008; Toro et al., 2008; Smith et
al., 2009; Robinson et al., 2010). In contrast to cytoarchitechtonic
and connectivity-based parcellations, the present analysis identi-
fied clusters with distinct signatures of activation across a wide
range of psychological manipulations. This procedure revealed
three zones along the rostrocaudal axis that further fractionated
into nine subregions. We then characterized each cluster’s func-
tional profiles using multivariate classification, revealing broad
functional shifts between the three zones, and subtler variations
between their corresponding subregions. Collectively, our results
provide a comprehensive functional map of the human MFC
using relatively unbiased data-driven methods.

Materials and Methods
We analyzed version 0.4 of the Neurosynth database (Yarkoni et al.,
2011), a repository of 9721 fMRI studies and �350,000 activation peaks
that span the full range of the published literature. The studies included
human subjects of either sex. Each observation contains the peak activa-
tions for all contrasts reported in a study’s table as well as the frequency of
all of the words in the article abstract. A heuristic but relatively accurate
approach is used to detect and convert reported coordinates to the stan-
dard MNI space (Yarkoni et al., 2011). As such, all activations and

subsequent analyses are in MNI152 coordinate space. The scikit-learn
Python package (Pedregosa et al., 2011) was used for all machine learning
analyses. Analyses were performed using the core Neurosynth Pyt-
hon tools (https://github.com/neurosynth/neurosynth); code and data
to replicate these analyses on any given brain region at any desired
spatial granularity are available as a set of IPython Notebooks
(https://github.com/adelavega/neurosynth-mfc).

Coactivation-based clustering. We clustered individual voxels inside an
MFC mask based on their meta-analytic coactivation with voxels in the
rest of the brain (Fig. 1A). First, we defined an MFC mask, excluding
voxels further than 10 mm from the midline of the brain, posterior to the
central sulcus (Y � �22 mm) and ventral to ventromedial PFC (vmPFC;
Z � �32 mm). Next, we removed voxels with low gray matter signal by
excluding voxels with either �30% probability of gray matter cortex
according to the Harvard-Oxford (H-O) anatomical atlas or very low
activation rates in the database (�80 studies per voxel). In general, Neu-
rosynth’s activation mask (derived from the standard MNI152 template
distributed with FSL) corresponded highly with probabilistic locations of
cerebral cortex, with the exception of portions of precentral gyrus and far
vmPFC, which showed low activation, although they were �50% likely
to be in cerebral cortex.

Next, we calculated the coactivation of each MFC voxel with the rest of
the brain by correlating the target voxel’s activation pattern across studies
with the rest of the brain. Activation in each voxel is represented as a
binary vector of length 9721 (the number of studies). A value of 1 indi-
cated that the voxel fell within 10 mm of an activation focus reported in
a particular study, and a value of 0 indicated that it did not. Because
correlating the activation of every MFC voxel with every other voxel in
the brain would result in a very large matrix (15,259 MFC voxels �
228,453 whole-brain voxels) that would be computationally costly to
cluster, we reduced the dimensionality of the whole brain to 100 compo-
nents using principal components analysis (PCA; the precise choice of
number of components does not materially affect the reported results).
Next, we computed the Pearson correlation distance between every voxel
in the MFC mask with each whole-brain PCA component. We applied
k-means clustering to this matrix (15,259 MFC voxels � 100 whole-brain
PCA components) to group the MFC voxels into 2–15 clusters. k-means
was used for clustering as this algorithm is computationally efficient, is
widely used, and shows reasonably high goodness-of-fit characteristics
(Thirion et al., 2014). We used the k-means �� initialization procedure,
ran the algorithm 10 times on different centroid seeds, and selected the
output of these consecutive runs with the lowest inertia to avoid local
minima.

Because the optimality of a given clustering depends in large part on
investigators’ goals, the preferred level of analysis, and the nature and
dimensionality of the available data, identifying the “correct” number of
clusters is arguably an intractable problem (Varoquaux and Thirion,
2014; Eickhoff et al., 2015; Poldrack and Yarkoni, 2016). However, in the
interest of pragmatism, we attempted to objectively select the number of
clusters using the silhouette score, a measure of within-cluster cohesion.
The silhouette coefficient was defined as (b � a)/max(a, b), where a is the
mean intracluster distance and b is the distance between a sample and the
nearest cluster of which the sample is not a part. Solutions that mini-
mized the average distance between voxels within each cluster received a
greater score. To estimate the uncertainty around silhouette scores, we
used a permutation procedure previously used by our group (Wager et
al., 2008).

