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Highlights
Traditional twin/family studies and
genome-wide association studies
(GWAS) are complementary methods
for behavioral genetic research.

Twin/family studies estimate aggregate
genetic and environmental influences on
a trait, while GWAS suggest more spe-
cific plausible biological mechanisms.

Estimates of genetic (co)variance from
these two approaches have different
assumptions, require different sample
sizes for adequate power, and have
The field of humanbehavioral genetics has come full circle. It began by using twin/
family studies to estimate the relative importance of genetic and environmental
influences. As large-scale genotyping becamecost-effective, genome-wide asso-
ciation studies (GWASs) yielded insights about the nature of genetic influences
and new methods that use GWAS data to estimate heritability and genetic corre-
lations invigorated the field. Yet these newer GWAS methods have not replaced
twin/family studies. In this review, we discuss the strengths and weaknesses of
the two approaches with respect to characterizing genetic and environmental
influences, measurement of behavioral phenotypes, and evaluation of causal
models, with a particular focus on cognitive neuroscience. This discussion high-
lights how twin/family studies and GWAS complement and mutually reinforce
one another.
distinct interpretations.

Twin/family studies typically examine
deep phenotypes, such as executive
functioning or memory; GWAS tend
to focus on general phenotypes
(e.g., intelligence), often minimally
assessed, that can be administered
in large samples or harmonized
across multiple studies.

Data from both approaches can be used
to test causal models. Family data can
be used to control for confounds in
GWAS and probe gene–environment
interplay.
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From twin and family studies to GWAS and back again: complementary
approaches
Behavioral genetics is the study of genetic and environmental influences on individual
differences in behavioral phenotypes (see Glossary). Historically, researchers used twin/family
studies to estimate the relative influences of genes and environment. The logic of these studies
is simple: to the degree a trait is genetically influenced, individuals who share more genetic
material should be more similar on that trait. This logic is especially sound when environments
are as similar as possible between different types of relatives, which is why twin studies have
taken a central place in behavioral genetics for the past half century. Both monozygotic (MZ;
identical) and dizygotic (DZ; fraternal) twins share familial and other background environmental
influences (e.g., age, neighborhood), so there should be no major differences in the degree of
environmental similarity between the two twin types. Genetic influences can therefore be esti-
mated by the degree to which the correlation between phenotypes of MZ twins, who share
100% of their segregating genes, is higher than the correlation between DZ twins, who share
50% on average. From such comparisons researchers estimate heritability (h2), the proportion
of population variability due to genetic influences, and genetic correlations (rG), the degree to
which two traits have similar genetic influences (Box 1). Results from thousands of twin studies
show that most behavioral traits are partially heritable, but also substantially influenced by the
environment [1,2].

Beginning in the late 1980s, the next major phase of research in behavioral genetics emphasized
the molecular basis of heritability by examining whether specific measured genotypes were
associated with behavior. Particularly in the past decade, genome-wide association studies
(GWASs), which examine the effects of single nucleotide polymorphisms (SNPs)measured
across the genome (Box 2), have ushered in a new era of scientific discovery and methodological
developments [3]. Yet twin/family studies continue to have a central role in human behavioral
genetic research. In this review, we highlight the complementary strengths and limitations of
GWAS and twin/family designs with respect to: (i) characterization of genetic influences and
genetic correlations, (ii) measurement of phenotypes, (iii) characterization of environmental
influences, and (iv) evaluation of causal models.
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Glossary
Allele: one of two or more forms of a DNA
segment.
Gene–environment correlation
(rGE): when genetic influences for a
particular trait are more likely to co-occur
How GWAS and twin/family data are used to understand genetic influences
Traditional behavioral genetics methods compare the covariances of close relatives, usually
twins, to estimate the proportion of trait variation due to genetic versus environmental differences
between individuals (Figure 1A). While these methods do not identify the specific genetic variants
that influence traits, they suggest that such variants exist. To identify those variants, researchers
Box 1. Estimating heritability and genetic correlations in twin studies

Correlations among relatives can arise from a combination of shared genes and shared environments. Twin studies tease
apart these influences by evaluating the extent to which genetic similarity is associated with phenotypic similarity. Structural
equation twin models (see Figure 1A in main text) separate phenotypic variance into three latent (unobserved) factors: (i)
additive genetic influences (A), the sum of a large number of genetic variants’ effects on the trait; (ii) common or shared
environmental influences (C), environmental influences that lead to within-family resemblance); and (iii) nonshared
environmental influences (E), environmental influences, including measurement error, that do not lead to within-family
resemblance. Heritability (h2) is the proportion of total variance due to genetic influences: A/(A + C + E).

Multivariate twinmodels use cross-twin associations between different traits to estimate genetic (rA or rG) and environmental
(rC and rE) correlations between those traits. The rG estimate increases to the degree that cross-twin, cross-trait correlations
(e.g., twin 1’s cognitive ability with twin 2’s substance use) are greater for MZ compared with DZ twins. Evidence for rC oc-
curs to the degree that these correlations in DZ twins approach those in MZ twins. Evidence for rE occurs when these cross-
twin correlations are lower than the phenotypic (within-twin, cross-trait) correlations.

