

Sedimentary Rocks

Adapted from Brunkel (2012)

What is a sedimentary rock?

- Product of mechanical and chemical weathering and erosion
- 5% (by volume) of Earth's outer 10 miles

From Rocks to Soils

Fresh Rocks (I)

Weathering

Weak Rocks - Stiff Soils (II-V)

Figure 9-1 Climatic influences on types of weathering processes. (From Peltier, 1950; reproduced by permission from the *Annals of the Association of American Geographers*, 40:219, Fig. 3.)

Erosion – Point A to Point B

- Gravity
 - Sometimes stuff rolls downhill
- Water
 - Obvs the largest mover of sediments
- Wind
 - Moves a lot of small stuff fine sand, silt
- Ice
 - Moves a lot of stuff, all sizes, in one big push

Erosion

- Where does the sediment stop?
- What happens to it when it stops?

Sediments

Sediments form by:

- Weathering of rocks (mainly continental rocks)
- The remains of small skeleton building organisms
- Inorganic crystals that precipitate from solution

Sediments

- Sediments are small pieces rocks (or minerals) from other rocks
- Sediments are transported and deposited by erosional processes
- Sediments go through the process of lithification to become sedimentary rocks

Lithification

- the process of turning sediments into rocks
- Compaction and Cementation
- The Matrix

Turning sediment into rock

Sedimentary rocks

Provide evidence of past environments
 i.e, Limestone reefs indicate past tropical climate, dune sandstones indicate past arid climate and show wind direction.

Often contain fossils

Sedimentary rocks

- Sedimentary rocks economically important
 Coal
 Petroleum and natural gas
 Sources of iron, aluminum, and
 - manganese

CLASSIFICATION OF SEDIMENTARY ROCKS

ocks are formed at or near the surface of the earth. Most nents are deposited in beds or layers by water or wind as athering (erosion). Sedimentary rocks can be classified of origin as clastic, chemical precipitates, or organic.

Clastic rocks are composed of rock fragments or mineral grains broken from any type of pre-existing rock. Precipitated rocks may result from chemical precipitation from fresh or salt water. Organic sediments may form from either plant or animal particles. There is a large variety of

sedimentary rocks but approximately 98% of all ser composed of various types of shales, sandstone Shale is the main weathering product of the felds most abundant of the minerals.

CLASTIC		CHEMICAL		ORGANIC
merate - Composed of rounded rock nents of 2mm, pebbles and up and ve a sandy matrix.	Conglomerate	<i>Limestone</i> - A fine to coarse-grained bedded rock consisting essentially of the mineral calcite (calcium carbonate).	Limestone	Bituminous Coal - Black with a dull luster, sometimes referred to as soft coal and accountin for about 90% of all coal mined. Contains approximately 50% fixed carbon.
one - Sandstones may be subdivided ng to composition and texture. Particle ange 1/6 to 2mm. Quartz grains are e dominant mineral.	Sandstone	Dolomite - A fine to coarse-grained bedded rock consisting essentially of the mineral dolomite (calcium, magnesium carbonate).	Dolomite	<i>Lignite Coal</i> - Usually brownish in color with a relative low content of fixed carbon, compacted from beds of peat and other organic debris.
ne - In general this group is composed ame minerals as the sandstone; sizes rom 1/256 to 1/16mm.	Siltstone	<i>Travertine</i> - A general term for massive, non-crystalline calcite as found in caves, usually opaque and often colored.	Travertine	Asphaltum - A completely organic deposit of so hydrocarbons.
Clay size particles, less than 1/256 aracterize the clays. Bedding planes ally apparent.	Shale	<i>Calcareous Tufa</i> - A light, porous limestone formed in springs as deposits on water plants, twigs or debris.	Calcareous Tufa	Fossil Limestone - A fine to coarse-grained bedded rock consisting essentially of calcium carbonate often with identifiable fossil shells.
inous Sandstone - the cementing Is of the sandstone particles will often color to the rock. Iron oxides may red or yellow.	Ferruginous Sandstone	Rock Gypsum - Fine-grained or coarsely crystalline, consisting of the mineral gypsum, a residue from saturated sea waters.	Rock Gypsum	Coquina - A highly porous and loosely cemente formation of shells and fragments mainly calciun carbonate.
a - The fragments which are re- ed are sharp and angular. They may any different origins.	Breccia	Rock Salt - Transparent to white or gray crystalline rock composed essentially of the mineral halite (sodium chloride).	Rock Salt	Chalk - A limestone deposit, calcium carbonate made up primarily of tiny protozoan shells.
- Particles are similar in size to one or somewhat larger and are sed of over 20% feldspar.	Arkose	Chert - A fine-grained compact rock composed mainly of chalcedony.	Chert	<i>Oil Shale</i> - This shale may contain a higher percentage of calcium compounds than silica shales and has entrapped plant and animal remains related to petroleum.