To understand the anatomical correspondence of the resulting clusters,
we calculated the probability of voxels in each cluster occurring in probabi-
listic regions from the H-O atlas. We refer to H-O’s Juxapositional Lobule
Cortex as SMA for consistency. We also compared the location of clusters to
regions from cytoarchitechtonic atlases of medial motor areas (Picard and
Strick, 1996), MCC (Vogt, 2016), and vmPFC (Mackey and Petrides, 2014).
To be precise, subregions in the 9-cluster solution were given alphanumeric
labels in addition to descriptive names.

Coactivation profiles. Next, we analyzed the differences in whole-brain
coactivation between the resulting clusters (Fig. 1B). To highlight differ-
ences between clusters, we contrasted related sets of clusters. For the
three-cluster solution, we contrasted the coactivation of each cluster
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(e.g., “posterior zone”) with the other two clusters (e.g., “middle” and
“anterior” zones). For the 9-cluster solution, we contrasted the coactiva-
tion of each cluster (e.g., “SMA”) with spatially adjacent clusters that fell
within the same zone of the three-cluster solution (e.g., “pre-SMA”). To
do so, we performed a meta-analytic contrast between studies that acti-
vated a given cluster and studies that activated control clusters. The
resulting images identify voxels with a greater probability of coactivating
with the cluster of interest than with control clusters. For example, voxels
in Figure 3B (first panel, gray) indicate voxels that are active more fre-
quently in studies in which SMA (P1) is active than in studies in which
pre-SMA (P2) is active. We calculated p values for each voxel using a
two-way � 2 test between the two sets of studies and thresholded the
coactivation images using the False Discovery Rate (q � 0.01). The re-
sulting images were binarized for display purposes and visualized using
the NiLearn library for Python.

Topic modeling. Although term-based meta-analysis maps in Neu-
rosynth often approximate the results of manual meta-analyses of the
same concepts, there is a high degree of redundancy between terms (e.g.,
“episodes” and “episodic”), as well as potential ambiguity as to the mean-
ing of an individual word out of context (e.g., “memory” can indicate
working memory [WM] or episodic memory). To remedy this problem,
we used a reduced semantic representation of the latent conceptual struc-
ture underlying the neuroimaging literature: a set of 60 topics derived
using latent dirichlet allocation topic modeling (Blei et al., 2003). This
procedure was identical to that used in a previous study (Poldrack et al.,
2012a), except for the use of a smaller number of topics and a much larger
version of the Neurosynth database. The generative topic model derives
60 independent topics from the co-occurrence across studies of all words
in the abstracts fMRI studies in the database. Each topic loads onto
individual words to a varying extent, facilitating the interpretation of
topics; for example, a WM topic loads highest on the words “memory,
WM, load,” whereas an episodic memory topic loads on “memory, re-
trieval, events.” Both topics highly load on the word “memory,” but the
meaning of this word is disambiguated because it is contextualized by
other words that strongly load onto that topic. Of the 60 generated topics,
we excluded 25 topics representing nonpsychological phenomena, such
as the nature of the subject population (e.g., gender, special populations)
and methods (e.g., words such as “images,” “voxels”), resulting in 35

psychological topics. See Table 1 for a list of topics most associated with
MFC.

Meta-analytic functional preference profiles. We generated functional
preference profiles by determining which psychological topics best pre-
dicted each MFC cluster’s activity across fMRI studies (Fig. 1C). First, we
selected two sets of studies: studies that activated a given cluster, defined
as activating at least 5% of voxels in the cluster; and studies that were not
defined as activating no voxels in the cluster. For each cluster, we trained
a naive Bayes classifier to discriminate these two sets of studies based on

Figure 1. Methods overview. A, Whole-brain coactivation of MFC voxels was calculated, and k-means clustering was applied, resulting in spatially distinct clusters. B, For each cluster, thresholded
whole-brain coactivation maps were generated. C, We generated functional preference profiles for each cluster by determining which psychological topics best predicted their activation.