High heritability is sometimes misinterpreted as indicating that the behavior is biologically determined and immutable (genetic
determinism). Heritability is the proportion of variance explained by genetic differences in a population in a given environment
and at a given time. Hence, heritability can vary acrosspopulations such as countries, ages, cohorts, and other grouping criteria
that reflect different environmental contexts. For example, in the United States, the heritabilities of IQ and academic achieve-
ment appear to be higher in the context of high SES [101,102], suggesting that low SES inhibits expression of genetic potential.
Some argue that since heritability estimates are population-specific, they are useless theoretically [103]. However, understand-
ing how patterns change across generation, age, sex, and environmental contexts provides a richer view of individual differ-
ences that can lead to insights about gene–environment interplay [23,104]. High heritability is also not inconsistent with
change, as the mean trait level in a population can increase or decrease while rank orders remain similar. Moreover, because
heritability is about differences within the population in which it is estimated, heritability has no necessary relevance to the
causes of between-group differences (e.g., race, sex, age cohorts), which can reflect different environmental contexts [104].

Box 2. GWAS methods

A GWAS consists of a series of independent regressions of a phenotype on genetic variants (specifically, SNPs) across the
genome, one regression per SNP (see Figure 2A in main text). A modern SNP array includes fewer than 1million ‘common’
SNPs [those whose minor allele frequency (MAF) > 1%], even though there are ~15 million common SNPs in the hu-
man genome [105]. Despite this discrepancy, the arrays capture the influence of almost all common SNPs as well as most
other types of common polymorphisms (e.g., deletions/insertions), because genetic variants that are nearby on the ge-
nome tend to be correlated (in LD). Thus, each measured SNP ‘tags’ other nearby variants. Most modern GWASs impute
nearly all common SNPs and use these imputed scores directly in the analysis.

Due to LD, the influence of a single causal variant will typically manifest itself in nearby SNPs. Thus, GWAS hits implicate a
region where a causal variant is likely to exist rather than pinpointing the actual causal variant, making biological interpretation
of individual variants challenging. Nevertheless, in aggregate, GWAS hits are not random. They occur more often in or near
genes and regulatory regions and they often cluster in biologically meaningful genetic pathways (e.g., SNPs associated with
bipolar disorder cluster in synaptic signaling pathways [106]), giving insight into the pathophysiology of disease [107].

The field has agreed upon standards and practices designed to minimize false positives. Because systematic differences in
allele frequencies exist between subpopulations, and because environmental influences can differ across these subpopula-
tions, it is routine to control for suchpopulation stratification by usingmixed linearmodels and/or by including genomic prin-
cipal components as covariates. Regardless of the number of SNPs examined, the maximum effective number of independent
tests conducted on common SNPs in the genome is ~1 million [108], so the standard in the field is to require a Bonferroni-
corrected threshold of 0.05/106 = 5 × 10–8 for a SNP association to be considered ‘genome-wide significant’. Modern GWASs
are performed on tens of thousands to millions of individuals, with sample size being the most important factor in determining
the number of significant associations [19]. To achieve large samples, the field has adopted a highly collaborative approach,
including forming large GWAS consortia, open access to large biobank datasets, and sharing summary statistics for all SNP
tests following a GWAS. These practices reduce barriers of entry to the field, maximize data usage, increase transparency,
and encourage crossfertilization of ideas.
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with particular environmental contexts.
rGE can be passive (the variants that
offspring inherit also influence the
parent’s behavior or environment (e.g., a
child who inherits risk alleles for smoking
has parents who smoke), active (variants
influence one’s choice of environment),
or evocative (an individual’s genetically
influenced trait evokes responses from
others).
Genetic correlation (rG): correlation
between the genetic influences of two
traits. rG is the genetic covariance scaled
by the product of the square root of the
genetic variances of the two traits; a high
rG can occur even when the traits have
low heritabilities.
Genome-wide association study
(GWAS): study in which a phenotype is
regressed on each of a large number of
SNPs measured across the genome
(Figure 2A and Box 2).
Genotype: an individual’s combination
of two alleles at a particular location
across both chromosomes.
Heritability (h2): the proportion of
population variability in a phenotype due
to genetic differences. h2 estimates
based on twin studies include all sources
of genetic variance, whereas estimates
based onGWASdata do not: h2SNP only
includes variance explained by common
SNPs.
Linkage disequilibrium (LD):
correlations between nearby SNPs on
the genome. LD patterns differ across
populations.
Minor allele frequency (MAF): the
population frequency of the least
common allele for a genetic variant.
SNPs with MAF > 1% are typically
considered common.
Missing heritability: the discrepancy
between h2 estimated in twin studies
and the summed variation explained by
genome-wide significant variants. h2SNP,
which includes the influence of variants
not reaching genome-wide significance,
accounts for some missing heritability.
While the cause of ‘still missing’
heritability (h2–h2SNP) remains unclear, it
is likely attributable to (mostly rare)
variants that are poorly tagged by
common SNPs on arrays.
Phenotype: observed characteristic,
such as a test score.
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Figure 1. Illustration of common models used with family data. Red indicates parameters of key interest in each
method. (A) Univariate twin models (i) leverage correlations between monozygotic (MZ) and dizygotic (DZ) twins to partition
total variance into additive genetic (A), shared environment (C), and nonshared environment (E) components. Bivariate
models (ii) leverage cross-twin correlations to estimate genetic (rA) and environmental (rC and rE) correlations between
these variance components. Only one twin is shown for simplicity. (B) Causal models using twin data examine how twin
differences in a purported cause relate to twin differences in a purported outcome, either with multilevel models (i) or twin
difference models (iii). Direction of causation models (ii) are bivariate twin models that are constrained such that all genetic
and environmental correlations must be explained with unidirectional or bidirectional paths between the observed
variables; finding that this model fits significantly worse than the less restrictive bivariate twin model in panel Aii is
inconsistent with causality.
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Polygenic: when a phenotype is
influenced by many genetic variants.
Polygenic score (PGS): score that
captures an individual’s overall genetic
propensity for a phenotype. A PGS is
usually constructed as the weighted
sum of ‘risk’ alleles each person
possesses, with the weights determined
by effect sizes from an independent
GWAS. PGS are also sometimes called
polygenic risk scores or genomic profile
risk scores.
Population stratification: systematic
differences in allele frequencies between
subpopulations. When environmental
differences lead to mean trait differences
across subpopulations, population
stratification can confound GWAS
estimates.
SNP: pronounced ‘snip’; type of
genetic variant in which the base letter at
a single nucleotide varies across the
population. SNPs are numerous across
the genome and easy to genotype at
large scale, making them the main type
of variation examined in GWAS.
typically turn to associations studies, which correlate alleles (alternative forms of DNA segments)
at one or more locations across the genome with a trait (Figure 2A). The initial ‘candidate gene’
approach focused on specific alleles within genes hypothesized to have large effects on biological
systems. However, for reasons discussed in Box 3, within the past 10 years, the field of human
genetics has become disillusioned with this hypothesis-driven approach and has instead largely
moved toward the hypothesis-free GWAS approach conducted in large samples. Within the cog-
nitive domain, large GWASs examining general cognitive ability or intelligence quotient (IQ) [4–7],
brain imaging phenotypes [8–16], and educational attainment [17] have yielded hundreds of
associations. None of these associations were predicted beforehand; nonetheless, many are
biologically plausible, for example, genes associated with neurogenesis and myelination influence
variation in IQ [7].