 Detrital (Clastic) sedimentary rocks – formed from sediment that was transported as *solid particles (clasts)* of quartz, clay, feldspar, mica.

Clastic sedimentary rock names

Named according to particle size.

Fine to Coarse:

- Shale clay size
- Siltstone silt size
- Sandstone sand size

Conglomerate (rounded) and Breccia (angular)
 increasing pebble to boulder size

increasing transport energy

Shale

- Most common sedimentary rock (50%)
- Clay-sized particles, some silt.
- Deposited in low-energy environment, settling out from suspension.
- Often compacted to thin layering = laminae
- -Black shale is organic rich. Source of hydrocarbons.
- -Very weak in outcrop (recessive)

Siltstone

- -Composed of silt-sized particles
- Deposited in low to moderate energy environment.
- Moderate resistance in outcrop (forms "badlands")

Sandstone

–Sorting of grains – tells you about transport medium

- -Shape of grains tells you about distance of transport
- -rounded = more transport and abrasion

Sandstone

- -Composition of the grains tells you about distance of transport and the source terrain that they were eroded from.
 - -Chemically unstable minerals like feldspars, mica, and ferromagnesian silicates indicate short transport distance from igneous source terrains
 - -Arkose: sandstone with quartz, K-feldspar, muscovite indicates short transport from granite source terrain.

Sandstones

Sandstone

-Sedimentary structures like cross bedding and ripple marks tell you about depositional environment of sandstone

Sand in modern beach trench

Cross bedding

500 my old Cambrian sand stone in outcrop

Sandstone

-Sedimentary structures like cross bedding and ripple marks tell you about depositional environment

Sand on modern beach

500 my old sand*stone* in outcrop **Ripple marks**

Clastic sedimentary rock names

Conglomerate and Breccia

- -Pebble to boulder size requires very HIGH energy
- Conglomerate consists largely of rounded gravels
- Breccia is composed mainly of large angular particles

Breccia

CLASSIFICATION OF SEDIMENTARY ROCKS

ocks are formed at or near the surface of the earth. Most nents are deposited in beds or layers by water or wind as athering (erosion). Sedimentary rocks can be classified of origin as clastic, chemical precipitates, or organic.

Clastic rocks are composed of rock fragments or mineral grains broken from any type of pre-existing rock. Precipitated rocks may result from chemical precipitation from fresh or salt water. Organic sediments may form from either plant or animal particles. There is a large variety of

sedimentary rocks but approximately 98% of all ser composed of various types of shales, sandstone Shale is the main weathering product of the felds most abundant of the minerals.

CLASTIC		CHEMICAL		ORGANIC
merate - Composed of rounded rock nents of 2mm, pebbles and up and ve a sandy matrix.	Conglomerate	<i>Limestone</i> - A fine to coarse-grained bedded rock consisting essentially of the mineral calcite (calcium carbonate).	Limestone	Bituminous Coal - Black with a dull luster, sometimes referred to as soft coal and accountin for about 90% of all coal mined. Contains approximately 50% fixed carbon.
one - Sandstones may be subdivided ng to composition and texture. Particle ange 1/6 to 2mm. Quartz grains are e dominant mineral.	Sandstone	Dolomite - A fine to coarse-grained bedded rock consisting essentially of the mineral dolomite (calcium, magnesium carbonate).	Dolomite	<i>Lignite Coal</i> - Usually brownish in color with a relative low content of fixed carbon, compacted from beds of peat and other organic debris.
ne - In general this group is composed ame minerals as the sandstone; sizes rom 1/256 to 1/16mm.	Siltstone	<i>Travertine</i> - A general term for massive, non-crystalline calcite as found in caves, usually opaque and often colored.	Travertine	Asphaltum - A completely organic deposit of so hydrocarbons.
Clay size particles, less than 1/256 aracterize the clays. Bedding planes ally apparent.	Shale	<i>Calcareous Tufa</i> - A light, porous limestone formed in springs as deposits on water plants, twigs or debris.	Calcareous Tufa	Fossil Limestone - A fine to coarse-grained bedded rock consisting essentially of calcium carbonate often with identifiable fossil shells.
inous Sandstone - the cementing Is of the sandstone particles will often color to the rock. Iron oxides may red or yellow.	Ferruginous Sandstone	Rock Gypsum - Fine-grained or coarsely crystalline, consisting of the mineral gypsum, a residue from saturated sea waters.	Rock Gypsum	Coquina - A highly porous and loosely cemente formation of shells and fragments mainly calciun carbonate.
a - The fragments which are re- ed are sharp and angular. They may any different origins.	Breccia	Rock Salt - Transparent to white or gray crystalline rock composed essentially of the mineral halite (sodium chloride).	Rock Salt	Chalk - A limestone deposit, calcium carbonate made up primarily of tiny protozoan shells.
- Particles are similar in size to one or somewhat larger and are sed of over 20% feldspar.	Arkose	Chert - A fine-grained compact rock composed mainly of chalcedony.	Chert	<i>Oil Shale</i> - This shale may contain a higher percentage of calcium compounds than silica shales and has entrapped plant and animal remains related to petroleum.