Table 1. Topics most strongly associated with MFC regions used in Figure 4a

Topic name Highest loading words

Gaze Eye, gaze, movements, eyes, visual, saccades, saccade, target, fixation,
direction

Decision-making Decision, choice, risk, decisions, choices, uncertainty, outcomes, risky,
taking, outcome

Episodic Memory, events, imagery, autobiographical, retrieval, episodic, memories,
future, mental, semantic

Motor Motor, movement, movements, sensorimotor, primary, finger, control,
imagery, tasks, force

Social Social, empathy, moral, person, judgments, mentalizing, mental,
theory, people, mind

Reward Reward, anticipation, monetary, responses, rewards, motivation,
motivational, loss, incentive, punishment

Switching Cues, target, trials, cue, switching, stimulus, targets, preparation,
switch, selection

Conflict Conflict, interference, control, incongruent, trials, stroop, congruent,
cognitive, behavioral, rt

Inhibition Inhibition, control, inhibitory, stop, motor, trials, nogo, cognitive,
suppression, aggression

Fear Fear, anxiety, threat, responses, conditioning, cs, extinction, autonomic,
conditioned, arousal

Working memory Memory, performance, cognitive, WM, tasks, verbal, load, executive, test,
maintenance

Pain Pain, painful, stimulation, somatosensory, intensity, noxious, heat,
nociceptive, placebo, chronic

aTen strongest loading words for each topic are listed, in descending order of association strength.
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psychological topics herein. We chose naive Bayes because (1) we have
previously had success applying this algorithm to Neurosynth data
(Yarkoni et al., 2011); (2) these algorithms perform well on many types of
data (Androutsopoulos et al., 2000); (3) they require almost no tuning of
parameters to achieve a high level of performance; and (4) they produce
highly interpretable solutions, in contrast to many other machine learn-
ing approaches (e.g., support vector machines or decision tree forests).

We trained models to predict whether or not fMRI studies activated
each cluster, given the semantic content of the studies. In other words, if
we know which psychological topics are mentioned in a study, how well
can we predict whether the study activates a specific region? We used
fourfold cross-validation for testing and calculated the mean score across
all folds as the final measure of performance. We scored our models
using the area under the curve of the receiver operating characteristic
(AUC-ROC), a summary metric of classification performance that takes
into account both sensitivity and specificity. AUC-ROC was chosen be-
cause this measure is not detrimentally affected by unbalanced data (Jeni
et al., 2013), which was important because each cluster varied in the ratio
of studies that activated it to the studies that did not.

To generate functional preference profiles, we extracted from the naive
Bayes models the log odds-ratio (LOR) of a topic being present in active
studies versus inactive studies. The LOR was defined as the log of the ratio
between the probability of a given topic in active studies and the proba-
bility of the topic in inactive studies, for each cluster individually. LOR
values �0 indicate that a psychological topic is predictive of activation in
a given cluster. To determine the statistical significance of these associa-
tions, we permuted the class labels and extracted the LOR for each topic
1000 times. This resulted in a null distribution of LOR for each topic and
each cluster. Using this null distribution, we calculated p values for each
pairwise relationship between psychological concepts and cluster, and
reported associations significant at the p � 0.001 threshold. Finally, to
determine whether certain topics showed greater preference for one clus-
ter versus another, we conducted exploratory, post hoc comparisons by
determining whether the 95% CIs of the LOR of a specific topic for one
cluster overlapped with the 95% CI of the same topic for another cluster.
We generated CIs using bootstrapping, sampling with replacement, and
recalculating log-odds ratios for each cluster 1000 times.

Results
Functionally separable regions of MFC
We identified spatially dissociable regions on the basis of shared
coactivation profiles with the rest of the brain (Kober et al., 2008;
Toro et al., 2008; Smith et al., 2009; Chang et al., 2013), an ap-
proach that exploits the likelihood of a voxel coactivating with
another voxel across studies in the meta-analytic database
(Fig. 2). Because structure-to-function mappings can be identi-
fied at multiple spatial scales, we iteratively extracted 2-cluster
through 15-cluster solutions and assessed their validity using the
silhouette score, a commonly used measure of intercluster coher-
ence. Permutation analyses indicated that the null hypothesis of
random clustering could be rejected for all solutions, with silhou-
ette scores reaching local maxima at 3 clusters (Fig. 2C). The
plateauing of silhouette scores suggests that there is little objec-
tive basis for selecting one solution over another past around 9
clusters (Thirion et al., 2014). We have therefore opted to focus
on the 3-cluster and 9-cluster solutions because they provide
greater theoretical parsimony than more fine-grained solutions.
We henceforth refer to the clusters from the 3-cluster solution as
“zones” to differentiate them from clusters in the 9-cluster solu-
tion, which we refer to as “subregions.”