Thousands of GWASs on millions of individuals have now been conducted, yielding tens of thou-
sands of replicable associations [18,19]. From these results, a clear picture of the genetics underlying
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Figure 2. Illustration of genome-wide association studies (GWAS) and Mendelian randomization models. Red
indicates parameters of key interest in eachmethod. (A) A GWAS consists of a series of regressions of the phenotype on each
single nucleotide polymorphism (SNP), controlling for covariates like age, sex, and ancestry as measured with genomic
principal components (PCs). The Manhattan plot organizes the log P value (y-axis) of each SNP tested by its position on
the chromosomes (x-axis); the red line indicates genome-wide significance α = 5e–8. (B) If the Mendelian randomization
assumptions (i) are met, the analysis models shown in (ii) allow for estimation of causal effects with GWAS data.
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complex traits has emerged. Most crucially, the effect sizes of individual genetic variants are almost
always extremely small [20]. The median odds ratio for significantly associated variants across all
common diseases is ~1.09, corresponding to r2 < 0.05% (five one-hundredths of one percent)
[18]. Such small effect sizes imply that most complex traits are extremely polygenic [20], such that
their heritability is due to the sum of thousands of causal variants [21].

While identifying specific variants associated with a trait is a major focus of GWAS, methodological
innovations have expanded the utility of GWAS data to estimate heritability, genetic correlations,
and causality – traditional domains of twin/family studies [3,22,23]. A popularmethod for estimating
heritability and genetic correlations using GWAS data is genomic restricted maximum likelihood
(GREML). Similar to twin/family studies, GREML evaluates the extent to which individuals who
are more genetically similar are also more phenotypically similar [24]. Unlike twin/family studies,
however, GREML uses SNPs to calculate genetic similarity (sharing of alleles across the genome)
among ‘unrelated’ individuals who nevertheless vary in their genetic relatedness due to sharing of
distant ancestors. GREML focuses on the very narrow range of genetic similarity that is typical
among unrelated individuals (e.g., more distantly related than second cousins), as opposed
to the large range of genetic similarity observed in twin and family studies [e.g., twin pairs who
share 50% (DZ) versus 100% (MZ) of segregating genetic variants]. Because GREML uses
4 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx



Box 3. Candidate gene approach

Candidate gene approaches investigate specific genetic variants (out of ~15 million common variants in the genome)
hypothesized to be relevant to a particular trait. Often, the same ~30 ‘usual suspect’ polymorphisms are studied repeat-
edly across a wide range of traits [109] (e.g., the COMT val/met polymorphism alone has been associated with cognitive
abilities, personality dimensions, psychiatric disorders, substance abuse, dementia, Parkinson’s disease, cancer, obesity,
and height). Candidate gene sample sizes are typically in the hundreds, orders of magnitude smaller than typical GWAS
sample sizes, yet most published candidate gene studies reported significant associations [32,34]. However, findings over
the past decade have increased skepticism about the approach. For one, effect sizes detected in nearly all GWASs on
complex traits are far smaller than those detected in candidate gene studies. More damningly, when the same traits
and variants have been investigated using GWAS data in samples that have ~100% power to detect typical effects
reported in the literature, most candidate gene findings have failed to replicate [34,76,110–112].