 Chemical sedimentary rocks – formed from sediment that was *precipitated* from solution through metabolism by organisms or by inorganic precipitation.

Chemical sedimentary rocks

- Consist of precipitated material that was once in solution
- Precipitation of material occurs in two ways
 Inorganic processes
 Organic processes (biochemical origin)

Chemical sedimentary rock names

Chemical sedimentary rock names

Limestone

- -Most abundant chemical sed. rock
- -Composed chiefly of the mineral calcite
- -Marine biochemical limestones form as coral reefs, coquina (broken shells), and chalk (microscopic organisms)
- -Inorganic limestones include travertine and oolitic limestone

Chemical sedimentary rock names Limestone Biochemical limestones: coral reefs

Chemical sedimentary rock names

Limestone

-Biochemical limestones: **coquina** (broken shells), and **chalk** (microscopic organisms)

Chemical sedimentary rock names

Dolostone

-Alteration of limestone from infiltrating magnesium-rich waters. CaCO3 changes to Ca,MgCO3.

–Importance is that it is harder and doesn't dissolve as readily as limestone.

inorganic limestone

 travertine — inorganic limestone formed by precipitation of calcium carbonate from solution in caves & thermal springs

Chemical sedimentary rock names

Chert

 Chemical sedimentary rock made up of microscopic quartz

- -Varieties include flint (black), jasper (red), agate (banded)
- Important tool material for neolithic cultures.

Chemical sedimentary rock names• Evaporites

- -Evaporation leads to supersaturation and precipitation
- Definite order as a lake dries up: Gypsum* first, Halite (rock salt) second, sylvite (salt substitute (KCl) last

CLASSIFICATION OF SEDIMENTARY ROCKS

ocks are formed at or near the surface of the earth. Most nents are deposited in beds or layers by water or wind as athering (erosion). Sedimentary rocks can be classified of origin as clastic, chemical precipitates, or organic.

Clastic rocks are composed of rock fragments or mineral grains broken from any type of pre-existing rock. Precipitated rocks may result from chemical precipitation from fresh or salt water. Organic sediments may form from either plant or animal particles. There is a large variety of

sedimentary rocks but approximately 98% of all ser composed of various types of shales, sandstone Shale is the main weathering product of the felds most abundant of the minerals.

CLASTIC		CHEMICAL		ORGANIC
merate - Composed of rounded rock nents of 2mm, pebbles and up and ve a sandy matrix.	Conglomerate	<i>Limestone</i> - A fine to coarse-grained bedded rock consisting essentially of the mineral calcite (calcium carbonate).	Limestone	Bituminous Coal - Black with a dull luster, sometimes referred to as soft coal and accountin for about 90% of all coal mined. Contains approximately 50% fixed carbon.
one - Sandstones may be subdivided ng to composition and texture. Particle ange 1/6 to 2mm. Quartz grains are e dominant mineral.	Sandstone	Dolomite - A fine to coarse-grained bedded rock consisting essentially of the mineral dolomite (calcium, magnesium carbonate).	Dolomite	<i>Lignite Coal</i> - Usually brownish in color with a relative low content of fixed carbon, compacted from beds of peat and other organic debris.
ne - In general this group is composed ame minerals as the sandstone; sizes rom 1/256 to 1/16mm.	Siltstone	<i>Travertine</i> - A general term for massive, non-crystalline calcite as found in caves, usually opaque and often colored.	Travertine	Asphaltum - A completely organic deposit of so hydrocarbons.
Clay size particles, less than 1/256 aracterize the clays. Bedding planes ally apparent.	Shale	<i>Calcareous Tufa</i> - A light, porous limestone formed in springs as deposits on water plants, twigs or debris.	Calcareous Tufa	Fossil Limestone - A fine to coarse-grained bedded rock consisting essentially of calcium carbonate often with identifiable fossil shells.
inous Sandstone - the cementing Is of the sandstone particles will often color to the rock. Iron oxides may red or yellow.	Ferruginous Sandstone	Rock Gypsum - Fine-grained or coarsely crystalline, consisting of the mineral gypsum, a residue from saturated sea waters.	Rock Gypsum	Coquina - A highly porous and loosely cemente formation of shells and fragments mainly calciun carbonate.
a - The fragments which are re- ed are sharp and angular. They may any different origins.	Breccia	Rock Salt - Transparent to white or gray crystalline rock composed essentially of the mineral halite (sodium chloride).	Rock Salt	Chalk - A limestone deposit, calcium carbonate made up primarily of tiny protozoan shells.
- Particles are similar in size to one or somewhat larger and are sed of over 20% feldspar.	Arkose	Chert - A fine-grained compact rock composed mainly of chalcedony.	Chert	<i>Oil Shale</i> - This shale may contain a higher percentage of calcium compounds than silica shales and has entrapped plant and animal remains related to petroleum.