At the coarsest level, MFC divided into three broad bilateral
clusters organized along the rostrocaudal axis. The 9-cluster so-
lution revealed additional fine-grained topographical organiza-
tion, with each of the three zones fractionating into 2– 4 smaller
regions (84% of all voxels within each zone overlapped with its
putative subregions). To better understand the anatomical loca-
tion of our clusters, we compared them with previously defined
subregions from the H-O probabilistic structural atlas and well-
known cytoarchitechtonic studies. Although we did not necessar-
ily expect our clusters to conform precisely to morphologically
derived regions, we nonetheless observed moderate correspon-

Figure 2. Coactivation-based clustering of MFC results. A, Mid-sagittal view at three levels at granularity: three broad zones, nine and 12 subregions. Clusters in nine subregion solution are given
both descriptive and alphanumeric names for reference. B, Axial view of nine subregions. C, Silhouette scores of real (green) and permuted (blue) clustering solutions. Clustering was performed on
permuted data 1000 times for each k to compute a null distribution ( p values for all clusters � 0.001). Silhouette scores reached local maxima at 3 regions and plateaued after 9.
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dence, suggesting that morphological properties constrain, but
not determine, function. Within the posterior zone, we identified
two clusters (Fig. 2A; SMA [P1] and pre-SMA [P2]) with a high
probability of occurring in SMA according to H-O. The two clus-
ters were approximately delineated by the vertical commissure
anterior, consistent with cytoarchitechtonic delineations (Picard
and Strick, 1996). However, SMA (P1) spanned multiple cyto-
architechtonic areas, extending ventrally to include portions of
Picard and Strick’s cingulate zones, suggesting that these mor-
phologically distinct areas coactivate similarly across tasks.

In the middle zone, we identified four clusters consistent with
MCC. In particular, two anterior and two posterior clusters de-
lineated from each other a few millimeters anterior to the vertical
commissure anterior, consistent with Vogt’s definition of ante-
rior and posterior midcingulate cortex (Vogt, 2016). The two
dorsal clusters (pdMCC [M1] and adMCC [M2]) showed a high
probability of falling within H-O’s paracingulate gyrus, whereas
the two ventral clusters (pvMCC [M3] and avMCC [M4])
showed a high probability of falling in the cingulate gyrus proper.
Unlike some cytoarchitechtonic studies, we did not identify any
regions exclusively located in the cingulate sulcus, such as the
rostral cingulate zone.

In the anterior zone, the most dorsal cluster (dorsal medial
PFC [dmPFC], A1) included medial aspects of H-O’s frontal pole
and superior frontal gyrus and was entirely outside of the anterior
cingulate gyrus. Ventrally, we identified a second cluster (pre-

genual anterior cingulate cortex [pgACC], A2), which was pri-
marily located within pregenual aspects of the anterior cingulate
gyrus but also included pregenual portions of paracingulate
gyrus. Finally, the most ventral cluster (vmPFC, A3) encom-
passed both pregenual aspects of the ACC and medial OFC, sim-
ilar to the vmPFC area of interest used in cytoarchtechtonic
studies (Mackey and Petrides, 2014).

Next, to provide direct insight into the functions of the clus-
ters we identified, we applied two approaches. First, we deter-
mined which other brain regions coactivate with each cluster, to
reveal their functional networks. Second, we used semantic data
from Neurosynth to determine which psychological states pre-
dict the activation of each cluster.

Meta-analytic coactivation profiles
We directly contrasted coactivation patterns of the three func-
tional zones (i.e., we sought to identify voxels that coactivated to
a stronger degree with each zone than with the other two)
(Fig. 3A). The posterior zone showed greater bilateral coactiva-
tion with the primary motor cortex (PMC), superior parietal
cortex (SPC), anterior cerebellum, and posterior insula (pIns) as
well subcortical regions, such as the thalamus and dorsal striatum
(DS), a coactivation pattern consistent with motoric function.
The middle zone coactivated with anterior aspects of the thala-
mus as well as regions in the frontoparietal control network, such
as dorsolateral prefrontal cortex (DLPFC), anterior insula (aIns),