What could explain the discrepancy between candidate gene findings and those reported inGWAS?Higher error in themea-
surement of traits in largeGWAS samples is unlikely to explain this discrepancy because the power gained due to sample size
more than compensates for the decrease in power caused by any realistic amount of measurement error [34,113]. Rather, it
is likely that positive findings for candidate gene studies are mostly false positives [32–34]. The candidate gene literature
shows evidence for a number of factors that increase the false positive rate in a field: publication bias, multiple approaches
that researchers can take in performing analyses to find one yielding a significant result, poor methodological practices
(e.g., lack of control for population stratification), low prior probability of a given single candidate polymorphism having a large
behavioral effect, and low power due to small sample sizes [32]. In response to concerns about the utility of the approach,
geneticists interested in complex traits have largely abandoned candidate gene studies and it has become difficult to get
them reviewed in genetics journals [114], although behavioral science journals continue to publish them [34]. With increasing
access to large GWAS datasets, genome-wide array data that is as cheap (~$40/sample) as candidate gene data, and the
ability to use PGSs in relatively small samples, the era of candidate gene studies is drawing to a close.
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genomic similarity at measured SNPs, its estimate of heritability (‘SNP-heritability’, or h2SNP) cap-
tures only the genetic effects explained by the SNPs used in the analysis. Thus, h2SNP changes
as a function of how many SNPs are interrogated across the genome in a GWAS study (Box 2)
and is almost always lower than h2 estimated from twin/family studies, as explained later. Linkage
disequilibrium (LD)-score regression [25], a related technique for estimating h2SNP and genetic
correlations, has become widely adopted because it is less computationally demanding than
GREML and only requires GWAS summary statistics, which are typically publicly available.

GWAS results can also be used to construct polygenic scores (PGSs), which quantify an
individual’s overall genetic propensity or ‘risk’ for a disorder or trait. Similar to how an individual
with a family history of schizophrenia is at higher risk to develop the disorder, an individual with
a high PGS for schizophrenia carries a high burden of schizophrenia risk alleles and therefore
has a higher risk of developing schizophrenia compared to someone with a low PGS. Although
many methods for computing PGSs exist [3,26], in their simplest form, PGSs are estimated by
multiplying an individual’s allele count at a SNP by a weight for that SNP’s predicted regression

effect (β̂) on the trait, which was estimated in an independent GWAS. These weighted allele
counts are then summed at all relevant measured SNPs across the genome [3,22,27,28]. By
aggregating the influences of tens of thousands of variants across the genome, PGSs explain
more variation than individual SNPs. For example, in the Twins Early Development Study, PGSs
for IQ and educational attainment respectively explained 6.7% of the variance in IQ and 14.8%
of the variance in educational achievement at age 16 years, far more than the effect of any
single SNP [29].

Once estimated, a PGS can be used like other measured variables to test a range of interesting
questions. For example, PGS studies have shown that individuals with higher polygenic risk for
major depressive disorder are more likely to develop depression when they have also experi-
enced stressful life events [30,31]. This interaction effect supports a prominent model of gene–
environment interplay, but focuses on polygenic risk rather than the single alleles that were the
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 5
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focus of prior (inconsistent) candidate gene studies [32–34]. In addition to such tests of theoretical
models, PGSs can be used to understand developmental and/or neural mechanisms for disease
and normal variation [35]. For instance, PGSs for schizophrenia are associated with childhood
cognitive, social, and emotional impairments [36] and PGSs for attention deficit/hyperactivity dis-
order (ADHD), IQ, and educational attainment are associated with smaller caudate or total brain
volumes in children [37], suggesting genetic individual differences in these traits may involve
early behavioral and neural differences.

All of these findings come from studies of modest sample sizes (n = 1139–12 490) compared with
those required to detect individual SNP effects in GWAS, demonstrating the increased effect size
and statistical power afforded by using PGSs. Because of their larger effects, PGSs can be used
with smaller sample sizes (e.g., in the thousands) than those needed to detect individual SNP ef-
fects in GWASs, which require sample sizes tens to hundreds of times larger to be adequately
powered [22,38]. As GWAS sample sizes increase and individual SNP effects are estimated with
greater precision, the predictive ability of PGSs will also increase, better enabling identification of
individuals at risk for disease to facilitate early intervention and prevention [39].

How methods based on GWAS and twin/family data complement one another
It may be tempting to view the progression from twin/family studies to approaches that estimate
genetic (co)variation using GWAS data as one of outdated approaches giving way to modern
ones that achieve the same goals in better ways. We believe this view is misguided. As summa-
rized in Table 1 (Key table), the goals and advantages of twin/family and GWAS approaches are
complementary and both are needed for optimal scientific discovery.

Perhaps most importantly, the complementarity of the two approaches is due to their largely non-
overlapping strengths and weaknesses. Though both approaches can be used to quantify heri-
tability and genetic correlations, twin/family studies can often explore more nuanced and detailed
hypotheses than is possible with GWAS data. Twin/family studies can probe associations by
estimating multiple influences simultaneously; for example, the association between height and
IQ is due to both shared genes and the tendency for individuals to select mates that are similar
to themselves on these traits [40]. They also can test specific psychological models, for example,
testing the ‘developmental propensity model’, which posits that early, heritable measures of
temperament and cognition constitute distinct propensities to antisocial behavior that jointly
influence later conduct problems [41].