Chemical sedimentary rock names

Coal

Made up of organic
molecules - hydrocarbons.
Different from organic
limestone which is 100%
calcite, an inorganic
mineral.

- Coal Stages:

- **1. Plant material**
- 2. Peat
- 3. Lignite
- 4. Bituminous

Increasing Heat & metamorphism

Sedimentary environments

- The geographic setting <u>where sediment</u> <u>accumulates</u>. Determines the nature of the sediments – grain size, sorting or chemical composition.
- Types of sedimentary environments
 Continental
 Transitional (shoreline)
 - Marine

Continental depositional environments

Dominated by:

-Erosion -Stream deposition -Glacial deposition -Wind deposition (eolian)

Sedimentary Environments

Continental environments of deposition

- Lakes (lacustrine)
- Alluvial systems
- Deserts/dunes
- Glacial outwash

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

River sedimentation

Channel in-filling

Meandering Rivers

LOW-SEDIMENT LOAD, LOW VELOCITY

LOW-SEDIMENT LOAD, LOW VELOCITY

Meanders in an Alaskan river

Formation of terraces

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

River terraces

Photo by Diane Carlson

1.14

Channel Types

- Braided streams Occur where sediment load exceeds competence or capacity
 - -where steep sediment-laden tributaries enter main streams
 - -places with rapid gradient decrease, such as where mtn. stream enters plain
 - -in front of glaciers
 - **Form longitudinal bars** deposited in middle rather than at points in river, with bar long axes ~parallel to river banks.

Alluvial Fans

- Alluvial fans arcuate "fan-shaped" deposits of coarse material that form where a high-gradient stream enters a low gradient main valley.
 - Represents an instantaneous drop in competence and capacity.

Deltas

- Deltas arcuate "delta-shaped" landforms that form where a stream or river enters a standing body of water.
 - Represents an instantaneous drop in competence and capacity.

Delta Components in Map View

 Disributaries – Note that the branching pattern is opposite of most stream channels which branch upstream

Marine depositional environments

Main Divisions:

-Shallow (<200 m) coral reefs sandy near river mouths

-Deep Water mainly shale deep water sandstones in deep sea fans

Sedimentary Environments

Marine environments of deposition

- Continental shelf
- Reefs
- Continental rise
- Deep sea

Transitional depositional environments

At interface of land and ocean:

-beaches, barrier isl.

-tidal flats

-deltas

-lagoons

Sedimentary structures

BEDDING-

- Bedding plane
- Principle of Original Horizontality

Law of original horizontality

Bedding planes

strata

Cross bedding

Engineering – Sed Rx

- Sandstones and conglomerates
 - Variability
 - Cement
 - Structure
 - Deposit boundaries
 - Permeability
 - Rippability

Engineering – Sed Rx

- Shales and Mudstones
 - Variability- Gas?
 - Compactability
 - Structure
 - Deposit boundaries
 - Permeability
 - Slake
 - Heave

Interbedded nature

Chemical Sed Rx

- Surface and underground
- Development of Karst topography
- Evaporites gypsum/anhydrite and halite

Karst Topography

Dissolution of carbonate rocks

Development of karst topography

Karst Topography

- Limestone caves
- Sinkholes

Development of karst topography

Engineering- Chem Sed Rx.

- Dissolution
- Plastic deformation
- Voids, cavities, caves
- Groundwater
- Variability
- Interbedded