Figure 3. Meta-analytic coactivation contrasts for (A) three zones and (B) nine subregions. Colored voxels indicate significantly greater coactivation with the seed region of the same color (at
right) than control regions in the same row. The three zones showed distinct coactivation patterns, whereas subregions within each zone showed fine-grained coactivation differences. Images are
presented using neurological convention and were whole-brain corrected using a false discovery rate of q � 0.01. Major subcortical structures are labeled as follows: Thal, Thalamus; Hipp,
hippocampus; Amyg, amygdale; VS, ventral striatum; DS, dorsal striatum.
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and SPC. Finally, the anterior zone showed a qualitatively differ-
ent pattern, coactivating to a greater extent with default network
regions, such as angular gyrus, hippocampus, and posterior cin-
gulate cortex (PCC) (Andrews-Hanna, 2012). The anterior zone
also showed greater coactivation with subcortical regions impor-
tant for affect: the amygdala and ventral striatum (VS).

To understand the differences in coactivation found within
each zone, we directly contrasted the coactivation patterns of
each zone’s subregions (Fig. 3B). In the posterior zone, SMA (P1)
showed greater coactivation with somatosensory cortices and
pIns, whereas pre-SMA (P2) showed greater coactivation with
posterior DLPFC, including the inferior frontal junction (IFJ), as
well as aIns, regions associated with goal-directed cognition (Nel-
son et al., 2010; Chang et al., 2013). Within the middle zone, we
found that all four subregions strongly coactivated with various
aspects of the insula. However, pvMCC (M3) more strongly co-
activated with pIns, SII, and the brainstem, important regions for
pain processing (Vogt, 2005; Wager et al., 2013). In contrast,
avMCC (M4) coactivated more strongly with ventral aIns and
lateral OFC, regions previously associated with reward-driven
learning (Stalnaker et al., 2015), and both dorsal MCC (M1 and
M2) clusters more strongly coactivated with dorsal aIns and fron-
toparietal control regions (e.g., DLPFC, SPC). However, adMCC
(M2)’s coactivation extended anteriorly into the frontal pole,
whereas pdMCC (M1) more strongly coactivated with motor
cortices. Subcortically, pvMCC (M3) showed greater coactiva-
tion with the thalamus and DS, whereas avMCC (M4) showed
greater coactivation with the left amygdala. However, daMCC
(M2) also showed robust coactivation with portions of thalamus
and DS.

Within the anterior zone, pgACC (A2) did not show many
coactivation differences from its neighbors. Surprisingly, both
dmPFC (A1) and vmPFC (V3) showed greater coactivation with
PCC, a key default network region. In addition, dmPFC (A1)
robustly coactivated with portions of the so-called “mentalizing”
network, such as the tempoparietal junction (TPJ) (Carter and
Huettel, 2013) and the superior temporal sulcus (STS) (Zilbovi-
cius et al., 2006), as well as lateral PFC, including inferior and
middle frontal gyri. Finally, vmPFC (A3) showed strong coacti-
vation with subcortical regions, including VS and the amygdala,
extending into the hippocampus. As a whole, these coactivation
patterns demonstrate that the regions we identified are involved
with distinct functional networks, and suggest that there are likely
broad functional differences across MFC zones, accompanied by
fine-grained differences between subregions.

Meta-analytic functional preference profiles
Next, we used a data-driven approach that surveyed a broad
range of psychological states to determine whether MFC clusters
are differentially recruited by psychological states. For each clus-
ter, we trained a multivariate classifier to predict which studies
activated the cluster using a set of 35 psychological topics derived
by applying a standard topic modeling approach to the abstracts
of articles in the database (Poldrack et al., 2012b) (Table 1). From
the resulting fitted classifiers, we calculated a measure of how
strongly each topic indicated that a study activated a given cluster
(measured as the LOR of the probability of a each topic in studies
that activated a given cluster to the probability of the same topic
in studies that did not activate the cluster). LOR values �0 indi-
cate that the presence of that topic in a study predicts activity in a
given region. We restricted interpretation to significant associa-
tions (p � 0.001) and additionally report 95% CIs of LORs when-
ever we comparatively discuss sets of regions. As the latter

comparisons are post hoc and exploratory, caution in interpreta-
tion is warranted.

Although the following results demonstrate relatively high
loadings between specific topics and regions (e.g., “motor” and
SMA), classification using all 35 topics yielded much better per-
formance (mean AUC-ROC: 0.61) than when using only the
most predictive topic of each region (mean AUC-ROC: 0.54).
The relatively poor performance when using only one topic sug-
gests low selectivity between psychological states and any one
region.