By contrast, techniques that use GWAS data, like GREML and LD-score regression, can incor-
porate biological information about SNPs (e.g., whether they are in genes, regulatory regions,
etc.) to investigate whether specific types of SNPs are particularly important (‘enriched’) com-
pared with other SNPs/genes. For example, Feng et al. [42] recently found that genes that
were preferentially expressed in the central nervous system and genes associated with IQ
explained variation in resting-state fMRI brain connectivity in almost all the brain networks that
showed significant heritability. By contrast, genes related to schizophrenia and ADHD were
both related to the frontoparietal network but also showed specific relationships to the visual
(schizophrenia) and somatomotor (ADHD) networks, respectively. Another major advantage of
techniques like GREML and LD-score regression is that they can estimate genetic correlations
between traits measured in different individuals, an impossibility in twin/family studies. For
example, these methods have been used to estimate the genetic correlations between the
same disorder across different ethnicities [43] and between disorders such as schizophrenia
and bipolar disorder [44], which do not co-occur within individuals because their diagnoses are
mutually exclusive and rarely co-occur within families due to low base rates.
6 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx



Key table

Table 1. Comparison of twin/family and genome-wide association study
(GWAS) approachesa

Attribute Twin/family studies GWASs of unrelated individuals

Original/primary
goals

• Decompose (co)variances into genetic and
environmental influences at aggregate level

• Identify individual genetic associations across
the genome

Additional uses
for data

• Multivariate structural equation models simulta-
neously modeling both genetic and environ-
mental structure

• Bio-informatic follow-up to evaluate biological
pathways and types of SNPs associated with a
phenotype

• Causal models (co-twin control and direction of
causation models)

• Causal models (Mendelian randomization)

• Polygenic (risk) scores

• Estimate heritability (h2)

• Calculate genetic correlations (rG)

• Genetic structural equation modeling

Strengths (+) and
weaknesses (–)

+ Small samples (e.g., 400+ twin pairs) can still be
adequately powered to estimate h2 and rG

– Requires large samples (10s to 100s of thousands
of individuals) for adequate power to estimate SNP
effects, h2, and rG

+ Potential for deep phenotyping, including longi-
tudinal assessments

– Often has minimal phenotyping

+ h2 includes the effects of all genetic variants
(common and rare)

– h2 includes only effects of variants tagged by
array (misses rare variant effects)

+ Can estimate multiple influences (e.g., with
extended twin designs: additive and nonadditive
genetic influences, parental influences, rGE)

– Typically estimate just additive genetic influences

+ Within-family tests control for population
stratification, environmental confounds

– Sensitive to population stratification; require careful
control for ancestry

– Blind to biological information regarding the
types of variants that give rise to h2

+ Allows estimates of the relative importance of
different types of SNPs (enrichment analyses)

– Assumes environments for monozygotic and
dizygotic pairs are equivalent; violations can
result in biased estimates

+ In unrelated individuals, genetic similarities are
unlikely to be confounded with environmental
similarities after controlling for ancestry

– Estimating rG requires that both traits are mea-
sured on the same individuals

+ Can estimate rG across different samples or
across mutually exclusive traits

– Cannot separate direct from indirect genetic effects in samples of unrelated individuals (GWAS) or using
only twins (twin/family studies)

– Historic lack of diverse samples (with particular concern about exacerbating health disparities for GWAS
discoveries)

Combined approaches (e.g., GWAS using within-family design)

+ Excellent control of population stratification and rGE

+ Differentiate direct from indirect genetic effects

+ Test more complex models, including gene–environment interplay

aText aligned under each method applies to that approach, whereas centered text applies to both approaches.

Trends in Cognitive Sciences
Importantly, however, the heritability estimated with GWAS data (h2SNP) is not the same as that
estimated with twin/family data (h2). The former is the portion of variation tagged by the specific
SNPs on the array (the set of SNPs genotyped) used in the analysis. While modern arrays do a
good job of capturing the influences of nearly all common SNPs, they miss the influences of
certain types of variants, such as rare variants that are not well tagged by the genotyped or
imputed SNPs but may nonetheless have a large influence [19]. For this reason, h2SNP is lower
(typically by 40–80%) than the total h2 of the same trait estimated in twin/family studies. The
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 7
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remaining h2 not explained by SNPs (h2– h2SNP) is referred to as ‘still-missing heritability’ [22].
Moreover, because twin/family studies use a larger range of genetic similarity (e.g., 100% similarity
in MZ versus 50% in DZ) to estimate heritability than do methods like GREML, they have greater
statistical power for a given sample size and can therefore be used to test hypotheses about
genetic (co-)variation, causation, or gene–environment interplay in smaller samples; twin studies
are generally well powered with 400 pairs [45], whereas GREML requires n > 4000 to detect
heritability greater than 20% [46].

Similarly, the assumptions required, and biases when these assumptions are unmet, are different
across the two approaches [47,48]. For example, the twin design has been criticized for relying
on the ‘equal environments assumption’: the assumption that MZ and DZ twins share equally
similar environments [23]. Violations of this assumption can lead to overestimates of heritability,
causing some to argue that twin studies are seriously flawed [49] (but see [50] for counterpoints
and [51] for evaluations of the biases caused by violating this assumption). By contrast, methods
that use GWAS data typically do not include close relatives, thus lessening any confounding of
genetic and environmental similarity. However, estimates from GWAS can be biased by other
nongenetic factors that cause differences between families, such as population stratification.
Thus, GWASs require rigorous control for ancestry and to date have been largely restricted
to white Europeans, the most commonly assessed ancestry. This lack of diversity means
that GWAS discoveries may not translate to other ethnic groups, which could increase health
disparities [52–54].

Because the assumptions and biases of twin/family studies and GWAS are different, confidence
about their results are strengthened when both approaches reach consistent conclusions.
Moreover, combining these approaches enables many biases to be identified and addressed,
as discussed more in the following sections.

GWAS and twin/family studies differ in the depth of phenotype measurement
The observation that the genetic variance in complex traits is attributable to the sum of
thousands of individually tiny effects means that very large samples are needed to detect indi-
vidual genetic effects, particularly after correction for the 1 million independent tests in a typical
GWAS (α = 5 × 10–8) [19]. Large GWAS sample sizes are enabled by biobanks such as the UK
Biobank [55], databases compiled by companies like 23andMe, and consortia that harmonize
samples across the globe with relevant phenotypes. Two examples of such consortia are
COGENT (Cognitive Genomics Network), which has identified genes associated with general
cognitive function [56] and ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis),
which has identified genes associated with brain structure and a variety of psychiatric and neuro-
logical disorders [57].

The large-scale data collection and harmonization across diverse studies required for modern
GWASs means that the phenotypes examined with GWASs are often ‘minimal’ compared with
those examined in twin/family studies. For example, they may be as simple and crude as self-
reported depression. But simulations show that even with gross measurement error, large
sample sizes result in high power to detect genetic effects [34]. For example, incorporating
23andMe’s self-reported depression diagnosis enabled the first GWAS hits for major depressive
disorder [58].

Although this ‘brute force’ approach has proven effective for SNP discovery in GWAS, there are
drawbacks. GWASs on ‘minimal’ phenotypes yield lower h2SNP and identify SNPs that have lower
specificity compared with those discovered in GWASs on more strictly defined phenotypes [59].
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Minimal phenotyping also means that these discoveries are restricted to traits measured in
common across multiple GWAS samples or in large biobanks. In the cognitive domain, GWAS
discoveries have accelerated for IQ [4–6,60], but there are few, if any, genome-wide significant
associations for specific cognitive abilities like aspects of memory and executive functioning
[61,62]. Similarly, GWAS of MRI phenotypes have focused on structural measures, which can
be more easily standardized across sites than functional measures [8–10,12,14–16,63–65].
While such information about structure can provide important insights, the genetic (co)variation
in brain function (that can be measured reliably [66–69]; see Outstanding questions) may provide
insights into behavior different than those based on structure.

By contrast, twin/family studies allow for deeper phenotypes, which can be used to characterize
genetic heterogeneity (e.g., within a domain or across age), providing insights into potential
mechanisms. For instance, twin/family studies of structural MRI indicate distinct genetic contribu-
tions to cortical myelination, cortical thickness, and surface area [70,71]. In addition, the genetic
relationship between these cortical features and cognition varies: general cognitive ability is
genetically related to cortical myelination in the temporal lobe and insula, but shows weaker or
nonsignificant genetic correlations with cortical thickness and surface area [70]. Moreover,
twin/family studies have found that the heritabilities of these measures vary across regions. For
example, genetic influences for the same region differ across the two hemispheres [71] and
patterns of heritability vary markedly across and within classic resting state networks [72].

Finally, because many twin/family studies incorporate longitudinal assessments, they can provide
information on how genetic influences change across age. For instance, twin/family studies have
revealed that the heritability of, and genetic correlations between, structural brain measures vary
across age [70,73,74]. Heritability can vary across the lifespan because genetic influences are
expressed differently at different biological stages of life (e.g., with pubertal changes or in old
age) or in different developmental contexts (e.g., genes related to cognitive ability may have different
effects as children progress through formal schooling). Heritability can also vary across the lifespan
because existing genetic influences are amplified by correlated environmental influences
(e.g., individuals high in intellectual ability seek out or are chosen for additional education). A
recent longitudinal twin study found evidence for a general genetic factor on cortical thickness
and thinning that decreases in influence from childhood and adolescence compared with adult-
hood, but also evidence for new genetic influences on cortical thickness that arise particularly in
the frontal cortex in adolescence [75], a developmental period in which this brain region undergoes
extensive changes.

While increasing GWAS sample sizes for phenotypes derived from brain imaging [65] will greatly
expand the range of questions that can be addressed with GWAS data, resources are limited. For
this reason, twin studies will continue to enable analyses of deeper phenotypes due to their
smaller sample size requirements for adequately powered heritability and genetic correlation
analysis, greater diversity of existing phenotypes assessed, and relative ease with which new
ones can be measured.

Speaking to the mutual compatibility between twin and GWAS studies, genetic distinctions
revealed by twin/family studies can inform the design and interpretation of GWASs. Behavioral
measures with very high genetic correlations in twin/family studies, such as IQ and educational
attainment, can be ‘lumped’ to increase power in GWASs [7], whereas measures with lower
genetic correlations can be ‘split’, enabling greater specificity of GWAS findings [76]. Twin/family
studies are also useful for developing proxy phenotypes for use in GWAS samples. For example,
before GWAS sample sizes increased for cognitive measures, educational attainment was used
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 9
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as a proxy for IQ, because it was known from twin/family studies that the two shared genetic
covariance [77]. Similarly, genetic correlations from family studies could suggest coarse proxies
for other phenotypes of interest, such as brain activity during a particular task paradigm, that are
difficult to obtain in large GWAS samples.