Across the three broad MFC zones, we observed distinct func-
tional patterns, consistent with their divergent patterns of func-
tional coactivation (Fig. 3). The posterior zone was primarily
involved with motor function (including gaze), consistent with
its coactivation with motor regions. The middle zone was primar-
ily associated with various facets of cognitive control but was also
implicated in negative affect, pain, and fear, as well as decision-
making. Consistent with its distinct pattern of coactivation, the
anterior zone showed a robust shift away from goal-directed cog-
nition and was strongly associated with affective processes, such
as reward, fear, and decision-making, as well as internally ori-
ented processes, such as episodic memory and social processing.

Inspection at a finer spatial scale revealed that subregions
within each zone showed more subtle patterns of psychological
function, similar to the fine-grained variations in coactivation
previously observed for each subregion. In the posterior zone
(Fig. 4, bottom left), activity in both clusters was similarly pre-
dicted by motor function and switching. However, exploratory
post hoc tests suggested that SMA (P1) was more strongly associ-
ated with pain, whereas pre-SMA (P2) was more strongly associ-
ated with WM (95% CI LOR: pain: SMA [0.6, 1.1], pre-SMA
[�0.1, 0.4]; WM: SMA [�0.2, 0.1], pre-SMA [0.2, 0.4]).

In the middle zone (Fig. 4, bottom middle), activity in all four
subregions was significantly predicted by aspects of cognitive
control (i.e., conflict and inhibition) and pain. However, post hoc
exploratory tests indicated dorsal MCC (M1 and M2) was more
strongly associated with WM than ventral MCC (M3 and M4)
(95% CI LOR: pdMCC [0.5, 0.8], adMCC [0.4, 0.6], pvMCC [0,
0.15], avMCC [0, 0.3]), whereas ventral MCC showed a stronger
association with affect (95% CI LOR: fear: pdMCC [�0.1, 0.4],
adMCC [�0.4, 0.2], pvMCC [0.7, 1.2], avMCC [0.4, 0.9]; reward:
pdMCC [�0.4, 0.1], adMCC [�0.4, 0.1], pvMCC [0.3, 0.7],
avMCC [0.3, 0.8]; pain: pdMCC [0.3, 0.8], adMCC [0.2, 0.7],
pvMCC [1.1, 1.5], avMCC [0.6, 1.1]). Finally, both anterior clus-
ters showed a greater association with decision-making than their
posterior counterparts (95% CI LOR: pdMCC [�0.2, 0.3], ad-
MCC [0.3, 0.8], pvMCC [�0.2, 0.4], avMCC [0.6, 1.1]).

In the anterior zone (Fig. 4, bottom right), activity across all
three subregions was significantly predicted by episodic memory
and social processing; however, the association with social pro-
cessing was maximal for dmPFC (A1) (95% CI LOR: dmPFC
[1.3, 1.7], pgACC [0.7, 1], vmPFC [0.6, 1]). In contrast, the
reverse was true for reward and decision-making; we observed
a gradient such that the association with reward and fear was
greatest going ventrally, reaching a maximum in vmPFC (A3)
(95% CI LOR: reward: dmPFC [�0.4, 0.3], pgACC [0.5, 1],
vmPFC [1.2, 1.7]; fear: dmPFC [�0.4, 0.3], pgACC [0.2, 0.7],
vmPFC [0.8, 1.3]).

Discussion
In the current study, we identified and functionally characterized
regions of the MFC by applying a data-driven approach to a
large-scale database of �10,000 fMRI studies. We defined regions
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on the basis of differences in coactivation patterns across a wide
variety of psychological manipulations, a more direct measure of
function than morphology or connectivity. We identified three
broad zones arranged along the rostrocaudal axis that further
fractionated into 2– 4 subregions. Finally, we used multivariate
classification analyses to identify the psychological topics most
strongly predictive of activity in each region, revealing broad
shifts in function between the three broad zones and more fine-
grained differences between subregions within each zone. In the
following sections, we discuss theoretical implications for each
zone as well as future challenges.