Twin/family data facilitate the separation of genetic fromenvironmental influences
Perhaps ironically, genetically informative samples provide some of the strongest evidence for the
importance of environmental influences [23]. Twin/family studies suggest that roughly half the
variability in human traits is attributed to environmental differences [2]. Environmental influences
can be shared (those that increase similarity among family members) or nonshared (those that
lead family members’ traits to be uncorrelated, including measurement error). For most traits,
twin/family studies suggest that nonshared environmental influences are large whereas shared
ones are small [78], but there are notable exceptions [23,78,79], such as shared environmental
influences on childhood general cognitive ability [80], academic achievement, and educational
attainment [81].

Although twin/family and GWAS designs typically assume genetic and environmental influences
are independent, this assumption may sometimes be violated, especially for behavioral traits.
For example, genetic variants associated with higher educational attainment are passed on to off-
spring where they have ‘direct’ genetic effects (influencing the offspring's own behavior), but
these same genetic variants in the parents can influence the rearing environment in ways that
facilitate educational attainment (‘indirect’ genetic effects through nurturing from relatives) [82].
This phenomenon is termed ‘passive gene–environment correlation’ (rGE) in the twin literature
[83,84] and ‘genetic nurture’ in the GWAS literature [85].

Recently, the combination of twin/family-based designs with GWASs have allowed researchers
to tease apart direct and indirect genetic effects. Typical GWAS estimates can be influenced by
both types of effects, whereas estimates fromwithin-family designs, in which differences in sibling
phenotypes are regressed on differences in sibling genotypes, are only influenced by direct
genetic effects [82,86]. Thus, indirect genetic effects, and by extension passive rGE, can be
estimated by the degree to which between-family (typical) GWAS estimates are greater than
within-family estimates. For instance, a recent study [87] used data from fraternal twins to sepa-
rate PGS prediction of eight traits into between- and within-family components. Between-family
r2 estimates were significantly larger than within-family r2 estimates for cognitive traits (IQ and
educational achievement), suggesting passive rGE. This pattern was not observed for noncogni-
tive traits, such as height, personality, and psychopathology. Controlling for socioeconomic sta-
tus (SES) reduced most of the discrepancies in the between-family versus within-family
estimates, suggesting that the between-family PGS prediction reflected indirect effects related
to SES. Moreover, there is consistency across studies using GWAS and twin/family approaches:
Traits showing evidence for genetic nurture in GWAS studies also tend to show evidence for
shared environmental influences in twin studies [80,81], indicating that estimates from twin/family
studies can be used to develop hypotheses about genetic nurture that can be directly tested with
GWAS datasets that include close relatives.

Additionally, PGSs derived from GWAS can be leveraged in smaller twin/family studies to better
interrogate deep behavioral and environmental phenotypes, sometimes longitudinally assessed.
When considered in conjunction with PGSs, these deep phenotypes enable more nuanced tests
of gene–environment interplay than is possible in GWAS studies with minimal phenotyping. For
example, one study [88] found that mothers’ PGSs for educational attainment predicted their
children’s educational attainment over and above the children’s PGSs and that these effects
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were mediated by environmental measures of increased cognitive stimulation and decreased
household chaos. Thus, not only do family designs provide a means for estimation of direct
and indirect genetic effects using PGSs, but family studies can also utilize results from GWAS
to gain new insights into mechanisms of environmental mediation. These studies and others
[84,89] illustrate the synergistic back-and-forth between twin/family studies and GWAS that is
increasingly becoming the landscape of modern genetics.

GWAS and twin/family data facilitate causal inference in different ways
The presence of rGE and genetic correlations between traits clouds the interpretation of associa-
tions from observational studies. For example, substance use is associated with cognitive impair-
ment, but this association might occur because drugs are neurotoxic, because cognitive
impairment influences decisions about substance use, or because third (confounding) variables
influence both cognition and the likelihood of substance use [90]. In some cases, genetically infor-
mative samples (both GWAS and twin/family studies) provide additional information that can be
used to tease apart these alternatives.

Mendelian randomization (Box 4 and Figure 2B) is a popular method that uses GWAS data to
estimate whether the relationship between two variables is consistent with causality [91]. How-
ever, the variables that can be examined are limited to the phenotypes that have been assessed
in well-powered GWAS, which may not include variables relevant to the causal hypotheses of
interest or may include only minimally assessed phenotypes.

Deeper phenotypes that have been assessed in twin studies, including longitudinal and neuro-
imaging studies, can also be used to evaluate causal hypotheses [90,92]. As described earlier,
PGS associations within families, such as those within DZ twin pairs, are useful for evaluating
whether genetic differences within families cause phenotypic differences, controlling for
confounding factors that may vary between families [82,87]. Conversely, co-twin control or
twin-difference analyses can also be used to test whether environmental differences within
families (e.g., different exposure to trauma or differences in substance use) are associated with
differences in behavioral outcomes. Because they focus on within-family effects, they control
Box 4. Causal models with genetically informative samples

Both GWAS and twin/family data enable tests of causality, though the methods leverage different information (see
Figures 1B and 2B in main text). Mendelian randomization uses genetic variants identified in a GWAS as ‘instrumental’
variables to test hypotheses about direction of causation [91,115]. An instrumental variable directly affects the exposure
or causal variable (X) but does not directly affect the outcome (Y). Because parental alleles are randomly distributed to
offspring during meiosis, inheriting an allele that affects X is a form of random exposure; this SNP (or set of SNPs) is
expected to have an effect on Y through X and the ratio of the SNP’s regression coefficient predicting Y to its coefficient
predicting X provides an estimate of the causal effect of X on Y. The validity of this approach depends on strong assumptions
that the instrument is not associated with confounders and is not associated with Y except through X [116]. These
assumptions are often violated, though new techniques have been developed to reduce resulting bias [117,118].

In contrast toMendelian randomization, which focuses on specific genetic effects of the proposed causal variable, co-twin con-
trol or twin difference models (and sibling difference models) [90,92] control for shared genetic and familial environment effects
to focus on nonfamilial environmental effects of the proposed causal variable. Because they share genes and familial environ-
ments, siblings, DZ twins, and particularlyMZ twinswho differ in X canbe used to test for environmental effects of that exposure
on Y, controlling for unmeasured genetic and environmental confounds. If the exposed twins are more likely to show the out-
come than their nonexposed co-twins, then there is evidence for environmental influences of that exposure. By contrast, if the
nonexposed twins are equally likely to show the outcome, the associationmay be due to shared familial risk. Comparing co-twin
differences across MZ and DZ groups can also indicate whether a phenotypic association is likely to be genetically mediated:
because MZ co-twins completely control for genetic influences but DZ co-twins only partially control for shared genetic
influences, observing stronger associations of twin differences in Xwith twin differences in Y in DZ twins comparedwithMZ twins
suggests genetic mediation. Twin data can also be used to estimate direction of causation models [90], which test whether the
genetic and environmental associations between X and Y are proportionally consistent with causal paths between X and Y.
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Outstanding questions
What explains the still-missing herita-
bility, the gap between heritability esti-
mated from twin/family studies and
that estimated from SNPs?

Given the evidence that many genes of
small effect underlie behavior, how can
genetic discovery (e.g., GWAS hits
clustering within particular biological
pathways) be translated into new theo-
retical models and/or be used to guide
new therapies?

Can GWAS and twin studies identify de-
velopmental periods during which spe-
cific traits (cognitive ability, symptoms of
mental health disorders) show changes
in genetic and environmental influences,
which might have important implications
for the timing of interventions?

How different are the genes that
influence behavior across factors
such as sex, ancestry, SES, etc.?

How can we increase diversity in
genetic studies to ensure that
resulting discoveries benefit all
individuals in society?

Why are cognitive traits such as IQ and
educational achievement more subject
to shared environmental influences
and indirect genetic effects than other
traits like psychiatric disorders?

Some measures, such as task
performance and fMRI activation or
connectivity, tend to show lower
reliability than questionnaire or structural
MRI measures. What approaches
(e.g., task optimization for individual
differences, longer assessments/
scans, multiband scanning, analysis
of multiple measures with mixed
models or structural equation models
to remove noise) may allow both twin/
family and GWAS to best investigate
individual differences in these important
phenotypes?
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for factors that vary systematically between families but not within families, such as rearing effects,
SES, and in the case of MZ twins, genetics. For example, compared with their adult MZ co-twins
who did not experience stressors during development, MZ twins who had stressful experiences
showed increased activation in limbic regions during a cognitive control task requiring one to ignore
distracting emotional material [93]. Although this pattern does not prove a causal link between such
early stressful life events and neural changes, by controlling for most confounds, it is consistent with
a causal explanation.

Perhaps more importantly, these models allow hypotheses about causality to be rejected when
there is evidence that confounding variables account for the link (Box 4 and Figure 1B). For in-
stance, in contrast to evidence from longitudinal studies suggesting that cannabis use impairs cog-
nition [94], co-twin control studies show that twins who use more or use earlier than their co-twins
do not have lower cognitive ability or brain volume, suggesting no causal effect [95–98]. The
inclusion of a large twin sample in the National Institutes of Health’s multisite Adolescent Brain
and Cognitive Development study (https://abcdstudy.org) [90] will enable similar co-twin analyses
to evaluate effects of a number of environmental risk factors on brain and cognitive development.

Concluding remarks
The explosion of research enabled by inexpensive genotyping and the development of new
methods using genome-wide data has ushered in a ‘golden age of genetic research’ [23].
While twin/family studies are an older method, they remain important, providing different and
often complementary information to GWASs. Both approaches will continue to borrow methods,
data, and ideas from one another to optimize scientific discovery. GWAS data is now being used
to estimate heritability and genetic correlations and has borrowed structural equation model
techniques from the twin/family literature [99,100] to elucidate the genetic architecture of complex
traits. GWAS researchers have also begun to appreciate the importance of collecting twin/family
data to better control for population stratification and to estimate passive rGE. By the same token,
twin/family studies have begun incorporating measured genetic data, such as PGSs, to test
causal hypotheses, to better interrogate gene–environment interplay, and to identify biological
systems and neurocognitive mechanisms underlying observed genetic and environmental
effects. The lines between traditional twin/family approaches and those that use GWAS data
have blurred and will continue to do so, leading to answers to longstanding questions (see
Outstanding questions) in complex trait genetics as well as cognitive neuroscience.
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