Posterior zone
Posterior MFC spanned various regions previously associated
with motoric function, such as SMA, pre-SMA, and motor cin-
gulate zones. This zone further fractioned into a posterior and
anterior cluster similarly to cytoarchitectonic (Vorobiev et al.,
1998) and connectivity parcellations (Johansen-Berg et al., 2004;
Kim et al., 2010). As a whole, posterior MFC was primarily asso-
ciated with motor function and coactivated with key motor re-
gions, such as primary motor cortex and thalamus. However,
SMA (P1) showed a greater association with pain processing and
greater coactivation with key pain regions, such as SII and thala-
mus, suggesting that this region may be important for initiating
movements in response to pain. In contrast, pre-SMA (P2)
showed a stronger association with cognitive control and coacti-
vated with regions important for goal-directed cognition (e.g.,
DLPFC, aIns). These results are generally consistent with a large
line of work suggesting that pre-SMA is responsible for more

complex motor actions that presumably require cognitive con-
trol (Picard and Strick, 1996).

Middle zone
The middle MFC zone spanned portions of the cingulate and
paracingulate gyri consistent with existing definitions of MCC
(Vogt, 2016). In contrast to claims of pain selectivity in MCC
(Lieberman and Eisenberger, 2015), all four middle subregions
were associated with pain and cognitive control. This finding is
broadly consistent with adaptive control hypotheses, which pos-
tulate that MCC integrates negative affective signals with cogni-
tive control to optimize actions in the face of action-outcome
uncertainty (Shackman et al., 2011; Cavanagh and Shackman,
2015). However, the present results additionally suggest func-
tional differences between subregions of MCC. Notably, both
dorsal MCC clusters were more strongly associated with WM and
showed greater coactivation with other cognitive control regions,
whereas ventral MCC was more strongly associated with affect
and coactivated more strongly with subcortical regions, such as
amygdala and striatum. Importantly, ventral MCC was associ-
ated not only with negative affect and pain, but also reward. Thus,
the present results suggest that ventral aspects of MCC may in-
corporate low-level affective signals into cognitive control,
whereas dorsal MCC may be more important for aspects of cog-
nitive motor control that require WM or resolving interference.
Finally, we also observed that both anterior MCC clusters were
more strongly associated with decision-making than posterior
clusters, consistent with theories that incorporate reward-driven

Figure 4. Functional preference profiles of MFC clusters. Each cluster was profiled to determine which psychological concepts best predicted its activation. Top, Each of the three functional zones
we identified showed distinct functional profiles with broad shifts across cognitive domains. Bottom, Within each zone, subregions showed fine-grained shifts in function. Strength of association is
measured in LOR, and permutation-based significance ( p � 0.001) is indicated next to each psychological concept by color-coded dots corresponding to each region.
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decision-making processes into the optimization of cognitive
control (Brown and Braver, 2005; Alexander and Brown, 2011).

Anterior zone
Anterior MFC exhibited a distinct functional profile with strong
associations with affect, decision-making, social cognition, and
episodic memory, accompanied by coactivation with the default
network. Yet, our results suggest that anterior MFC zone is not a
unitary area, and fractionated into functionally differentiable
subregions. dmPFC (A1) was most strongly associated with social
processing, consistent with studies linking dmPFC to social per-
ception and self-referential thought (Mitchell et al., 2005) and
consistent with its robust coactivation with TPJ, a region hypoth-
esized to be important for mentalizing (Baumgartner et al., 2012;
Denny et al., 2012). pgACC (A2) showed a less specific functional
pattern, showing moderate associations with both affective pro-
cesses and decision-making, perhaps consistent with descriptions
of a default network “hub” region in mPFC (Andrews-Hanna et
al., 2010; van den Heuvel and Sporns, 2013). Finally, vmPFC (A3)
was primarily associated with affective processes, such as reward
and fear, consistent with its robust subcortical coactivation. Al-
though some have characterized vmPFC as a “valuation” system
(Lebreton et al., 2009), our results suggest that vmPFC is equally
important for other affective processes, such as fear. Thus,
vmPFC may play a more general role of incorporating subcortical
affective signals into cortex, whereas more dorsal regions contex-
tualize this affective information (Roy et al., 2012).

Future challenges
Although the present results provide valuable insights into the
functional neuroanatomy of MFC, a number of important chal-
lenges remain for future research. Although the present analyses
revealed distinct functional profiles for each region in MFC, it is
notable that no region was selectively activated by a single psy-
chological concept. This functional diversity is evident in that at
least two distinct topics were significantly associated with each
cluster and our classifier’s poor ability to predict activation using
only the single most strongly associated topic for each cluster.
These results suggest a complex many-to-many mapping be-
tween brain regions and cognitive processes, in contrast to recent
claims of functional selectivity in MFC (Lieberman and Eisen-
berger, 2015; compare Wager et al., 2016). This heterogeneity is
consistent with an enormous wealth of electrophysiological data
demonstrating that virtually all areas of association cortex con-
tain distinct, but overlapping, neuron populations with hetero-
geneous functional profiles (Shidara and Richmond, 2002; Sikes
et al., 2008; Kvitsiani et al., 2013).

Although the present results provide a comprehensive snap-
shot of MFC function, many have argued that brain regions dy-
namically assume different roles (Shackman et al., 2015) and
modulate their connectivity as a function of task demands (Cole
et al., 2014; Mattar et al., 2015). Moreover, MCC is likely to be
among the most heterogeneous brain regions (Anderson et al.,
2013) as evidenced by its very high activation rate (Nelson et al.,
2010; Yarkoni et al., 2011). Thus, because the functional coacti-
vation profiles presented here represent averages across tasks,
they may mask task-dependent coactivation structure. For exam-
ple, it is possible that ventral MCC coactivates more strongly with
the amygdala during “fear” but coactivates with posterior insula
during “pain.” An interesting avenue of future research will be
to precisely characterize how coactivation and functional pat-
terns of MFC change as a function of context through large-
scale meta-analysis.

Moreover, although our parcellation was moderately consis-
tent with boundaries based on cytoarchitecture and connectivity
(e.g., the distinction between SMA and pre-SMA), we observed
several discrepancies. For example, we did not identify separate
cingulate motor zones (Picard and Strick, 1996), suggesting mor-
phologically distinct regions can coactivate similarly to support
high-level psychological function (e.g., “motor function”). Sys-
tematic modeling of the relationship between anatomy and task
evoked activation, similarly to existing models linking resting
state and anatomical connectivity (Goñi et al., 2014), is needed to
better understand the nature of such discrepancies.

The present report also provides the ability to generate hy-
potheses that can be more carefully tested in future studies using
the candidate psychological functions discussed here. For exam-
ple, our result suggests that ventral MCC had a higher association
with affect than dorsal MCC. However, given the wide intersub-
ject variability in paracingulate anatomy (Paus et al., 1996), it
would be prudent to explore this suggestion in a single sample
with subject-level anatomical registration. This hypothesis might
also be explored by large-scale meta-analyses that combine func-
tional and anatomical data to more precisely localize activity to
detailed anatomical variation. Moreover, the present findings can
improve the development of future multivariate classifiers by
providing better prior information as to the regions that may
specifically predict psychological states (e.g., Wager et al., 2013).

Finally, there are several limitations of Neurosynth that can be
addressed in future research. First, the topic model we use is
data-derived from the semantic content of papers. Although
these topics provide a substantial improvement over term-based
meta-analysis (Poldrack et al., 2012b), these topics are still based
purely on the frequency with which terms appear in the abstracts
of articles and are not able to capture more complex semantic
structures. The adoption of a standardized ontology of psycho-
logical concepts and tasks, such as the Cognitive Atlas (Poldrack
et al., 2011), will greatly improve the ability of future meta-
analyses to discriminate more fine-grained theories. Second, the
quality of activation data in Neurosynth is inherently limited
because of its automatically generated nature. Although previous
validation analyses have shown that these limitations are unlikely
to contribute systematic biases (Yarkoni et al., 2011), coordinate-
based meta-analyses are generally limited compared with their
image-based counterparts (Salimi-Khorshidi et al., 2009). Shar-
ing of statistical images in databases, such as NeuroVault (Gor-
golewski et al., 2015), will greatly improve the fidelity of future
meta-analyses.

In conclusion, in the present study, we provide a comprehen-
sive functional map of the human MFC using unbiased data-
driven methods. Although the anatomy of this area has been
extensively studied, the present study more directly identified
putative subregions with distinct functional profiles across a wide
variety of psychological states. The present results can serve as a
foundation to generate and test more fine-grained hypotheses in
future studies.

Notes
Supplemental material for this article is available at https://github.com/
adelavega/neurosynth-mfc. Code and data to replicate these analyses on
any given brain region at any desired spatial granularity. This material
has not been peer reviewed.
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